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Existence of periodic solutions and bifurcation points for

generalized ordinary differential equations

M. Federson∗, J. Mawhin†, C. Mesquita‡

Abstract

The generalized ordinary differential equations (shortly GODEs), introduced by J. Kurz-

weil in 1957, encompass other types of equations. The first main result of this paper extends

to GODEs some classical conditions on the existence of a periodic solution of a nonau-

tonomous ODE. By means of the correspondence between impulse differential equations

(shortly IDEs) and GODEs, we translate the result to IDEs. Instead of the classical hy-

potheses that the functions on the righthand side of an IDE are piecewise continuous, it is

enough to require that they are integrable in the sense of Lebesgue, allowing such functions

to have many discontinuities. Our second main result provides conditions for the existence of

a bifurcation point with respect to the trivial solution of a periodic boundary value problem

for a GODE depending upon a parameter, and, again, we apply such result to IDEs. The

machinery employed to obtain the main results are the topological degree theory, tools from

the theory of compact operators and an Arzelà-Ascoli-type theorem for regulated functions.

Keywords: Periodic solutions; Bifurcation; Kurzweil-Henstock integral; Brouwer degree; Leray-

Schauder degree.

2010 MSC: 26A39; 34C23; 34C25; 47H11.

1 Introduction

The aim of this paper is to obtain theorems on the existence of a periodic solution and on

the existence of a bifurcation point for periodic solutions, in the framework of J. Kurzweil’s

generalized ordinary differential equations (GODE, for short) (see [20, 21, 22, 30]). The main

tool used here is the theory of topological degree [6, 11, 16, 34].

The application of topological methods to periodic solutions of ordinary differential systems

is well-explored. In [25, 26], J. Mawhin has proved a continuation theorem for the existence

of at least one periodic solution for nonautonomous systems involving Carathéodory functions

using the coincidence degree (see [25], Theorem IV.13, [26], Theorem 4.1). In the present

paper, extend this continuation theorem to the periodic boundary problem for GODEs. Because

GODEs are presented as integral equations where the (non absolute) integral is of the type

∗Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos,
Caixa Postal 668, 13560-970 São Carlos SP, Brazil. E-mail: federson@icmc.usp.br
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Belgium. E-mail: jean.mawhin@uclouvain.be
‡Federal University of São Carlos, Caixa Postal 676, 13565.905 São Carlos SP, Brazil. E-mail:

mcmesquita@dm.ufscar.br
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defined by J. Kurzweil in [20], our requirements of the righthand side of the equation only

involve some integrability in the sense of Kurzweil (see Theorem 4.8 in the sequel). It is a

known fact that finite dimensional GODEs encompass other types of equations, among others,

functional differential equations, integral equations, dynamic equations on time scales, measure

and impulsive differential equations. Here, we illustrate this fact with impulsive differential

equations (IDE for short), and translate our result to these equations (see Theorem 6.5).

Concerning the existence of bifurcation points by means of degree theory, we mention among

other ones the books [18], by M. A. Krasnosel’skĭı et Zabreiko, and [19], by W. Krawcewicz and

Jianhong Wu. In [18], Theorem 56.2, and in [19], Theorem 5.1.7, the proofs use the Leray-

Schauder index for compact perturbations of identity in a Banach space. On the other hand,

in the books [13] by R. E. Gaines and J. Mawhin, and [25] by J. Mawhin, the authors use

the coincidence degree to extend the existence condition for a bifurcation point to relatively

compact perturbations of linear Fredholm operators between Banach spaces (see [13], Theorem

10.6, [25], Theorem IX.3). The linearized case is also investigated in Theorem 10.8 of [13] and

in Theorem IX.5 of [25]. It is worth mentioning that H. Amann, in his book [2], deals with

finite dimensional operators specialized for ODEs and deduces his result on the existence of a

bifurcation point from the Brouwer index (see [2], Theorem 26.5). Inspired by these ideas, we

associate a fixed point operator to the periodic boundary value problem for a nonautonomous

GODE and establish conditions under which the equation admits a bifurcation point with respect

to the trivial solution (see Theorem 5.6 in the sequel). Then, we apply this result to periodic

solutions of IDEs (Theorem 6.8) with Carathéodory right-hand members. It is worth mentioning

that one could consider right-hand members involving Kurzweil-Henstock instead of Lebesgue

integrability. Other approaches for bifurcation results for impulsive differential equations can

be found in [1, 5, 23].

The theory of GODEs, introduced by J. Kurzweil in 1957 (see [20]), is based on the Kurzweil-

Henstock non-absolute integration theory developed independently by J. Kurzweil and R. Hen-

stock in the late nineteen fifties and early nineteen sixties (see, e.g., [14, 21]). This means that

the righthand sides of the equations may be non-absolutely integrable with respect to t, hence

coping with large oscillations and many jumps. For instance, the function f : [0, 1] −→ R given

by

f(t) =


1

t
sin

(
1

t3

)
χ(0,1](t), if t ∈ (0, 1],

0, if t = 0,

where χE denotes the characteristic function of a set E ⊂ R, is neither Riemann nor Lebesgue

integrable, but is integrable in the sense of Kurzweil-Henstock.

Because the solutions of a GODE are given in an integral form as

x(s) = x(0) +

∫ s

0
DF (x(τ), t), s ∈ [0, T ],

where T > 0 and the integral is in the sense of Kurzweil (see Definition 2.1 in the sequel), they

can easily be related to integral operators. We recall, in Section 2, a few basic properties of the

Kurzweil integration theory, to make the paper is self-contained.

In Section 3, we consider the periodic solutions of GODEs. We introduce the operator M,

2



defined from the space G of the regulated functions x : [0, T ]→ Rn into itself, by

M(x)(s) = x(0) +

∫ T

0
DF (x(τ), t) +

∫ s

0
DF (x(τ), t), s ∈ [0, T ],

and prove that the fixed points of M are the periodic solutions of the nonautonomous GODE

(Proposition 3.2 ). To apply Leray-Schauder degree, we need to prove that M is a compact

operator (i.e. a continuous mapping which takes bounded sets into relatively compact sets).

This is done in Propositions 3.3 and 3.4.

In Section 4, we state and prove an existence theorem for periodic solutions of GODEs,

namely Theorem 4.8. A preliminary version was proposed in 1993 in the unpublished thesis

of C. Gorez, written under the direction of J. Mawhin. To prove it, we employ results from

degree theory (see e.g. [6, 11, 34]), and in particular the invariance under homotopy of the

Leray-Schauder degree (see [11], page 179) applied to the family of operators H : ∆× [0, 1]→ G

given by

H(x, λ)(s) = x(0) +

∫ T

0
DF (x(τ), t) + λ

∫ s

0
DF (x(τ), t), s ∈ [0, T ],

where ∆ is an open bounded subset of G such that H(·, λ) has no fixed point in ∂∆ for λ ∈ [0, 1],

and the link between the Leray-Schauder and the Brouwer degree for perturbations of identity

with finite-dimensional range.

In Section 5, we introduce a concept of bifurcation point with respect to the trivial solution

of some periodic boundary value problem of GODEs depending on a parameter λ ∈ Λ0 ⊂ R,

dx

dτ
= DF (λ, x, t).

We extend in Theorem 5.6 to this problem a classical sufficient condition for the existence of a

bifurcation point introduced by Krasnosel’skĭı (see e.g. [18]). More specifically, we consider the

nonlinear operator N : Λ0 ×G→ G given by

N (λ, x)(s) = x(T ) +

∫ s

0
DF (λ, x(τ), t), s ∈ [0, T ],

whose fixed points are the periodic solutions of the GODE, and we prove that N is compact

with respect to the second variable (see Proposition 5.2 in the sequel) and continuous with

respect to the first variable (see Proposition 5.3). In addition, we show that N is a homotopy of

compact transformations on the closure of a ball in G so that we can use, again, the invariance

with respect to homotopy (see the proof of Theorem 5.6 in the sequel) in order to prove, by a

contradiction argument, that a variation of the Leray-Schauder index between two values of λ

leads to a bifurcation point between them.

Concerning applications, we translate Theorem 4.8 on the existence of periodic solutions

of GODEs to the case of IDEs with Carathéodory righthand sides (see Theorem 6.5 in the

sequel). Then we give an explicit example of an IDE for which we prove the existence of a

periodic solution. We also translate our result on the existence of a bifurcation point to IDEs

(see Theorem 6.8 in the sequel) and give an explicit example. Our results generalize results from

the literature. See, for instance, [3, 23, 24, 29, 33].
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2 Background on Kurzweil integration theory

Let T > 0 be a fixed number. Consider a function δ : [0, T ]→ R+ (called a gauge on [0, T ]).

A tagged division of the interval [0, T ] with division points 0 = t0 ≤ t1 ≤ · · · ≤ tm = T and

tags τj ∈ [tj−1, tj ], j = 1, . . . ,m, is called δ-fine, whenever [tj−1, tj ] ⊂ (τj − δ(τj), τj + δ(τj)),

j = 1, . . . ,m. We denote such tagged division by d = (τj , [tj−1, tj ])
m
j=1.

Throughout this paper, we denote respectively by | · | and ‖ · ‖ any norm in R and Rn. The

next definition is due to J. Kurzweil. See, for instance, [20, 21, 22, 30].

Definition 2.1. A function U : [0, T ] × [0, T ] → Rn is called Kurzweil integrable on [0, T ], if

there exists an element K ∈ Rn such that, for every ε > 0, there exists a gauge δ on [0, T ]

satisfying ∥∥∥∥∥∥
m∑
j=1

[U(τj , tj)− U(τj , tj−1)]−K

∥∥∥∥∥∥ ≤ ε.
for every δ-fine tagged division d = (τj , [tj−1, tj ])

m
j=1 of [0, T ]. In this case, we write K =∫ T

0 DU(τ, t).

Let us recall the original definition of a GODE introduced by Kurzweil in 1957, and presented

in [30], Definition 2.11.

Definition 2.2. Let O ⊂ Rn be open and F : O × [0, T ] → Rn be a function. We say that a

function x : [0, T ]→ Rn is a solution of the generalized ordinary differential equation (GODE)

dx

dτ
= DF (x, t) (2.1)

whenever x(t) ∈ O, for every t ∈ [0, T ], and

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t) (2.2)

for every s1, s2 ∈ [0, T ].

Remark 2.3.

• The integral on the righthand side of (2.2) is in the sense of Definition 2.1, with U :

[0, T ]× [0, T ]→ Rn given by U(τ, t) = F (x(τ), t);

• If x(τ) = a for all τ ∈ [0, T ], where a ∈ Rn, the Riemannian sum in Definition 2.1 becomes

m∑
j=1

[F (a, tj)− F (a, tj−1)] = F (a, T )− F (a, 0),

for any tagged division d = (τj , [tj−1, tj ])
m
j=1 of [0, T ]. Hence, the Kurzweil integral is

∫ T

0
DF (a, t) = F (a, T )− F (a, 0). (2.3)
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In particular, when x(τ) = a for all τ ∈ [0, T ] is a solution of equation (2.2), we obtain

0 = F (a, T )− F (a, 0).

We are interested in a suitable class of righthand sides F of (2.1), introduced in [30] and

defined as follows. Thorough this paper, BR ⊂ Rn denotes the open ball with center at zero

and of radius R > 0. We assume that, for each R > 0, there exist a nondecreasing function

hR : [0, T ] → R and an increasing and continuous function ωR : [0,+∞) → R, with ωR(0) = 0,

such that

‖F (z, t2)− F (z, t1)‖ ≤ |hR(t2)− hR(t1)| (2.4)

‖F (z, t2)− F (z, t1)− F (y, t2) + F (y, t1)‖ ≤ ωR(‖z − y‖)|hR(t2)− hR(t1)|, (2.5)

for every z, y ∈ BR, and every t1, t2 ∈ [0, T ]. We denote by F(BR × [0, T ], hR, ωR), the set of

all functions F : BR × [0, T ]→ Rn satisfying (2.4) and (2.5).

Following N. Bourbaki and J. Dieudonné (see [4] and [7]), a function x : [0, T ]→ Rn is called

regulated, if the lateral limits

lim
s→t−

x(s), t ∈ (0, T ] and lim
s→t+

x(s), t ∈ [0, T )

exist. We denote by G the space of all regulated functions x : [0, T ] → Rn with the usual

supremum norm ‖x‖∞ = supt∈[0,T ] ‖x(t)‖. The fact that (G, ‖ · ‖∞) is a Banach space is well-

known. (see, e. g., [15], Theorem 3.6, p. 18).

It is worth recalling that all functions x : [0, T ]→ R of bounded variation are also regulated

functions (see, e.g. [15], Corollary 4, p. 18) which are, in turn, Darboux integrable ([15],

Theorem 3.6, p. 18). As a matter of fact, the raison d’être of regulated functions lies on the

fact that every regulated function f : [0, T ] ⊂ R −→ Rn has a primitive, i.e., there exists a

continuous function F : [0, T ] ⊂ R −→ Rn such that
dF

dt
(t) = f(t) almost everywhere in [0, T ]

(see [4], p.4, and [7], p.139).

The next proposition presents a characterization of relatively compact subsets (subsets with

compact closure) of the space G of the regulated functions from [0, T ] to Rn. Such result can be

found in [32], Corollary 4.3.8 and is a consequence of a result by D. Franková in [12], Theorem

2.17.

Proposition 2.4. Let A ⊂ G and assume that the set {x(0), x ∈ A} is bounded and that there

exists a nondecreasing function h : [0, T ]→ Rn such that

‖x(t)− x(s)‖ ≤ |h(t)− h(s)|, for every t, s ∈ [0, T ] and x ∈ A.

Then A is relatively compact in G.

The following proposition, which compiles Lemma 3.9 and Corollaries 3.11 and 3.16 from

[30], gives some information about the integral form (2.2) of the GODE (2.1).

Proposition 2.5. If F : BR × [0, T ]→ Rn satisfies (2.4), then the following assertions hold.

5



(i) If x : [0, T ] → Rn, with (x(s), s) ∈ BR × [0, T ], for all s ∈ [0, T ], and if the integral∫ s2
s1
DF (x(τ), t) exists, then for any s1, s2 ∈ [0, T ], the inequality∥∥∥∥∫ s2

s1

DF (x(τ), t)

∥∥∥∥ ≤ |hR(s2)− hR(s1)|.

holds.

(ii) If x : [0, T ]→ Rn is a solution of the GODE (2.1), then x is of bounded variation in [0, T ]

and varT0 x ≤ hR(T )− hR(0) < +∞, where varT0 x denotes the variation of x in [0, T ].

(iii) If F ∈ F(BR×[0, T ], hR, ωR), for all R > 0 and x : [0, T ]→ Rn is a regulated function such

that (x(s), s) ∈ BR × [0, T ] for every s ∈ [0, T ], then the integral
∫ T
0 DF (x(τ), t) exists.

The last result of this quick overview on the theory of GODEs is an important property of

the class F ∈ F(BR × [0, T ], hR, ωR) which will be useful in the next section. A proof of it can

be found in [28], Lemma 5.

Lemma 2.6. Let F ∈ F(BR × [0, T ], hR, wR), for all R > 0. If x, y : [0, T ]→ BR are regulated

functions, then ∥∥∥∥∫ T

0
D[F (x(τ), t)− F (y(τ), t)]

∥∥∥∥ ≤ ∫ T

0
ωR(‖x(t)− y(t)‖)dhR(t).

where the integral above is in the sense of Kurzweil.

The next estimate follows directly from the definition of the Kurzweil integral. See [31],

Lemma 2.2.

Lemma 2.7. Let U : [0, T ]×[0, T ]→ Rn be Kurzweil integrable and let the functions z : [0, T ]→
R be regulated and g : [0, T ]→ R be nondecreasing such that

‖U(τ, t)− U(τ, s)‖ ≤ z(τ) |g(s)− g(t)| for all t, s, τ ∈ [0, T ].

Then ∥∥∥∥∫ T

0
DU(τ, t)

∥∥∥∥ ≤ ∫ T

0
z(τ) dg(τ).

3 Periodic solutions of GODEs

In this section, we introduce the concept of periodic solutions for GODEs and to establish

an equivalence result.

Definition 3.1. Let T > 0 be a fixed number. We say that a function x : [0, T ] → Rn is a

T-periodic solution of the GODE
dx

dτ
= DF (x, t) (3.1)

if it is a solution of (3.1) such that x(0) = x(T ).

6



Let us introduce an operator

M : G→ G, x 7→ M(x),

given by

M(x)(s) = x(0) +

∫ T

0
DF (x(τ), t) +

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ], (3.2)

where we assume that F ∈ F(BR × [0, T ], hR, ωR), for all R > 0.

By Proposition 2.5, item (iii), it is clear that the operator M is well-defined.

The next proposition describes a one-to-one correspondence between the T -periodic solutions

of (3.1) and the fixed points of the operator M given by (3.2).

Proposition 3.2. Suppose F ∈ F(BR×[0, T ], hR, ωR), for all R > 0. A function x : [0, T ]→ Rn

is a T -periodic solution of (3.1) if and only if x is a fixed point of the operator M : G → G

given by (3.2).

Proof. Suppose x is a T -periodic solution of (3.1). By (ii) of Proposition 2.5, x ∈ G and

x(s) = x(0) +

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ],

and x(T ) = x(0). Hence ∫ T

0
DF (x(τ), t) = 0,

and,

x(s) = x(0) +

∫ T

0
DF (x(τ), t) +

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ],

which implies M(x)(s) = x(s), for every s ∈ [0, T ], and x is a fixed point of t M.

Conversely, let x ∈ G be a fixed point of the operator M. Then

x(s) = x(0) +

∫ T

0
DF (x(τ), t) +

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ], (3.3)

Taking s = 0 in (3.3), we obtain ∫ T

0
DF (x(τ), t) = 0. (3.4)

Then, taking s = T in (3.3) and using (3.4), we get x(T ) = x(0). Finally, from (3.4) and (3.3),

x(s) = x(0) +

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ],

which means that x is a T -periodic solution of (3.1) and the proof is complete.

The next result ensures the continuity of the operator M on G.

Proposition 3.3. Suppose F ∈ F(BR × [0, T ], hR, ωR), for all R > 0. Then, the operator

M : G→ G, defined in (3.2), is continuous on G.
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Proof. Let x, y ∈ G be such that x(s), y(s) ∈ BR, for some R > 0 and for all s ∈ [0, T ]. Hence,

‖M(y)−M(x)‖∞ = sup
s∈[0,T ]

‖M(y)(s)−M(x)(s)‖

≤ ‖y(0)− x(0)‖+

∥∥∥∥∫ T

0
D[F (y(τ), t)− F (x(τ), t)]

∥∥∥∥
+ sup
s∈[0,T ]

{ ∥∥∥∥∫ s

0
D[F (y(τ), t)− F (x(τ), t)]

∥∥∥∥ } .
By Lemma 2.6, we have∥∥∥∥∫ T

0
D[F (y(τ), t)− F (x(τ), t)]

∥∥∥∥ ≤ ∫ T

0
ωR(‖y(t)− x(t)‖)dhR(t). (3.5)

Then, using (3.5), we obtain

‖M(y)−M(x)‖∞ ≤ ‖y − x‖∞ + 2ωR(‖y − x‖∞)[hR(T )− hR(0)].

and the proof is complete.

The next result ensures that the operator M : G→ G, defined in (3.2), takes bounded sets

of G into relatively compact sets of G.

Proposition 3.4. Suppose F ∈ F(BR × [0, T ], hR, ωR), for all R > 0. Then the operator M
defined in (3.2) maps bounded sets of G into relatively compact sets of G (i.e. its closure in G

is compact).

Proof. It is enough to prove that the set A = {M(x), x ∈ M} is relatively compact in G, for

every bounded set M ⊂G. It is clear that the set {M(x)(0), x ∈M} is bounded.

By item (i) of Proposition 2.5, we have

‖M(x)(s′)−M(x)(s)‖ =

∥∥∥∥∥
∫ s′

s
DF (x(τ), t)

∥∥∥∥∥ ≤ |hR(s′)− hR(s)|,

for every s, s′ ∈ [0, T ] and every x ∈M . The statement follows by Proposition 2.4.

4 Existence of periodic solutions of GODEs

Keeping the notations and terminology of the previous section, we now state and prove a

result which ensures the existence of at least one T -periodic solution of the GODE

dx

dτ
= DF (x, t), (4.1)

where F ∈ F(BR × [0, T ], hR, ωR) for all R > 0. To this end, we employ the Leray-Schauder

degree theory. For the reader’s convenience, we recall some basic concepts and results of the

topological degree theory, both for finite and infinite dimensional spaces (see [2, 6, 11, 27]).

A proof of the following theorem can be found in [2], Theorem 21.5.
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Theorem 4.1. Let E be a finite dimensional Banach space. Then, for every open and bounded

subset D of E and every z ∈ E, there exists a function

deg(· ,D, z) : Dz(D, E)→ Z

called the Brouwer degree, where Dz(D, E) = {f ∈ C(D, E); z 6∈ f(∂D)}, which has the

following properties:

(i) (Normalization): If z ∈ D, then deg(I,D, z) = 1, where I : E → E denotes the identity

operator.

(ii) (Homotopy invariance): Let J ⊆ R be a nonempty compact interval. Moreover, assume

that H ∈ C(J ×D, E) and y ∈ C(J,E) are such that

y(λ) 6∈ H({λ} × ∂D), for each λ ∈ J.

Then,

deg(H(λ, ·),D, y(λ))

is well-defined and independent of λ ∈ J .

Corollary 4.2. Let D be an open and bounded subset of a Banach space E of finite dimension

n and, for f ∈ C(D, E), assume that z does not belong to f(∂D). Then

deg(−f,D, z) = (−1)n deg(f,D, z).

In order to extend the concept of degree for functions whose domain is a subset of an arbitrary

Banach space, we recall some elements of the Leray-Schauder’s degree theory (see [6, 11, 16, 27]).

As in [11], Definition 7.1, p. 174, a mapping f : X ⊂ E −→ E (not necessarily linear) is compact

on X, whenever f is continuous on X and takes bounded sets of X into relatively compact sets

of E.

Definition 4.3. Let E be a Banach space and D ⊂ E be an open bounded set. Let f : D → E

be a compact operator such that z 6∈ (I − f)(∂D). The Leray-Schauder degree is a function

degLS , which associates to each triple (I − f,D, z), an integer degLS(I − f,D, z) ∈ Z satisfying

the following properties:

(i) degLS(I,D, z) = 1, for z ∈ D, where I : E → E denotes the identity operator.

(ii) If degLS(I − f,D, z) 6= 0, then z ∈ (I − f)(D).

We now recall the definition of a homotopy of compact transformations. For more details,

see [11], page 178.

Definition 4.4. Let E be a Banach space and D ⊂ E be an open bounded set. Let M ⊂ D and

H : [0, 1]×D −→ E. We say that H is a homotopy of compact transformations on M , whenever

(a) For each λ ∈ [0, 1] fixed, H(λ, x) is compact on M .
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(b) For every ε > 0 and for every bounded L ⊂M , there exists δ > 0 such that

‖H(λ1, x)−H(λ2, x)‖ ≤ ε

whenever x ∈ L and |λ1 − λ2| < δ.

The next result, borrowed from [11], p. 179, presents an important property of the Leray-

Schauder degree, which will be useful in the following sections.

Theorem 4.5. [Invariance under Homotopy] Let E be a Banach space and D ⊂ E be an open

bounded set. Assume that H : [0, 1]×D −→ E is a homotopy of compact transformations on D.

Set

φλ = I −H(λ, · )

for λ ∈ [0, 1] and assume that z /∈ φλ(∂D), for every λ ∈ [0, 1]. Then, degLS [I −H(λ, · ),D, z]
is independent of λ.

Definition 4.6. Let E be a Banach space, D ⊂ E be an open bounded set and f ∈ C(D, E)

be a function whose range is contained in some finite dimensional subspace F of E. The Leray-

Schauder degree of I − f with respect to D, at a point z 6∈ (I − f)(∂D), is defined by the

integer

degLS(I − f,D, z) = deg((I − f) |D∩F ,D ∩ F, z),

where the righthand side is the Brouwer degree defined according to Theorem 4.1.

Next, we recall the concept of Leray-Schauder index as presented in [6, 11, 16].

Definition 4.7. Let f : D → E satisfy the conditions of Definition 4.3. If a is an isolated fixed

point of f , for small r > 0, we define the Leray-Schauder index of I − f at a by

indLS [I − f, a] = degLS [I − f,B(a, r), 0] (4.2)

where B(a, r) denotes the open ball of radius r and center a ∈ D ⊂ E.

The next result ensures that the GODE (4.1) has at least one T -periodic solution.

Theorem 4.8. Assume that F ∈ F(BR× [0, T ], hR, ωR), for all R > 0. Suppose there exists an

open and bounded subset ∆ of G such that the following statements are valid:

(i) For every λ ∈ (0, 1], the equation

dx

dτ
= λDF (x, t) (4.3)

does not admit a T -periodic solution x on G with x ∈ ∂∆.

(ii) The equation

Ψ(a) :=

∫ T

0
DF (a, t) = 0

does not admit a solution a ∈ ∂∆∩Rn (where Rn is viewed as the set of constant functions

in G).
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(iii) deg(Ψ,∆ ∩ Rn, 0) 6= 0.

Then the GODE (4.1) has at least one T -periodic solution x ∈ ∆.

Proof. Let us define an operator H : [0, 1]×∆→ G given by

H(λ, x)(s) := x(0) +

∫ T

0
DF (x(τ), t) + λ

∫ s

0
DF (x(τ), t) (4.4)

parametrized by λ ∈ [0, 1], for every s ∈ [0, T ].

Suppose λ = 1. Then, by Proposition 3.2, the fixed points of the operator H are the T -

periodic solutions of (4.1). Thus, by hypothesis (i), H(1, x) 6= x for every x ∈ ∂∆.

Now, we consider λ ∈ (0, 1). If x is a fixed point of the operator H, then taking s = 0 in

(4.4), we obtain ∫ T

0
DF (x(τ), t) = 0 (4.5)

and taking s = T in (4.4) and using (4.5), we conclude that x(T ) = x(0) and, moreover,

x(s) = x(0) + λ

∫ s

0
DF (x(τ), t), for all s ∈ [0, T ].

Therefore x is a T -periodic solution of (4.3). Hence, for every λ ∈ (0, 1), the fixed points of

H(λ, · ) are T -periodic solutions of (4.3). Thus, by hypothesis (i), H(λ, x) 6= x for every λ ∈ (0, 1)

and x ∈ ∂∆.

Now, we consider the case where λ = 0. If x is a fixed point of the operator H, then

x(s) = x(0) +

∫ T

0
DF (x(τ), t), s ∈ [0, T ], (4.6)

which implies x is constant, that is, x(s) = a in [0, T ]. Thus, from (4.6), we obtain∫ T

0
DF (a, t) = 0.

By hypothesis (ii), it is clear that H(0, x) 6= x for every x ∈ ∂∆.

Then, combining all the previous cases, we conclude that

H(λ, u) 6= u, for every pair (λ, u) ∈ [0, 1]× ∂∆

and, hence, we have

0 6∈ I −H(λ, · )(∂∆), λ ∈ [0, 1].

By Propositions 3.3 and 3.4, it is easy to conclude that the operator H is a homotopy of

compact transformations on ∆. Therefore, by Theorem 4.5, we conclude that

degLS(I −H(1, · ),∆, 0) = degLS(I −H(0, · ),∆, 0).

Notice that H({0}, x) ⊂ Rn, for every x ∈ ∆. Then, using Definition 4.6 and Corollary 4.2,
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we obtain

degLS(I −H(0, · ),∆, 0) = deg((I −H(0, · )|Rn ,∆ ∩ Rn, 0)

= deg(−Ψ,∆ ∩ Rn, 0) = (−1)n deg(Ψ,∆ ∩ Rn, 0) 6= 0,

where the last equation is different from zero, since hypothesis (iii) holds. Thus,

dLS(I −H(1, · ),∆, 0) 6= 0.

By (ii) of Definition 4.3, there exists x ∈ ∆ such that H(1, x) = x and, hence, x ∈ ∆ is a fixed

point of H(1, · ). Consequently, by Proposition 3.2, x is a T -periodic solution of (4.1).

5 Bifurcation theory for GODEs

In this section, our first goal is to define the concept of a bifurcation point with respect to

the trivial solution of the periodic boundary value problem for the nonautonomous GODE

dx

dτ
= DF (λ, x, t), x(0) = x(T ), (5.1)

where, for each λ ∈ Λ0 ⊂ R fixed, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR) for all R > 0. We assume

that the following equality holds:

(B1) F (λ, 0, t)− F (λ, 0, s) = 0, for all t, s ∈ [0, T ] and λ ∈ Λ0.

The assumption (B1) implies that equation (5.1) admits the trivial solution for each λ and we

study the bifurcation with respect to the trivial solution.

In order to prove the existence of a bifurcation point with respect to the trivial solution of

(5.1), let Ω ⊂ G be an open and bounded set containing 0. Inspired by [17], Appendix II, define

the operator

Φ : Λ0 × Ω→ G, (λ, x) 7→ Φ(λ, x)

by

Φ(λ, x)(s) = x(s)− x(T )−
∫ s

0
DF (λ, x(τ), t), s ∈ [0, T ]. (5.2)

It follows from Proposition 2.5, item (iii), that the operator Φ is well-defined. Note that, from

(B1), Φ(λ, 0) = 0, for every λ ∈ Λ0.

As Φ(λ, x)(0) = x(0) − x(T ), it is clear that, for each λ ∈ Λ0, there is a one-to-one corre-

spondence between the zeros of the operator Φ(λ, ·), and the solutions of the GODE (5.1). By

this fact, it is enough to define a bifurcation point for the equation Φ(λ, x) = 0, where Φ is given

by (5.2).

This new concept for GODEs is inspired by [17], p. 143 and [2], p. 370.

Definition 5.1. A couple (λ0, 0) ∈ Λ0×Ω is called a bifurcation point of the equation Φ(λ, x) =

0, if every neighborhood of (λ0, 0) ∈ Λ0×Ω contains a solution (λ, x) of the equation Φ(λ, x) = 0

such that x 6= 0.
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Now, let us consider an operator

N : Λ0 × Ω→ G, (λ, x) 7→ N (λ, x)

given by

N (λ, x)(s) = x(T ) +

∫ s

0
DF (λ, x(τ), t), s ∈ [0, T ]. (5.3)

Notice that the operator Φ, given by (5.2), can be written as

Φ(λ, x)(s) = x(s)−N (λ, x)(s), for every λ ∈ Λ0, s ∈ [0, T ].

In order to prove the main result of this section, which ensures the existence of a bifurcation

point for equation (5.1), we use the Leray-Schauder degree theory. At first, we need to prove

that the operator N : Λ0×Ω→ G, given by (5.3), satisfies some conditions which are described

by the next two propositions. The first proposition ensures that N is compact with respect to

the second variable. A proof of it can be carried out by applying the proofs of Propositions 3.3

and 3.4.

Proposition 5.2. If, for each λ ∈ Λ0 fixed, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR) for all R > 0,

then, the following properties are satisfied.

(i) For each fixed λ ∈ Λ0, the operator N (λ, ·) : Ω→ G is continuous on Ω.

(ii) For each fixed λ ∈ Λ0, the operator N (λ, ·) : Ω→ G takes bounded sets of G into relatively

compact sets of Ω.

Proposition 5.3. Suppose for each fixed λ ∈ Λ0, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR) for all

R > 0, and assume that the following condition holds:

(B2) There is a nondecreasing function g : [0, T ]→ R such that for any ε > 0, there exists δ > 0

such that

‖F (λ1, z, t)− F (λ2, z, t)− F (λ1, z, s) + F (λ2, z, s)‖ ≤ ε|g(t)− g(s)|

for all z ∈ BR, t, s ∈ [0, T ], and λ1, λ2 ∈ Λ0 with |λ1 − λ2| ≤ δ.

Then,

‖N (λ1, x)−N (λ2, x)‖∞ < ε [g(T )− g(0)]

wherever |λ1 − λ2| ≤ δ and x ∈ Ω.

Proof. Let ε > 0 and consider δ > 0 as in (B2). Therefore,

‖N ((λ1, x)−N (λ2, x)‖∞ = sup
s∈[0,T ]

‖N (λ1, x)(s)−N (λ2, x)(s)‖

= sup
s∈[0,T ]

{∥∥∥∥∫ s

0
D[F (λ1, x(τ), t)− F (λ2, x(τ), t)]

∥∥∥∥}
≤ ε [g(T )− g(0)]
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for every x ∈ Ω and λ1, λ2 ∈ Λ0 with |λ1 − λ2| ≤ δ, since Lemma 2.7 holds.

Proposition 5.4. Suppose for each λ ∈ Λ0, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR) for all R > 0,

and condition (B2) holds. Then, the operator N : Λ0 × Ω→ G is compact on Λ0 × Ω.

Proof. A proof is carried out by applying the proofs of Propositions 3.3, 3.4 and 5.3.

In the following lines, B(0, r) denotes the open ball in G centered at the origin and of radius

r > 0, that is,

B(0, r) = {x ∈ G, ‖x‖∞ < r}. (5.4)

The next result is an adaptation of Lemma X.5 from [13] to the framework of GODEs.

Proposition 5.5. Suppose for each λ ∈ Λ0, F (λ, ·, ·) ∈ F(BR× [0, T ], hR, ωR) for all R > 0 and

that conditions (B1) and (B2) hold. Assume that [λ1, λ2] ⊂ Λ0 contains no bifurcation point for

the equation Φ(λ, x) = 0, where Φ is given by (5.2). Then, there exists δ > 0 such that, for each

λ ∈ [λ1, λ2] and each x ∈ B(0, δ) ∩ Ω, if we have

x = N (λ, x),

then x = 0, where the operator N is defined in (5.3).

Proof. By Proposition 5.4, the operator N is compact on Λ0 × Ω. Then, the set

C =
{

(λ, x) ∈ [λ1, λ2]× Ω ; x = N (λ, x)
}

is also compact on Λ0 ×G. Suppose the statement does not hold. Then, for each n ∈ N∗, there

exist sequences λn ∈ [λ1, λ2] and xn ∈ B(0, 1n) ∩ Ω such that

xn = N (λn, xn), xn 6= 0. (5.5)

Using the compactness of the set C, there exists a subsequence (λnk
, xnk

) of (λn, xn), which we

will denote by (λn, xn), satisfying

(λn, xn)→ (λ0, x0) as n→∞.

Moreover, (λ0, x0) ∈ [λ1, λ2]×Ω and x0 = 0. On the other hand, by (5.5), (λ0, 0) is a bifurcation

point of the equation Φ(λ, x) = 0, which contradicts the hypothesis.

Now, we establish conditions for the existence of a bifurcation point for GODEs.

Theorem 5.6. Suppose for each λ ∈ Λ0 fixed, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR) for all R > 0

and (B1) and (B2) are valid. Let Φ : Λ0 × Ω → G and N : Λ0 × Ω → G be given by (5.2) and

(5.3) respectively. If, we have [λ1, λ2] ⊂ Λ0 and

indLS [I −N (λ1, ·), 0] 6= indLS [I −N (λ2, ·), 0], (5.6)

then there exists λ0 ∈ [λ1, λ2] such that (λ0, 0) is a bifurcation point of equation Φ(λ, x) = 0.
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Proof. By the definition of the Leray-Schauder index, there exist δ1, δ2 > 0 such that the equa-

tions

N (λ1, x) = x, x ∈ B(0, δ1)

and

N (λ2, x) = x, x ∈ B(0, δ2),

have the unique solution x = 0.

Suppose [λ1, λ2] ⊂ Λ0 contains no bifurcation points with respect to the trivial solution of

the equation Φ(λ, x) = 0. By Proposition 5.5, there is δ > 0 having the property that, for each

λ ∈ [λ1, λ2] the only x ∈ B(0, δ) ∩ Ω such that

x = N (λ, x)

is x = 0. Thus, taking α = min{δ1, δ2, δ}, we obtain

N (λ, x) 6= x, for every (λ, x) ∈ [λ1, λ2]×B(0, α) \ {0}. (5.7)

Define an operator

N : [0, 1]×B(0, α)→ G, (µ, x) 7→ N (µ, x)

given by

N (µ, x)(s) = x(T ) +

∫ s

0
DF (µλ2 + (1− µ)λ1), x(τ), t), for all s ∈ [0, T ].

By Propositions 5.2 and 5.3, N is a homotopy of compact transformations on B(0, α). In

order to prove that degLS(I − N (µ, ·), B(0, α), 0) is independent of µ ∈ [0, 1], it is enough to

prove that

0 6∈ (I −N (µ, ·))(∂B(0, α)), for all µ ∈ [0, 1]. (5.8)

By item (i) of Proposition 5.2 and by (5.7), we have

x−N (µ, x) 6= 0, for every (µ, x) ∈ [0, 1]×B(0, α) \ {0}. (5.9)

Note that if x ∈ ∂B(0, α), then ‖x‖∞ = α 6= 0. Thus,

x−N (µ, x) 6= 0, for every (µ, x) ∈ [0, 1]× ∂B(0, α)

and (5.8) holds.

By Theorem 4.5, we obtain

degLS [I −N (0, ·), B(0, α), 0] = degLS [I −N (1, ·), B(0, α), 0].

By definition of the operator N in (5.3), we also have

degLS [I −N (0, ·), B(0, α), 0] = degLS [I −N (λ1, ·), B(0, α), 0] and
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degLS [I −N (1, ·), B(0, α), 0] = degLS [I −N (λ2, ·), B(0, α), 0].

Then, by Definition 4.7, we conclude that

indLS [I −N (λ1, ·), 0] = degLS [I −N (λ1, ·), B(0, α), 0]

= degLS [I −N (λ2, ·), B(0, α), 0]

= indLS [I −N (λ2, ·), 0],

which contradicts (5.6) and the proof is complete.

6 Applications to IDEs

In this section, our goal is to apply the results from the previous sections to IDEs, using the

correspondence between IDEs and GODEs, which can be found in [10], Theorems 3.4 and 3.5

(see also [30], Theorem 5.20).

Consider the following IDE{
x′(t) = f(x(t), t), t 6= ti

∆x(ti) = Ii(x(ti)), i = 1, . . . ,m,
(6.1)

where f : BR × [0, T ] → Rn, ti, for i = 1, . . . ,m, are pre-assigned moments of impulse effects,

with 0 < t1 < . . . < tm < T , the impulsive operators Ii : BR ⊂ Rn → Rn, for i = 1, . . . ,m are

continuous functions and

∆x(ti) := x(ti+)− x(ti−) = x(ti+)− x(ti), i = 1, . . . ,m, (6.2)

that is, we assume that x is left continuous at t = ti and the lateral limits x(ti+) exist, for

i = 1, . . . ,m.

The IDE (6.1) is equivalent to the integral equation

x(t) = x(0) +

∫ t

0
f(x(s), s)ds+

∑
0<ti<t

Ii(x(ti)), t ∈ [0, T ] (6.3)

where the integral exists in the some sense. We consider Lebesgue integrability here, but one

could consider Kurzweil-Henstock integrability instead.

For d ∈ [0, T ), we define the left continuous Heaviside function Hd by

Hd(t) =

{
0, t ≤ d
1, t > d

Then, ∑
0<ti<t

Ii(x(ti)) =
m∑
i=1

Ii(x(ti))Hti(t), t ∈ [0, T ].
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Therefore equation (6.3) can be rewritten as

x(t) = x(0) +

∫ t

0
f(x(s), s)ds+

m∑
i=1

Ii(x(ti))Hti(t), t ∈ [0, T ].

Definition 6.1. A function x : [0, T ]→ Rn is called a Carathéodory solution or simply a solution

of the IDE (6.1), if it satisfies:

(i) x(t) ∈ BR, for all t ∈ [0, T ] and x is absolutely continuous on each interval [0, t1], (ti, ti+1],

for i = 1, ...,m− 1, (tm, T ],

(ii) x′(t) = f(x(t), t), for almost all t, such that t 6= ti,

(iii) ∆x(ti) := x(ti+)− x(ti) = Ii(x(ti)), i = 1, ...,m.

We also denote by L1([0, T ],Rn) the space of Lebesgue integrable functions from [0, T ] to Rn

with finite integral. Let the function f : BR × [0, T ]→ Rn satisfies the following conditions :

(H1) for any z ∈ BR, f(z, ·) ∈ L1([0, T ],Rn);

(H2) there exists a function M1 ∈ L1([0, T ],R) such that, for all t1, t2 ∈ [0, T ] and all z ∈ BR,∥∥∥∥∫ t2

t1

f(z, s) ds

∥∥∥∥ ≤ ∫ t2

t1

M1(s) ds;

(H3) there exists a function M2 ∈ L1([0, T ],R) such that, for all t1, t2 ∈ [0, T ] and all z, w ∈ BR,∥∥∥∥∫ t2

t1

[f(z, s)− f(w, s)] ds

∥∥∥∥ ≤ ωR(‖z − w‖)
∫ t2

t1

M2(s) ds.

Remark 6.2. It is important to mention here that hypotheses (H2) and (H3) above are

Carathéorody- and Lipschitz-type conditions on the indefinite integral of f and not on the

function f itself. Carathéorody- and Lipschitz-type conditions on f would read as

(H2′) there exists a function M1 ∈ L1([0, T ],R) such that, for all s ∈ [0, T ] and all z ∈ BR,

‖f(z, s)‖ ≤M1(s);

(H3′) there exists a function M2 ∈ L1([0, T ],R) such that, for all s ∈ [0, T ] and all z, w ∈ BR,

‖f(z, s)− f(w, s)‖ ≤M2(s)ωR(‖z − w‖).

Assumptions on the indefinite integral instead of the function f happen to allow that the in-

tegrand is nowhere continuous. Take the Dirichlet function on [0, T ], for instance. Although

its indefinite integral is Carathéodory and Lipschitzian, the Dirichlet function is not continuous

and, hence, not Lipschitzian.

Concerning the impulse operators, we assume that the following conditions hold:
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(H4) There exists K1 > 0 such that ‖Ii(z)‖ ≤ K1 for all z ∈ BR and i = 1, . . . ,m.

(H5) There exists K2 > 0 such that ‖Ii(z) − Ii(w)‖ ≤ K2‖z − w‖, for all z, w ∈ BR and

i = 1, . . . ,m.

For each pair (z, t) in BR × [0, T ], we define

F (z, t) :=

∫ t

0
f(z, s) ds+

m∑
i=1

Ii(z)Hti(t), (6.4)

Then, taking a function hR : [0, T ]→ R given by

hR(t) :=

∫ t

0
[M1(s) +M2(s)] ds+ max{K1,K2}

m∑
i=1

Hti(t), t ∈ [0, T ], (6.5)

one can conclude that:

(a) hR is nondecreasing and left continuous;

(b) F ∈ F(BR × [0, T ], hR, ωR), for all R > 0;

(c)

∫ t

0
DF (x(τ), s) =

∫ t

0
f(x(s), s) ds+

∑
0<ti<t

Ii(x(ti)), for every t ∈ [0, T ].

See the calculations in [10], and also in [30], Proposition 5.12. Under the above conditions,

the following result holds true and establishes a one-to-one correspondence between the IDE

(6.1) and its corresponding GODE. A proof of it follows as in [30], Theorem 5.20. See also [10],

Theorems 3.4 and 3.5 for a more general situation.

Theorem 6.3. Suppose conditions (H1) to (H5) hold. A function x : [0, T ]→ Rn is a solution

of the IDE (6.1) if and only if x is a solution of the GODE

dx

dτ
= DF (x, t),

where F is given by (6.4).

Now, we present the definition of a T -periodic solution of the IDE (6.1). Let G−([0, T ],Rn)

denote the set of all the regulated functions x : [0, T ] → Rn which are continuous from the left

on [0, T ]. It is clear that any solution of the IDE (6.1) is an element of G−([0, T ],Rn).

Definition 6.4. A function x ∈ G−([0, T ],Rn) is a T -periodic solution of the IDE (6.1), if it is

a solution of (6.1) such that x(0) = x(T ).

The next result is the corresponding version of Theorem 4.8 for IDEs.

Theorem 6.5. Suppose conditions (H1) to (H5) are satisfied. Assume that there exists an open

bounded set ∆ ⊂ G−([0, T ],Rn) such that the following conditions hold:

(i) For any λ ∈ (0, 1], the IDE

x′(t) = λf(x(t), t), t 6= ti, ∆x(ti) = λIi(x(ti)) i = 1, . . . ,m (6.6)

has no T-periodic solution x ∈ G−([0, T ],Rn) ∩ ∂∆.
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(ii) The equation

ψ(a) :=

∫ T

0
f(a, s) ds+

∑
0<ti<T

Ii(a) = 0 (6.7)

has no solution on ∂∆ ∩ Rn, where Rn is viewed as the set of constant functions in

G−([0, T ],Rn).

(iii) deg[ψ,∆ ∩ Rn, 0] 6= 0.

Then the IDE (6.1) has at least one T-periodic solution in ∆.

In the next lines, we present an example, which satisfies all the conditions of Theorem 6.5.

Example 6.6. Denote by I := R \ Q the set of irrational numbers, and consider the periodic

bounndary value problem with impulses
ẋ(t) = χI(t)

x(t)
1+|x(t)| − E

′(t) := f(x(t), t), t ∈ [0, 1] \ {12},

∆x(1/2) = 1
2 ,

x(0) = x(1),

(6.8)

where E : [0, 1] → R is absolutely continuous and such that E(0) = E(1). It is easy to check

that the hypotheses (H2′) and (H3′) are fulfilled and, clearly, conditions (H2) and (H3) as well.

Let λ ∈ (0, 1] and x(t) be a possible solution of the problem
ẋ(t) = λχI(t)

x(t)
1+|x(t)| − λE

′(t), t ∈ [0, 1] \ {12},

∆x(1/2) = λ
2 ,

x(0) = x(1),

(6.9)

Equivalently, for t ∈ [0, 1], using (6.3),

x(t) = x(0) + λ

∫ t

0
χI(s)

x(s)

1 + |x(s)|
ds+ λ

H1/2(t)

2
+ λ[E(t)− E(0)],

x(0) = x(1),

or, as
∫ t
0 χQ(s) x(s)

1+|x(s)| ds = 0,

x(t) = x(0) + λ

∫ t

0

x(s)

1 + |x(s)|
ds+ λ

H1/2(t)

2
+ λ[E(t)− E(0)],

x(0) = x(1).

For t = 1, this equation becomes

0 =

∫ 1

0

x(s)

1 + |x(s)|
ds+

1

2
,
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and there exists τ ∈ [0, 1] such that

x(τ)

1 + |x(τ)|
= −1

2
,

that is such that x(τ) = −1. Consequently,

x(t) = −1 + λ

∫ t

τ

x(s)

1 + |x(s)|
ds+ λ

H1/2(t)−H1/2(τ)

2
+ λ[E(t)− E(τ)],

x(0) = x(1),

This implies that |x(t)| < 3 + 2‖E‖∞ for any possible solution of (6.9). So condition (i) of

Theorem 6.5 holds for

∆ = {x ∈ G−([0, 1),R) : ‖x‖∞ < 3 + 2‖E‖∞}.

On the other hand, for each a ∈ R,

ψ(a) =

∫ 1

0
χI(s)

a

1 + |a|
ds+

1

2
=

a

1 + |a|
+

1

2
(6.10)

has the unique zero a = −1 ∈ (−3 − 2‖E‖∞, 3 + 2‖E‖∞) with ψ′(−1) = 1
4 > 0, so that

deg[ψ, (−3 − 2‖E‖∞, 3 + 2‖E‖∞, 0) = +1. Therefore, conditions (ii) and (iii) of Theorem 6.5

also hold and the existence of a solution follows.

In what follows, we state the corresponding bifurcation result to Theorem 5.6 for IDEs.

Let Λ0 ⊂ R. Consider the following periodic boundary value problem for an IDE depending

on λ ∈ Λ0 given by 
x′(t) = f(λ, x(t), t), t 6= ti

∆x(ti) = Ii(x(ti)), i = 1, . . . ,m

x(0) = x(T ),

(6.11)

where f : Λ0 × BR × [0, T ] → Rn, ti, for i = 1, . . . ,m, with 0 < t1 < . . . < tm < T , are

pre-assigned moments of impulse effects, Ii : BR → Rn are continuous impulse operators, for

i = 1, . . . ,m, and

∆x(ti) := x(ti+)− x(ti−) = x(ti+)− x(ti) = Ii(x(ti)),

that is, we assume that x is left continuous at t = ti and the lateral limit x(ti+) exists, for

i = 1, . . . ,m. Note that we are considering that the impulse operators do not depend on λ.

As before, the integral form of problem (6.11) is given, using Heaviside functions, by

x(t) = x(T ) +

∫ t

0
f(λ, x(s), s)ds+

m∑
i=1

Ii(x(ti))Hti(t), t ∈ [0, T ].

Assume that f : Λ0 ×BR × [0, T ]→ Rn satisfies the following conditions:
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(H1λ) for each (λ, z) ∈ Λ0 ×BR fixed, the function f(λ, z, ·) ∈ L1([0, T ],Rn);

(H2λ) there exists a function N1 ∈ L1([0, T ],R) such that, for all λ ∈ Λ0, all t1, t2 ∈ [0, T ], and

all z ∈ BR, we have ∥∥∥∥∫ t2

t1

f(λ, z, s) ds

∥∥∥∥ ≤ ∫ t2

t1

N1(s) ds;

(H3λ) there exists a function N2 ∈ L1([0, T ],R) such that, for all λ ∈ Λ0, all t1, t2 ∈ [0, T ], and

all z, w ∈ BR, we have∥∥∥∥∫ t2

t1

[f(λ, z, s)− f(λ,w, s)] ds

∥∥∥∥ ≤ ωR(‖z − w‖)
∫ t2

t1

N2(s) ds.

Moreover, assume that the impulse operators satisfy conditions (H4) and (H5).

For each triple (λ, z, t) in Λ0 ×BR × [0, T ], we define

F (λ, z, t) :=

∫ t

0
f(λ, z, s) ds+

m∑
i=1

Ii(z)Hti(t) (6.12)

and a function hR : [0, T ]→ R by

hR(t) :=

∫ t

0
[N1(s) +N2(s)] ds+ max{K1,K2}

m∑
i=1

Hti(t), t ∈ [0, T ]. (6.13)

As before, one can prove that

(a′) hR is nondecreasing and left continuous;

(b′) for each λ ∈ Λ0 fixed, F (λ, ·, ·) ∈ F(BR × [0, T ], hR, ωR), for all R > 0;

(c′)

∫ t

0
DF (λ, x(τ), s) =

∫ t

0
f(λ, x(s), s) ds+

∑
0<ti<t

Ii(x(ti)), t ∈ [0, T ].

Analogously to Theorem 6.3, under the conditions above, one can prove that x : [0, T ]→ Rn

is a solution of periodic boundary value problem for the impulsive system (6.11), if and only if,

it is a solution of the periodic boundary value problem for GODE

dx

dτ
= DF (λ, x, t), x(0) = x(T ),

where F is given by (6.12).

Let Ω1 ⊂ G−([0, T ],Rn) be an open and bounded set such that 0 ∈ Ω1 and consider the

operators

φ : Λ0 × Ω1 → G−([0, T ],Rn)

given by

φ(λ, x)(t) = x(t)− x(T )−
∫ t

0
f(λ, x(s), s) ds−

∑
0<ti<t

Ii(x(ti)), t ∈ [0, T ], (6.14)
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and N : Λ0 × Ω1 → G−([0, T ],Rn) given by

N(λ, x)(t) = x(T ) +

∫ t

0
f(λ, x(s), s) ds+

∑
0<ti<t

Ii(x(ti)), t ∈ [0, T ].

Notice that the operator φ given by (6.14) can be written as

φ(λ, x)(t) = x(t)−N(λ, x)(t), t ∈ [0, T ],

As there is a one-to-one correspondence between the zeros of the operator φ(λ, ·), for each λ ∈ Λ0

and the solutions of the periodic boundary value problem for the IDE (6.11), it is enough to

define a bifurcation point (with respect to trivial solution) for the equation φ(λ, x) = 0, where

φ is given by (6.14).

Definition 6.7. A couple (λ0, 0) ∈ Λ0×Ω1 is called a bifurcation point of the equation φ(λ, x) =

0, if every neighborhood of (λ0, 0) ∈ Λ0×Ω1 contains a solution (λ, x) of the equation φ(λ, x) = 0

such that x 6= 0.

Our next result presents conditions on the existence of a bifurcation point of equation

φ(λ, x) = 0, with φ given by (6.14).

Theorem 6.8. Let φ : Λ0 × Ω1 → G−([0, T ],Rn) be given by (6.14). Suppose conditions (H1λ)

to (H3λ), (H4), and (H5) are valid and [λ1, λ2] ⊂ Λ0. Suppose the following properties hold:

(i) f(λ, 0, t) = 0, for all λ ∈ Λ0 and t ∈ [0, T ];

(ii) Ii(0) = 0, for every i = {1, ...,m};

(iii) Assume that there is a nondecreasing function k : [0, T ]→ R such that for any ε > 0, there

exists δ > 0 satisfying∥∥∥∥∫ t

s
[f(λ1, z, r)− f(λ2, z, r)] dr

∥∥∥∥ ≤ ε|k(t)− k(s)|

for every t, s ∈ [0, T ] and λ1, λ2 ∈ Λ0 with |λ1 − λ2| ≤ δ.

If, moreover,

indLS(I −N(λ1, ·), 0) 6= indLS(I −N(λ2, ·), 0),

then there exists λ0 ∈ [λ1, λ2] such that (λ0, 0) is a bifurcation point of φ(λ, x) = 0.

Proof. Let F be given by (6.12). Conditions (B1) and (5.6) of Theorem 5.6 are not difficult to

prove. Then, we will only prove that condition (B2) from Proposition 5.3 holds.

By condition (iii) above, given ε > 0, there is δ > 0 such that

‖F (λ1, z, t)− F (λ2, z, t)− F (λ1, z, s) + F (λ2, z, s)‖

=

∥∥∥∥∫ t

s
[f(λ1, z, r)− f(λ2, z, r)] dr

∥∥∥∥ ≤ ε|k(t)− k(s)|

wherever |λ1 − λ2| ≤ δ and s, t ∈ [0, T ]. Now, we can apply Theorems 5.6 and 6.3 and the

statement follows.
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Next, we recall a few more useful concepts. Let X be a Banach space and consider L : X → X

a compact linear operator. We say that λ0 ∈ R is a characteristic number of L if there exists

x ∈ X satisfying

x = λ0Lx,

such that x 6= 0. The algebraic multiplicity of λ0 is equal to the number of linearly independent

eigenvectors x ∈ X.

The following results whose proof can be found in [34] Section 13.7 and Corollary 14.6, will

be employed in the example following them.

Proposition 6.9. Let X be a Banach space, L : X → X a compact linear operator, and

R : B(0, R)→ X a compact operator such that

lim
‖x‖→0

‖R(x)‖
‖x‖

= 0.

If λ is not a characteristic value of L, then

indLS(I − λL−R, 0) = indLS(I − λL, 0) = ±1.

Proposition 6.10. Let X be a Banach space, L1, L2 : X → X compact linear operators such

that I − L1 and I − L2 are invertible. Then

indLS((I − L1)(I − L2), 0) = indLS(I − L1, 0) · indLS(I − L2, 0).

Proposition 6.11. Let X be a Banach space and L : X → X a compact linear operator. If λ0

is a characteristic number of L of algebraic multiplicity α(λ0), then

indLS(I − (λ0 + β)L(·), 0) = (−1)α(λ0)indLS(I − (λ0 − β)L(·), 0)

for all sufficiently small β > 0.

Example 6.12. Consider the periodic boundary value problem for the differential equation

subject to a single impulse effect
ẋ(t) = λb(t)x(t) + c(t)x2(t) = f(λ, x(t), t), t ∈ [0, 1] \ {12},

∆x(1/2)) = x2(1/2), if t = 1
2

x(0) = x(1),

(6.15)

where b, c ∈ L1([0, 1],R) and
∫ 1
0 b(t) dt 6= 0. The linearized periodic boundary value problem

ẋ(t) = λb(t)x(t), ∆x(1/2) = 0, x(0) = x(1)

has a nontrivial solution if and only if λ = 0, and hence we can assume, say, that λ ∈ [−1, 1] and

x(t) ∈ [−1, 1], as we are interested in solutions close to 0. It is clear that |f(λ, x, ·)| is bounded

by a Carathéodory function on [−1, 1] × [−1, 1] × [0, 1] and conditions (H4) and (H5) on the

impulse operators are trivially satisfied. It is not difficult to check that conditions (H2λ) and
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(H3λ) are fulfilled and that hypotheses (i), (ii) and (iii) of Theorem 6.8 are trivially satisfied.

In this case, we take Ω1 = B(0, 1) ⊂ G−([0, 1],R) and study the corresponding fixed point

operator

φ : [−1, 1]×B(0, 1)→ G−([0, 1],R)

given by

φ(λ, x)(t) = x(t)− x(1)− λ
∫ t

0
b(s)x(s) ds−

∫ t

0
c(s)x2(s) ds+H1/2(s)x

2(1/2), t ∈ [0, 1].

If we define the linear compact operators L1, P1 : G−([0, 1],R)→ G−([0, 1],R) by

(L1x)(t) =

∫ t

0
b(s)x(s) ds, (P1x)(t) = x(1), t ∈ [0, 1],

the linear compact perturbation of identity L2 : G−([0, 1],R)→ G−([0, 1],R) by

L2 = I − P1 − L1,

and the nonlinear compact operator R : B(0, 1)→ G−([0, 1],R) by

R(x)(t) =

∫ t

0
c(s)x2(s) ds+H1/2(s)x

2(1/2), t ∈ [0, 1],

then

L2x = 0 ⇐⇒ x(0) = x(1) and x′(t) = b(t)x(t) ⇐⇒ x ≡ 0

because
∫ 1
0 b(t) dt 6= 0, and L2 is invertible. Furthermore,

lim
x→0

‖R(x)‖∞
‖x‖∞

= 0.

Hence,

φ(λ, x) = L2x− (λ− 1)L1x−R(x) = L2[x− (λ− 1)L−12 L1x− L−12 R(x)],

for all (λ, x) ∈ [−1, 1] × B(0, 1). Consequently, if −1 < λ− < 0 < λ+ < 1, we have, from the

Propositions 6.9, 6.10 and 6.11 on the Leray-Schauder index,

indLS(φ(λ−, 0)) = indLS(L2[I − (λ−)L−12 L1], 0) = indLS(L2, 0) · indLS(I − (λ−)L−12 L1, 0)

= −indLS(L2, 0) · indLS(I − (λ+)L−12 L1, 0) = −indLS(φ(λ+, 0)),

because −1 is a characteristic value of multiplicity one of the linear operator L−12 L1, as it follows

from the fact that

x+ L−12 L1x = 0 ⇐⇒ L2x+ L1x = 0 ⇐⇒ x(t)− x(1) = 0 (t ∈ [0, 1]).

Theorem 6.8 implies that (0, 0) is a bifurcation point for (6.15).
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7 Final remark

One can easily check that, with appropriate adaptations, our results also apply to mea-

sure differential equations which can be regarded as GODEs (see [8, Theorems 3.8 and 3.9]).

Moreover, since measure differential equations encompass not only differential equation with

impulses (see [9, Theorem 3.1]), but also dynamic equations on time scales (see [8, Theorem

4.3]), our results apply to these types of equations as well. Furthermore, Kurzweil-Henstock-

Stieltjes integration (= Perron-Stieltjes integration) could easily replace Lebesgue integration

for the functions on the righthand sides of the equations and, hence, problems involving highly

oscillating functions (i.e., functions of unbounded variation) would be also included.
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[7] J. Dieudonné, Foundations of Modern Analysis. Pure and Applied Mathematics, Vol. X

Academic Press, New York-London, 1960.

[8] M. Federson; J.G. Mesquita; A. Slav́ık, Measure functional differential equations and func-

tional dynamic equations on time scales. J. Differential Equations 252(6) (2012), 3816–3847.

[9] M. Federson; J.G. Mesquita; A. Slav́ık, Basic results for functional differential and dynamic

equations involving impulses. Math. Nachr. 286(2-3) (2013), 181–204.
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