
Computers & Operations Research 136 (2021) 105495

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A new fast and accurate heuristic for the Automatic Scene Detection Problem
Daniele Catanzaro a,∗,1, Raffaele Pesenti b,1, Roberto Ronco c,1

a Center for Operations Research and Econometrics (CORE), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
b Department of Management, University Ca’ Foscari, Venice, Italy
c Department of Computer Science, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Genoa, Italy

A R T I C L E I N F O

Keywords:
Combinatorial optimization
Video processing
Segmentation
Scene detection
Heuristics
Dynamic programming

A B S T R A C T

The Automatic Scene Detection Problem (ASDP) is a combinatorial optimization problem that arises in the context
of video processing and that has a central role in the management, storing and content retrieval of videos.
The problem consists of partitioning the shots of a given video into scenes by optimizing a measure related to
the similarity between the given shots. In this article, we build up upon the results from the literature on the
ASDP in order to design a new approximate solution algorithm able to outperform the current state-of-the-art
both in terms of speed and quality of the solution.
1. Introduction

Given a positive integer 𝑁 ≥ 1, consider a video encoded as an
ordered set  = {1, 2,… , 𝑁} of 𝑁 groups of sequential frames, hereafter
referred to as shots (see Fig. 1). Given a pair of shots 𝑖, 𝑗 ∈ , 𝑖 ≤ 𝑗, let
𝜎𝑖,𝑗 = {𝑖, 𝑖 + 1,… , 𝑗 − 1, 𝑗} denote a scene, i.e., a subset of 𝑗 − 𝑖 + 1
consecutive shots in  that starts at shot 𝑖 and ends at shot 𝑗. For
example, the scene 𝜎3,5 in Fig. 1 refers to the subset of three shots
{3, 4, 5}. Whenever we need to refer to a generic scene in , we shall
drop the indices and just write 𝜎 ∈ . Let 𝐃 denote a 𝑁 ×𝑁 symmetric
distance matrix, whose generic entry 𝑑𝑖,𝑗 ∈ R0+ encodes a measure
of similarity between the pair of shots 𝑖, 𝑗 ∈ . Let 𝛼(⋅) denote a
set function that associates a scene 𝜎 ∈  with a nonnegative real,
according to the following formula

𝛼(𝜎) ∶=
∑

𝑝,𝑞∈𝜎
𝑑𝑝,𝑞 .

Fixed a positive integer 𝐾 ∈ {1,… , 𝑁}, let 𝑃 = {𝜎} denote a partition
of  into 𝐾 scenes, i.e., a collection of scenes such that

|𝑃 | = 𝐾, 𝜎 ∩ 𝜎′ = ∅ ∀𝜎, 𝜎′ ∈ 𝑃 , and
⋃

𝜎∈𝑃
𝜎 =  .

Moreover, let  denote the set of the possible partitions of  into 𝐾
scenes. Then, the Automatic Scene Detection Problem (ASDP) consists of
finding a partition 𝑃 ∈  that minimizes the following cost function
related to the quality of a partition 𝑃 :

𝑧(𝑃) =

∑

𝜎∈𝑃
𝛼(𝜎)

∑

𝜎∈𝑃
|𝜎|2

. (1)

∗ Corresponding author.
E-mail addresses: daniele.catanzaro@uclouvain.be (D. Catanzaro), pesenti@unive.it (R. Pesenti), roberto.ronco@edu.unige.it (R. Ronco).

1

The numerator of 𝑧(𝑃) accounts for the similarity of the shots falling
within each scene 𝜎 ∈ 𝑃 ; the denominator accounts for the number of
shots in each scene 𝜎. The shorter the scene and the higher the similar-
ity of the shots that fall within it, the lower the value of 𝑧(𝑃). This cost
function was proposed by Rotman et al. (2018), who reported several
empirical considerations on the efficacy of 𝑧(𝑃) as opposed to other
cost functions described in Rotman et al. (2016, 2017). Incidentally, we
observe that the denominator presented in Rotman et al.’s article was
∑

𝜎∈𝑃 |𝜎|2 −𝑁 instead of ∑𝜎∈𝑃 |𝜎|2, as the authors intended to neglect
the entries 𝑑𝑞,𝑞 , 𝑞 ∈ {1,… , 𝑁}, which are zero by definition. As the
authors observed, however, the subtraction by 𝑁 in the denominator
does not alter the meaning of the cost function 𝑧(𝑃) and can be omitted.
Hence, in the rest of this article we will assume to work just with the
cost function (1).

The value of 𝐾 is part of the input of the problem and is usually
fixed by means of heuristics, as described in Rotman et al. (2018). In the
case 𝐾 = 1 or 𝐾 = 𝑁 , solving the ASDP is trivial. In fact, in the former
case, 𝑃 is constituted by 1 scene, while in the latter case, 𝑃 contains
exactly 𝐾 scenes, each consisting of a single shot. The problem instead
becomes nontrivial for generic values of 𝐾 and deciding its complexity
in such a case still remains an open problem. An example of an ASDP
instance is shown in Fig. 2.

The ASDP was introduced in the literature on video processing
by Rotman et al. (2018) as a way to model the automatic segmentation
of the shots from a given video into time-contiguous and semantically
coherent scenes. This task is compelling for the management and
storing of video contents. In particular, the massive quantity of videos
vailable online 31 July 2021
305-0548/© 2021 Elsevier Ltd. All rights reserved.

The authors equally contributed to conceive the work and to write the article.

https://doi.org/10.1016/j.cor.2021.105495
Received 19 April 2021; Received in revised form 24 June 2021; Accepted 26 July
 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:daniele.catanzaro@uclouvain.be
mailto:pesenti@unive.it
mailto:roberto.ronco@edu.unige.it
https://doi.org/10.1016/j.cor.2021.105495
https://doi.org/10.1016/j.cor.2021.105495
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105495&domain=pdf

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

(
b

s

Fig. 1. An example of a video encoded as a sequence of frames, along with two possible logical partitions of the frames into shots (the shot layer) and of the shots into scenes
the scene layer), respectively. The ASDP involves the two topmost layers and consists of partitioning the shots into scenes, by optimizing a measure related to the similarity
etween the given shots.
Fig. 2. An example of a possible distance matrix 𝐃 (on the left) associated with an instance of the ASDP characterized by 𝑁 = 9 shots and 𝐾 = 3 scenes. The figure on the right
hows the Mathematica Matrix Form of 𝐃: the lighter the colors the lower the entries of 𝐃 they refer to. Conversely, the darker the colors the bigger the entries of 𝐃 they refer to.
that are produced each day, e.g., by means of computers and smart
devices, leads the broadcast companies that store them to automate
the tedious and time-consuming manual operations that are involved
in content management. As an example, one of the main tasks in the
management of documentary, news and educational videos, consists of
automatically generate metadata for each scene in order to enable an
easy browsing of the videos as well as the re-use of (possibly part of)
them (Zhai et al., 2005; Kurihara et al., 2019). In the context of a sport
event, it may be often necessary to highlight the precise points of a
video in which a specific athlete shows up, so as to enable faster video
browsing (Ariki et al., 2003; Del Fabro and Böszörmenyi, 2010; Choroś,
2009). In the context of advertising insertions, spots are usually placed
in a video in such a way to be as less intrusive as possible; it is there-
fore necessary to automatically identify which specific points of the
considered video may minimize intrusiveness (Liang et al., 2018). In
all of these contexts, scene detection algorithms prove of fundamental
assistance: by segmenting a video into semantic units, these algorithms
enable the extraction of metadata that can be subsequently used to
manipulate and classify it.

The literature on scene detection provides several examples of
algorithms that enable the segmenting of the shots from a given video
into scenes. We may classify these algorithms into four main classes,
based on the methodology used to carry out this task (Del Fabro
and Böszörmenyi, 2013). Specifically, we may distinguish between
2

the rule-based algorithms (Feng et al., 2008), the stochastic-based
algorithms (Zhai and Shah, 2006; Han and Wu, 2011), the graph-based
algorithms (Rasheed and Shah, 2005; Sakarya and Telatar, 2008), and
finally the clustering algorithms (Baraldi et al., 2015c; Panda et al.,
2017; Rotman et al., 2018). Discussing the foundational ideas at the
core of each class is out of the scope of the present article. The
interested reader, however, may refer to the article by Del Fabro and
Böszörmenyi (2013) for an introduction to the topic. Here, we focus
on the clustering algorithms. The idea at their core is to group frames
into meaningful clusters based on a measure of the similarity among
shots. Among the major contributions to this class, Baraldi et al.’s
works (Baraldi et al., 2015c,a,b, 2016) stand out as one the most impor-
tant examples that aim to pave the road toward the development of a
general framework for scene detection. In particular, besides presenting
a fast shot detection algorithm, as well as a scene detection algorithm
based on hierarchical clustering (Baraldi et al., 2015c), Baraldi et al.
further proposed a clustering algorithm to perform scene detection,
grouping adjacent shots based on their color spectra (Baraldi et al.,
2015a). The authors proposed the use of color information to generate a
similarity matrix able to quantify the visual and temporal proximity be-
tween shots and then applied spectral clustering to this matrix in order
to obtain the desired automatic scene detection. Baraldi et al. (2015b)
further improved the accuracy of the scene detection, by enriching the
color information of the shots with further features from the middle

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

(

s

i
s
e
f

𝐶

s
w
o
e

e
o
𝑘
t

𝜎

i
f
v
o

𝐶

𝐺

f
b

𝐶

𝐺

frames extracted by means of a neural network. Rotman et al. (2018)
significantly extended Baraldi et al.’s works, by proposing a framework
for video post-processing consisting of four main stages: Baraldi et al.’s
shot detection, middle frame selection and features extraction (per-
formed by means of a neural network), and finally the automatic scene
detection tout court, formulated in terms of the ASDP and in which the
input distance matrix 𝐷 was obtained by processing the outputs of the
three previous steps.

Rotman et al. proposed a dynamic programming algorithm to solve
the ASDP, and subsequently improved their overall framework by mod-
ifying the processing of the previous first three steps so as to generate
input distance matrices having combinatorial properties able to vastly
speed up the running time of their algorithm, at the cost of slightly
losing in terms of accuracy (Rotman et al., 2020). Rotman et al. (2018)
algorithm, and more in general their overall framework (Rotman et al.,
2020), currently constitutes the current state-of-the-art for the ASDP.

In this article we build upon Rotman et al. (2018, 2020) seminal
works to design a new improved solution algorithm for the ASDP able
to outperform the current state-of-the-art both in terms of speed and
quality of the provided solution. In particular, starting from a recall
of the foundations of Rotman et al. (2018) algorithm, in Section 3 we
exploit the combinatorics of the ASDP to design a new approximate al-
gorithm characterized by a computational cost not higher than Rotman
et al. (2018)’s algorithm. In Section 4, we report on the results obtained
by running the new heuristic on an extensive battery of practical
instances of the ASDP taken from the literature and in Section 5 we
give a perspective on possible future developments.

2. On Rotman et al.’s algorithm

In this section, we recall some fundamental aspects of Rotman
et al.’s algorithm. Before proceeding, we introduce some notation and
definitions that will prove useful throughout the article. We start by
observing that an instance  of the ASDP is characterized by the triplet
 ,𝐃, 𝐾) and that the total ordering of  allows to look at a scene 𝜎𝑖,𝑗

both as a subset of shots and as the discrete interval {𝑖, 𝑖 + 1,… , 𝑖 +
𝑗}, hereafter denoted as [𝑖, 𝑗]. This duality proves useful not only to
recall Rotman et al.’s algorithm but also to formalize the new heuristic
discussed in the next sections.

Given an interval [𝑖, 𝑗] ⊆ [1, 𝑁] =  and a positive integer 𝑘 such
that 1 ≤ 𝑘 ≤ min{𝑗 − 𝑖 + 1, 𝐾}, let 𝑃 𝑘

𝑖,𝑗 denote a partition of the interval
[𝑖, 𝑗] into 𝑘 scenes. Then the idea at the core of Rotman et al.’s algorithm
consists of exploiting a bottom-up dynamic programming solution ap-
proach that progressively combines smaller instances (subproblems)
of an input instance  of the ASDP until obtaining a solution to .
The dynamic programming approach is enabled by the following key
observation: if the shots in the interval [𝑖,𝑁] are partitioned into 𝑘
cenes, for some appropriate values of 𝑖 and 𝑘, then the shots in the

interval [1, 𝑖−1] will have to be necessarily partitioned into 𝐾−𝑘 scenes
n order to ensure the feasibility of the solution. Hence, for each fixed
hot 𝑖 ∈  and 𝑘 ∈ 𝜅𝑖 ∶= [max{1, 𝐾 − 𝑖 + 1},min{𝐾,𝑁 − 𝑖 + 1}], Rotman
t al.’s algorithm finds a partition 𝑃 𝑘

𝑖,𝑁 that locally minimizes the
ollowing surrogate cost function

𝑘
𝑖 (𝑒) ∶=

∑

𝜎∈𝑃 𝑘
𝑖,𝑁

𝛼(𝜎)

𝑒 +
∑

𝜎∈𝑃 𝑘
𝑖,𝑁

|𝜎|2
,

where the positive integer

𝑒 ∈ 𝜖𝑘𝑖

∶=

{

[⌈(𝑖 − 1)2 ∕ (𝐾 − 𝑘)⌉, (𝑖 −𝐾 + 𝑘)2 +𝐾 − 𝑘 − 1] 𝑘 ∈ [1, 𝐾 − 1]
{0} otherwise,

approximates the sum of the addends at the denominator of (1) related
to the partition of the interval [1, 𝑖 − 1]. The authors observe that,
3

for each fixed 𝑘, a lower bound on 𝑒 is obtained when the shots in
[1, 𝑖−1] are grouped as evenly as possible into 𝐾 −𝑘 scenes. The upper
bound, instead, is achieved when one of the 𝐾 − 𝑘 scenes contains the
largest admissible number 𝑖−𝐾 + 𝑘 of shots, while the other 𝐾 − 𝑘− 1
cenes contain just one shot each. We observe here that |𝜖𝑘𝑖 | is, in the
orst case, of order 𝑂(𝑁2). This fact will turn out to be useful later
n, when discussing the computational complexity aspects of Rotman
t al.’s algorithm.

For a fixed shot 𝑖 ∈  = [1, 𝑁], the generic base case for Rotman
t al.’s algorithm can be easily determined by observing that there is
ne and only one partition of the shots in [𝑖,𝑁] if and only if either
= 1 or 𝑘 = 𝑁 − 𝑖+1. The case 𝑘 = 𝑁 − 𝑖+1 is trivial because it implies

hat
∑

∈𝑃 𝑘
𝑖,𝑁

𝛼(𝜎) =
𝑞
∑

𝑟=𝑝
𝑑𝑟,𝑟 = 0,

.e., that 𝐶𝑘
𝑖 (𝑒) = 0, for any 𝑒 ∈ 𝜖𝑘𝑖 . The case 𝑘 = 1, instead, involves

inding the partition 𝑃 1
𝑖,𝑁 that minimizes 𝐶1

𝑖 (𝑒) over all of the possible
alues 𝑒 ∈ 𝜖1𝑖 . It is easy to see that, because there is just one partition
f the shots in [𝑖,𝑁] into one scene, it holds that

1
𝑖 (𝑒) =

𝛼(𝜎𝑖,𝑁)
𝑒 + (𝑁 − 𝑖 + 1)2

, ∀ 𝑒 ∈ 𝜖1𝑖 .

Hence, the minimization of the surrogate cost function 𝐶1
𝑖 (𝑒) with

respect to 𝑒 can be carried out in quadratic order at most. Note that
there is no need to consider shots 𝑖 ∈  with 𝑖 < 𝐾 because it is not
possible to partition [1, 𝑖−1] into 𝐾 −1 scenes. This fact allows Rotman
et al.’s algorithm to skip the first [1, 𝐾 − 1] shots and to focus just on
the interval [𝐾,𝑁].

The iterative step of Rotman et al.’s algorithm consists of consid-
ering all of the possible values of 𝑘 ∈ 𝜅𝑖 ⧵ {1} and finding, for each
of them, the partition 𝑃 𝑘

𝑖,𝑁 that minimizes the surrogate cost 𝐶𝑘
𝑖 (𝑒), for

all 𝑒 ∈ 𝜖𝑘𝑖 . To this end, for each shot 𝑗 ∈ [𝑖,𝑁 − 1], Rotman et al.’s
algorithm first splits the target interval [𝑖,𝑁] into [𝑖, 𝑗] and [𝑗 + 1, 𝑁].
Then, it considers the partitions 𝑃 1

𝑖,𝑗 and 𝑃 𝑘−1
𝑗+1,𝑁 for the intervals [𝑖, 𝑗]

and [𝑗 + 1, 𝑁], respectively, and sets 𝑃 𝑘
𝑖,𝑁 = 𝑃 1

𝑖,𝑗 ∪ 𝑃 𝑘−1
𝑗+1,𝑁 . The partition

𝑃 𝑘
𝑖,𝑁 that minimizes the function

𝑘
𝑖,𝑗 (𝑒) ∶=

∑

𝜎∈𝑃 1
𝑖,𝑗

𝛼(𝜎)

𝑒 +
∑

𝜎∈𝑃 1
𝑖,𝑗∪𝑃

𝑘−1
𝑗+1,𝑁

|𝜎|2

over all of the possible values of 𝑒 ∈ 𝜖𝑘𝑖 is then selected as the best
one for the interval [𝑖,𝑁]. Rotman et al. observe that the values of
𝐶𝑘
𝑖 (𝑒) and 𝐺𝑘

𝑖,𝑗 (𝑒) are related by means of the two other quantities
𝑋𝑘

𝑖 (𝑒) and 𝐴𝑘
𝑖 (𝑒), corresponding to the last shot of the first scene of

the partition associated with 𝐶𝑘
𝑖 (𝑒), and to the contribution of 𝑃 𝑘

𝑖,𝑁 to
the denominator of 𝐶𝑘

𝑖 (𝑒), respectively. In particular, the base case for
𝐶𝑘
𝑖 (𝑒), 𝑋

𝑘
𝑖 (𝑒), and 𝐴𝑘

𝑖 (𝑒) is computed as

𝐶1
𝑖 (𝑒) =

𝛼(𝜎𝑖,𝑁)
𝑒 + (𝑁 − 𝑖 + 1)2

(2)

𝑋1
𝑖 (𝑒) = 𝑁 (3)

𝐴1
𝑖 (𝑒) = (𝑁 − 𝑖 + 1)2 (4)

or all 𝑖 ∈ [𝐾,𝑁] and 𝑒 ∈ 𝜖𝑘𝑖 . The iterative step, instead, is characterized
y the following relations:

𝑘
𝑖 (𝑒) = min

𝑗∈[𝑖,𝑁−𝑘+1]

{

𝐺𝑘
𝑖,𝑗 (𝑒) + 𝐶𝑘−1

𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2)
}

(5)

𝑘
𝑖,𝑗 (𝑒) =

𝛼(𝜎𝑖,𝑗)

𝑒 + (𝑗 − 𝑖 + 1)2 + 𝐴𝑘−1
𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2)

(6)

𝑋𝑘
𝑖 (𝑒) = argmin

{

𝐺𝑘
𝑖,𝑗 (𝑒) + 𝐶𝑘−1

𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2)
}

(7)

𝑗∈[𝑖,𝑁−𝑘+1]

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

f

𝑇

𝐶

𝐴𝑘
𝑖 (𝑒) = (𝑋𝑘

𝑖 (𝑒) − 𝑖 + 1)2 + 𝐴𝑘−1
𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2) (8)

for 𝑖 ∈ [1, 𝑁], 𝑘 ∈ 𝜅𝑖 ⧵ {1}, 𝑝 ∈ 𝜖𝑘𝑖 , and 𝑗 ∈ [𝑖,𝑁 −𝑘+1]. Specifically, for
each 𝑗 ∈ [𝑖,𝑁−𝑘+1], the partition of the shots [𝑖, 𝑗] into 1 scene and the
one of the shots [𝑗+1, 𝑁] into 𝑘−1 scenes are combined according to the
sum of their associated costs 𝐺𝑘

𝑖,𝑗 (𝑒) and 𝐶𝑘−1
𝑗+1 (𝑒+(𝑗−𝑖+1)

2), respectively.
As both share the same denominator, the numerator resulting from
their sum corresponds to the sum of the distances between the shots
in the two partitions. In other words, 𝑒 allows to parameterize the
number of shots in the partition of 𝜎1,𝑖−1 into 𝐾 − 𝑘 scenes, which is
not considered when solving the problem of partitioning 𝜎𝑖,𝑁 into 𝑘
scenes.

Algorithm 1 outlines the pseudo-code of Rotman et al.’s algorithm.
With a little abuse of notation, we treat 𝐶, 𝑋, and 𝐴 as tensors in
the pseudo-code, consistently with Eqs. (2)–(8). In this way, we can
save the computed values of 𝐶𝑘

𝑖 (𝑒), 𝑋
𝑘
𝑖 (𝑒), and 𝐴𝑘

𝑖 (𝑒), and recall them
whenever necessary in the iterations. Instead, we treat 𝐺𝑘

𝑖,𝑗 (𝑒) as a
function, so that computed values are not saved for further use. Lines
1–4 initialize the starting values for 𝐶, 𝐴 and 𝑇 . Line 1 initializes 𝐶𝑘

𝑖 (𝑒)
to ∞ for each (𝑖, 𝑘, 𝑒) ∈ 𝐹 . Lines 2–4 compute the bases cases according
to Eqs. (2)–(4). Lines 5–20 compute the step cases according to Eqs. (5)–
(8). Lines 22–25 reconstruct the partition {[1, 𝑠1], [𝑠1 + 1, 𝑠2],…[𝑠𝐾−1 +
1, 𝑠𝐾]} associated with the cost of the partition 𝑃𝐾

1,𝑁 denoted as 𝐶𝐾
1 (0)

and equal to

𝐶𝐾
1 (0) =

∑

𝜎∈𝑃𝐾
1,𝑁

𝛼(𝜎)

0 +
∑

𝜎∈𝑃𝐾
1,𝑁

|𝜎|2
= 𝑧(𝑃𝐾

1,𝑁).

In particular, observe that, by definition of 𝑋𝑘
𝑖 (𝑒), 𝑠𝑘 is the last shot of

𝑘th scene at the end of the 𝑘th iteration of lines 23–25. Finally, at line
27, the algorithm returns the partition so computed and the relative
value of the associated cost function.

Rotman et al. also describe a boolean look-up table 𝑇 𝑘
𝑛,𝑒 that can

be implemented in Algorithm 1 so as to exclude non admissible values
of 𝑒. In particular, for 𝑛 ∈ [1, 𝑁], 𝑘 ∈ 𝜅𝑖, and 𝑒 ∈ 𝜖𝑘𝑛+1, 𝑇 𝑘

𝑛,𝑒 = true
when 𝑛 shots can be partitioned into 𝑘 scenes and there exists 𝑃 𝑘

𝑖,𝑗 ,
𝑖, 𝑗 ∈  , 𝑖 ≤ 𝑗, such that |𝑃 𝑘

𝑖,𝑗 | = 𝑒, and false otherwise. The look-up
table can be initialized before Algorithm 1, and employed after line 12
to skip the iteration if 𝑇 𝑘

𝑛,𝑒 = false. The base cases are computed as

𝑇 1
𝑛,𝑒 =

{

true if 𝑛2 = 𝑒
false otherwise

for 𝑛 ∈  and 𝑒 ∈ 𝜖𝑘𝑛+1, since 𝑛 shots can be partitioned into 1 scene if
and only if, for any 𝑗 − 𝑖 + 1 = 𝑛, |𝑃 1

𝑖,𝑗 | = 𝑛2 is equal to 𝑒. The relation
or 𝑇 𝑘

𝑛,𝑒 is

𝑘
𝑛,𝑒 =

⌈

√

𝑒⌉−1
⋁

𝑞=1
𝑇 𝑘−1
𝑛−𝑞,𝑒−𝑞2

for 𝑛 ∈ , 𝑘 ∈ [2,min{𝐾, 𝑛}], and 𝑒 ∈ 𝜖𝑘𝑛+1. Specifically, note that as
𝑞 < 𝑛 shots can be partitioned into scene 𝜎̂ with |𝜎̂|2 = 𝑞2, for each
𝑞 ∈ [1, ⌈

√

𝑒⌉ − 1], then there is a partition 𝑃 ′ of 𝑛 shots into 𝑘 scenes
such that ∑𝜎∈𝑃 ′ 𝜎 = 𝑒, i.e., 𝑇 𝑘

𝑛,𝑒 = true, if there is a partition 𝑃 ′′ of 𝑛− 𝑞
shots into 𝑘 − 1 scenes such that ∑𝜎∈𝑃 ′′ 𝜎 = 𝑒 − 𝑞2.

Example 1. As an example of execution of Rotman et al.’s algorithm,
consider the instance of the ASDP with 𝑁 = 6, 𝐾 = 3, and

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

0 2 1 2 1 1
2 0 2 2 1 0
1 2 0 0 0 2
2 2 0 0 0 2
1 1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

.

4

⎣1 0 2 2 0 0⎦
Algorithm 1: Rotman et al.’s algorithm
Input : Matrices 𝐁 and 𝐃.
Output : A partition 𝑃𝐾

1,𝑁 and the associate cost 𝐶𝐾
1 (0).

Internal Data : 𝐹 ← [1, 𝑁] × [1, 𝐾] × [0, 𝑁2], 𝑉 , 𝑠𝑘 ∈ Z0+ .
Internal Functions : 𝐶 ∶ 𝐹 → R0+ , 𝑋 ∶ 𝐹 → R0+ , and 𝐴 ∶ 𝐹 → Z0+ .

1 Set 𝐶𝑘
𝑖 (𝑒) ← ∞, for all 𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝐾], 𝑒 ∈ [0, 𝑁2];

2 foreach 𝑖 ∈ [𝐾,𝑁] do
3 foreach 𝑒 ∈ 𝜖1𝑖 do
4 Compute 𝐶1

𝑖 (𝑒), 𝑋1
𝑖 (𝑒), and 𝐴1

𝑖 (𝑒) with equations Eqs. (2)–(4);

5 foreach 𝑖 ∈  do
6 foreach 𝑘 ∈ 𝜅𝑖 do
7 if 𝑘 = 𝐾 then
8 𝑒𝑙 ← 𝑒𝑟 ← 0;

9 else
10 𝑒𝑙 ← ⌈(𝑖 − 1)2∕(𝐾 − 𝑘)⌉;
11 𝑒𝑟 ← (𝑖 − 1) − (𝐾 − 𝑘) + 1)2 +𝐾 − 𝑘 − 1;

12 foreach 𝑒 ∈ [𝑒𝑙 , 𝑒𝑟] do
13 foreach 𝑗 ∈ [𝑖,𝑁 − 𝑘 + 1] do
14 if 𝐶𝑘

𝑖 (𝑒) = ∞ then
15 continue;

16 𝐺𝑘
𝑖,𝑗 (𝑒) ←

𝛼(𝜎𝑖,𝑗) ∕
(

𝑒 + (𝑗 − 𝑖 + 1)2 + 𝐴𝑘−1
𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2)

)

;
17 if 𝐺𝑘

𝑖,𝑗 (𝑒) + 𝐶𝑘−1
𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2) < 𝐶𝑘

𝑖 (𝑒) then
18 𝐶𝑘

𝑖 (𝑒) ← 𝐺𝑘
𝑖,𝑗 (𝑒) + 𝐶𝑘−1

𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2);
19 𝑋𝑘

𝑖 (𝑒) ← 𝑗;
20 𝐴𝑘

𝑖 (𝑒) ← (𝑗 − 𝑖 + 1)2 + 𝐴𝑘−1
𝑗+1 (𝑒 + (𝑗 − 𝑖 + 1)2);

21 // Recovering the partition into scenes with Eq. (7);
22 𝑉 ← 0, 𝑠0 ← 0;
23 foreach 𝑘 ∈ [1, 𝐾] do
24 𝑠𝑘 ← 𝑋𝐾−𝑘+1

𝑠𝑘−1+1,𝑉
;

25 𝑉 ← 𝑉 + (𝑠𝑘 − 𝑠𝑘−1)2;

26 𝑃𝐾
1,𝑁 ← {[1, 𝑠1], [𝑠1 + 1, 𝑠2],…[𝑠𝐾−1 + 1, 𝑠𝐾]};

27 return 𝑃𝐾
1,𝑁 , 𝐶𝐾

1 (0);

As a first step of Rotman et al.’s algorithm, we compute the base
cases

𝐶1
3 (2) =

8
18

, 𝐶1
4 (5) =

4
14

, 𝐶1
5 (8) = 𝐶1

5 (10) = 𝐶1
6 (13) = 𝐶1

6 (17) = 0

The subsequent steps exploit (5)–(8), so we have

𝐶2
3 (4) = min{𝐺2

3,3(4) + 𝐶1
4 (5), 𝐺

2
3,4(4) + 𝐶1

5 (8), 𝐺
2
3,5(4) + 𝐶1

6 (13)}

= min
{ 4
14

, 0
12

, 0
14

}

(9)

= 0.

Fig. 3 shows a visual representation of such iterative step. Observe that
the last two terms of the expression (9) are equal to 0. If we choose
𝐺1
3,4(4) + 𝐶1

5 (8) = 0, then 𝐴1
3(4) = 12, and 𝑋1

3 (4) = 4. Moreover, with
simple arithmetic steps we also obtain

𝐶2
2 (1) =

4
9
, 𝐴2

2(1) =17, 𝑋2
2 (1) =2

𝐶2
4 (9) =0, 𝐴2

4(9) =5, 𝑋2
4 (9) =5

𝐶2
5 (16) =0, 𝑃 2

5 (16) =2, 𝐼25 (16) =5.

Therefore,
3
1 (0) = min{𝐺3

1,1(0) + 𝐶2
2 (1), 𝐺

3
1,2(0) + 𝐶2

3 (4), 𝐺
3
1,3(0)

+ 𝐶2
4 (9), 𝐺

4
1,4(0) + 𝐶2

5 (16)}

= min
{4
9
, 1
3
, 3
7
, 1

}

= 1
3
,

corresponding to the partition {{1, 2}, {3, 4}, {5, 6}}. Incidentally, it is
worth noting that in the considered example, a better partition can be

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

i
c
t
a

o
v
n

o
r
m
f
o
o
𝑖
𝛼

𝛼

T
s
t
𝛼
f
t
c
h
l
e

𝑂

w
c

t

a

T

𝑂

3

a
c
t
i
p
t

[
w
p
𝑗
c
t
c
s
a
s
a
𝑃
a
t
r
g
t
i

Fig. 3. An iterative step performed by Rotman et al.’s algorithm to compute 𝐶2
3 (4)

n Example 1. We mark in orange and yellow the entries of the distance matrix that
ontribute to the numerator of 𝐺2

3,4(4) and 𝐶1
5 (8), respectively. Instead, we mark in red

he entries corresponding to the distances between the shots in 𝜎1,2. We observe that,
t such iterative step, 𝑒 is indeed equal to |𝜎1,2|

2 = 4.

btained by considering {{1, 2}, {3, 4, 5}, {6}} which allows to achieve a
alue 2 ∕ 7 of the cost function. This fact further confirms the heuristic
ature of Rotman et al.’s algorithm.

As regards the computational complexity of Algorithm 1, we first
bserve that the values 𝛼(𝜎𝑖,𝑗), 𝑖, 𝑗 ∈ , can be precomputed before
unning Algorithm 1 by means of a simple 𝑂(𝑁2) dynamic program-
ing algorithm described by Rotman et al. (2016), and outlined in the

ollowing. Hereinafter, we denote by 𝐃𝑖,𝑗 , 𝑖 ≤ 𝑗, the sub-matrix [𝑑𝑞,𝑟]
f 𝐃, where 𝑞, 𝑟 ∈ [𝑖, 𝑗]. We observe that 𝐃𝑖,𝑗 is a square sub-matrix
n the main diagonal of 𝐃. The algorithm first initializes 𝛼(𝜎𝑖,𝑖) = 0,
∈ . Then, for 𝑙 ∈ [2, 𝑁] and 𝑖 ∈ [1, 𝑁 − 𝑙+1], the algorithm computes
(𝜎𝑖,𝑖+𝑙−1) as

(𝜎𝑖,𝑖+𝑙−1) = 𝛼(𝜎𝑖,𝑖+𝑙−2) + 𝛼(𝜎𝑖+1,𝑖+𝑙−1) − 𝛼(𝜎𝑖+1,𝑖+𝑙−2) + 2𝑑𝑖,𝑖+𝑙−1. (10)

he first two terms of (10) are the sums of the entries belonging to the
ub-matrices 𝐃𝑖,𝑖+𝑙−2 and 𝐃𝑖+1,𝑖+𝑙−1. Since these two sub-matrices share
he entries in 𝐃𝑖+1,𝑖+𝑙−2, then 𝛼(𝜎𝑖+1,𝑖+𝑙−2) is counted twice in the sum
(𝜎𝑖,𝑖+𝑙−2) + 𝛼(𝜎𝑖+1,𝑖+𝑙−1), hence 𝛼(𝜎𝑖+1,𝑖+𝑙−2) has to be subtracted once
rom (10). Finally, the last term accounts for the fact that 𝑑𝑖,𝑖+𝑙−1 and its
ranspose value 𝑑𝑖+𝑙−1,𝑖 are the only two entries in 𝐃𝑖,𝑖+𝑙−1 that are not
onsidered in 𝛼(𝜎𝑖,𝑖+𝑙−2)+𝛼(𝜎𝑖+1,𝑖+𝑙−1)−𝛼(𝜎𝑖+1,𝑖+𝑙−2). Hence, their values
ave to be added in (10). Now, even in the case in which the boolean
ook-up table is used, the computational complexity of Algorithm 1 is
qual to

⎛

⎜

⎜

⎜

⎝

𝑁
∑

𝑖=1

𝑚𝐾,𝑖
∑

𝑘=𝑀1,𝑖

(𝑖−𝑘+1)2+𝑘−1
∑

𝑒=⌈ 𝑖2
𝑘 ⌉

(𝑁 − (𝑘 − 1) − 𝑖 + 1)

⎞

⎟

⎟

⎟

⎠

,

here 𝑀1,𝑖 = max{1, 𝐾−𝑖+1} and 𝑚𝐾,𝑖 = min{𝐾,𝑁−𝑖+1}. This notation
an be further simplified by expanding the innermost sum as follows:

𝑂
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

𝑚𝐾,𝑖
∑

𝑘=𝑀1,𝑖

(𝑁 − 𝑘 − 𝑖)
(

(𝑖 − 𝑘 + 1)2 + 𝑘 − 𝑖2

𝑘

)

⎞

⎟

⎟

⎠

hat leads to

𝑂
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

𝑚𝐾,𝑖
∑

𝑘=𝑀1,𝑖

(𝑁 − 𝑘 − 𝑖)
(

𝑘 − 1
𝑘

𝑖2 + 𝑘2 − 2𝑖𝑘 − 2𝑘 + 2𝑖
)

⎞

⎟

⎟

⎠

∼ 𝑂

(𝑁
∑

𝑖=1

𝑚𝐾,𝑖
∑

𝑘=𝑀1,𝑖

𝑁 𝑘 − 1
𝑘

𝑖2 +𝑁𝑘2 − 2𝑁𝑘𝑖 − 2𝑁𝑘 + 2𝑁𝑖

− 𝑘𝑖2 𝑘 − 1
𝑘

− 𝑘3 − 2𝑘2𝑖 − 2𝑘2 − 2𝑘𝑖 − 𝑘 − 1
𝑘

𝑖3 − 𝑘2𝑖 + 2𝑘𝑖2 + 2𝑘𝑖 − 2𝑖2
)

.

(11)

Now, observe that ∑𝑁
𝑞=1 𝑞

2 = 𝑁(𝑁+1)(2𝑁+1) ∕ 6. Then, we can rewrite
(11) as

𝑂
⎛

⎜

⎜

𝑁
∑

𝑚𝐾,𝑖
∑

(𝑁 + 𝑘)𝑖2 + (𝑁 − 3𝑖)𝑘2 − 𝑘 − 1
𝑘

𝑖3 − 𝑘3 + 2𝑁𝑖(1 − 𝑘)
⎞

⎟

⎟

5

⎝

𝑖=1 𝑘=𝑀1,𝑖 ⎠
∼ 𝑂

(𝑁
∑

𝑖=1

𝑚𝐾,𝑖(𝑚𝐾,𝑖 + 2𝑁 + 1)
2

𝑖2 + (𝑁 − 3𝑖)
𝑚𝐾,𝑖(𝑚𝐾,𝑖 + 1)(2𝑚𝐾,𝑖 + 1)

6

− 𝑖3𝑚𝐾,𝑖 −
𝑚2
𝐾,𝑖(𝑚𝐾,𝑖 + 1)2

4

)

. (12)

By recalling that
𝑁
∑

𝑞=1
𝑞3 =

𝑁2(𝑁 + 1)2

4
∼ 𝑂(𝑁4),

𝑁
∑

𝑞=1
𝑞4 =

𝑁(𝑁 + 1)(2𝑁 + 1)(3𝑁2 + 3𝑁 − 1)
30

∼ 𝑂(𝑁5),

nd by observing that 𝑚𝐾,𝑖 = 𝐾 if 𝑖 < 𝑁 − 𝐾 + 1 and 𝑚𝐾,𝑖 = 𝑁 − 𝑖 + 1
otherwise, (12) reduces to

𝑂

(𝑁−𝐾
∑

𝑖=1

𝐾(𝐾 + 2𝑁 + 1)
2

𝑖2 + (𝑁 − 3𝑖)
𝐾(𝐾 + 1)(2𝐾 + 1)

6

− 𝐾𝑖3 −
𝐾2(𝐾 + 1)2

4

+
𝑁
∑

𝑖=𝑁−𝐾+1

(𝑁 − 𝑖 + 1)(3𝑁 − 𝑖 + 2)
2

𝑖2

+ (𝑁 − 3𝑖)
(𝑁 − 𝑖 + 1)(𝑁 − 𝑖 + 2)(2𝑁 − 2𝑖 + 3)

6

− 𝑖3 (𝑁 − 𝑖 + 1) −
(𝑁 − 𝑖 + 1)2(𝑁 − 𝑖 + 2)2

4

)

∼ 𝑂

(𝑁−𝐾
∑

𝑖=1
(𝐾2𝑖2 +𝑁𝐾𝑖2 +𝐾3𝑁 −𝐾3𝑖 −𝐾𝑖3 −𝐾4)

+
𝑁
∑

𝑖=𝑁−𝐾+1
((𝑁2 − 𝑖2) 𝑖2 +𝑁4 −𝑁3𝑖 +𝑁2𝑖2 −𝑁𝑖3 + 𝑖4)

)

. (13)

he second sum in (13) is 𝑂(𝐾𝑁4), which yields

(𝐾2(𝑁 −𝐾)2 +𝑁𝐾(𝑁 −𝐾)2 +𝐾3𝑁

− 𝐾3(𝑁 −𝐾) −𝐾(𝑁 −𝐾)3 −𝐾4 +𝐾𝑁4) ∼ 𝑂(𝐾𝑁4).

. A novel heuristic for the ASDP

In this section, we present a novel heuristic for the ASDP that proves
ble to outperform Rotman et al. (2018)’s algorithm, which currently
onstitutes the state-of-the-art for the problem. We start by describing
he main idea at the core of the heuristic. Subsequently, we will enter
nto the details of its pseudo-code and analyze its computational com-
lexity. Before proceeding, we introduce some notation and definitions
hat will prove useful throughout the section.

Given an instance  = ( ,𝐃, 𝐾) of the ASDP, a subset of shots
𝑖, 𝑗] ⊆  and a positive integer 𝑘 such that 1 ≤ 𝑘 ≤ min{𝐾, 𝑗 − 𝑖 + 1},
e denote by 𝑘

𝑖,𝑗 ∶= ([𝑖, 𝑗],𝐃, 𝐾, 𝑘) a sub-instance of  that involves the
artitioning of the shots in [𝑖, 𝑗] into 𝑘 scenes. We observe that if 𝑖 = 1,
= 𝑁 , and 𝑘 = 𝐾, then 𝑘

𝑖,𝑗 = 𝐾
1,𝑁 = , i.e., the sub-instance 𝑘

𝑖,𝑗
oincides with the given input instance  to solve. We denote by 𝑃 𝑘

𝑖,𝑗
he partition of the feasible sub-instance 𝑘

𝑖,𝑗 with (locally) minimum
ost 𝑧(𝑃 𝑘

𝑖,𝑗), obtained by recursively splitting 𝑘
𝑖,𝑗 into the two feasible

ub-instances ℎ
𝑖,𝑣 and 𝑘−ℎ

𝑣+1,𝑗 , for 𝑣 ∈ [𝑖, 𝑗 − 1] and ℎ ∈ [1, 𝑘 − 1]. Then,
possible approach to solution of the ASDP consists of (i) recursively

plitting a sub-instance 𝑘
𝑖,𝑗 into ℎ

𝑖,𝑣 and 𝑘−ℎ
𝑣+1,𝑗 , for each 𝑣 ∈ [𝑖, 𝑗 − 1]

nd ℎ ∈ [1, 𝑘 − 1], (ii) finding the (locally) minimum cost partitions
̄ℎ
𝑖,𝑣 and 𝑃 𝑘−ℎ

𝑣+1,𝑗 for ℎ
𝑖,𝑣 and 𝑘−ℎ

𝑣+1,𝑗 , respectively, and finally (iii) choosing
partition 𝑃 𝑘

𝑖,𝑗 for 𝑘
𝑖,𝑗 that can be written as 𝑃 𝑘

𝑖,𝑗 = 𝑃 ℎ
𝑖,𝑣 ∪ 𝑃 𝑘−ℎ

𝑣+1,𝑗 and
hat (locally) minimizes the cost function 𝑧(𝑃 𝑘

𝑖,𝑗). The term ‘‘locally’’
emarks the fact that this particular recursive splitting behaves as a
reedy solution approach to the ASDP, but in general it proves unable
o guarantee the optimality of the overall solution computed. This fact
s clarified by means of the following example.

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

s
b
u
𝑧

𝐃

I

𝑃

f
𝑧

𝑃

a
c

(

Example 2. Consider the instance  = ([1, 12],𝐃, 7) of the ASDP, for
ome distance matrix 𝐃. Suppose that the solution to  can be obtained
y splitting  as 4

1,6 ∪ 3
7,12 and by computing the partition 𝑃 7

1,12 as the
nion of the partitions 𝑃 4

1,6 and 𝑃 3
7,12, respectively. Finally, suppose that

(𝑃 3
7,12) = 11 ∕ 12, and that 𝐃1,6 = [𝑑𝑞,𝑟], 𝑞, 𝑟 ∈ [1, 6] be as follows

1,6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 5 5 0 0 0
5 0 5 0 0 0
5 5 0 0 0 0
0 0 0 0 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0.5 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

t is easy to see that the optimal partition

̄4
1,6 = {{1}, {2}, {3, 4}, {5, 6}}

or 4
1,6 is characterized by a cost 𝑧(𝑃 4

1,6) = 1 ∕ 10. Hence, we have that
(𝑃 7

1,12) = (1 + 11) ∕ (10 + 12) = 12 ∕ 22. Now, consider the partition

̂4
1,6 = {{1}, {2}, {3}, {4, 5, 6}}

nd observe that it is locally suboptimal for 4
1,6, as characterized by a

ost 𝑧(𝑃 4
1,6) = 2 ∕ 12 > 𝑧(𝑃 4

1,6). However, the union of 𝑃 4
1,6 with 𝑃 3

7,12
gives rise to the partition 𝑃 7

1,12 = 𝑃 4
1,6 ∪ 𝑃 3

7,12 with cost 𝑧(𝑃 7
1,12) =

2 + 11) ∕ (12 + 12) = 13 ∕ 24 < 𝑧(𝑃 7
1,12). Hence, the recursive splitting

in which locally optimal partitions are concatenated does not generally
guarantee the optimality of the overall solution to the ASDP.

Although the recursive splitting in general does not preserve the
global optimality of the overall solution to a given instance, it still
proves able to generalize Rotman et al. (2018)’s splitting strategy.
Specifically, note that Rotman et al. (2018)’s solution space, consisting
of the set of partitions that can be written as 𝑃 𝑘

𝑖,𝑁 = 𝑃 1
𝑖,𝑗 ∪ 𝑃 𝑘−1

𝑗+1,𝑁 , is
contained in the solution space constituted by the partitions that can
be written as 𝑃 𝑘

𝑖,𝑁 = 𝑃 ℎ
𝑖,𝑗 ∪ 𝑃 𝑘−ℎ

𝑗+1,𝑁 . Hence, provided that both 𝑘 > 2
and 1 < ℎ < 𝑘 hold, the above splitting strategy potentially allows
to search for solutions to the ASDP in a larger space. In the following
example, we show that the values of ℎ and 𝑘 need to be appropriately
determined to avoid incurring in an infeasible partitioning of the given
input interval .

Example 3. Consider the instance  = ([1, 8],𝐃, 4) and the sub-
instance 3

2,7. It is easy to see that the union of 𝑃 3
2,7 (independently of its

combinatorial structure) with any other partitioning of the remaining
non-sequential shots {1, 8} would force considering more than the
required 𝐾 = 4 scenes. In this sense, we say that the sub-instance 3

2,7
is infeasible.

In order to characterize the concept of feasibility (or infeasibility) of
a sub-instance 𝑘

𝑖,𝑗 , we observe that a partition 𝑃 𝑘
𝑖,𝑗 constitutes a feasible

solution for a sub-instance 𝑘
𝑖,𝑗 of a given instance  of the ASDP if and

only if

𝑘 ∈ 𝜅𝑖,𝑗 ∶= [max{𝐾 −𝑁 + 𝑗 − 𝑖 + 1, 1},min{𝐾 − min{𝑖 − 1, 1}

− min{𝑁 − 𝑗, 1}, 𝑗 − 𝑖 + 1}]

= [max{𝐾 −𝑁 + 𝑗 − 𝑖 + 1, 1},min{𝐾 −𝑁 + 𝑗 − 𝑖 + 1, 𝐾 − 2,

𝐾 − 𝑖, 𝑗 − 𝑖 + 1}]. (14)

In particular, because the shots in [𝑖, 𝑗] must be partitioned in 𝑘
scenes and the shots in  ⧵ [𝑖, 𝑗] must be partitioned in 𝐾 − 𝑘 scenes,
it holds that (i) 𝑘 cannot exceed the cardinality of [𝑖, 𝑗] and must be
greater than or equal to 1 and (ii) 𝐾 − 𝑘 cannot exceed the cardinality
of  ⧵ [𝑖, 𝑗] and must be greater than or equal to 2 in the case 𝑖 > 1 and
𝑗 < 𝑁 , greater than or equal to 1 if only one of the last two inequality
holds, and 0 otherwise. We say that an instance 𝑘

𝑖,𝑗 is feasible when the
indices 𝑖, 𝑗, and 𝑘 satisfy (14).
6

Proposition 1. Given a feasible sub-instance 𝑘
𝑖,𝑗 , with 𝑘 ≥ 2, the number

of pairs (𝑣, ℎ) that define two feasible sub-instances ℎ
𝑖,𝑣 and 𝑘−ℎ

𝑣+1,𝑗 is less
than or equal to (𝑗 − 𝑖− 𝑘+2)(𝑘−1). Moreover, each of such pairs satisfies
the following conditions:

𝑣 ∈ [𝑖, 𝑗 − 1], (15a)
ℎ ∈ 𝜂𝑘𝑖,𝑗,𝑣 ∶= [max{𝑘 − 𝑖 + 1 −𝑁 + 𝑣, 1,

𝑘 −𝐾 + 1 + min{𝑁 − 𝑗, 1}, 𝑘 − 𝑗 + 𝑣},

min{𝑘 −𝐾 +𝑁 − 𝑗 + 𝑣, 𝑘 − 1,

𝐾 − min{𝑖 − 1, 1} − 1, 𝑣 − 𝑖 + 1}]. (15b)

Proof. Since 𝑘
𝑖,𝑗 is feasible, then 𝑘 ∈ 𝜅𝑖,𝑗 , and 𝑘 ≤ 𝑗− 𝑖+1. Hence, there

exists a pair (𝑣, ℎ) such that 𝑖 ≤ 𝑣 ≤ 𝑗 − 1 for ℎ ∈ [1, 𝑘 − 1]. Moreover,
each of such pair (𝑣, ℎ) must satisfy the properties ℎ ≤ 𝑣 − 𝑖 + 1 and
𝑘− ℎ ≤ 𝑗 − 𝑣, because both ℎ

𝑖,𝑣 and 𝑘−ℎ
𝑣+1,𝑗 are feasible, i.e., ℎ ∈ 𝜅𝑖,𝑣 and

𝑘 − ℎ ∈ 𝜅𝑣+1,𝑗 . Thus, 𝑘 − 𝑗 + 𝑣 ≤ ℎ ≤ 𝑣 − 𝑖 + 1, and the number of pairs
(𝑣, ℎ) is no greater than (𝑗− 𝑖−𝑘+2)(𝑘−1). Concerning conditions (15),
observe that 𝑖 ≤ 𝑣 and 𝑣 + 1 ≤ 𝑗 hold for ℎ

𝑖,𝑣 and 𝑘−ℎ
𝑣+1,𝑗 if and only if

𝑖 ≤ 𝑣 ≤ 𝑗 − 1. This proves (15a). By applying (14) to ℎ
𝑖,𝑣 and 𝑘−ℎ

𝑣+1,𝑗 , we
obtain:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℎ ≥ max{𝐾 −𝑁 + 𝑣 − 𝑖 + 1, 1}
ℎ ≤ min{𝐾 − min{𝑖 − 1, 1} − 1, 𝑣 − 𝑖 + 1}
𝑘 − ℎ ≥ 𝐾 −𝑁 + 𝑗 − 𝑣
𝑘 − ℎ ≥ 1
𝑘 − ℎ ≤ 𝐾 − 1 − min{𝑁 − 𝑗, 1}
𝑘 − ℎ ≤ 𝑗 − 𝑣.

It is easy to see that this set of conditions leads to its compact form
(15b). □

We introduce now some notation that will allow to compactly
express the cost of partitioning a feasible sub-instance 𝑘

𝑖,𝑗 = ℎ
𝑖,𝑣∪

𝑘−ℎ
𝑣+1,𝑗

of  as 𝑃 𝑘
𝑖,𝑣 = 𝑃 ℎ

𝑖,𝑣 ∪ 𝑃 𝑘−ℎ
𝑣+1,𝑗 , with (𝑣, ℎ) satisfying (15). This notation

will prove useful to outline the new heuristic for the ASDP shown in
Algorithm 2. Specifically, given a partition 𝑃 𝑘

𝑖,𝑗 for 𝑘
𝑖,𝑗 , we denote

𝜑(𝑃 𝑘
𝑖,𝑗) ∶=

∑

𝜎∈𝑃 𝑘
𝑖,𝑗

𝛼(𝜎),

𝛾(𝑃 𝑘
𝑖,𝑗) ∶=

∑

𝜎∈𝑃 𝑘
𝑖,𝑗

|𝜎|2,

and we rewrite 𝑧(𝑃 𝑘
𝑖,𝑗) as

𝑧(𝑃 𝑘
𝑖,𝑗) =

𝜑(𝑃 𝑘
𝑖,𝑗)

𝛾(𝑃 𝑘
𝑖,𝑗)

.

We also denote by

𝜑𝑘
𝑖,𝑗 ∶= 𝜑(𝑃 𝑘

𝑖,𝑗), and 𝛾𝑘𝑖,𝑗 ∶= 𝛾(𝑃 𝑘
𝑖,𝑗),

the values of 𝜑(⋅) and 𝛾(⋅) when computed in the (locally) optimal
partition 𝑃 𝑘

𝑖,𝑗 , that is, the one obtained with the recursive splitting
described at the beginning of this section. Finally, we denote 𝛬𝑘

𝑖,𝑗 as
the set of the costs associated with each solution to 𝑘

𝑖,𝑗 obtained as
𝑃 ℎ
𝑖,𝑣 ∪ 𝑃 𝑘−ℎ

𝑣+1,𝑗 , with (𝑣, ℎ) satisfying (15):

𝛬𝑘
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

{

𝛺𝑘,ℎ
𝑖,𝑗,𝑣 ∶ (𝑣, ℎ) satisfies (15)

}

if 𝑘 ≥ 2
{

𝜑1
𝑖,𝑗

𝛾1𝑖,𝑗

}

if 𝑘 = 1
(16)

with

𝛺𝑘,ℎ
𝑖,𝑗,𝑣 =

𝜑ℎ
𝑖,𝑣 + 𝜑𝑘−ℎ

𝑣+1,𝑗
ℎ 𝑘−ℎ . (17)
𝛾𝑖,𝑣 + 𝛾𝑣+1,𝑗

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

f
i
p

s
H
a

w

4

a

Algorithm 2: Recursive-Solver
Input : A feasible sub-instance ([𝑖, 𝑗],D, 𝐾, 𝑘), and matrix

B.
Output : The values 𝜑𝑘

𝑖,𝑗 , 𝛾𝑘𝑖,𝑗 , and 𝑃 𝑘
𝑖,𝑗 .

Internal Data : 𝜑′ ∈ R0+ , 𝛾 ′ ∈ Z0+ , and set 𝑄.
Internal Functions : 𝜑𝑟

𝑝,𝑞 , 𝛾
𝑟
𝑝,𝑞 , 𝑃

𝑟
𝑝,𝑞 , ∀ 𝑝, 𝑞, 𝑟 ∶ 𝑖 ≤ 𝑝 ≤ 𝑞 ≤ 𝑗, 𝑟 ∈ [1, 𝑘]

(global scope).

1 // Returns the solution to processed subproblems
2 if 𝜑𝑘

𝑖,𝑗 < ∞ then
3 return 𝜑𝑘

𝑖,𝑗 , 𝛾
𝑘
𝑖,𝑗 , 𝑃

𝑘
𝑖,𝑗 ;

4 // Recursion base case
5 if 𝑘 == 1 then
6 𝜑1

𝑖,𝑗 ← 𝛼(𝜎𝑖,𝑗);
7 𝛾1𝑖,𝑗 ← (𝑗 − 𝑖 + 1)2;
8 𝑃 1

𝑖,𝑗 ← [𝑖, 𝑗];

9 else
10 // Recursion step case
11 𝜑′ ← ∞; 𝛾 ′ ← 1;
12 foreach 𝑣 ∈ [𝑖, 𝑗 − 1] do
13 foreach ℎ satisfying (15b) do
14 𝜑ℎ

𝑖,𝑣, 𝛾
ℎ
𝑖,𝑣, 𝑃

ℎ
𝑖,𝑣 ← Recursive-Solver(([𝑖, 𝑣],D, 𝐾, ℎ),B);

15 𝜑𝑘−ℎ
𝑣+1,𝑗 , 𝛾

𝑘−ℎ
𝑣+1,𝑗 , 𝑃

𝑘−ℎ
𝑣+1,𝑗 ←

Recursive-Solver(([𝑣 + 1, 𝑗],D, 𝐾, 𝑘 − ℎ),B);

16 if
𝜑ℎ
𝑖,𝑣+𝜑

𝑘−ℎ
𝑣+1,𝑗

𝛾ℎ𝑖,𝑣+𝛾
𝑘−ℎ
𝑣+1,𝑗

< 𝜑′

𝛾 ′
then

17 𝜑′ ← 𝜑ℎ
𝑖,𝑣 + 𝜑𝑘−ℎ

𝑣+1,𝑗 ;
18 𝛾 ′ ← 𝛾ℎ𝑖,𝑣 + 𝛾𝑘−ℎ𝑣+1,𝑗 ;
19 𝑄 ← 𝑃 ℎ

𝑖,𝑣 ∪ 𝑃 𝑘−ℎ
𝑣+1,𝑗 ;

20 𝜑𝑘
𝑖,𝑗 ← 𝜑′;

21 𝛾𝑘𝑖,𝑗 ← 𝛾 ′;
22 𝑃 𝑘

𝑖,𝑗 ← 𝑄;

23 return 𝜑𝑘
𝑖,𝑗 , 𝛾

𝑘
𝑖,𝑗 , 𝑃

𝑘
𝑖,𝑗 ;

Algorithm 3: Heuristic-Partitioner
Input : Instance  = ([1, 𝑁],D, 𝐾), matrix B.
Output : 𝑧𝐾1,𝑁 , 𝑃𝐾

1,𝑁
Internal Functions : 𝜑𝑘

𝑖,𝑗 , 𝛾
𝑘
𝑖,𝑗 , 𝑃

𝑘
𝑖,𝑗 , 𝑖 ∈ [1, 𝑁], 𝑗 ∈ [𝑖,𝑁], 𝑘 ∈ [1, 𝐾]

(global scope).

1 𝜑𝑘
𝑖,𝑗 ← ∞ for 𝑖 = 1,… , 𝑁 − 1, 𝑗 = 2,… , 𝑁 , 𝑘 = 1,… , 𝑁 ; // Initialization

2 𝜑𝐾
1,𝑁 , 𝛾𝐾1,𝑁 , 𝑃𝐾

1,𝑁 ← Recursive-Solver(,B); // Main
3 return 𝜑𝐾

1,𝑁 ∕ 𝛾𝐾1,𝑁 , 𝑃𝐾
1,𝑁 ;

Observe that, by definition, 𝜑𝑘
𝑖,𝑗 and 𝛾𝑘𝑖,𝑗 are such that

min𝛬𝑘
𝑖,𝑗 =

𝜑𝑘
𝑖,𝑗

𝛾𝑘𝑖,𝑗
. (18)

In light of this notation, we can now discuss the new heuristic
or the ASDP, called Recursive-Solver, whose pseudo-code is provided
n Algorithm 2. Recursive-Solver exploits (16)–(18) to compute the
artition 𝑃 𝑘

𝑖,𝑗 for the instance 𝑘
𝑖,𝑗 . The input instance  is then solved

by means of the Heuristic-Partitioner whose pseudo-code is provided in
Algorithm 3. Heuristic-Partitioner makes use of Algorithm 2 to compute
𝑧𝐾1,𝑁 and 𝑃𝐾

1,𝑁 . We observe that both Recursive-Solver and Heuristic-
Partitioner treat 𝜑𝑘

𝑖,𝑗 , 𝜑𝑘
𝑖,𝑗 , and 𝑃 𝑘

𝑖,𝑗 as tensors in order to store the
olutions to the sub-instances of  already processed. In particular,
euristic-Partitioner first initializes 𝜑𝑘

𝑖,𝑗 , for all 𝑖, 𝑗 ∈ , 𝑖 ≤ 𝑗, 𝑘 ∈ [1, 𝐾],
t line 1, then it solves  = 𝐾

1,𝑁 by calling Recursive-Solver(𝐾
1,𝑁 ,𝐁) at

line 2, and finally returns the computed values of 𝑧𝐾1,𝑁 and 𝑃𝐾
1,𝑁 . We

observe that 𝜑𝑘
𝑖,𝑗 , 𝛾

𝑘
𝑖,𝑗 , and 𝑃 𝑘

𝑖,𝑗 have global scope so that their values can
be directly accessed. Recursive-Solver first sets 𝜑𝑘

𝑖,𝑗 = ∞ for all 𝑖, 𝑗 ∈ ,
𝑖 ≤ 𝑗, 𝑘 ∈ [1, 𝐾]. The same operation is done also for 𝛾𝑘 and 𝑃 𝑘 . This
7

𝑖,𝑗 𝑖,𝑗 r
convention is used to indicate that the feasible sub-instance 𝑘
𝑖,𝑗 is yet

to be solved, or infeasible. As suggested by its name, Recursive-Solver
computes recursively the values 𝜑𝑘

𝑖,𝑗 , 𝛾
𝑘
𝑖,𝑗 , and 𝑃 𝑘

𝑖,𝑗 in correspondence to
a given input feasible sub-instance 𝑘

𝑖,𝑗 of . In particular, the algorithm
traverses the recursion tree backwards from base cases, by considering
sub-instances with a progressively larger number of shots and scenes.
When called on a sub-instance 𝑘

𝑖,𝑗 , 𝑘 ≥ 2, Recursive-Solver computes
𝛺𝑘,ℎ

𝑖,𝑗,𝑣 for each pair (𝑣, ℎ) satisfying (15), by recursively calling itself
on ℎ

𝑖,𝑣 and ℎ
𝑖,𝑣, so as to determine min{𝛬𝑘

𝑖,𝑗}. When the recursion
unfolds, the same sub-instances may arise multiple times while splitting
distinct 𝑘

𝑖,𝑗 . In this case, Recursive-Solver reuses the solution to already
processed sub-instances, thus diminishing the computation load. By
entering in the merit of its pseudo-code, we can see that lines 2–3 check
whether 𝜑𝑘

𝑖,𝑗 is assigned a finite value: in the positive case, the sub-
instance 𝑘

𝑖,𝑗 has already been solved, and its computed solution can
be immediately returned. Lines 4–8 compute the only possible solution
of 1

𝑖,𝑗 . Lines 9–22 tackle the problem of solving 𝑘
𝑖,𝑗 when 𝑘 ≥ 2 by

computing all the elements of 𝛬𝑘
𝑖,𝑗 and saving the one with the minimal

cost. In particular, at each iteration of the doubly nested for cycle, lines
14 and 15 solve each pair of sub-instances ℎ

𝑖,𝑣 and 𝑘−ℎ
𝑣+1,𝑗 with (𝑣, ℎ)

satisfying (15). Their solutions are combined into 𝛺𝑘,ℎ
𝑖,𝑗,𝑣 with (17) (see

line 16). If 𝛺𝑘,ℎ
𝑖,𝑗,𝑣 improves the estimate of 𝜑𝑘

𝑖,𝑗 ∕ 𝛾
𝑘
𝑖,𝑗 given by 𝜑′ ∕ 𝛾 ′, lines

17 and 18 assign the values 𝜑ℎ
𝑖,𝑣 + 𝜑𝑘−ℎ

𝑣+1,𝑗 and 𝛾ℎ𝑖,𝑣 + 𝛾𝑘−ℎ𝑣+1,𝑗 to 𝜑′ and 𝛾 ′,
respectively, so that 𝜑′ ∕ 𝛾 ′ = (𝜑ℎ

𝑖,𝑣 + 𝜑𝑘−ℎ
𝑣+1,𝑗) ∕ (𝛾

ℎ
𝑖,𝑣 + 𝛾𝑘−ℎ𝑣+1,𝑗). Moreover,

line 19 saves the associated partition 𝑃 ℎ
𝑖,𝑣 ∪ 𝑃 𝑘−ℎ

𝑣+1,𝑗 by assigning it to
the local variable 𝑄. At the end of the algorithm, 𝑧𝑘𝑖,𝑗 is the value
given by Eq. (18), associated with the partition 𝑃 𝑘

𝑖,𝑗 . At line 23, the
algorithm finally returns 𝜑𝑘

𝑖,𝑗 , 𝛾𝑘𝑖,𝑗 , and the computed partition 𝑃 𝑘
𝑖,𝑗 .

The computational complexity of Algorithm 3 is dominated by line 2.
Therefore, to derive the computational complexity of Algorithm 3, it is
sufficient to characterize the one of Algorithm 2.

Proposition 2. The computational complexity of Recursive-Solver(𝐾
1,𝑁)

is 𝑂(min{𝑁 −𝐾,𝐾}2𝑁3).

Proof. Since each admissible sub-instance is solved once, the computed
solutions to already processed sub-instances can be recalled in 𝑂(1), and
both the base case 𝑘 = 1 and the recombination of subproblems with
𝑘 > 1 also take 𝑂(1). Hence, to prove the statement of the proposition,
it is sufficient to count the number of feasible sub-instances that may
arise when tackling each feasible sub-instance 𝑘

𝑖,𝑗 . It is easy to see that
this number is

𝑂
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖

∑

𝑘∈𝜅𝑖,𝑗

|𝛬𝑘
𝑖,𝑗 |

⎞

⎟

⎟

⎠

. (19)

By Proposition 1, (19) is equal to

𝑂
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖

∑

𝑘∈𝜅𝑖,𝑗

(𝑗 − 𝑖 − 𝑘 + 2)(𝑘 − 1)
⎞

⎟

⎟

⎠

By observing that |𝜅𝑖,𝑗 | ∼ 𝑂(min{𝑁 − 𝐾,𝐾}), and by recalling that
∑𝑁

𝑞=1 𝑞 = 𝑁(𝑁+1)
2 and ∑𝑁

𝑞=1 𝑞
2 = 𝑁(𝑁+1)(2𝑁+1)

6 , we get

𝑂
(

max{min{𝑁 −𝐾,𝐾}2𝑁3,min{𝑁 −𝐾,𝐾}3𝑁2}
)

. (20)

Because 𝐾 ≤ 𝑁 , (20) further reduces to

𝑂(min{𝑁 −𝐾,𝐾}2𝑁3)

hich concludes the proof. □

. Computational experiments

In this section, we analyze the performance of the novel heuristic
lgorithm with respect to Rotman et al.’s algorithm. The experiments
eported in this section were motivated by the main goal of evaluating

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

𝐶

p
i
𝐻
t
f
c
f
𝜙

d
t

4

R
e
v
t
d
w
i
o
S
t
e
w

the performance improvement introduced by Heuristic-Partitioner with
respect to Rotman et al.’s algorithm. The extensive set of application
instances that we employed for this purpose contains some of the most
relevant datasets used in the literature of scene detection. Among them,
we included the Open Video Scene Detection Dataset (OVSD), that is the
reference dataset used by Rotman et al. (2018). In order to generate
the input data of the ASDP, i.e., the distance matrices associated with
each test video, we reimplemented the relevant stages of Rotman et al.’s
scene detection pipeline: shot detection Baraldi et al. (2015c), middle
frame selection, and visual features extraction with an Inception-v3
neural network Szegedy et al. (2016) pre-trained on the ImageNet
dataset. We restrained the attention to the visual features of the shots,
since integrating audio features introduces an additional computational
burden which is out of the scope of this work. In fact, our aim in
reimplementing Rotman et al.’s pipeline is to provide a common ground
for a comparative analysis of the novel heuristic with Rotman et al.’s
algorithm on application cases. In Section 4.1, we discuss the details
of the algorithms’ implementations. In Section 4.2, we describe the
datasets included in the set of instances used for the experimental
tests. Finally, in Section 4.3, we empirically evaluate the efficacy of the
implementation of Heuristic-Partitioner (hereafter denoted as HP for
the sake of notation) against two different implementations of Rotman
et al.’s algorithm.

4.1. Implementation

We implemented all of the algorithms in Python 3.7 and carried out
the experiments on a 64-bit Windows 10 PC equipped with a 3.6 GHz
Intel Core i7-3820 CPU and 24 GB of RAM. We implemented Rotman
et al.’s algorithm accordingly to the information provided in Rotman
et al. (2018). Our first implementation, denoted as RT, makes use
of the tensors 𝐶, 𝑋, 𝐴, and 𝑇 of size |[1, 𝑁] × [1, 𝐾] × [1, 𝑁2]|, with

𝑘
𝑖 (𝑒), 𝑋

𝑘
𝑖 (𝑒), 𝐴

𝑘
𝑖 (𝑒), and 𝑇 𝑘

𝑖 (𝑒) as entries for 𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝐾], and
𝑒 ∈ [1, 𝑁2]. Since not all the triplets (𝑖, 𝑘, 𝑒) are feasible, as detailed in
Section 2, tensors allocate memory space inefficiently. Therefore, in the
second implementation of the algorithm, denoted as RH, we used hash-
maps to allocate memory space just for feasible entries and save them
once computed. While the memory usage of RH is more convenient,
solving each feasible sub-instance of the ASDP requires dynamically
allocating new entries in the hash-maps. In contrast, RT does not
suffer from this issue, since it performs the needed allocations at once,
before starting to solve the instance at hand. However, frequent transfer
from and to the processor cache, due to possibly far entries in the
table, may require additional computational time. We experimentally
study the difference in the two implementations in the next subsection.
Finally, we observe that the choice of very large values for 𝐾 may
cause a high number of recursion calls, which in turn translates into a
nonnegligible computational overhead. A way around this phenomenon
(which is out of the scope of the present work) consists of implementing
Recursive-Solver in a bottom-up fashion.

It is important to observe that, for 𝐾 ≃ 𝑁 ∕ 2, the asymptotic
complexity of HP is equivalent to the one of Rotman et al.’s algorithm,
i.e., 𝑂(𝐾𝑁4). This is however the worst case scenario. In fact, in prac-
tical applications, the instances of the ASDP are typically characterized
by a number of scenes 𝐾 at least one order of magnitude smaller
than 𝑁 . We also observe that the tensor data structures encoding 𝜑𝑘

𝑖,𝑗 ,
𝛾 𝑙𝑖,𝑗 , and 𝑃 𝑘

𝑖,𝑗 allow to set the space complexity of Recursive-Solver to
𝑂(𝐾𝑁2). Rotman et al.’s algorithm implements 𝐶𝑘

𝑖 (𝑒), 𝑋
𝑘
𝑖 (𝑒), and 𝐴𝑘

𝑖 (𝑒)
as tensors as well. However, as 𝑖 ∼ 𝑂(𝑁), 𝑘 ∼ 𝑂(𝐾), and 𝑒 ∼ 𝑂(𝑁2),
the space complexity of Rotman et al.’s algorithm is 𝑂(𝐾𝑁3). We will
see in Section 4 that such space complexity de facto poses limitations
on the size of the instances that Rotman et al.’s algorithm is able to
process. However, since not all the values of 𝑒 are feasible, not all
the entries of the tensors are used for saving computed values. Hence,
the space efficiency can be improved by using hash-tables instead of
tensors, at the expense of degrading the computational performance,
8

due to the fact that the dynamic memory allocations needed to store
new entries. Yet, since the required tensors are three-dimensional, the
accessed entries are not necessarily adjacent, and transfers from and
to the processor cache might occur frequently. These implementation
issues are experimentally addressed in Section 4.3.

In order to enrich the computational assessments, we implemented a
further algorithm, hereinafter referred to as Additive-Heuristic-Partitioner
(AHP), by slightly modifying HP so as to obtain the partition 𝑃 ∈  that
minimizes the additive cost function

𝐻(𝑃) =
∑

𝜎∈𝑃
𝛼(𝜎), (21)

roposed by Rotman et al. (2016). In order to perform a proper compar-
son with HP, RT, and RH, we evaluated the partition 𝑃 that minimizes
(𝑃) with the cost function 𝑧(𝑃). Because Rotman et al. considered

he weighting factors in their original formulation of the additive cost
unction as optional, we neglect them in (21). The pseudo-code of AHP
an be derived by Algorithm 2 by disregarding the computation of 𝛾𝑖,𝑗,𝑘
or each feasible 𝑖,𝑗,𝑘, and by comparing the sum of 𝜙ℎ

𝑖,𝑣 and 𝜙𝑘−ℎ
𝑣+1,𝑗 with

′ in line 16.
The implementation of the algorithms used in this article can be

ownloaded at the link ‘‘https://github.com/ORresearcher/A-New-Fas
-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem’’.

.2. Datasets

The datasets used for performance evaluation are the OVSD, the
ai, and the BBC datasets. The OVSD dataset, the one used by Rotman
t al. (2018, 2020), was created from 21 Creative Commons licensed
ideos freely available for download and use. This set of videos con-
ains short and full-length movies including animation, documentary,
rama, crime, comedy, and sci-fi. Their ground-truth scene division
as obtained from the director script and from the work of several

ndependent human annotators. The Rai dataset contains a collection
f ten videos, mainly documentaries and talk shows, taken from the Rai
cuola video archive, notably used by Baraldi et al. (2015a) to evaluate
heir scene detection algorithm. The BBC dataset, introduced by Baraldi
t al. (2015b), is based on the BBC documentary series ‘‘Planet Earth’’
hich consists of eleven episodes, each about 50 minutes long.

Due to hardware limitations, we did not consider some of the videos
in their entirety, by restricting them to a subsets of their shots. Despite
the reduction, our hardware did not satisfy the memory demands of RT
and RH for some instances. Hence, we first merged the three datasets
into a single one, and then split it into two set of instances 𝐼1 and 𝐼2:
the former could be tackled by HP, RT, RH, and AHP, while the latter
could be solved in its entirety only by HP and AHP.

The OVSD dataset can be found at ‘‘https://www.research.ibm.
com/haifa/projects/imt/video/Video_DataSetTable.shtml’’, while the
Rai and the BBC datasets, proposed by Baraldi et al., can be downloaded
at ‘‘http://imagelab.ing.unimore.it’’. The distance matrices associated
with the OVSD, the Rai and the BBC datasets, obtained by using
the reimplementation of the first stages of Rotman et al.’s scene de-
tection pipeline, are available at ‘‘https://github.com/ORresearcher/A
-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-P
roblem’’.

4.3. Performance evaluation

In Fig. 4, we report a box-and-whiskers plot that compares the
computational times (in seconds) achieved by HP, RT, and RH on the
instances in 𝐼1. We can observe the significantly higher computational
efficiency of HP with respect to RT and RH. Moreover, the plot shows
the statistical equivalence between the computational times of RT and
RH, yet highlighting the slightly better performance of the former
implementation of Rotman et al.’s algorithm. In Table 1, we report
the numerical values of the computational times and the cost function

https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://www.research.ibm.com/haifa/projects/imt/video/Video_DataSetTable.shtml
https://www.research.ibm.com/haifa/projects/imt/video/Video_DataSetTable.shtml
https://www.research.ibm.com/haifa/projects/imt/video/Video_DataSetTable.shtml
http://imagelab.ing.unimore.it
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem
https://github.com/ORresearcher/A-New-Fast-and-Accurate-Heuristic-for-the-Automatic-Scene-Detection-Problem

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.

T
R

a
1
t
v

Fig. 4. Box-and-whiskers plot of the CPU times (expressed in seconds) obtained by HP, RT, and RH when solving the instances 𝐼1.
able 1
esults obtained by HP, RT, RH, and AHP when solving the instances in 𝐼1.
Instance N K Time (s) 𝛥𝐻𝑃 ,𝑅 Cost function

HP RT RH AHP HP RT/RH AHP

1000 Days (cut) 204 15 224.4706 4582.7344 5194.4145 157.1406 0.9510 17.8101 18.0011 18.1444
Big Buck Bunny 146 15 75.2031 1166.9219 1017.8210 53.2500 0.9261 17.4070 17.5365 17.7059
Boy Who Never Slept (cut) 193 15 188.1875 3659.8351 3978.9020 132.9844 0.9486 16.9341 17.0847 17.3552
CH7 (cut) 276 10 237.4844 9382.3037 11597.1574 169.0313 0.9747 18.1246 18.2108 18.3013
Cosmos Laundromat — First Cycle 113 7 5.6406 151.6250 69.5630 4.2656 0.9189 18.6779 18.7730 19.0047
Elephants Dream 142 9 22.0000 557.1406 393.8910 15.9375 0.9441 19.5336 19.5726 19.7780
Fires Beneath Water (cut) 143 15 71.6719 1078.0625 915.5120 49.6563 0.9217 17.7851 17.8617 17.9191
Honey (cut) 303 10 306.0000 13718.0156 18240.5745 219.8125 0.9777 16.8148 16.9349 17.0337
Jathia’s Wager 181 15 150.9688 2819.5215 2931.1050 106.6250 0.9465 15.9359 15.9810 16.5766
La Chute d’une Plume 83 11 6.3750 81.7500 44.2190 4.7031 0.8558 17.1318 17.2601 17.7979
Lord Meia (cut) 103 15 23.9687 281.1562 183.5780 17.0937 0.8694 14.5889 14.6457 15.2260
Meridian 66 9 2.0000 25.1250 10.8210 1.5156 0.8152 13.8457 13.9322 14.1778
Oceania (cut) 114 20 60.3438 586.1250 381.3300 40.5469 0.8418 11.9540 12.0666 12.4388
Pentagon (cut) 263 20 903.0781 17905.1563 26797.1501 630.6249 0.9496 15.8659 16.1754 16.3271
Route 66 (cut) 279 15 593.2500 16456.9688 25337.4979 417.2969 0.9640 18.0811 18.3828 18.5722
Seven Dead Men (cut) 111 20 53.8906 524.6663 336.2300 37.0781 0.8397 12.7635 12.9786 13.0114
Sintel 154 8 21.4687 645.2187 443.4400 15.6563 0.9516 20.0329 20.1280 20.2041
Sita Sings the Blues (cut) 275 10 229.3125 9284.6361 11842.6030 166.3750 0.9753 17.2451 17.4384 18.0076
Star Wreck (cut) 237 15 354.0781 8504.5689 11263.1990 253.0312 0.9584 17.7036 17.8282 17.9676
Tears of Steel 158 11 51.4219 1111.9531 990.4980 35.3594 0.9481 19.0229 19.1953 19.3423
Valkaama (cut) 275 18 828.1875 19198.9734 28776.2360 584.2969 0.9569 15.9854 16.2155 16.4283
Rai01 114 7 5.7812 160.7656 77.1719 4.4062 0.9251 18.3110 18.3741 18.5637
Rai02 57 12 2.2500 20.0469 8.0625 1.6562 0.7209 15.2982 15.3541 15.4367
Rai03 107 16 31.3906 359.2500 246.0781 21.8437 0.8724 15.9594 16.0769 16.2140
Rai04 143 22 153.3125 1654.1719 1354.4062 103.4844 0.8868 15.9356 15.9678 16.0353
Rai05 66 13 4.2344 39.7500 18.0781 3.0937 0.7658 10.0023 10.2182 10.8087
Rai06 59 5 0.2969 6.6719 1.0000 0.2656 0.7031 18.1266 18.3261 18.6579
Rai07 116 9 11.6250 247.0313 171.0781 8.6406 0.9320 18.5597 18.6649 18.7498
Rai08 205 12 137.5938 3632.6094 3975.9375 98.0000 0.9621 19.6558 19.6984 19.8605
Rai09 106 14 22.9375 300.0469 206.0312 16.5156 0.8887 11.6464 11.8385 12.0166
Rai10 100 16 24.5938 272.6094 174.6875 17.5469 0.8592 10.5562 10.7233 11.4987
BBC08 242 29 1412.6875 19016.8960 24232.4531 979.7500 0.9257 14.6778 14.7678 15.0144
values achieved by the aforementioned three algorithms and AHP on
the instances in 𝐼1. In the column named 𝛥𝐻𝑃 ,𝑅, Table 1 shows the
improvement introduced by HP with respect to the minimum between
the times achieved by RH and RT. Specifically, for each instance, if
𝑡0 is the time achieved by HP, and 𝑡1 is the minimum of the times
chieved by RH and RT, the value reported for 𝛥𝐻𝑃 ,𝑅 is equal to
− 𝑡0∕𝑡1. Such value provides a measure of the ratio between the

imes achieved by HP and Rotman et al.’s algorithm. The average
alue of 𝛥 is 0.9024, providing an experimental evidence to the
9

𝐻𝑃 ,𝑅
sensible improvement introduced by HP. We also observe that the
novel heuristic outperforms Rotman et al.’s algorithm in terms of cost
function values in any instance of 𝐼1. The second-to-last column of
Table 1 is called ‘‘RT/RH’’ since RT and RH produce identical results,
and they only differ in the computational requirements. In Table 2
we instead report the performances achieved by HP and AHP on
the instances in 𝐼2. We remark that, as anticipated in Section 4.2, we
could not produce the Rotman et al.’s algorithm results on 𝐼2 since our
hardware was not able to satisfy the memory requirements of RT and

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.
Table 2
Results obtained by HP and AHP when solving the instances in 𝐼2.

Instance N K Time (sec) Cost function
HP AHP HP AHP

1000 Days 329 22 2190.4531 1529.4262 17.7323 18.1663
Boy Who Never Slept 375 36 8813.8250 6121.0312 16.4963 16.9029
Fires Beneath Water 358 62 19860.2090 13582.7812 15.4998 15.6269
Honey 371 20 2620.5625 1842.7500 16.1890 16.5846
Lord Meia 325 27 3166.1719 2202.7812 15.5539 16.085
Oceania 279 31 2545.3438 1769.0000 13.8514 14.1807
Pentagon 333 31 4544.3281 3111.7812 15.4119 15.9333
Seven Dead Men 164 34 507.8125 351.2031 11.9474 12.6003
BBC01 458 23 6742.3125 4721.3514 17.3984 17.7717
BBC02 382 36 9232.1094 6447.0469 15.3077 15.4840
BBC03 412 33 10051.9688 6932.3594 15.9327 16.2966
BBC04 461 30 11854.6105 8213.3410 16.2738 16.9464
BBC05 436 25 6903.8490 4824.6719 16.4621 16.8604
BBC06 506 33 19177.9616 13253.9807 17.4224 17.6644
BBC07 549 37 31293.5912 21476.5831 16.3247 16.7221
BBC09 348 33 5808.5000 4030.7187 15.1449 15.6124
BBC10 346 22 2565.9531 1795.3906 17.2508 17.5522
BBC11 509 26 12312.1875 8419.4657 17.1233 17.7487

RH on such instances. Tables 1 and 2 show that AHP obtains the worst
results for the cost function value associated with each instance in 𝐼1
and 𝐼2, respectively, while achieving a slightly better computational
efficiency with respect to HP. In fact, we observe that although the
computational complexity of AHP and HP is the same, the several
floating-point operations performed by HP to compute the surrogate
cost function values may be a critical factor in burdening the actual
running time of the algorithm.

Finally, Table 3 reports the Differential Edit Distance (DED)
(Sidiropoulos et al., 2012) scores obtained by the considered algorithm
implementations on the instances in 𝐼1 and 𝐼2. DED is a state-of-
art performance index used to evaluate the differences between a
procedurally generated partition into scenes with respect to a ground-
truth partition. In this way, the DED score achieved by an algorithm
on a specific instance allows to assess the capability of such algorithm
to generate an accurate partition for that instance. For each instance,
Table 3 highlights the best scores in bold. HP achieves the best DED
score on 37 instances over the 50 instances in 𝐼1 and 𝐼2; among such
instances, HP obtains the same best DED score as RT and RH on
‘‘Rai03’’.

5. Conclusions

Detecting scenes in the context of video processing has a central
role in the management, storing and content retrieval of videos. The
literature proposes different strategies to cope with this task, one of
these consisting of modeling scene detection in terms of a combinatorial
optimization problem, called the Automatic Scene Detection Problem
(ASDP), in which the shots of a given video must be partitioned into
scenes so as to optimize a measure related to the similarity between
the given shots (Rotman et al., 2018). The proxy nature of the objective
function of the ASDP together with the need to run scene detection over
very large repositories containing thousands or even million videos
justified, in recent times, the development of heuristics able to approx-
imate the optimal solution to the problem as fast as possible (Rotman
et al., 2018). In this article we built upon the results from the literature
on the ASDP in order to design a new heuristic, called HP, able to
outperform the current state-of-the-art both in terms of speed and
quality of the provided solution. The empirical derivation of the
objective function of the ASDP leaves room for further refinements in
terms of modeling of scene detection and motivates the development
of improved heuristics for the problem. Investigating these issues will
10

be the subject of future research efforts.
Table 3
DED scores achieved by HP, RT and RH, and AHP on the instances in 𝐼1 and 𝐼2.

Instance HP RT/RH AHP

1000 Days 0.3860 – 0.4742
1000 Days (cut) 0.3627 0.3529 0.4069
Big Buck Bunny 0.4110 0.3973 0.4247
BBC01 0.3777 – 0.4105
BBC02 0.4319 – 0.4084
BBC03 0.3495 – 0.3738
BBC04 0.4534 – 0.4230
BBC05 0.4725 – 0.4656
BBC06 0.4506 – 0.4269
BBC07 0.3752 – 0.4463
BBC08 0.4380 0.4339 0.4421
BBC09 0.3994 – 0.4511
BBC10 0.4017 – 0.4682
BBC11 0.3831 – 0.4676
Boy Who Never Slept 0.3973 – 0.4587
Boy Who Never Slept (cut) 0.2953 0.4249 0.4508
CH7 (cut) 0.1522 0.1775 0.1993
Cosmos Laundromat — First Cycle 0.3540 0.4159 0.5044
Elephants Dream 0.3592 0.3732 0.4225
Fires Beneath Water 0.4106 – 0.4246
Fires Beneath Water (cut) 0.3916 0.4196 0.4196
Honey 0.4378 – 0.6270
Honey (cut) 0.2838 0.3465 0.4158
Jathia’s Wager 0.3757 0.3812 0.4254
La Chute d’une Plume 0.5663 0.6386 0.6627
Lord Meia 0.4031 – 0.5231
Lord Meia (cut) 0.4757 0.5243 0.5728
Meridian 0.4242 0.5000 0.5303
Oceania 0.3692 – 0.4516
Oceania (cut) 0.2807 0.3421 0.3772
Pentagon 0.3964 – 0.4865
Pentagon (cut) 0.4259 0.4867 0.5285
Rai01 0.4825 0.4912 0.4474
Rai02 0.5000 0.4828 0.4828
Rai03 0.1869 0.1869 0.2617
Rai04 0.5503 0.6040 0.6040
Rai05 0.7714 0.7143 0.7714
Rai06 0.1186 0.1864 0.3051
Rai07 0.3621 0.3966 0.3707
Rai08 0.3659 0.3415 0.3951
Rai09 0.2736 0.2453 0.1981
Rai10 0.2745 0.3333 0.5784
Route 66 (cut) 0.3692 0.4444 0.4731
Seven Dead Men 0.3598 – 0.4024
Seven Dead Men (cut) 0.2883 0.3423 0.3604
Sintel 0.4156 0.4351 0.4675
Sita Sings the Blues (cut) 0.2836 0.2800 0.3055
Star Wreck (cut) 0.3882 0.3966 0.4430
Tears of Steel 0.4051 0.4620 0.4747
Valkaama (cut) 0.1600 0.2400 0.2727

Acknowledgments

The first author acknowledge support from the Université Catholique
de Louvain, Belgium via the Fonds Spéciaux de Recherche (FSR) 2017–
2021 and the Fondation Louvain, Belgium via the research grant
COALESCENS of the funding program ‘‘Le numérique au service de
l’humain’’. The authors are in debt with Alessandro Birago and Igor
Pio Bianchi for their valuable help in reimplementing the components
of the scene detection pipeline used to generate the distance matrices.

References

Ariki, Y., Kumano, M., Tsukada, K., 2003. Highlight scene extraction in real time from
baseball live video. In: Proceedings of the 5th ACM SIGMM International Workshop
on Multimedia Information Retrieval, pp. 209–214.

Baraldi, L., Grana, C., Cucchiara, R., 2015a. Analysis and re-use of videos in educational
digital libraries with automatic scene detection. In: Proceedings of the Italian
Research Conference on Digital Libraries, pp. 155–164.

Baraldi, L., Grana, C., Cucchiara, R., 2015b. A deep siamese network for scene detection
in broadcast videos. In: Proceedings of the 23rd ACM International Conference on
Multimedia, pp. 1199–1202.

Computers and Operations Research 136 (2021) 105495D. Catanzaro et al.
Baraldi, L., Grana, C., Cucchiara, R., 2015c. Shot and scene detection via hierarchical
clustering for re-using broadcast video. In: International Conference on Computer
Analysis of Images and Patterns, pp. 801–811.

Baraldi, L., Grana, C., Cucchiara, R., 2016. Recognizing and presenting the storytelling
video structure with deep multimodal networks. IEEE Trans. Multimed. 19 (5),
955–968.

Choroś, K., 2009. Video shot selection and content-based scene detection for automatic
classification of TV sports news. In: Tkacz, E., Kapczynski, A. (Eds.), Internet
– Technical Development and Applications. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 73–80.

Del Fabro, M., Böszörmenyi, L., 2010. Video scene detection based on recurring motion
patterns. In: Proceedings of the Second International Conferences on Advances in
Multimedia. IEEE, pp. 113–118.

Del Fabro, M., Böszörmenyi, L., 2013. State-of-the-art and future challenges in video
scene detection: A survey. Multimedia Syst. 19 (5), 427–454.

Feng, Y., Ren, R., Jose, J., 2008. Rule-based scene boundary detection for semantic
video segmentation. In: Proceedings of the 5th International Conference on Visual
Information Engineering, VIE. IET Digital Library, pp. 667–672.

Han, B., Wu, W., 2011. Video scene segmentation using a novel boundary evaluation
criterion and dynamic programming. In: Proceedings of the IEEE International
Conference on Multimedia and Expo, pp. 1–6.

Kurihara, K., Imai, A., Seiyama, N., Shimizu, T., Sato, S., Yamada, I., Kumano, T.,
Tako, R., Miyazaki, T., Ichiki, M., Takagi, T., Sumiyoshi, H., 2019. Automatic
generation of audio descriptions for sports programs. SMPTE Motion Imag. J. 128,
41–47.

Liang, Y., Liu, W., Liu, K., Ma, H., 2018. Automatic generation of textual advertisement
for video advertising. In: Proceedings of the IEEE Fourth International Conference
on Multimedia Big Data, BigMM, pp. 1–5.
11
Panda, R., Kuanar, S.K., Chowdhury, A.S., 2017. Nyström approximated temporally
constrained multisimilarity spectral clustering approach for movie scene detection.
IEEE Trans. Cybern. 48 (3), 836–847.

Rasheed, Z., Shah, M., 2005. Detection and representation of scenes in videos. IEEE
Trans. Multimed. 7 (6), 1097–1105.

Rotman, D., Porat, D., Ashour, G., 2016. Robust and efficient video scene detection
using optimal sequential grouping. In: Proceedings of the 2016 IEEE International
Symposium on Multimedia, ISM, pp. 275–280.

Rotman, D., Porat, D., Ashour, G., 2017. Robust video scene detection using multimodal
fusion of optimally grouped features. In: Proceedings of the IEEE 19th International
Workshop on Multimedia Signal Processing, MMSP, pp. 1–6.

Rotman, D., Porat, D., Ashour, G., Barzelay, U., 2018. Optimally grouped deep features
using normalized cost for video scene detection. In: Proceedings of the 2018 ACM
on International Conference on Multimedia Retrieval, pp. 187–195.

Rotman, D., Yaroker, Y., Amrani, E., Barzelay, U., Ben-Ari, R., 2020. Learnable optimal
sequential grouping for video scene detection. In: Proceedings of the 28th ACM
International Conference on Multimedia.

Sakarya, U., Telatar, Z., 2008. Video scene detection using dominant sets. In: Pro-
ceedings of the 15th IEEE International Conference on Image Processing, pp.
73–76.

Sidiropoulos, P., Mezaris, V., Kompatsiaris, Y., Kittler, J., 2012. Differential edit
distance: A metric for scene segmentation evaluation. IEEE Trans. Circuits Syst.
Video Technol. 22, 904–914.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
Inception architecture for computer vision. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pp. 2818–2826.

Zhai, Y., Shah, M., 2006. Video scene segmentation using Markov chain Monte Carlo.
IEEE Trans. Multimed. 8 (4), 686–697.

Zhai, Y., Yilmaz, A., Shah, M., 2005. Story segmentation in news videos using visual
and text cues. In: Proceedings of the International Conference on Image and Video
Retrieval. Springer, pp. 92–102.

http://refhub.elsevier.com/S0305-0548(21)00239-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb23
http://refhub.elsevier.com/S0305-0548(21)00239-2/sb23

	A new fast and accurate heuristic for the Automatic Scene Detection Problem
	Introduction
	On Rotman et al. (2018)'s algorithm
	A novel heuristic for the ASDP
	Computational experiments
	Implementation
	Datasets
	Performance evaluation

	Conclusions
	Acknowledgments
	References

