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Abstract

We study a canonical model of simultaneous price competition between firms that
sell a homogeneous good to consumers who are characterized by the number of
prices they are exogenously aware of. Our setting subsumes many employed in the
literature over the last several decades. We show there is a unique equilibrium if
and only if there exist some consumers who are aware of exactly two prices. The
equilibrium we derive is in symmetric mixed strategies. Furthermore, when there
are no consumers aware of exactly two prices, we show there is an uncountable-
infinity of asymmetric equilibria in addition to the symmetric equilibrium. Our
results show the paradigm generically produces a unique equilibrium. We also show
that the commonly-sought symmetric equilibrium (which also nests the textbook
Bertrand pure strategy equilibrium as a special case) is robust to perturbations in
consumer behavior, while the asymmetric equilibria are not. (JEL: D43, L11)
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1 Introduction

Prices for seemingly homogeneous goods are typically dispersed (see e.g., De los Santos,
Hortaçsu, and Wildenbeest, 2012; Gorodnichenko, Sheremirov, and Talavera, 2018; Kaplan
and Menzio, 2015; Lach and Moraga-González, 2017). The theoretical industrial organization
literature offers an elegant rationalization of this phenomenon via games in which firms simul-
taneously compete in prices for consumers who differ in the number of prices they compare.

We study the elementary and oft-studied such setting in which n ≥ 2 firms each sell a homoge-
neous good at a common marginal cost, c ≥ 0, and simultaneously set prices in a one-shot game.
A mass of consumers are each willing to pay up to r > c for one unit of the good. Consumers
exogenously differ in the number of prices they know: Im ≥ 0 are aware of m ∈ {1, . . . , n} ran-
dom prices, where we assume I1 > 0 and Im > 0 for at least some m > 1.1 In this setting, it is
known that equilibrium price dispersion is produced via mixed-strategies: opposing forces lead
firms to “tango” (to use the term of Baye, Kovenock, and De Vries, 1992).

There is exactly one symmetric equilibrium. Researchers have almost exclusively relied upon
this equilibrium in their analyses. However, a potentially-uncomfortable fact about these popu-
lar models is that they can produce very many equilibria. For example, under the assumptions
that I1, In > 0 and I2, . . . , In−1 = 0, Baye, Kovenock, and De Vries (1992) show there is an
uncountable infinity of asymmetric equilibria in addition to the symmetric equilibrium.

We contribute by pin-pointing the source of this multiplicity and characterizing when the sym-
metric equilibrium is in fact the only equilibrium. Specifically, we show that there is a unique
equilibrium if and only if I2 > 0. The result is stark: if I2 > 0 the symmetric equilibrium is the
unique equilibrium, but if I2 = 0 we show there is a continuum of asymmetric equilibria.

In the absence of consumers who make the minimal number of comparisons (I2 = 0) each of
the infinitely-many asymmetric equilibria feature at least one firm that charges the monopoly
price, r, with positive probability. When these firms charge r, they sell only to their share of
“captive” consumers (I1/n) instead of competing for “contested” (non-captive) consumers by
setting lower prices. In contrast, if I2 > 0 each firm competes head-to-head with each other
firm for some consumers. This gives firms an incentive to compete over all undominated prices,
preventing mass points an any one price (including r), dismantling the asymmetric equilibria.

We highlight four main implications of our result. First, the key determinant of equilibrium
uniqueness is not the number of firms, as implied by some studies, but the configuration of
consumers’ consideration sets. Second, by nesting the vast majority of settings found in the lit-
erature, we reconcile existing findings and pinpoint conditions for uniqueness of the commonly-

1It is well-known that if I1 = 0 then at least two firms price at marginal cost and all earn zero profit (we discuss the
classic Bertrand equilibrium later), and if I1 > 0 but Im = 0 for all m > 1 then all firms set the monopoly price r.
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studied symmetric equilibrium. Third, and more generally, the framework may become more
attractive to researchers because multiplicity only surfaces in the special case of I2 = 0. Fourth,
even if a researcher adopts I2 = 0 and hence faces multiplicity, we provide a novel “stability”
rationale in terms of consumer behavior for selecting the symmetric equilibrium: the symmetric
equilibrium strategy when I2 = 0 is equal to the unique equilibrium strategy as I2 ↓ 0.

We next discuss related literature, then provide the model and derive our results. We then detail
the equilibrium in several applied settings and discuss the wider implications of our findings.

2 Literature

Models of price competition with heterogeneously-informed consumers offered an early ra-
tionalization of price dispersion in homogeneous-goods markets (foundational studies include
Rosenthal, 1980; Narasimhan, 1988; Shilony, 1977; Varian, 1980). Since then, the framework
has been applied to, or featured in, a wide range of settings including: consumer search (both
theoretical, e.g., Atayev, 2019; Burdett and Judd, 1983; Janssen and Moraga-González, 2004;
Stahl, 1989, and empirical studies, e.g., De los Santos, Hortaçsu, and Wildenbeest, 2012; De los
Santos, 2018; Honka, 2014; Honka and Chintagunta, 2016; Pires, 2016); price discrimina-
tion (Armstrong and Vickers, 2018; Fabra and Reguant, 2018); product substitutability (In-
derst, 2002); strategic clearing-houses such as comparison websites (Baye and Morgan, 2001;
Moraga-González and Wildenbeest, 2012; Ronayne, 2019; Ronayne and Taylor, 2019; Shelegia
and Wilson, 2017); competition with behavioral or boundedly-rational consumers (e.g., Car-
lin, 2009; Chioveanu and Zhou, 2013; Gu and Wenzel, 2014; Heidhues, Johnen, and Koszegi,
2018; Inderst and Obradovits, 2018; Johnen, 2018; Piccione and Spiegler, 2012; Spiegler, 2006,
2016); and switching-cost models (for a review, see Farrell and Klemperer, 2007).

The almost-ubiquitous assumption made is that consumers are aware of symmetrically- and
randomly-drawn prices (without replacement), which is the setting we study. As such, each con-
sumer’s information is completely characterized by the number of prices they know. Perhaps
the most well-known is the “Model of Sales” of Varian (1980, 1981), which assumes I1, In > 0
and Im,1,n = 0. There, Baye, Kovenock, and De Vries (1992) show there is an uncountable
infinity of equilibria in addition to the symmetric equilibrium when n > 2. Most of the litera-
ture deal with this multiplicity by focusing on the symmetric equilibrium (for example, and in
addition to those cited above: Armstrong, 2015; Armstrong, Vickers, and Zhou, 2009; Lach and
Moraga-González, 2017; Moraga-González, Sándor, and Wildenbeest, 2017; Nermuth, Pasini,
Pin, and Weidenholzer, 2013). Uniqueness has only been found in some special cases of our
setting e.g., when n = 2 (Baye, Kovenock, and De Vries, 1992), or when consumer’s awareness
of any two prices is independent (Spiegler, 2006).2 As we prove, those results follow because
some consumers know precisely two prices (I2 > 0), the exact condition for uniqueness.

2Szech (2011) extends Spiegler’s result to show uniqueness extends to the asymmetric independent case.
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In the multiple equilibria identified by Baye, Kovenock, and De Vries (1992), firms earn the
same profits, but may set price via very different distributions. Equilibrium price distributions
are of key interest in many models of consumer search. They drive consumers’ incentive to
become informed (e.g., Armstrong, Vickers, and Zhou, 2009; Baye and Morgan, 2001; Bur-
dett and Judd, 1983; Fershtman and Fishman, 1994; Moraga-González, Sándor, and Wilden-
beest, 2017), and their comparative static properties are the central focus of many studies (e.g.
Janssen and Moraga-González, 2004; Moraga-González, Sándor, and Wildenbeest, 2017; Ner-
muth, Pasini, Pin, and Weidenholzer, 2013).3 The robustness of results in these papers depends
on the existence of asymmetric equilibria. Our finding that asymmetric equilibria are knife-edge
phenomena implies that predictions derived with symmetric equilibria are the relevant ones.

Arguments in favor of the symmetric equilibrium have been made in some settings. In an
extension of their main analysis, Baye, Kovenock, and De Vries (1992) allow those consumers
willing to check exactly one firm to choose which firms to buy from. They show that game has
a unique solution where firms adopt symmetric pricing strategies. In our more general setting,
we provide a distinct argument for the symmetric equilibrium based on continuity, and without
extending or otherwise changing the game’s structure.

A related literature is that on all-pay auctions. Perhaps the most relevant paper there is Baye,
Kovenock, and De Vries (1996), which documents the equilibria in an all-pay auction with
complete information and so does not explore the role of different information sets.4

A few have made progress examining equilibria in some particular asymmetric settings, includ-
ing, e.g., Baye, Kovenock, and De Vries (1992, Section V), Inderst (2002); Ireland (1993);
McAfee (1994); Narasimhan (1988); Szech (2011).

Allowing for more general asymmetries in consumers’ information sets is challenging and little
is known about equilibria there. Armstrong and Vickers (2019) is an exception, offering a rich
characterization when n = 3. In this paper, we analyze the standard (symmetric and random)
configuration of consumers’ information.

3Extending the framework by adding a preliminary stage in which firms set list prices (the upper bound of final
retail prices), Myatt and Ronayne (2019) produce an equilibrium in pure strategies and compare the comparative
statics to those of the mixed strategies of several of the single-stage models cited here.
4Baye, Kovenock, and De Vries (1996, Theorem 3) indicates that asymmetries (e.g., in marginal costs) between
firms (bidders) in settings where consumers see either one price or all (à la Varian, 1980), would lead to asymmetric
equilibria in which some players mix continuously while others demonstrate complete rigidity at the monopoly
price via a common pure strategy. In the context of pricing with otherwise similar firms, the coexistence of such
polar strategies seems empirically unattractive. These equilibria are also not robust to I2 > 0. In addition, although
symmetry is a restrictive assumption, firms having the same marginal cost seems reasonable in some important
settings featuring price dispersion, e.g., online platforms who charge the same fees to multiple sellers.
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3 Model and Equilibrium

Model. There are n ≥ 2 firms indexed i = 1, . . . , n that produce a homogeneous product to sell
to consumers who wish to buy one unit of the good and have a common and finite willingness
to pay, r > 0.5 Firms face a constant marginal cost, c ∈ [0, r), and simultaneously choose
price, where the price of firm i is denoted pi. Consumers differ by the number of prices they are
exogenously aware of i.e., the size of their “information” or “consideration” sets.6 Consumers
buy from the firm with the lowest price in their consideration set. Where there is a tie in the
lowest price, any interior tie-breaking rule may be assumed. The mass of consumers informed
of m ∈ {1, . . . , n} prices is denoted Im ≥ 0, where I1 > 0 and Im > 0 for some m > 1.7 For each
type of consumer, consideration sets are symmetrically and randomly distributed across firms.
This means, for example, that I2 comprises of the same share, equal to I2/

(
n
2

)
, of consumers with

each consideration set {1, 2}, {1, 3}, {1, 4}, . . . , etc. We refer to the I1 consumers as captive and
all others as contested. Before deriving our result we illustrate it for the case of n = 3.

Example. Consider a triopoly in which no consumer sees exactly two prices (I2 = 0), but some
consumers observe one (I1 > 0) and others all three (I3 > 0).

Baye, Kovenock, and De Vries (1992) show that the following equilibria exist. Two firms, say
1 and 2, randomize continuously over an interval

[
¯
p, r

]
. The remaining firm, 3, randomizes

continuously over some
[
¯
p, x

)
∪ r with x ∈

(
¯
p, r

]
, placing a mass point at r whenever x < r.8

This is an equilibrium for all x ∈
[
¯
p, r

]
, hence there is an uncountable infinity of equilibria.9

When x = r, equilibrium strategies are symmetric. The asymmetric equilibria require firm 3 to
have a mass point on r. In all equilibria, each firm’s profit is determined by what they can earn
from charging the monopoly price to their captive consumers, their minmax payoff, (r − c)I1/3.

In each equilibrium, 1 and 2 trade-off exploiting captive consumers and competing for the I3

contested consumers. But the asymmetric equilibria “sideline” 3: 1 and 2 compete head-to-head
for I3 by mixing over a common interval such that 3 does not gain by joining the competition,
and can therefore focus more on exploiting its captive consumers by placing a mass point on r.

5Under an alternative (unrealistic) assumption that demand is unbounded, mixed-strategy equilibria can exist, as
shown by Kaplan and Wettstein (2000) in the case that In > 0 and Im = 0 for m < n.
6Some evidence indicates that such “fixed-sample” or “simultaneous” search often describes consumer behavior
well. De los Santos, Hortaçsu, and Wildenbeest (2012) and Honka and Chintagunta (2016) examine data from
markets for books and auto insurance, respectively. Both studies fail to find a relationship between the prices
consumers have seen and their decision to search on, consistent with the premise of simultaneous search.
7As we also detail later, information on how many offers consumers consider is available to firms in at least some
markets. For example, the Consumer Financial Protection Bureau (2015) reported that approximately 45% of
mortgage borrowers only seriously consider one lender, 40% two, and 10% three.
8

¯
p is the lowest undominated price; see (2). Equilibrium strategies for this example are in the proof of Lemma 16.

9More generally for n ≥ 2 (and I1, In > 0 and I2, . . . , In−1 = 0), at least two firms continuously mix over
[
¯
p, r

)
in

any equilibrium, while all other firms may have mass points on r.
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In contrast, when I2 > 0 each firm competes head-to-head with each of its rivals for some
consumers. This incentivizes each firm to compete for contested consumers: no firm can sit
on the sideline in equilibrium so the asymmetric equilibria no longer exist. To see this more
precisely, take our example, but add some consumers who compare two prices so that I2 > 0,
and suppose asymmetric strategies are played in which firm 3 places a mass point at r. Now
when charging r, firm 3 loses all contested consumers and earns (r−c)I1/3. In contrast, because
I2 > 0 and firm 3 has a mass point on r, firms 1 and 2 each sell to I2/3 contested consumers with
positive probability, even at prices arbitrarily close to r. Thus, firms 1 and 2 earn strictly more
than (r − c)I1/3. But then firm 3 can increase its profit by competing for the 2 · I2/3 contested
consumers who see firm 3 and exactly one other firm by charging prices below r (it has a strict
incentive to shift the probability mass from r to lower prices).

Our result generalizes this intuition for any n ≥ 2. If I2 > 0, each firm competes head-to-head
with each rival for at least some contested consumers. This rules out the possibility of sidelined
firms in equilibrium and leads the uniqueness of the symmetric equilibrium.

Analysis. Firms are guaranteed a profit of at least πi = (r − c)I1/n > 0 by setting a price of r

which sells to their I1/n captive consumers regardless of other prices. Profit is zero for pi > r,
and so such prices are strictly dominated by r. The highest profit a price pi below r can generate
is found when the firm sells with certainty to all consumers who are aware of its price:

(pi − c)
n∑

m=1

Im

(
n−1
m−1

)(
n
m

) = (pi − c)
n∑

m=1

Imm/n, (1)

hence only prices in
[
¯
p, r

]
arise in equilibrium, where

¯
p is the lowest undominated price:10

(pi − c)
n∑

m=1

Imm/n = (r − c)I1/n⇔
¯
p =

rI1 + c
∑n

m=2 Imm∑n
m=1 Imm

> c. (2)

Proposition 1. There is a unique equilibrium if and only if I2 > 0. The equilibrium is symmet-
ric: firms continuously mix over the support

[
¯
p, r

]
via a common CDF that solves (12). When

I2 = 0, there are uncountably-many equilibria.

We prove Proposition 1 via two lemmas. Lemma 15 shows there is a unique equilibrium when
I2 > 0, and Lemma 16 shows there are uncountably-many equilibria when I2 = 0. We construct
our proof of Lemma 15 through a sequence of intermediate Lemmas.

Denote firm i’s price distribution by Gi, and
¯
si and s̄i as the minimum and maximum of the

support of firm i’s prices. Lemmas 1 to 5 do not require I2 > 0. They say that at least two firms
have r as the maximum of their support in equilibrium.

10We follow convention to ignore the possibility that firms choose suboptimal prices with probability zero.
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Lemma 1. If some firm i has a mass point at ¯̄s ≡ max j{s̄ j}, i sells only to its I1/n captive
consumers when it sets pi = ¯̄s.

Proof. Suppose instead there was a positive probability that i sells to some contested consumers
when setting pi = ¯̄s. Then some other firm, j , i, also has a mass point at ¯̄s, implying
limp↑ ¯̄s πi(p) > πi( ¯̄s), a contradiction.11

Lemma 2. ∃ i : s̄i = r.

Proof. Denote i : s̄i = max j{s̄ j} and suppose s̄i < r. Suppose some firm, j, has a mass point at
s̄i. By Lemma 1, π j(s̄i) = (s̄i − c)I1/n < (r − c)I1/n = π j(r). If no firm has a mass point at s̄i,
limp↑s̄i πi(p) < πi(r).

Lemma 3. ∃ i, j : i , j & s̄i = s̄ j = r.

Proof. From Lemma 2 we know one firm, say i, has s̄i = r. Denote j , i as a firm with the
second-highest support-maximum and suppose s̄ j < r. Note that as a result, firm i places no
mass on prices in (s̄i, r). Suppose some firm, k, has a mass point at s̄ j. By the same argument as
in Lemma 1, firm k only ever sells to two types of consumers when it sets pk = s̄ j: its captive
consumers, and contested consumers who only see the price of i and k. But then πk(s̄ j) <

limp↑r πk(p). If no firm has a mass point at s̄ j, limp↑s̄ j π j(p) < limp↑r π j(p).

Lemma 4. πi = π j ∀ i, j.

Proof. Suppose πi < π j for some i and j. Then limp↑s̄ j πi(p) = π j > πi.

Lemma 5. No firm places a mass point at any p ∈
[
¯
p, r

)
.

Proof. Suppose that firm i has a mass point at pi ∈
[
¯
p, r

)
. There exists some interval (pi, pi + ε)

in which no other firm puts probability mass (suppose some firms did, and let j , i be a firm with
p j > pi in its support such that no other firm k , i, j has (pi, p j) in its support: because Im > 0 for
some m > 1, there are consumers informed of i’s and j’s price, hence limp↑pi π j(p) > π j(pi + δ)
for δ ∈ (0, p j − pi)). But then πi(pi + δ) > πi(pi) for δ ∈ (0, ε).

Lemma 6. If I2 > 0, at most one firm places a mass point at r.

Proof. Suppose i and j place mass points at r. Because I2 > 0, there are consumers who are
informed of i’s and j’s price and no other price, so πi(r) < limp↑r πi(p).

Lemma 7. If I2 > 0, no firm has a mass point at r.

Proof. By Lemma 6, at most one firm has a mass point at r. Suppose exactly one firm, i, has a
mass point at r. By Lemma 1, πi = (r − c)I1/n. By Lemma 3 there is some j , i with s̄ j = r.

11The limit argument means firm i can increase profits by shifting probability mass from the mass point at ¯̄s to just
below ¯̄s. We use similar limit arguments throughout.
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Because I2 > 0 there are consumers who are informed of the prices from firm i and j and no
other price, hence limp↑r π j(p) > πi, contradicting Lemma 4.

Lemma 8. If I2 > 0, πi = (r − c)I1/n ∀ i.

Proof. From Lemma 3, ∃ i, j : i , j and s̄i = s̄ j = r. By Lemma 7, no firm has a mass point at
r, hence πi = π j = (r − c)I1/n. By Lemma 4, all firms make this profit.

Lemma 9. If I2 > 0, ∃ i, j :
¯
si =

¯
s j =

¯
p.

Proof. Index firms such that
¯
s1 ≤ ¯

s2 ≤ · · · ≤ ¯
sn and suppose

¯
s1 < ¯

s2. Firm 1 strictly increases
profit by shifting the mass it places on prices in [

¯
s1, ¯

s2), to prices slightly below
¯
s2, hence

¯
s2 =

¯
s1. Next, suppose

¯
s1 =

¯
s2 >

¯
p. By Lemma 5 no firm places a mass point on

¯
s1. But then

limp↑
¯
s1 πi(p) > (r − c)I1/n for any i, contradicting Lemma 8.

We now introduce notation to characterize i’s expected profits. First, Dm
i , which is the expected

share of consumers i sells to among those who see m prices by setting a price pi < r. To write
Dm

i we use S m−1(i), the set of all vectors of length m − 1 of distinct firms that do not include i:

S m−1(i) ≡ {a|a = ( j1, ..., jm−1) = i, and jk , jl ∀ jk, jl ∈ a}, (3)

Dm
i ≡


n−1 m = 1,(

n
m

)−1 ∑
a∈S m−1(i)

∏
k∈a

(1 −Gk) m = 2, . . . , n.
(4)

Term D1
i is the share of consumers who see one price and buy from i. More generally, let a

be a consideration set of a consumer of length m that includes firm i and m − 1 other firms.
Consumers with this consideration set buy from i if pi ≤ pk for all k ∈ a.12 The probability of
this is

∏
k∈a(1 −Gk). Summing over all sets of firms a ∈ S m−1(i) that are in a consideration set

with i, and dividing by the number of consumers who see m prices,
(

n
m

)
, gives the expected share

of consumers that firm i attracts among consumers who see m prices.

Similarly, we define Dm
i j using the set of vectors of non-equal firms excluding i and j , i:

S m−1(i j) ≡ {a|a = ( j1, ..., jm−1) = i, j : i , j, and jk , jl,∀ jk, jl ∈ a}, (5)

Dm
i j ≡


n−1 m = 1(

n
m

)−1 ∑
a∈S m−1(i j)

∏
k∈a

(1 −Gk) m = 2, . . . , n − 1

0 m = n.

(6)

12By Lemma 5, ties are zero-probability events so we do not need to specify a tie-breaking rule.
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Relating Dm
i and Dm

i j, we find

Dm
i = Dm

i j +

(
n

m−1

)(
n
m

) (1 −G j)Dm−1
i j , m = 2, . . . , n and i , j. (7)

This decomposition will be useful for the proceeding results. Note that Dn
i =

∏n
j=1; j,i(1 −G j),

Dn−1
i j = 1

n

∏n−1
k=1;k,i, j(1−Gk), and Dn

i = (1−G j)nDn−1
i j . The total profits at a price p from consumers

who see m prices is Km(p) ≡ (p − c)Im for m = 1, . . . , n, so that the expected profit of firm i is

Bi(pi) ≡
n∑

m=1

Km(pi)Dm
i (pi), i = 1, . . . , n. (8)

Km(pi) is the total profit from consumers who see m prices when they pay pi. Dm
i (pi) is the

expected share of consumers of firm i when charging pi among consumers who see m prices.
Thus, Km(pi)Dm

i (pi) is the expected profit of firm i from consumers who see m prices, and Bi(pi)
is the expected profit of firm i given that each rival j plays G j.

Lemma 10. If I2 > 0, Bi(pi) is constant and equal to (r − c)I1/n at the points of increase of Gi

on
[
¯
p, r

)
for all i.

Proof. If pi is a point of increase of Gi, then firm i must earn the equilibrium profit at pi, which
by Lemma 8 is (r − c)I1/n.

Lemma 11. If p is a point of increase of Gi and G j, then Gi = G j at p almost surely. Bi(p) is
continuous at every point of increase of Gi.13

Proof. First, we can use (7) to rewrite

Bi(p) = 1
n K1(p) +

n−1∑
m=2

Dm
i j(p)Km(p) + (1 −G j(p))

n∑
m=2

(
n

m−1

)(
n
m

) Dm−1
i j (p)Km(p). (9)

Because p is a point of increase of Gi and G j, Lemma 4 implies that Bi(p) = B j(p). Using
Dm

i j = Dm
ji and Dm−1

i j = Dm−1
ji , it follows that Bi(p) = B j(p):

⇒ (1 −G j(p))
n∑

m=2

(
n

m−1

)(
n
m

) Dm−1
i j (p)Km(p) = (1 −Gi(p))

n∑
m=2

(
n

m−1

)(
n
m

) Dm−1
i j (p)Km(p)

⇒ Gi(p) = G j(p).

(10)

Because D1
i j = n−1, the summations are strictly positive, allowing the last implication. To show

that Bi(p) is continuous at every point of increase p of Gi, we use that all firms j who also have
a point of increase at p set G j(p) = Gi(p). For all other firms k, Gk(p) is constant around p.

13A ‘point of increase of Gi’ is p such that i plays prices in (p − ε, p + ε) with strictly positive probability ∀ ε > 0.
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Additionally, observe that Km(p) is continuous for all m and p, and (r − c)I1/n is continuous.
Thus, Bi(p) = (r − c)I1/n pins down a continuous function Gi(p) around p. We conclude that
Bi(p) is continuous at p.

Lemma 12. If I2 > 0, for every i and every point of increase p of Gi in
[
¯
p, r

)
, there is at least

one G j with j , i such that G j increases at p.

Proof. Suppose instead there is no such firm j , i. Because p is a point of increase of Gi,
dBi(p)

dp = 0 by Lemma 10. By Lemma 11, we can differentiate Bi(p) with respect to p, leading to

n∑
m=1

Dm
i (p)

dKm

dp
= 0. (11)

Note that because no firm j , i has a point of increase at p, dDm
i

dp = 0 for all m > 1; hence
dDm

i
dp terms are absent from (11). Because Dm

i (p) dKm

dp ≥ 0 for all m and D1
i

dK1

dp = 1
n I1 > 0, the

left-hand-side of (11) is strictly positive, but the right-hand-side is zero, a contradiction. We
conclude that dDm

i
dp < 0 for some m, implying that at least one G j has to increase at p.

Lemma 13. If I2 > 0 and Gi is strictly increasing on some open interval (x, y),
¯
p < x < y < r,

then Gi is strictly increasing on the whole interval
[
¯
p, y

)
.

Proof. Suppose instead that Gi is, without loss of generality, constant on (z, x) for some z ∈[
¯
p, x

)
. By Lemma 5, there are no mass points at z or x, hence Gi(z) = Gi(x). At least two firms,

k and l, must charge prices with positive probability in (x − ε, x) for some ε > 0. (If no firm
charges a price in (x − ε, x), take ε̄ to be the supremum of the set of ε > 0 such that this is true.
Firms charging prices in some neighborhood around x − ε̄ strictly increase profits by moving
probability mass into (x − ε̄, x). Thus, at least one firm charges prices with positive probability
in (x − ε, x) ∀ ε > 0. By Lemma 12, this extends to two firms.)

By Lemma 10, for every p ∈ (x − ε, x), Bk(p) = Bl(p) = (r − c)I1/n. And because there are no
mass points on

[
¯
p, r

]
(Lemmas 5 and 7), Bi(x) = Bk(x) = Bl(x) = (r − c)I1/n. Because x < r

and i charges prices in (x, y) with positive probability, Lemma 11 implies that

Gk(x) = Gl(x) = Gi(x) < 1.

But with Bi(x) = Bl(x) = Bl(p) for all p ∈ (x − ε, x), it must be that Bi(p) ≤ Bl(p) for all
p ∈ (x − ε, x), because these p are not in i’s support. But then by the same arguments used in
Lemma 11, Bi(p) ≤ Bl(p) implies Gi(p) ≤ Gl(p). But this contradicts Gi(x) = Gl(x), because
Gl(p) is increasing on (x − ε, x), but Gi(p) is constant.
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Lemma 14. If I2 > 0, all firms mix continuously via some symmetric G(p) over the support[
¯
p, r

]
, in any equilibrium.

Proof. We first show that s̄i = r ∀i. Suppose instead there exists a firm i with s̄i < r. Then
by Lemmas 5 and 13, this firm charges prices on

[
¯
p, s̄i

)
. By Lemma 11, all firms that charge

prices p ∈
[
¯
p, s̄i

)
play symmetric CDFs G(·) for these prices. Because some firms have r in

their support (Lemma 3) and charge prices in
[
¯
p, r

)
(Lemmas 7 and 13), we have G (s̄i) < 1, a

contradiction. We conclude that s̄i = r ∀i.

Because s̄i = r ∀i and no firm has a mass point at r (Lemma 7), Lemma 13 implies that all firms
charge prices on every open subinterval of

[
¯
p, r

]
with strictly positive probability. Lemma 11

then implies that all firms play a symmetric price distribution over the whole support.

Lemma 15. If I2 > 0, there is a unique equilibrium which is symmetric. The equilibrium CDF,
G, solves

(p − c)
n∑

m=1

m
n

Im(1 −G(p))m−1 = (r − c)
I1

n
, ∀p ∈

[
¯
p, r

]
. (12)

Proof. By Lemma 14 all firms play symmetric price distributions, G over the support
[
¯
p, r

]
,

in any equilibrium. By Lemma 10, G must solve B(p) = (r − c)I1/n (12) for all p ∈
[
¯
p, r

]
.

Equation (12) is satisfied at G
(
¯
p
)

= 0 and G(r) = 1. Because (p − c) is strictly increasing and
continuous in p, the equation pins down a unique strictly increasing and continuous G(p) for all
p ∈

[
¯
p, r

]
. To complete the specification, let G(p) = 0 for p <

¯
p, and G(p) = 1 for p ≥ r.

Lemma 16. If I2 = 0, infinitely many equilibria exist.

Proof. We show there are uncountably-many asymmetric equilibria in which one firm has a
mass point at r when I2 = 0. Specifically, the following strategies constitute Nash Equilibria,
parameterized by x ∈

(
¯
p, r

)
. Firms i = 1, . . . , n − 1 have support

[
¯
p, r

]
, while one firm, n, has

support
[
¯
p, x

]
∪ {r}. Over

[
¯
p, x

)
, all firms play the symmetric mixed strategy G(·) that solves

(12). Firm n places its remaining probability mass 1−G(x) at r. Over [x, r), firms i = 1, . . . , n−1
play the symmetric mixed strategy Ĝ(·). Adjusting (9) appropriately, we see that Ĝ(·) solves

1
n

K1(p)+
n−1∑
m=2

(
n−2
m−1

)(
n
m

) (1−Ĝ(p))m−1Km(p)+(1−G(x))
n∑

m=2

(
n−2
m−2

)(
n
m

) (1−Ĝ(p))m−2Km(p) = (r−c)
I1

n
. (13)

As p ↑ r, the left-hand-side converges to K1(p)/n = (p − c)I1/n. Because I2 = 0, firms that
charge prices arbitrarily close to r cannot attract any contested consumers from firm n when n

charges r. Thus, even arbitrarily close to r, firms i , n still only earn (p − c)I1/n (in contrast to
the proof of Lemma 7 when I2 > 0). These equilibria exist for I2 = 0 and any I3, I4, . . . , Im ≥ 0.
If I2 = 0 and I3 = 0, there are equilibria where two firms have a mass point at r, and so on.
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Lemmas 15 and 16 yield Proposition 1, which generalizes the intuition from the triopoly ex-
ample. In each equilibrium at least two firms put no mass at r and compete fully for contested
consumers. If I2 = 0, remaining firms may be sidelined: they do not benefit by competing
for contested consumers, instead placing mass at r to focus on exploiting their captive base.
If I2 > 0, however, no firm sits on the sideline in equilibrium. Each firm goes head-to-head
with each rival for at least some consumers, giving each an incentive to compete for contested
consumers. Hence no firm puts mass at r and only the symmetric equilibrium survives.

4 Discussion

Proposition 1 tells us there is a unique equilibrium when I2 > 0. The unique equilibrium CDF
(the solution to the polynomial (12)) does not generally have an analytic solution except in some
cases. We now report the unique equilibrium for some such settings that feature I2 > 0. To do so,
we normalize (without loss of generality)

∑n
m=1 Im = 1, and express (12) more parsimoniously

as a probability generating function associated with the number of rivals faced by each firm:14

φ(x) =

n∑
m=1

amxm−1, (14)

where am ≡ Imm/n and the equilibrium CDF is the solution to

φ(1 −G(p))
φ(0)

=
r − c
p − c

, where
¯
p ≡

rφ(0) + c(φ(1) − φ(0))
φ(1)

. (15)

Example 1. Suppose consumers only check one or two prices i.e., I1, I2 > 0 and Im>2 = 0.
Then φ(x) = a1 + a2x. This setting is particularly relevant. First, it is the model of Varian
(1980), i.e., I1, In > 0 and I1 + In = 1, with n = 2. The unique equilibrium is reported by
Baye, Kovenock, and De Vries in their full characterization of equilibria in Varian’s model.
Our Proposition 1 shows uniqueness is obtained not because n = 2, but because I2 > 0. Second,
our analysis treated consumers’ information as exogenous. In their canonical consumer search
model, Burdett and Judd (1983) show ex-ante symmetric consumers endogenously choose to
search either once or twice (i.e., I1, I2 > 0 and Im>2 = 0) and derive a symmetric equilibrium.15

Our Proposition 1 shows this is in fact the unique equilibrium in such a setting.

Example 2. Extending the first example, suppose that consumers are again aware of few prices,
but either one, two, or three (i.e., I1, I2, I3 > 0 and Im>3 = 0). Then φ(x) = a1 + a2x + a3x2, for
which one of the two solutions to (15) is valid, which by our result gives the unique equilibrium.
More generally, the solution to the setting with I1, . . . , Ik > 0 and Im>k = 0 quickly becomes
intractable as k grows. However, some approaches simplify (14), as the next example shows.

14We are grateful to Mark Armstrong for this suggestion and adopt the notation of Armstrong and Vickers (2019).
15Burdett and Judd (1983) assume a continuum of firms, but the equilibrium strategy is the same for any n ≥ 2.
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Example 3. Consider a setting in which each consumer is independently aware of each firm’s
price with probability α ∈ (0, 1). Then Im =

(
n
m

)
αm(1−α)n−m > 0 for m = 1, . . . , n. Application of

the binomial theorem to (14) yields φ(x) = α(1−α(1−x))n−1. This is the symmetric version of the
models of awareness and advertising by Ireland (1993) and McAfee (1994), the equilibrium of
which is shown to be unique by Spiegler (2006). Our more general result shows that uniqueness
follows in this special setting because I2 > 0, which is implied by α ∈ (0, 1).

Textbook Bertrand. Consider perhaps the simplest version of Bertrand competition where
all consumers compare prices (I1 = 0). With n > 2 it is well-known that there are infinitely-
many equilibria (two charge marginal cost while others charge any prices). Our results offer an
intuitive rationale to focus on the symmetric (price-equals-marginal-cost) equilibrium: When
I1, I2 > 0 (and any Im ≥ 0 for m > 2) Proposition 1 shows the only equilibrium is symmetric; and
as I1 ↓ 0 ceteris paribus, profits go to zero and the equilibrium pricing distribution converges to
the degenerate distribution with all its probability mass on marginal cost.

Other Implications. More generally, our result may make this classic price competition frame-
work more attractive to researchers. For those adopting it, we argue that our result makes the
symmetric equilibrium the practically- and theoretically-relevant one.

Firstly, the assumption that some consumers check two prices (I2 > 0) appears quite reason-
able. It seems intuitive that a wide range of search-cost distributions would lead some con-
sumers to compare two prices. Indeed, Burdett and Judd (1983) find that even with homoge-
neous (and linear) search costs, a positive mass of consumers gather two price quotations in
equilibrium.16 Empirical evidence also broadly supports this. The Consumer Financial Protec-
tion Bureau (2015) find that around 90% of home-buyers consider either one or two mortgage
lenders/brokers, consistent with the estimate of Woodward and Hall (2012). De los Santos,
Hortaçsu, and Wildenbeest (2012) find that around 70% of consumers visited one or two online
book stores before purchasing, while De los Santos (2018) finds the average number to be 1.27.
In the US auto-insurance market, Honka (2014) finds 35% obtain two quotes.

From a theoretical perspective, the framework as a whole may be more attractive to researchers
because we now know that multiple equilibria only arise in the special case of I2 = 0. Further-
more, even in that special case, the symmetric equilibrium is robust in the sense that the strategy
is right-continuous at I2 = 0: as I2 ↓ 0, the equilibrium strategy is equal to the symmetric equi-
librium strategy when I2 = 0. Conversely, suppose one predicts an asymmetric equilibrium
when I2 = 0 and consider a perturbation in consumer behavior I2 = ε > 0, ceteris paribus. Fol-
lowing the shock, the unique and symmetric equilibrium strategies of each firm jumps, and can
be qualitatively very different from firms’ supposed asymmetric strategies before the change.
This offers a stability justification for the restriction to symmetric equilibria made in prior work.

16Such search behavior is also found in the “high-intensity” equilibria of Janssen and Moraga-González (2004).
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