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1 Introduction

Since the seminal work of Markowitz (1952), academics have extensively documented the

sensitivity of optimal mean-variance portfolios to estimation errors in the vector of means and

the covariance matrix of stock returns and have shown that estimated optimal portfolios tend

to deliver poor out-of-sample performance (DeMiguel, Garlappi, and Uppal, 2009; Ledoit

and Wolf, 2017). An influential paper in this literature is Kan and Zhou (2007), which

characterizes the average out-of-sample utility (OOSU) of mean-variance investors. Kan and

Zhou use this metric to optimally combine the risk-free asset, the sample tangency portfolio,

and the sample global-minimum-variance portfolio, which results in an improved investment

strategy that generates substantial average out-of-sample utility gains.

While the analytical characterization of the average OOSU is an essential step toward

having a complete understanding of the stochastic nature of portfolio performance, two key

questions remain unanswered: 1) what is the OOSU risk of estimated optimal portfolios? and

2) why is it relevant to characterize OOSU risk of estimated optimal portfolios? To address

the first question, we characterize in closed form the OOSU standard deviation of the sample

mean-variance (SMV) portfolio, the sample global-minimum-variance (SGMV) portfolio, and

any combination of the two portfolios.

We argue that there are two main reasons why studying the OOSU volatility of estimated

optimal portfolios is relevant. First, our analytical closed-form expression of OOSU risk

allows us to uncover an essential aspect of the stochastic nature of portfolio performance.

For example, the OOSU two-sigma interval of the SMV portfolio calibrated from a dataset

of 25 portfolios of stocks sorted on size and book-to-market (25SBTM) with 120 monthly

return observations and a risk-aversion coefficient of three is [−12.4%, 0.94%], which is a

paramount concern of SMV portfolios for investors who deem performance uncertainty as a

critical variable of their investment-decision process.

The second reason why characterizing OOSU risk is essential is because it allows us to

develop a novel portfolio robustness metric defined as the difference between OOSU mean

and a multiple of OOSU risk. Then, we exploit our proposed robustness metric to combine
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the SMV and SGMV portfolios optimally as in Kan, Wang, and Zhou (2021).1 We show

theoretically that neither the SMV portfolio nor the SGMV portfolio offers the maximal

robust performance individually and that one must combine both to achieve a better tradeoff

between OOSU mean and OOSU volatility. In addition, the empirical analysis suggests that

the combination of the SMV and SGMV portfolios that optimizes our proposed robustness

metric delivers better out-of-sample performance than those strategies that ignore parameter

uncertainty or OOSU risk. In particular, compared to the combination of portfolios that only

maximizes OOSU mean, our robust combination delivers larger out-of-sample certainty-

equivalent return and Sharpe ratio while attaining a lower downside risk, both before and

after transaction costs.

Our manuscript makes four contributions to the existing literature on parameter un-

certainty and portfolio selection. First, we provide the exact closed-form expression for the

OOSU variance of the SMV portfolio, the SGMV portfolio, and any combination of these

two portfolios. Using this analytical result, we document that the SMV portfolio OOSU

volatility is substantially larger than that of the SGMV portfolio. Take, for instance, the

25SBTM dataset and a risk-aversion coefficient of three. For this case, we show that the

OOSU standard deviation of the SMV portfolio is 29 times larger than that of the SGMV

portfolio when both portfolios are estimated using 120 monthly observations. In this par-

ticular case, the SMV portfolio requires an unrealistically large sample size of over 13,000

monthly observations –more than 1,000 years of data– to deliver a performance as stable as

that of the SGMV portfolio.2

Our second contribution is to propose a novel measure of portfolio robustness defined

as the difference between OOSU mean and a multiple of OOSU standard deviation. Our

measure of portfolio robustness explicitly accounts for the impact of estimation error on the

performance of estimated portfolios by fully characterizing the first two moments (i.e., mean

and variance) of out-of-sample performance. In our view, a robust portfolio should deliver

a stable out-of-sample utility that, on average, performs well. The robustness measure we

1Our portfolio robustness metric can accommodate a wider range of portfolio combinations. Indeed, in
Section IA.2.5 of the Internet Appendix, we extend our analysis to a shrinkage portfolio that combines the
SMV portfolio, the SGMV portfolio, and the equally weighted portfolio as in Tu and Zhou (2011).

2In unreported results, we show that the required sample size for the SMV portfolio to deliver an out-
of-sample utility as stable as that of the SGMV portfolio is of similar magnitude across different datasets.
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propose is in the spirit of this view. Using the analytical characterization of our proposed

measure, we compare the robustness of the SMV and SGMV portfolios. We show that the

SMV portfolio is much less robust than the SGMV portfolio. In particular, for the 25SBTM

dataset and a risk-aversion coefficient of three, the SMV portfolio requires over 696 monthly

observations –equivalent to 58 years of data– to be as robust as the SGMV portfolio.

Our third contribution is to propose a novel calibration criterion for combining the SMV

portfolio with the SGMV portfolio that maximizes our measure of portfolio robustness. We

demonstrate that the shrinkage portfolio that optimizes our robustness metric assigns a

larger tilt toward the SGMV portfolio than that of the shrinkage portfolio that maximizes

OOSU mean. However, we show that it is not optimal to fully tilt toward the SGMV port-

folio and, therefore, one must optimally combine both sample portfolios to attain maximal

robustness. While the optimal shrinkage intensity is unfeasible to the investor because it

depends on the true, but unknown, vector of means and covariance matrix, we propose a

feasible consistent estimator of the optimal shrinkage intensity that maximizes our proposed

robustness measure.

Our robust portfolio framework sacrifices a small out-of-sample average performance to

achieve substantially more stable performance. Figure 1 illustrates the main idea of our pro-

posed method. The vertical axis depicts the OOSU mean of the shrinkage portfolio, and

the horizontal axis depicts the OOSU standard deviation. The parameter κ is the shrinkage

intensity that determines the optimal combination between the SMV and SGMV portfo-

lios. The shrinkage portfolio exploiting κ?E maximizes OOSU mean, the shrinkage portfolio

exploiting κ?V minimizes OOSU standard deviation, and the shrinkage portfolio exploiting

κ?R maximizes our proposed measure of portfolio robustness. Figure 1 shows that the robust

shrinkage portfolio exploiting κ?R decreases OOSU standard deviation by 21% at the expense

of only a 3.6% reduction in OOSU mean relative to the shrinkage portfolio exploiting κ?E.3

It is important to note that exploiting our robustness measure to combine portfolios

resembles the diversification idea behind the mean-variance efficient frontier of Markowitz

(1952). In our case, instead of obtaining the optimal combination of stocks that minimizes

3While Figure 1 considers the true shrinkage intensities, our simulation results show that our proposed
shrinkage intensity κ?

R delivers a more significant improvement in portfolio performance compared to κ?
E

when the shrinkage intensities are unknown and must be estimated.
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Figure 1: Out-of-sample utility efficient frontier

Notes. This figure depicts the out-of-sample utility mean and standard deviation of shrinkage portfolios ŵ?(κ)
that combine the sample global-minimum-variance (SGMV) and sample mean-variance (SMV) portfolios for
different values of κ. The shrinkage intensity κ = 0 corresponds to the SGMV portfolio, and κ = 1 to the
SMV portfolio. The population vector of means and covariance matrix of stock returns are calibrated from
the monthly return data of the 25 portfolios of stocks sorted on size and book-to-market. For the estimation
of the shrinkage portfolios, we use a sample size of T = 120 months and a risk-aversion coefficient of γ = 3.
The solid blue line in the figure corresponds to the efficient tradeoff between out-of-sample utility mean and
standard deviation provided by the shrinkage portfolios whose shrinkage intensity κ is in the interval [κ?

V , κ
?
E ].

The shrinkage intensity κ?
R maximizes the portfolio robustness measure in Section 4 with λ = 2.

portfolio risk for a given level of expected portfolio return, we obtain the optimal combination

of the SMV and SGMV portfolios that minimizes OOSU risk for a given level of OOSU mean.

Our fourth contribution is to evaluate the out-of-sample performance of our proposed

robust shrinkage portfolio relative to several benchmarks. Our simulations show that the

robust shrinkage portfolio delivers a better tradeoff between OOSU mean and standard

deviation than the portfolio maximizing only OOSU mean. An appealing feature of our

method is that our robust shrinkage portfolio also delivers a larger OOSU mean than the

portfolios that are specifically designed to maximize OOSU mean in those cases where the

data is not Gaussian, and the shrinkage intensities are estimated from the data. This suggests

that our proposed portfolio framework to construct robust investment strategies is resilient

to estimation errors.

We also study the performance of our methodology on seven empirical datasets of monthly
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return data: six datasets of characteristic-sorted portfolios and one dataset of individual

stocks from CRSP. Compared to the optimal shrinkage portfolio calibrated under the OOSU

mean criterion, we document that the proposed robust shrinkage portfolio offers a lower

turnover while delivering a better certainty-equivalent return, Sharpe ratio, and downside

risk, even net of transaction costs. In addition, we use three-year non-overlapping windows to

measure the volatility of out-of-sample certainty-equivalent returns of the considered shrink-

age portfolios and show that the performance of our robust portfolio is more stable over

time than that of the shrinkage portfolio that only maximizes OOSU mean. Our proposed

shrinkage portfolio also delivers better out-of-sample certainty-equivalent returns than those

of the equally weighted portfolio, the reward-to-risk timing strategy of Kirby and Ostdiek

(2012), and the SGMV portfolio in six out of seven datasets.4 Overall, our results highlight

the importance of accounting for OOSU risk to construct mean-variance optimal portfolios.

Our work is closely related to the literature that exploits shrinkage estimators to mitigate

the impact of parameter uncertainty.5 Such estimators are traditionally applied to alleviate

the impact of parameter uncertainty affecting the inputs of the portfolio problem, like the

mean (Jorion, 1986; Barroso and Saxena, 2021) and the covariance matrix (Ledoit and Wolf,

2003, 2004, 2017, 2020a). A prominent example is the work of Ledoit and Wolf (2003, 2004)

who focus on the optimal linear combination between two covariance matrices so that the

resulting combination minimizes the mean squared error of the estimated matrix. Unlike

these papers, we focus on combining portfolios to attain an optimal tradeoff between OOSU

mean and OOSU volatility.

We build on the literature pioneered by Kan and Zhou (2007) that considers the out-of-

sample utility mean as a criterion to analytically determine the optimal shrinkage portfolio

4Even though our theoretical results and base case empirical methodology consider sample estimates of
the mean and covariance matrix of stock returns, we show in Appendix IA.2 that the results are robust to
using the shrinkage estimator of the covariance matrix of Ledoit and Wolf (2020a).

5There is a large number of papers that propose different approaches to combat the impact of parameter
uncertainty on portfolio selection. Some of these papers use Bayesian statistics (Jorion, 1986; Avramov and
Zhou, 2010), factor models (De Nard, Ledoit, and Wolf, 2019), forward-looking information (DeMiguel,
Plyakha, Uppal, and Vilkov, 2013), model misspecification (Rapponi, Uppal, and Zaffaroni, 2021), weight
constraints (Jagannathan and Ma, 2003; DeMiguel, Garlappi, Nogales, and Uppal, 2009), robust optimization
(Goldfarb and Iyengar, 2003), and sparse estimation (Goto and Xu, 2015; Ao, Li, and Zheng, 2019).
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under the assumption that stock returns are iid Gaussian.6 A large literature exploits the

OOSU mean criterion introduced by Kan and Zhou (2007) in the construction of alternative

portfolio strategies that help mitigate the impact of parameter uncertainty.7 In contrast to

these papers, our work also accounts for the OOSU standard deviation in the calibration of

shrinkage portfolios, which offers a more robust performance than the portfolios that ignore

OOSU risk or parameter uncertainty.

Our shrinkage portfolio approach shares fundamental elements with regularization tech-

niques, which are one of the most common machine learning approaches adopted in the recent

asset pricing literature (Giglio, Kelly, and Xiu, 2021). Like regularization, the shrinkage port-

folio considered in this manuscript helps mitigate the impact of sampling volatility on the

estimated portfolio weights. We show that our robust approach to shrinkage portfolios refines

and improves the out-of-sample performance of investment strategies over existing methods.

The shrinkage portfolio approach considered in this manuscript is not only a practical

approach to alleviating the impact of statistical errors on the performance of estimated

portfolios, but it is also an economically sound method that is related to the investment-

decision problem of ambiguity-averse investors. In particular, we characterize the exact re-

lationship between the shrinkage portfolio that combines the SMV and SGMV portfolios

and the ambiguity-averse portfolios considered by Garlappi, Uppal, and Wang (2007). We

6Earlier studies consider out-of-sample utility mean as a portfolio-choice criterion under parameter un-
certainty using a Bayesian framework, such as Brown (1976) and Frost and Savarino (1986). However, Kan
and Zhou (2007) are the first to analytically characterize the expected out-of-sample utility losses from
parameter uncertainty under the assumption of iid Gaussian returns.

7For instance, Zhou (2008) applies the framework of Kan and Zhou to solve the investment-decision
problem of an active portfolio manager. DeMiguel, Garlappi, and Uppal (2009) derive the critical sample
size for which the SMV portfolio delivers a larger OOSU mean than the equally weighted (EW) portfolio.
Frahm and Memmel (2010) derive the combination between the SGMV portfolio and the EW portfolio
that minimizes the mean of the out-of-sample variance. Tu and Zhou (2011) consider combinations between
several estimates of the mean-variance portfolio and the EW portfolio that maximize OOSU mean. DeMiguel,
Martín-Utrera, and Nogales (2013) provide several calibration criteria for shrinkage portfolios such as the
mean of the out-of-sample variance, utility, and Sharpe ratio. DeMiguel, Martín-Utrera, and Nogales (2015)
generalize the analysis of Kan and Zhou to a multiperiod setting with transaction costs. Branger, Lučivjanská,
and Weissensteiner (2019) derive an optimal grouping of EW sub-portfolios that maximizes OOSU mean.
Kan and Wang (2021) derive the combination of a set of benchmark portfolios and positive-alpha test assets
that maximizes OOSU mean. Finally, Kan, Wang, and Zhou (2021) consider the common framework with no
risk-free asset and derive the combination of the SMV and SGMV portfolios that maximizes OOSU mean. In
addition to this literature, a number of papers propose to maximize the average out-of-sample performance
of an estimated portfolio in a data-driven way instead of using the parametric approach introduced by Kan
and Zhou (2007); see DeMiguel, Martín-Utrera, and Nogales (2013) and Kircher and Rosch (2021) for a
bootstrap application, and Füss, Koeppel, and Miebs (2021) for a jackknife application.
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show in closed form that a larger degree of ambiguity in mean returns leads the ambiguity-

averse investor to apply a larger tilt toward the SGMV portfolio. In line with the theoretical

relationship between shrinkage and ambiguity-averse portfolios, our manuscript proposes a

method to establish the degree of ambiguity in mean returns that provides a robust out-of-

sample performance.

Our work is also related to the robust portfolio optimization literature. Goldfarb and

Iyengar (2003) show that constructing the portfolio that is optimal under the worst-case

scenario is a powerful technique “to combat the sensitivity of the optimal portfolio to sta-

tistical errors.” Similarly, we show that the proposed criterion for combining portfolios that

maximizes the difference between OOSU mean and a multiple of OOSU standard deviation

is equivalent to a robust optimization problem where the investor maximizes the worst-case

scenario of the unknown OOSU mean. Therefore, our proposed shrinkage portfolio explicitly

accounts for statistical errors affecting the estimation of OOSU mean.

Finally, our work is also related to several papers that study the distribution of out-of-

sample portfolio performance measures. Kan and Smith (2008) and Kan, Wang, and Zhou

(2021) derive the distribution of the out-of-sample mean return and variance of efficient

portfolios. Similarly, Kan, Wang, and Zheng (2021) derive the distribution of the out-of-

sample Sharpe ratio of the tangency portfolio and use this result to explain why many

asset-pricing models underperform the market portfolio out of sample. Unlike these papers,

we use the OOSU mean and volatility to assess the robustness of sample portfolios and derive

an optimal robust shrinkage portfolio. To the best of our knowledge, our work is the first to

exploit OOSU volatility in combining portfolios.

2 Mean-variance portfolios and parameter uncertainty

In this section, we define the mean-variance portfolio framework in the presence of parameter

uncertainty. In Section 2.1, we provide details about the main theoretical assumptions. In

Section 2.2, we discuss the properties of mean-variance portfolios without parameter uncer-

tainty. In Section 2.3, we present the optimal shrinkage portfolio proposed by Kan, Wang,

and Zhou (2021) that maximizes OOSU mean in the presence of parameter uncertainty.
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Finally, in Section 2.4, we explain why considering shrinkage portfolios is an economically

sound method to mitigating the impact of estimation errors.

2.1 Notation and assumptions

Let us consider the time T + 1 portfolio return w>rT+1, where rT+1 is the N -dimensional

vector of stock returns with mean µ and positive-definite covariance matrix Σ, and w is a

vector of portfolio weights. We impose the standard constraint that the investor’s wealth is

fully allocated to theN risky assets, i.e., w>e = 1 where e is theN -dimensional vector of ones.

Using historical return data over the past T months (r1, . . . , rT ), the investor estimates the

vector of means µ and covariance matrix of stock returns Σ with their sample counterparts:8

µ̂ = 1
T

T∑
t=1

rt, Σ̂ = 1
T

T∑
t=1

(rt − µ̂)(rt − µ̂)>. (1)

Consistent with prior literature, we make the following two assumptions.

Assumption 1. There are at least two stocks, N ≥ 2, and the sample size is T > N + 7.

Assumption 2. The vector of stock returns at time t, rt, follows a multivariate Gaussian

distribution with vector of means µ and covariance matrix Σ, and all return observations

are independent and identically distributed (iid) through time.

The condition T > N + 7 in Assumption 1 is needed to ensure that the out-of-sample

utility variance derived in Section 3 exists. Assumption 2 is a standard assumption in the

literature used for analytical tractability (Kan and Zhou, 2007; Ao, Li, and Zheng, 2019). Un-

der Assumption 2, µ̂ and Σ̂ are independent and follow a multivariate Gaussian distribution

and Wishart distribution, respectively.

While it is unlikely that the empirical data follow a Gaussian distribution, there are sev-

eral reasons why Assumption 2 does not compromise the performance of the portfolio strate-

gies that rely on this assumption. First, even when stock returns are non-Gaussian, there is

a close relationship between expected utility and the mean-variance framework (Kroll, Levy,

8In Appendix IA.2.4, we assume that the covariance matrix is known to the investor as in Garlappi,
Uppal, and Wang (2007), and therefore parameter uncertainty only stems from the vector of means.
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and Markowitz, 1984; Markowitz, 2014). Second, the economic losses of optimal portfolios

that ignore fat tails in the distribution of stock returns are small, as demonstrated by Tu

and Zhou (2004). Third, our empirical results show that the shrinkage portfolios calibrated

under the assumption of iid Gaussian returns deliver good out-of-sample performance even

for datasets with real data where returns are likely not Gaussian.

2.2 Mean-variance portfolios without parameter uncertainty

We first consider the classical Markowitz (1952) portfolio problem where the investor knows

the true distributional properties of stock returns, i.e., µ and Σ. Let γ > 0 denote the

investor’s risk-aversion coefficient. Then, the optimal mean-variance portfolio is the solution

to the following quadratic program

max
w:w>e=1

U(w) = w>µ− γ

2w
>Σw, (2)

where U(w) is the utility of portfolio w. The solution to problem (2) is

w? = wg + 1
γ
wz, (3)

where wg is the global minimum-variance (GMV) portfolio,

wg = Σ−1e(e>Σ−1e)−1, (4)

and wz is a zero-cost portfolio (i.e., w>z e = 0) defined as

wz = Bµ, B = Σ−1(I− ew>g ). (5)

For notational simplicity, we define the mean return and variance of the GMV portfolio

wg, and the return variance of the zero-cost portfolio wz, as

µg = w>g µ = µ>Σ−1e(e>Σ−1e)−1, (6)

σ2
g = w>g Σwg = (e>Σ−1e)−1, (7)
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ψ2 = w>z Σwz = µ>Σ−1µ− µ2
g/σ

2
g , (8)

respectively. Note that the return variance of the zero-cost portfolio, ψ2 ≥ 0, is equal to the

difference of squared Sharpe ratios of the tangency portfolio and the GMV portfolio. In other

words, ψ2 can also be interpreted as the Sharpe-ratio inefficiency of the GMV portfolio.

It is straightforward to show that the utility of the mean-variance portfolio w? is

U(w?) = U(wg) + ψ2

2γ . (9)

Because ψ2/(2γ) is always positive, the optimal mean-variance portfolio always delivers a

higher in-sample utility than the GMV portfolio. However, the mean-variance portfolio’s

in-sample optimality does not hold out of sample because of the estimation errors affecting

the inputs of the portfolio problem. In particular, the impact of estimation errors in the

vector of means on portfolio performance can be severe, as documented in prior literature

(Merton, 1980; Chopra and Ziemba, 1993). Therefore, it is essential to account for parameter

uncertainty in the construction of investment strategies, which we address in the next section.

2.3 Optimizing out-of-sample utility mean

In practice, investors do not know the true vector of means and the covariance matrix of stock

returns, and instead, they estimate these parameters from historical return data using the

sample estimates provided in Equation (1). Accordingly, the sample mean-variance portfolio,

hereafter the SMV portfolio, is

ŵ? = ŵg + 1
γ
ŵz, (10)

where ŵg is the sample global minimum-variance portfolio, hereafter the SGMV portfolio,

which is a function of Σ̂ alone, and ŵz is the sample zero-cost portfolio, which is a function

of both µ̂ and Σ̂.

The estimation risk affecting the SMV portfolio leads to suboptimal performance as noted

by DeMiguel, Garlappi, and Uppal (2009). To combat the impact of parameter uncertainty,

we consider shrinkage techniques, which help reduce the impact of statistical errors on the
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performance of mean-variance portfolios.9 Indeed, Kan, Wang, and Zhou (2021) show that

one can improve average out-of-sample performance by combining the SMV portfolio ŵ?

with the SGMV portfolio ŵg. Similarly, we consider a linear combination between these two

portfolios, where the shrinkage intensity κ ∈ [0, 1] establishes the optimal combination:

ŵ?(κ) = (1− κ)ŵg + κŵ? with κ ∈ [0, 1]. (11)

To evaluate the performance of ŵ?(κ) while accounting for estimation risk, we follow Kan

and Zhou (2007) and define the out-of-sample utility (OOSU) of an estimated portfolio ŵ as

U(ŵ) = ŵ>µ− γ

2 ŵ
>Σŵ. (12)

Following the literature pioneered by Kan and Zhou (2007), one can construct a portfolio that

mitigates the impact of estimation risk on portfolio performance by optimizing the OOSU

mean of the estimated portfolio. In the following proposition, we review some of the main

results of Kan, Wang, and Zhou (2021) for the shrinkage portfolio ŵ?(κ) in Equation (11).10

Proposition 1 (Kan, Wang, and Zhou (2021)). Let Assumptions 1 and 2 hold. Then,

1. The out-of-sample utility mean of the sample GMV portfolio is

E [U(ŵg)] = µg −
γ

2
T − 2

T −N − 1σ
2
g . (13)

2. The out-of-sample utility mean of the shrinkage portfolio ŵ?(κ) is

E[U(ŵ?(κ))] = E[U(ŵg)] + Θ(κ), (14)

where

Θ(κ) = 1
γ

T

T −N − 1

(
κψ2 − κ2

(
ψ2 + N − 1

T

)
T (T − 2)

2(T −N)(T −N − 3)

)
. (15)

9In Section 2.4, we argue that this method is economically sound because of the explicit connection
between the shrinkage portfolio and the ambiguity-averse portfolio of Garlappi, Uppal, and Wang (2007).

10All proofs are available in the Internet Appendix.
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3. The shrinkage intensity κ?E maximizing out-of-sample utility mean in (14) is

κ?E = (T −N)(T −N − 3)
T (T − 2)

ψ2

ψ2 + N−1
T

∈ [0, 1]. (16)

Finally, κ?E → 1 as T →∞. Thus, ŵ?(κ?E) is a consistent estimator of w?.

A number of comments are in order. First, κ?E is an oracle estimator that depends on the

unknown parameter ψ2. Kan, Wang, and Zhou (2021) rely on a feasible estimator of κ?E using

the estimator of ψ2 proposed by Kan and Zhou (2007) and find that the resulting portfolio

delivers better out-of-sample performance than a wide range of benchmark strategies. Second,

the optimal shrinkage intensity κ?E increases with ψ2 and decreases with the ratioN/T . Third,

κ?E also corresponds to the shrinkage intensity that minimizes the bias of the investor’s out-

of-sample utility. More formally,

κ?E = arg min
κ∈[0,1]

E [U(w?)− U(ŵ?(κ))] . (17)

While κ?E delivers the least-biased out-of-sample utility, the OOSU variance can still be large.

In Section 3, we extend the analysis of Proposition 1 to study the OOSU variance of several

sample portfolios, and we utilize this result to construct optimal portfolios that balance

OOSU mean and volatility in Section 4.

2.4 Relation to ambiguity-averse portfolios

In this section, we argue that a shrinkage portfolio that combines the SMV and SGMV

portfolios is not only a useful technique to mitigate the impact of estimation risk, but it

is also an economically sound approach. In particular, we show that there is an explicit

relationship between the shrinkage portfolio considered in this manuscript and the optimal

portfolio of an ambiguity-averse investor. The insights provided in this section build on the

work of Garlappi, Uppal, and Wang (2007), who account for ambiguity by considering a joint

uncertainty set for the vector of means. This uncertainty set serves as a constraint in the
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portfolio problem of a mean-variance investor who solves the following mathematical program

max
w:w>e=1

min
µ

w>µ− γ

2w
>Σ̂w subject to (µ̂− µ)>Σ̂−1(µ̂− µ) ≤ ε2, (18)

where (µ̂−µ)>Σ̂−1(µ̂−µ) measures the distance between the sample vector of means µ̂ and

the true vector of means µ. Intuitively, a larger degree of ambiguity aversion is equivalent to

having a larger value of ε in the constraint of portfolio problem (18). Garlappi, Uppal, and

Wang (2007) show that the closed-form solution of this problem is

ŵ?(ε) = 1
γ

Σ̂−1
(

1
1 + ε/(γσ?P )

)(
µ̂− B − γ (1 + ε/(γσ?P ))

A
e

)
, (19)

where A = e>Σ̂−1e, B = µ̂>Σ̂−1e, and parameter σ?P is the unique positive real root to a

specific fourth-degree polynomial that is monotonically decreasing in ε. Garlappi, Uppal, and

Wang (2007) show that the ambiguity-averse portfolio ŵ?(ε) converges to the SMV portfolio

when ε → 0, and to the SGMV portfolio when ε → ∞. Intuitively, for 0 < ε < ∞ the

ambiguity-averse portfolio ŵ?(ε) combines the SMV and the SGMV portfolios, similarly to

the shrinkage portfolio ŵ?(κ) in (11). In the next proposition, we characterize the intensity κ

of the shrinkage portfolio ŵ?(κ) in (11) as a function of the ambiguity-aversion parameter ε.

Proposition 2. The shrinkage portfolio ŵ?(κ) is equal to the ambiguity-averse portfolio

ŵ?(ε) in Equation (19) when

κ =
(

1 + ε

γσ?P

)−1

, (20)

where the ratio ε/σ?P is monotonically increasing in ε.

Proposition 2 provides the explicit link between the shrinkage portfolio considered in

this manuscript and the ambiguity-averse portfolio of Garlappi, Uppal, and Wang (2007).

In particular, Equation (20) shows that a high degree of ambiguity in mean returns (i.e., a

higher ε) results in an ambiguity-averse portfolio whose weights lean more strongly toward

those of the SGMV portfolio, corresponding to a smaller value of κ. Given an optimally

calibrated shrinkage intensity κ, Equation (20) allows us to determine the equivalent degree

of ambiguity in mean returns that results in an ambiguity-averse portfolio that delivers

robust out-of-sample performance.
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We show in Section 4 that our proposed robustness criterion establishes a larger tilt

toward the SGMV portfolio and thus a more considerable degree of ambiguity in mean

returns than the traditional shrinkage criterion that only maximizes OOSU mean.11 In other

words, our proposed shrinkage criterion based on the portfolio robustness measure introduced

in Section 4 delivers portfolios that are less sensitive to the estimation errors in mean returns.

3 Out-of-sample utility variance

In this section, we characterize the OOSU variance of sample portfolios. For notational sim-

plicity, in Section 3.1 we derive the closed-form analytical expression of the OOSU variance

for the shrinkage portfolio that combines the SMV and SGMV portfolios, which contains

as particular cases the OOSU variance of the individual SMV and SGMV portfolios.12 In

Section 3.2, we study the monotonicity properties of the OOSU variance.

3.1 Out-of-sample utility variance of shrinkage portfolios

We first define in the following lemma the OOSU variance of any random portfolio, which

we use to obtain the OOSU variance of any combination of the SMV and SGMV portfolios.

Lemma 1. The out-of-sample utility variance of a random vector of portfolio weights ŵ is

V[U(ŵ)] = V
[
ŵ>µ

]
+ γ2

4 V
[
ŵ>Σŵ

]
− γCov

[
ŵ>µ, ŵ>Σŵ

]
. (21)

Kan, Wang, and Zhou (2021, Proposition 1) derive a stochastic representation of the

out-of-sample mean return and variance of any combination between the SMV and SGMV

portfolios. In the following proposition, we use this result to provide the closed-form analyt-

ical expression of the OOSU variance of the shrinkage portfolio defined in Equation (11).13

11For example, for the 25SBTM dataset considered in Figure 1, we find that the shrinkage intensity
κ?

E = 0.147 maximizing OOSU mean corresponds to ε = 0.76, whereas our proposed shrinkage intensity
κ?

R = 0.0885 maximizing the difference between OOSU mean and twice the OOSU standard deviation
corresponds to a larger value of ε equal to 1.35.

12In Appendix IA.2.5, we extend our analysis to considering a shrinkage portfolio that combines the SMV
portfolio, the SGMV portfolio, and the EW portfolio as in Tu and Zhou (2011).

13We are thankful to Raymond Kan for his helpful feedback, which greatly helped us obtain our main
result in this section.
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Proposition 3. Let Assumptions 1 and 2 hold. Then, the out-of-sample utility variance of

the shrinkage portfolio ŵ?(κ) is

V[U(ŵ?(κ))] = V[U(ŵg)] + ∆(κ), (22)

where

V[U(ŵg)] =
σ2
gψ

2

T −N − 1 +
γ2σ4

g(N − 1)(T − 2)
2(T −N − 1)2(T −N − 3) (23)

is the out-of-sample utility variance of the sample GMV portfolio and ∆(κ) is a fourth-degree

polynomial in κ,

∆(κ) = a1κ
4 + a2κ

3 + a3κ
2 + a4κ, (24)

with the coefficients (a1, a2, a3, a4) being functions of γ, T , N , σ2
g , and ψ2:

a1 = 1
2γ2

T 2(T − 2)C(T,N, ψ2)
(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7) , (25)

a2 = − 2ψ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) , (26)

a3 = ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3)

+ σ2
g

T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) , (27)

a4 = − 2σ2
gψ

2 T (T − 2)
(T −N − 1)2(T −N − 3) , (28)

where

C(T,N, ψ2) = (2Tψ2 +N − 1)(N4 +N3T − 3N3 − 4N2T 2 + 22N2T − 31N2 +NT 3

− 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T + 70) + T 2ψ4(N3

+ 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70).

Note from Proposition 3 that the OOSU variance of the shrinkage portfolio only depends

on six parameters: the shrinkage intensity κ, the investor’s risk-aversion coefficient γ, the

number of stocks N , the sample size T , the return variance of the GMV portfolio σ2
g , and

the return variance of the zero-cost portfolio ψ2. We use the analytical expression of OOSU
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variance in Proposition 3 to obtain the following Corollary.

Corollary 1. Provided that ψ2 is strictly positive, there is a nonzero shrinkage intensity

0 < κ < 1 for which the shrinkage portfolio ŵ?(κ) delivers a lower out-of-sample utility

variance than that of the SMV and SGMV portfolios.

Corollary 1 demonstrates that even though the SGMV portfolio does not require estimat-

ing the vector of means, this estimated portfolio does not deliver the lowest OOSU variance,

and it is still optimal to combine the SMV and SGMV portfolios to minimize OOSU vari-

ance in (22). We illustrate this point in Figure 1, where we depict in the horizontal axis the

OOSU standard deviation of different shrinkage portfolios using the closed-form expression

obtained in Proposition 3. We see that for the case considered in Figure 1, the shrinkage

intensity that minimizes OOSU variance is κ?V = 0.0146 > 0.

3.2 Monotonicity properties of out-of-sample utility variance

We now study the monotonicity properties of the OOSU variance of the shrinkage portfolio

in (11), which we highlight in the following proposition.

Proposition 4. The out-of-sample utility variance of the shrinkage portfolio ŵ?(κ)

1. decreases with the sample size T and converges to zero as T →∞,

2. increases with the number of stocks N , the return variance of the GMV portfolio σ2
g , the

return variance of the zero-cost portfolio ψ2, and the shrinkage intensity κ if κ ≥ κ?E.14

The results in Proposition 4 are intuitive because increasing N or decreasing T increases

the statistical errors affecting the estimated moments of stock returns, and thus, they increase

the OOSU volatility of the shrinkage portfolio. Moreover, OOSU volatility increases with

parameters σ2
g and ψ2, which are the return variances of the GMV portfolio wg and the zero-

cost portfolio wz, respectively. Finally, Proposition 4 shows that for a shrinkage intensity

κ ≥ κ?E, the substantial exposure to the SMV portfolio leads to an increasing OOSU volatility

as we increase κ. Therefore, κ needs to be smaller than κ?E in order to reduce OOSU volatility.

14This is a sufficient but not necessary condition.

16



Figure 2: Effect of sample size and number of stocks on out-of-sample utility volatility

Notes. This figure depicts the out-of-sample utility standard deviation of the SGMV portfolio (dashed blue
line), the shrinkage portfolio maximizing out-of-sample utility mean (κ = κ?

E , dash-dotted green line), and
the SMV portfolio (κ = 1, solid red line). The population vector of means and covariance matrix of stock
returns are calibrated from the monthly return data of the 25 portfolios of stocks sorted on size and book-to-
market. We set a risk-aversion coefficient of γ = 3. We vary the sample size T in the left panel while keeping
a fixed N = 25, and we vary the number of stocks N in the right panel while keeping a fixed T = 120. The
values in the right panel are in log-scale for visibility.

Figure 2 illustrates the analytical results in Proposition 4. For the sake of conciseness,

we only show the results for the sample size T and the number of stocks N . We calibrate the

distributional parameters using the sample moments of the 25SBTM dataset. This gives a

value of σg = 0.0436 and a value of ψ2 = 0.0625. In addition, we set a risk-aversion coefficient

of γ = 3. In the left Panel, we vary T while keeping a fixed N = 25. In the right Panel, we

vary N while keeping a fixed T = 120. We study the OOSU volatility of three portfolios: the

SGMV portfolio, the SMV portfolio, and the shrinkage portfolio maximizing OOSU mean

with κ = κ?E.

The left Panel in Figure 2 shows that the OOSU standard deviation of the SMV portfolio

is substantially larger than that of the shrinkage portfolio exploiting κ?E and the SGMV

portfolio. Specifically, for a realistic sample size of T = 120 observations, the OOSU standard

deviation of the SMV portfolio is 29 times larger than that of the SGMV portfolio. In

comparison, the OOSU standard deviation of the shrinkage portfolio is 1.51 times larger

than that of the SGMV portfolio. Additionally, consistent with Proposition 4, we observe

that the OOSU standard deviation decreases with the sample size. However, it is worth

noting that the SMV portfolio requires an unrealistically large sample size of T = 13,400

monthly observations to have a smaller OOSU volatility than the SGMV portfolio.
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The right Panel in Figure 2 shows that OOSU standard deviation increases with the

number of stocks N as demonstrated in Proposition 4.15 The effect of the number of stocks

N is particularly large for the SMV portfolio, for which we see that OOSU volatility increases

much more rapidly than for the SGMV portfolio and the shrinkage portfolio exploiting κ?E.

The analysis presented in this section indicates that the OOSU standard deviation of

sample mean-variance portfolios can be substantial. Unlike SMV portfolios, a robust portfolio

should offer a stable out-of-sample performance as well as a favorable average out-of-sample

performance. This is the objective of the robustness measure introduced in the next section.

4 A new portfolio robustness measure

We now use the results in Section 3 to propose a new portfolio robustness measure defined

as the difference between OOSU mean and a multiple of OOSU standard deviation. For

notational simplicity, our presentation focuses on the shrinkage portfolio that combines the

SMV and the SGMV portfolios. However, our results can be easily adapted to the SMV

and SGMV portfolios by setting the shrinkage intensity κ to one and zero, respectively. Sec-

tion 4.1 introduces the robustness measure. Section 4.2 studies the shrinkage portfolio that

optimizes the proposed robustness measure. Section 4.3 explains how we estimate the shrink-

age intensities. Section 4.4 describes the monotonicity properties of the robustness measure.

Finally, Section 4.5 relates our proposed metric to the literature on robust optimization.

4.1 A new robustness measure

In our view, a robust portfolio should not only deliver good average performance but also

a stable performance. In line with this view, we define our portfolio robustness measure as

the difference between OOSU mean and a multiple of OOSU standard deviation for any

estimated portfolio ŵ:

R(ŵ) = E[U(ŵ)]− λ
√
V[U(ŵ)], (29)

15In Figure 2, there is a range of values of N for which the OOSU standard deviation of the shrinkage
portfolio exploiting κ?

E decreases with N . This does not contradict the result in Proposition 4 because the
results in this proposition consider a fixed κ. On the contrary κ?

E in Figure 2 varies with N .
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where λ ≥ 0 determines the weight that OOSU risk has on our robustness measure. Note

that for λ = 0, we recover the OOSU mean criterion proposed by Kan and Zhou (2007). We

dub this robustness measure as the mean-risk OOSU. Our proposed mean-risk OOSU metric

captures our view of portfolio robustness, and maximizing this metric delivers an efficient

trade-off between OOSU mean and standard deviation. In Section 4.5, we show that the

mean-risk OOSU criterion is equivalent to a robust optimization problem.

4.2 The robust optimal portfolio

We now define our robust shrinkage portfolio that combines the SMV and SGMV portfolios

to maximize the mean-risk OOSU defined in Section 4.1. Formally, the intensity of the robust

shrinkage portfolio is the solution of the following problem:

κ?R = arg max
κ∈[0,1]

R(ŵ?(κ)), (30)

which can be easily solved numerically using the analytical expressions for the OOSU mean

in (14) and for the OOSU variance in (22). Note that we recover κ?R = κ?E when λ = 0 and

κ?R = κ?V when λ→∞, where κ?V is the shrinkage intensity minimizing OOSU variance.

Our measure of portfolio robustness resembles the efficient frontier of Markowitz (1952).

In our case, instead of obtaining the optimal combination of stocks that minimizes portfolio

risk for a given level of expected portfolio return, we obtain the optimal combination of the

SMV and SGMV portfolios that minimizes OOSU risk for a given level of OOSU mean.

Figure 1 depicts the OOSU efficient frontier for the 25SBTM dataset, T = 120, and γ = 3.

Note that in this figure, the shrinkage intensity κ?E proposed by Kan, Wang, and Zhou

(2021) delivers one of the multiple efficient shrinkage portfolios. In addition, we observe

that the shrinkage portfolio that maximizes the mean-risk OOSU metric delivers an OOSU

standard deviation 21% lower than that of the shrinkage portfolio maximizing OOSU mean.

To achieve this substantial reduction in OOSU risk, the shrinkage portfolio that exploits κ?R
only sacrifices a small OOSU mean of about 3.6% relative to the shrinkage portfolio that

exploits κ?E. Accordingly, our proposed robust shrinkage approach can deliver portfolios with

a stable out-of-sample performance that perform well on average.
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Figure 3: Monotonicity properties of optimal shrinkage intensities

Notes. This figure depicts the shrinkage intensity κ?
E maximizing out-of-sample utility mean (dotted red

line), and the shrinkage intensity κ?
R maximizing the portfolio robustness measure in (29) (solid blue line),

for different values of the six parameters that define the analytical expression of the portfolio robustness
measure in Section 4. The population vector of means and covariance matrix of stock returns are calibrated
from the monthly return data of the 25 portfolios of stocks sorted on size and book-to-market. The base-case
values of the six parameters are T = 120, N = 25, σg = 0.0436, ψ2 = 0.0625, γ = 3, and λ = 2. In each plot,
we change the value of one of these six parameters while keeping the other five equal to the base-case value.
In the bottom-right plot, κ?

V is the shrinkage intensity minimizing out-of-sample utility variance.

In the following proposition, we formally prove two important properties of the shrinkage

intensity κ?R.

Proposition 5. Let Assumptions 1 and 2 hold. Then, the shrinkage intensity κ?R solving

(30) has the following properties:

1. κ?R → 1 as T →∞. Thus, ŵ?(κ?R) is a consistent estimator of w?.

2. κ?V ≤ κ?R ≤ κ?E, where κ?V minimizes the out-of-sample utility variance and κ?E maxi-

mizes the out-of-sample utility mean of the shrinkage portfolio, respectively.
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The first result of Proposition 5 shows that our proposed robust shrinkage portfolio is

asymptotically optimal. The second result of Proposition 5 demonstrates that while an in-

vestor facing parameter uncertainty can increase her average OOSU by shrinking the SMV

portfolio toward the SGMV portfolio, a more substantial shrinkage toward the SGMV port-

folio is needed to further reduce OOSU variance and enhance portfolio robustness. Using the

insight in Corollary 1 that κ?V > 0 if ψ2 > 0, the second result of Proposition 5 also implies

that neither the SMV portfolio nor the SGMV portfolio optimizes our proposed measure

of portfolio robustness for finite samples, and hence it is necessary to combine them using

intensity κ?R to achieve maximal robust performance.

In Figure 3, we illustrate the monotonicity properties of the optimal shrinkage intensity

κ?R that maximizes the mean-risk OOSU metric. We calibrate the parameters required to

obtain the optimal shrinkage intensity using the 25SBTM dataset. In particular, we have

N = 25, ψ2 = 0.0625, and σg = 0.0436. In addition, we set T = 120, γ = 3, and λ = 2. We

then change one parameter at a time to study the monotonicity properties of κ?R.

We observe from Figure 3 that both κ?E and κ?R increase with T and decrease with

N . This result is intuitive because statistical errors affecting the estimated moments of

stock returns decrease with the ratio T/N and, thus, less shrinkage toward the SGMV

portfolio is necessary when this ratio increases. Also, the difference between κ?E and κ?R

becomes smaller as T increases because both κ’s converge to one as T goes to infinity.

Second, while κ?E is independent of σg, the proposed shrinkage intensity κ?R increases with

σg because, as the return volatility of the GMV portfolio increases, shrinking toward the

SGMV portfolio becomes less attractive in terms of OOSU risk. Third, we observe that both

shrinkage intensities increase with ψ2, but κ?R increases less rapidly because, as shown in

Proposition 4, the OOSU standard deviation of the shrinkage portfolio deteriorates with ψ2.

Fourth, while κ?E is independent of γ, the proposed shrinkage intensity κ?R increases with γ

and gets closer to κ?E. This is because, as γ increases, the exposure to sample mean returns

decreases, and this has the effect of reducing OOSU standard deviation, which gives more

relevance to the OOSU mean in the mean-risk OOSU metric. Fifth, as the coefficient λ

increases, the OOSU standard deviation of the shrinkage portfolio becomes a more relevant

element of the mean-risk OOSU criterion. Therefore, the shrinkage intensity κ?R converges
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to κ?V when λ→∞. This insight is consistent with our second result in Proposition 5.

4.3 Estimation of optimal shrinkage intensities

The optimal shrinkage intensity κ?R maximizing the mean-risk OOSU of the shrinkage port-

folio depends on the true moments of stock returns via σ2
g and ψ2. Similarly, the shrinkage in-

tensity κ?E maximizing the OOSU mean of the shrinkage portfolio depends on parameter ψ2.

Since these parameters are unknown, it is important to obtain estimates of the optimal

shrinkage intensities that are statistically consistent, which we propose in Appendix IA.1.

Specifically, we estimate ψ2 via the adjusted estimator of Kan and Zhou (2007) and we

estimate σ2
g via the shrinkage estimator of Frahm and Memmel (2010). In the rest of the

manuscript, we denote the estimated shrinkage intensities as κ̂?E and κ̂?R.16

4.4 Monotonicity properties of the robustness measure

In the following proposition, we provide some monotonicity properties for the mean-risk

OOSU metric of the shrinkage portfolio in (11).

Proposition 6. The mean-risk out-of-sample utility of the shrinkage portfolio ŵ?(κ)

1. increases with the sample size T and the mean return of the GMV portfolio µg,

2. decreases with the number of stocks N , the return variance of the GMV portfolio σ2
g ,

and the shrinkage intensity κ if κ ≥ κ?E.

Proposition 6 demonstrates that the mean-risk OOSU metric increases with T and de-

creases with N . This is a desirable property of our proposed robustness metric because in-

creasing T and decreasing N reduces the statistical errors affecting the estimated moments of

stock returns and their impact on sample portfolios. Moreover, the mean-risk OOSU metric

increases with µg because the OOSU mean increases with µg and the OOSU standard devi-

ation is independent of µg. On the contrary, the mean-risk OOSU decreases with σ2
g because

the OOSU mean is decreasing in σ2
g , and the OOSU standard deviation is increasing in σ2

g as

16Note that the result in Part 2 of Proposition 5 holds for any value of σ2
g and ψ2, hence the estimated

shrinkage intensities also obey the inequality κ̂?
R ≤ κ̂?

E . Moreover, they remain asymptotically optimal.
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Figure 4: Monotonicity properties of portfolio robustness measure

Notes. This figure depicts the portfolio robustness measure in (29) of four different portfolios: the SGMV
portfolio (dashed blue), the shrinkage portfolio maximizing the robustness measure in Section 4 (κ = κ?

R,
dash-dotted orange), the shrinkage portfolio maximizing out-of-sample utility mean (κ = κ?

E , dotted green),
and the SMV portfolio (solid red, right y-axis). The population vector of means and covariance matrix of
stock returns are calibrated from the monthly return data of the 25 portfolios of stocks sorted on size and
book-to-market. We set a risk-aversion coefficient of γ = 3 and a coefficient λ = 2 for the robustness measure.
We vary the sample size T in the left plot while keeping a fixed N = 25, and we vary the number of stocks
N in the right plot while keeping a fixed T = 120.

shown in Proposition 4. Proposition 6 also demonstrates that allocating more weight to the

SMV portfolio than κ?E necessarily deteriorates the mean-risk OOSU metric, which is why

κ?R ≤ κ?E as highlighted in Proposition 5.17

Figure 4 illustrates the main insights highlighted in Proposition 4. For the sake of con-

ciseness, we only show the results for the sample size T and the number of stocks N . The

distributional parameters of stock returns are calibrated from the 25SBTM dataset. We as-

sume that the risk-aversion coefficient is γ = 3, and the mean-risk OOSU metric is defined for

λ = 2. In the left Panel of Figure 4, we vary the sample size T while keeping a fixed number

of stocks N = 25, and in the right Panel, we vary N while keeping a fixed T = 120. We study

the mean-risk OOSU metric of four portfolios: the SGMV portfolio, the SMV portfolio, the

shrinkage portfolio maximizing OOSU mean with κ = κ?E in (16), and the proposed robust

shrinkage portfolio maximizing the mean-risk OOSU metric with κ = κ?R in (30).

The left Panel in Figure 4 shows that the robustness measure improves with the sample

17Note that, for simplicity, we do not discuss the monotonicity properties of the robustness measure with
respect to ψ2. In unreported results, we show that the effect of ψ2 on the mean-risk OOSU robustness
metric is more nuanced. On the one hand, OOSU standard deviation always increases with ψ2 as shown in
Proposition 4. On the other hand, OOSU mean decreases with ψ2 when the shrinkage intensity is large, i.e.,
when κ ≥ 2(T −N)(T −N−3)

T (T −2) , in which case the mean-risk OOSU metric also decreases with ψ2. However, when
κ is below this threshold, the impact that ψ2 has on the mean-risk OOSU metric depends on the value of λ.
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size. Also, we see that the shrinkage portfolio that maximizes OOSU mean does not deliver

the largest portfolio robustness. For example, when T = 120, the mean-risk OOSU delivered

by the shrinkage portfolio maximizing OOSU mean is 0.504% while the mean-risk OOSU

metric achieved by our robust shrinkage portfolio is 0.547%.18 Moreover, we show that the

SMV portfolio is much less robust than the SGMV portfolio and it requires a sample size of

T = 696 monthly observations to deliver a mean-risk OOSU metric as large as that of the

SGMV portfolio.

The right Panel in Figure 4 shows that the portfolio robustness measure decreases with

the number of stocks, and this reduction of portfolio robustness is particularly severe for

the SMV portfolio. Additionally, when N is not too large, our proposed shrinkage portfolio

exploiting κ?R delivers a substantially better mean-risk OOSU metric than that of the SGMV

portfolio. In particular, for the base-case value of N = 25, the mean-risk OOSU delivered by

κ?R is 0.547% while that of the SGMV portfolio is 0.426%.

4.5 Relation to robust optimization

In this Section, we interpret our proposed mean-risk OOSU criterion through the lens of

robust optimization.19 Under this approach, the mean-variance investor is averse to the

ambiguity around the true, but unknown, OOSU mean and maximizes the worst-case scenario

assuming that the true OOSU mean lies within a bounded region. In particular, we assume

that the true OOSU mean belongs to the following uncertainty set:

S(λ, κ) = Ê[U(ŵ?(κ))]± λ
√
V̂[U(ŵ?(κ))], (31)

where Ê[U(ŵ?(κ))] and V̂[U(ŵ?(κ))] are the estimated OOSU mean and variance of the

shrinkage portfolio ŵ?(κ). Note that in this case parameter λ ≥ 0 determines the level of

uncertainty around the OOSU mean. The uncertainty set in (31) can be interpreted as a

confidence interval similar to Garlappi, Uppal, and Wang (2007). Accordingly, an ambiguity-

18The simulation study of Section 5.1 shows that the outperformance is more pronounced when using the
estimated shrinkage intensities, κ̂?

E and κ̂?
R.

19There is extensive literature on robust optimization and portfolio theory. Two of the most prominent
papers in this literature are Goldfarb and Iyengar (2003) and Garlappi, Uppal, and Wang (2007).
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averse mean-variance investor who wants to maximize OOSU mean solves the robust opti-

mization problem

max
κ∈[0,1]

min
S(λ,κ)

E[U(ŵ?(κ))] = max
κ∈[0,1]

Ê[U(ŵ?(κ))]− λ
√
V̂[U(ŵ?(κ))]. (32)

The above formulation corresponds to the optimization problem that delivers the esti-

mated robust shrinkage intensity introduced in this section, i.e., κ̂?R. Therefore, our proposed

shrinkage portfolio implicitly accounts for the estimation errors in the OOSU mean. This is

important because estimation errors in the OOSU mean contaminate the estimated shrink-

age intensity that maximizes OOSU mean, κ̂?E, and as Kan and Wang (2021) show, those

estimation errors can severely affect the out-of-sample performance of shrinkage portfolios.

We confirm this finding in the simulation analysis of Section 5.1, where we find that our

robust shrinkage portfolio often delivers a larger OOSU mean than that of the shrinkage

portfolio that is designed to maximize OOSU mean.

5 Empirical analysis

In this section, we characterize the economic benefits from exploiting our measure of portfolio

robustness in the construction of shrinkage portfolios. For comparison purposes, we compare

the performance of our robust shrinkage portfolio with that of several other benchmark

portfolio strategies. We consider simulated return data in Section 5.1 and real return data

in Section 5.2.

5.1 Simulated return data

We use two different methods to simulate monthly return data. In the first method, we

draw observations from a multivariate Gaussian distribution. In the second method, our re-

turn data is not iid Gaussian, and instead, we simulate data using the bootstrap method

of Efron (1979). For the construction of the simulated data, we use the monthly returns

of the six datasets considered in Kan, Wang, and Zhou (2021). The first four datasets are

downloaded from Kenneth French’s website: (i) 10 momentum portfolios (10MOM ) from
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January 1927 through December 2019, (ii) 25 portfolios formed on size and book-to-market

(25SBTM ) from January 1927 through December 2019, (iii) 25 portfolios formed on operat-

ing profitability and investment (25OPINV ) from July 1963 through December 2019, (iv) 49

industry portfolios (49IND) from July 1969 through December 2019. The last two datasets

come from the 23 anomalies considered by Novy-Marx and Velikov (2016) and are down-

loaded from Robert Novy-Marx’s website: (v) the long and short legs of eight low-turnover

anomalies (16LTANOM ) from July 1963 through December 2013 and (vi) the long and short

legs of all the 23 anomalies (46ANOM ) from July 1973 through December 2013.20

We now explain how we construct the simulated data that rely on iid Gaussian returns.

For each of the six empirical datasets, we compute the sample vector of means µ̂ and sample

covariance matrix Σ̂, and use these sample estimates as the population parameters of a

multivariate normal distribution N (µ̂, Σ̂) from which we draw T observations, where T ∈

(120, 180, 240). We construct M = 100,000 simulated datasets of T observations using this

method and compute the estimated shrinkage portfolio ŵm(κ) for each of the M simulated

datasets. Then, the OOSU mean, OOSU variance, and mean-risk OOSU of the estimated

shrinkage portfolio ŵ?(κ) are approximated as

E[U(ŵ?(κ))] ≈ 1
M

M∑
m=1

U(ŵ?m(κ)), (33)

V[U(ŵ?(κ))] ≈ 1
M

M∑
m=1

(U(ŵ?m(κ))− E[U(ŵ?(κ))])2 , (34)

R(ŵ?(κ)) ≈ E[U(ŵ?(κ))]− λ
√
V[U(ŵ?(κ))], (35)

where U(ŵ?m(κ)) is the investor’s out-of-sample utility defined as in Equation (12) of the

estimated shrinkage portfolio ŵ?m(κ) obtained from the mth simulated dataset. We set the

risk-aversion coefficient to γ = 3 as in Kan and Zhou (2007) and Kan, Wang, and Zhou

(2021). We also set the coefficient λ to λ = 2, which corresponds to a two-sigma uncertainty

set around the estimated OOSU mean in (31).21

The simulation with iid Gaussian data is interesting because the theoretical results rely on

20We thank Kenneth French and Robert Novy-Marx for making their data publicly available.
21In the performance analysis with real return data in Section 5.2, we also consider the case with λ = 4

and with a cross-validated λ.
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the assumption that stock returns are iid multivariate Gaussian; see Assumption 2. However,

this assumption does not hold in practice, and therefore, the second type of simulated data

is obtained by bootstrapping return data from the original sample. In particular we create

1,000 bootstrap samples of 2T return observations, where T ∈ (120, 180, 240). For each

bootstrap sample of 2T observations, we use the first half to estimate the shrinkage portfolio

and evaluate its performance in the second half of the sample. We compute the OOSU

mean, variance, and the mean-risk OOSU as in Equations (33)–(35) from the 1,000 OOSU

observations obtained from the 1,000 bootstrap samples.

5.1.1 Discussion of results for simulated return data

Table 1 reports the OOSU mean, standard deviation, and the mean-risk OOSU for the

simulated Gaussian data. We consider the shrinkage portfolio with the estimated intensity

κ̂?E that maximizes OOSU mean and the shrinkage portfolio with the estimated intensity

κ̂?R that maximizes our proposed mean-risk OOSU measure with λ = 2. Panel A reports

the performance of the estimated shrinkage portfolios that exploit the estimated intensities

defined in Appendix IA.1, and Panel B reports the performance loss (in percentage) of the

estimated shrinkage portfolios that exploit the estimated intensities defined in Appendix IA.1

relative to the performance of the estimated shrinkage portfolios that exploit the optimal

but unfeasible shrinkage intensities.

We observe that for sample sizes of T = 180 and 240, the shrinkage portfolio that exploits

κ̂?E has a similar or larger OOSU mean than that of the shrinkage portfolio that exploits κ̂?R.

This is reasonable because κ̂?E is estimated to maximize OOSU mean under the assumption

that stock returns are iid Gaussian, which is satisfied in this part of the analysis. However,

when the sample size decreases to T = 120, the shrinkage portfolio that exploits κ̂?R delivers a

larger OOSU mean than that of the shrinkage portfolio exploiting κ̂?E for four datasets. This

suggests that κ̂?R emerges as a robust shrinkage intensity that is subject to lower estimation

risk than κ̂?E, which allows our robust shrinkage portfolio to outperform in terms of OOSU

mean the shrinkage portfolio designed to optimize it. In unreported results, we also show

that the shrinkage portfolio constructed with κ̂?R systematically delivers an OOSU mean

larger than that of the SMV and SGMV portfolios.
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Figure 5: Boxplots of shrinkage intensities in Gaussian simulated data
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Notes. These boxplots depict the estimated shrinkage intensity of the portfolio maximizing out-of-sample
utility mean (κ̂?

E) and the estimated shrinkage intensity of the portfolio maximizing the robustness measure
in Section 4 (κ̂?

R). The boxplots depict the estimated intensities from 100,000 simulated samples of T obser-
vations drawn from a multivariate Gaussian distribution whose moments are calibrated from the dataset of
25 portfolios of stocks sorted on size and book-to-market. We consider a sample size of T = 120 and 240, a
risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the portfolio robustness measure.

In addition, we observe that the shrinkage portfolio that exploits κ̂?E delivers an OOSU

that is notably more volatile than that of the shrinkage portfolio that exploits κ̂?R. The

difference is particularly large for the case with a sample size of T = 120 observations.22

Accordingly, the shrinkage portfolio that exploits the intensity κ̂?E delivers a smaller mean-

risk OOSU than that obtained by the shrinkage portfolio that exploits κ̂?R.

Panel B of Table 1 shows that the loss in OOSU mean and mean-risk OOSU relative to the

optimal shrinkage intensity is generally larger for the shrinkage portfolio exploiting κ̂?E than

for the shrinkage portfolio exploiting κ̂?R. This is because the estimated κ̂?E is more affected by

statistical errors and is more unstable than the estimated κ̂?R. To see this, Figure 5 depicts the

boxplots of the estimated shrinkage intensities κ̂?E and κ̂?R for the 25SBTM dataset across all

the simulated samples. We observe that κ̂?E has a larger volatility, particularly for T = 120,

which confirms that this shrinkage intensity is more sensitive to estimation errors.

Table 2 reports the performance results of the two shrinkage portfolios for the bootstrap

data. In terms of OOSU mean, we see that the shrinkage portfolio exploiting κ̂?R performs

remarkably better. Specifically, it outperforms the shrinkage portfolio exploiting κ̂?E for all

sample sizes for five out of six datasets. Therefore, the performance of the shrinkage portfolio

exploiting κ̂?E deteriorates relative to that of the robust shrinkage portfolio once the data is

22On average across the six datasets, κ̂?
E yields a monthly OOSU volatility of 0.56%, versus 0.43% for κ̂?

R.
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Figure 6: Density of monthly out-of-sample utility in simulated data

Notes. This figure depicts the density of monthly out-of-sample utilities of the estimated shrinkage portfolios
maximizing out-of-sample utility mean (κ̂?

E , in red) and the portfolio robustness measure in Section 4 (κ̂?
R,

in blue). The top figures depict the density function of the out-of-sample utilities of the shrinkage portfolios
from the 100,000 simulated samples of T observations drawn from a multivariate Gaussian distribution whose
moments are calibrated from the dataset of 25 portfolios of stocks sorted on size and book-to-market. The
bottom two plots are obtained by bootstrapping (with replacement) 1,000 samples of 2T observations from
the dataset of 25 portfolios of stocks sorted on size and book-to-market, where the first half of the bootstrap
sample is used to estimate the two shrinkage portfolios and the second half is used to evaluate the out-of-
sample utility of the shrinkage portfolios estimated in the first half of the sample. We consider a sample size
of T = 120 and 240 monthly observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the
portfolio robustness measure.

not Gaussian and the shrinkage intensities are estimated with error. In addition, the shrink-

age intensity κ̂?E yields an OOSU volatility that is on average across all datasets 31%, 25%,

and 21% larger than that delivered by κ̂?R for T = 120, 180, and 240 months, respectively.

Figure 6 summarizes the results from the simulation analysis. It depicts the OOSU density

of the estimated shrinkage portfolios for the simulated return data that uses the 25SBTM

dataset. The figure shows that, when the sample size is T = 120 or when the data is not

iid Gaussian, the shrinkage portfolio that exploits κ̂?R has a larger OOSU mean than that of

the shrinkage portfolio that exploits κ̂?E. In addition, the shrinkage portfolio exploiting κ̂?R
yields a smaller OOSU volatility than that of the shrinkage portfolio exploiting κ̂?E, both for
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T = 120 and 240. Finally, the OOSU density of the shrinkage portfolio exploiting κ̂?E has a

significantly heavier left tail than that of the shrinkage portfolio exploiting κ̂?R. This is not

only true for the non-Gaussian bootstrap data but also when stock returns are Gaussian.

The lower downside risk offered by our robust shrinkage portfolio represents an additional

advantage of our proposed method.

5.2 Real return data

We now evaluate the out-of-sample performance of the two shrinkage portfolios considered

in this manuscript and several benchmark portfolios using real return data. Real return data

typically does not satisfy the Gaussian assumption that we use to develop the theoretical

results. Therefore, this empirical analysis allows us to test the robustness of our considered

portfolios to non-Gaussian data. The results presented in this section demonstrate that the

shrinkage portfolio maximizing our proposed mean-risk OOSU criterion emerges as a robust

portfolio that delivers favorable average out-of-sample performance and a stable out-of-

sample performance even when stock returns are not Gaussian. We describe the performance

evaluation methodology in Section 5.2.1, and we discuss the results in Section 5.2.2. We

provide additional robustness tests in Appendix IA.2.

5.2.1 Portfolio strategies and performance evaluation

We use the same six datasets of characteristic and industry-sorted portfolios as those con-

sidered for the simulated return data in Section 5.1. In Appendix IA.2.3, we also consider a

dataset of 50 individual stocks from the CRSP database.

We study the performance of eight portfolio strategies. First, the equally weighted (EW)

portfolio. Second, the reward-to-risk (RTR) timing strategy of Kirby and Ostdiek (2012,

Equation (13)) that is designed to outperform the EW portfolio while keeping a small

turnover. Third, the sample global minimum-variance (SGMV) portfolio. Fourth, the sample

mean-variance (SMV) portfolio. Fifth, the shrinkage portfolio that exploits the intensity κ̂?E
maximizing OOSU mean as in Kan, Wang, and Zhou (2021). The last three portfolio strate-

gies correspond with different versions of the proposed shrinkage portfolio that exploits the
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intensity κ̂?R maximizing the mean-risk OOSU criterion that we introduce in Section 4. We

consider two fixed values of parameter λ and a cross-validated λ that is determined by the

data. The two fixed values are λ = 2 and λ = 4. For the cross-validated λ, we use a three-

fold cross-validation method similar to that used in Hastie, Tibshirani, and Friedman (2009),

DeMiguel et al. (2009), or Ao, Li, and Zheng (2019).23 We denote the cross-validated pa-

rameter as λ̂cv. We set the risk-aversion coefficient to γ = 3 as in Kan and Zhou (2007) and

Kan, Wang, and Zhou (2021).24

Similar to DeMiguel, Garlappi, and Uppal (2009), we use a rolling-window approach to

evaluate the out-of-sample performance of the different portfolio strategies. In particular,

let τ be the total number of monthly returns in the dataset and T the sample size used to

estimate the portfolios. Then, starting in month T + 1, we estimate portfolio w using an

estimation window that uses the first T monthly returns of our sample, and compute its

out-of-sample return in month T + 1 as p̃T+1 = w>rT+1, where rT+1 is the vector of stock

returns in month T +1. We then move the estimation window one month ahead and proceed

similarly until the end of the sample, resulting in a time series of τ−T out-of-sample returns;

i.e., p̃t, t = T + 1, . . . , τ . Our experiments consider estimation windows of size T = 120 and

240 monthly observations.

We compute the portfolio turnover over the out-of-sample period as

Turnovert =
N∑
i=1
|wi,t − wi,(t−1)+|, t = T + 1, . . . , τ, (36)

where wi,t is the weight on stock i in month t and wi,(t−1)+ is the weight before rebalancing in

month t that takes into account portfolio growth. We use this measure of portfolio turnover

to compute out-of-sample portfolio returns net of proportional transaction costs as

pT+1 = p̃T+1 and pt = (1 + p̃t) (1− c× Turnovert−1)− 1, t = T + 2, . . . , τ, (37)

23We use a three-fold cross-validation method because is computationally fast and the method deliv-
ers good performance. However, we find in unreported results that using five-fold cross-validation delivers
similar results.

24In Appendix IA.2.1, we also consider risk-aversion coefficients of γ = 1 and 5. In addition, in Ap-
pendix IA.2.4 and IA.2.5, we also consider portfolios that exploit the nonlinear shrinkage estimator of the
covariance matrix of Ledoit and Wolf (2020b), and a shrinkage portfolio that combines the SMV, SGMV,
and EW portfolios as in Tu and Zhou (2011).
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where c is the proportional cost required to rebalance the portfolio. We report the results for

the case without transaction costs (i.e., c = 0), and for the case where c = 20 basis points,

which is similar to the level of proportional transaction costs considered by Kan, Wang, and

Zhou (2021).25

Given the time series of out-of-sample returns net of proportional transaction costs pt,

we then compute the out-of-sample mean return and variance as

µp = 1
τ − T

τ∑
t=T+1

pt and σ2
p = 1

τ − T

τ∑
t=T+1

(pt − µp)2.

We compare the six considered portfolio strategies in terms of their annualized out-of-sample

certainty-equivalent return (CER) and Sharpe ratio (SR), as well as their monthly turnover:

OOS CER = 12×
(
µp −

γ

2σ
2
p

)
, (38)

OOS SR =
√

12× µp/σp, (39)

Turnover = 1
τ − T

τ∑
t=T+1

Turnovert. (40)

We also test the null hypothesis that the OOS CER or SR delivered by κ̂?R are equal to those

delivered by κ̂?E, against the alternative hypothesis that κ̂?R yields larger OOS CER or SR.

We compute the test p-values using the block bootstrap approach of Politis and Romano

(1994) with a block size of five and 1,000 bootstrap samples.

In addition to the aforementioned performance measures, we also assess the downside

risk of the shrinkage portfolios. It is important to compare portfolio strategies in terms of

their downside risk because it is a relevant dimension of portfolio performance for investors

(Ang, Chen, and Xing, 2006; Bali, Demirtas, and Levy, 2009). We measure downside risk

with the 1% and 5% Value-at-Risk of the out-of-sample portfolio returns. Finally, we also

compute the mean-risk OOSU metric introduced in Section 4 of the two shrinkage portfolios.

In particular, we divide the out-of-sample portfolio returns into non-overlapping three-year

25In Appendix IA.2.2, we show that our conclusions are robust to considering a larger value of c = 30
basis points.
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windows,26 and compute the OOS CER in each window. We then compute the mean and

standard deviation of the OOS CER across all windows to obtain a measure of the portfolio

mean-risk OOSU. For simplicity, we focus on the case with λ = 2; however, in unreported

results, we confirm that our conclusions are robust to considering different λ’s.

5.2.2 Discussion of results for real return data

Tables 3 and 4 report the main empirical results for portfolios constructed with window

sizes of T = 120 and T = 240 monthly observations, respectively. First, we observe that

the EW portfolio is not the optimal strategy. Indeed, it is only for the 49IND dataset that

it delivers the largest OOS CER and Sharpe ratio. For the five other datasets, the EW

portfolio is outperformed by the shrinkage portfolio exploiting κ̂?R. In comparison, the RTR

portfolio achieves its intended goal because it systematically outperforms the EW portfolio

while keeping a similar turnover. However, the RTR portfolio is also outperformed by the

shrinkage portfolio exploiting κ̂?R except for the 49IND dataset.

Second, the SMV portfolio delivers the worst performance among all considered portfolio

strategies. In particular, the SMV portfolio is systematically outperformed by the SGMV

portfolio. However, we observe that the shrinkage portfolio exploiting κ̂?R has a larger OOS

CER than the SGMV portfolio, both before and after transaction costs. Moreover, the shrink-

age portfolio exploiting κ̂?R has a comparable Sharpe ratio to that of the SGMV portfolio.

In contrast, the shrinkage portfolio exploiting κ̂?E generally outperforms the SGMV portfo-

lio before transaction costs, but this outperformance often disappears after accounting for

transaction costs because of its large turnover. This empirical evidence suggests that our pro-

posed mean-risk OOSU criterion is a valuable and robust metric for combining the SMV and

SGMV portfolios that fares well both in the absence and in the presence of transaction costs.

Third, we compare the proposed shrinkage portfolio exploiting κ̂?R to that of Kan, Wang,

and Zhou (2021) exploiting κ̂?E. The results show that the shrinkage portfolio utilizing inten-

sity κ̂?R, which accounts for both OOSU mean and volatility, delivers better out-of-sample

certainty-equivalent return and Sharpe ratio, with the difference being statistically signifi-

26We use three-year windows to obtain a reasonable trade-off between performance evaluation frequency
and number of observations in each window. The conclusions are robust to using other window lengths.
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cant. Looking at the case λ = 2, the shrinkage intensity κ̂?R systematically delivers a better

performance than κ̂?E. Moreover, it also delivers a lower turnover and, thus, an even greater

improvement net of transaction costs. We also observe that these conclusions are robust to

using a different fixed value of λ = 4. One may argue that keeping λ fixed for each estimation

window is restrictive because the optimal value may change over time. This is why, in Ta-

bles 3 and 4, we also consider a cross-validated λ̂cv that changes over time in a data-driven

way. The results suggest that this helps improve out-of-sample performance. Specifically,

the robust shrinkage portfolio that exploits λ̂cv outperforms the robust shrinkage portfolio

exploiting λ = 2 in nine out of 12 cases in terms of OOS CER,27 and 10 out of 12 cases in

terms of OOS Sharpe ratio, both before and after transaction costs.

The previous results are illustrated in Figure 7 that depicts, for the case with T = 120, the

out-of-sample CER delivered by the shrinkage portfolio exploiting κ̂?R with a cross-validated

parameter λ. For comparison, the figure also depicts the performance of the SGMV portfo-

lio and the shrinkage portfolio exploiting κ̂?E, which are the two benchmark portfolios that

perform best in our analysis. The figure shows that the shrinkage portfolio using κ̂?E delivers

good performance relative to the SGMV portfolio before transaction costs, but this outper-

formance does not hold in general after accounting for transaction costs. In comparison, the

shrinkage portfolio exploiting κ̂?R yields a greater OOS CER than that of the SGMV portfolio

and the shrinkage portfolio using κ̂?E, both before and after transaction costs.

To gauge the economic magnitude of the outperformance delivered by the shrinkage

portfolio exploiting κ̂?R, we report in Table 5 the cumulative wealth obtained by investing

one dollar in the shrinkage portfolios using κ̂?E and κ̂?R.28 For this part of the analysis, we

only consider the overlapping out-of-sample period across the six datasets for comparison

purposes. The table shows that the outperformance delivered by the shrinkage portfolio ex-

ploiting κ̂?R is economically significant, translating into a large increase of cumulative wealth

relative to the shrinkage portfolio using κ̂?E. For example, when T = 120, the cumulative

wealth increases by 28% when λ = 2, 59% when λ = 4, and 75% when λ = λ̂cv, on average

27The 12 cases correspond with the results across the six datasets for the two sample sizes considered in
the analysis.

28We standardize their out-of-sample returns to have the same volatility for comparison purposes. We
take as target volatility that of the market factor over the same out-of-sample period, which we download
from Kenneth French’s website.
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Figure 7: Out-of-sample certainty-equivalent return in real data

Notes. This figure depicts the annualized out-of-sample certainty-equivalent return of the SGMV portfolio
(first bar), the shrinkage portfolio maximizing out-of-sample utility mean (κ̂?

E), and the shrinkage portfolio
maximizing the portfolio robustness measure in Section 4 (κ̂?

R) for the six datasets discussed in Section 5.1. We
report the results of the robust shrinkage portfolio exploiting κ̂?

R obtained from a cross-validated coefficient λ.
We use a sample size of T = 120 monthly observations and a risk-aversion coefficient of γ = 3. The certainty-
equivalent return is either gross (left plot) or net of proportional transaction costs of 20 basis points (right
plot). The right y-axis reports the performance for the 46ANOM dataset for visibility.

across the six datasets.

Our fourth result is that, in addition to outperforming the shrinkage portfolio exploiting

κ̂?E in terms of OOS CER and Sharpe ratio, the shrinkage portfolio exploiting κ̂?R delivers a

more stable out-of-sample performance. In Table 6, we report the mean, standard deviation,

and the mean-risk OOSU metric with λ = 2 of the out-of-sample CER performance measure

introduced in Section 5.2.1. We find that the shrinkage portfolio exploiting κ̂?R delivers an

OOS CER that is both larger on average and more stable over time. This result is consistent

with our definition of portfolio robustness in the presence of parameter uncertainty.

Finally, in Table 7, we report the Value-at-Risk of the shrinkage portfolios exploiting

κ̂?E and κ̂?R. We observe that the shrinkage portfolio exploiting κ̂?R delivers a substantially

lower downside risk than that of the portfolio exploiting κ̂?E, which is an additional empirical

feature offered by our proposed robust shrinkage portfolio.

In Appendix IA.2, we assess the robustness of our results to considering different risk-

aversion coefficients, a higher level of transaction costs, using a dataset of individual stocks,

relying on a shrinkage estimator of the covariance matrix, and a different combination that

exploits the SMV portfolio, the SGMV portfolio, and the equally weighted portfolio as in
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Tu and Zhou (2011). We confirm that the insights from this section are robust to these

alternative experimental settings.

6 Conclusion

Kan and Zhou (2007) analytically characterize the substantial out-of-sample utility (OOSU)

losses that mean-variance investors experience, on average, due to parameter uncertainty. In

this manuscript, we instead characterize the OOSU volatility of the sample mean-variance

and global-minimum-variance portfolios, and show that SMV portfolios need unrealistically

large sample sizes —for some datasets over 1,000 years of monthly return data— to deliver an

out-of-sample performance as stable as that of SGMV portfolios. We use our characterization

of OOSU risk to propose a novel measure of portfolio robustness that strikes a balance

between OOSU mean and OOSU volatility. We show that shrinkage portfolios that optimize

our proposed measure of portfolio robustness tend to deliver higher certainty-equivalent

returns, Sharpe ratios, and cumulative wealth with lower turnover and downside risk. Our

framework can be applied to a broader range of settings than the one considered in the main

body of the manuscript. For instance, we also utilize our framework to construct shrinkage

portfolios that combine the SMV portfolio, the SGMV portfolio, and the equally weighted

portfolio as in Tu and Zhou (2011). Regardless of the combination used in the empirical

analysis, we show that our methodology provides robust portfolios that are more resilient to

estimation errors and exhibit favorable out-of-sample performance.
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Tables
Table 1: Out-of-sample performance of shrinkage portfolios in simulated Gaussian data

E[U(ŵ?(κ))]
√
V[U(ŵ?(κ))] R(ŵ?(κ))

T 120 180 240 120 180 240 120 180 240

Panel A: Estimated shrinkage intensities (in %)
10MOM κ̂?E 0.90 0.99 1.04 0.27 0.18 0.15 0.36 0.62 0.75

κ̂?R 0.93 0.99 1.03 0.20 0.15 0.13 0.54 0.70 0.77
25SBTM κ̂?E 0.73 0.89 0.99 0.37 0.25 0.20 0.00 0.40 0.58

κ̂?R 0.78 0.89 0.98 0.24 0.19 0.17 0.29 0.52 0.63
25OPINV κ̂?E 1.05 1.23 1.36 0.38 0.27 0.23 0.29 0.69 0.90

κ̂?R 1.07 1.22 1.33 0.26 0.22 0.21 0.55 0.77 0.90
49IND κ̂?E 0.71 0.93 1.08 0.45 0.29 0.23 -0.20 0.36 0.62

κ̂?R 0.78 0.95 1.07 0.26 0.20 0.19 0.25 0.55 0.69
16LTANOM κ̂?E 1.52 1.78 1.96 0.42 0.34 0.29 0.68 1.11 1.39

κ̂?R 1.48 1.73 1.92 0.37 0.34 0.30 0.73 1.05 1.31
46ANOM κ̂?E 6.20 8.40 9.68 1.46 1.12 0.91 3.28 6.17 7.86

κ̂?R 6.06 8.33 9.63 1.26 1.03 0.86 3.55 6.26 7.91

Panel B: Percentage loss relative to optimal shrinkage intensities (in %)
10MOM κ̂?E -9.25 -5.75 -4.48 107 49.4 28.9 -51.0 -22.6 -13.4

κ̂?R -3.22 -2.59 -3.18 109 64.4 43.7 -30.6 -16.8 -12.6
25SBTM κ̂?E -14.5 -8.54 -6.58 110 49.0 28.1 -100 -38.2 -21.4

κ̂?R -5.16 -4.37 -4.87 78.8 47.6 36.2 -47.1 -24.0 -18.5
25OPINV κ̂?E -10.8 -7.02 -5.34 82.6 34.6 20.7 -62.0 -25.1 -14.7

κ̂?R -4.15 -4.93 -5.20 73.4 43.7 35.4 -32.6 -20.5 -17.1
49IND κ̂?E -17.5 -9.68 -6.97 160 66.1 33.0 -139 -47.7 -23.9

κ̂?R -5.56 -4.55 -4.82 90.8 54.5 39.4 -54.0 -25.6 -18.8
16LTANOM κ̂?E -8.31 -5.38 -3.73 30.6 18.3 15.2 -33.3 -15.6 -9.84

κ̂?R -7.64 -6.78 -4.98 43.0 34.7 31.2 -32.0 -22.3 -15.7
46ANOM κ̂?E -3.97 -1.56 -0.80 14.9 6.79 4.19 -16.2 -4.27 -1.89

κ̂?R -3.82 -1.60 -0.83 18.5 9.18 5.50 -15.1 -4.71 -2.10

Notes. This table reports the out-of-sample performance of estimated shrinkage portfolios across six different
types of simulated Gaussian data. The first two blocks of three columns report the mean and standard
deviation of the monthly out-of-sample utility (in percentage) of the estimated shrinkage portfolios. The
third block of three columns reports the mean-risk out-of-sample utility, which is the proposed robustness
metric in Section 4. We report the results for the estimated shrinkage portfolio maximizing out-of-sample
utility mean (κ̂?

E) and for the estimated shrinkage portfolio maximizing the proposed robustness measure
(κ̂?

R). For each simulation, we define the population parameters of a multivariate Gaussian distribution with
the sample moments of each of the six datasets described in Section 5.1, and draw 100,000 samples of size
T . For each simulated sample, we construct the two shrinkage portfolios and their corresponding out-of-
sample utilities using Equation (12). Finally, we use the out-of-sample utilities of the 100,000 simulated
samples to construct our performance metrics as in (33)-(35). We consider sample sizes of T = 120, 180
and 240 monthly observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the portfolio
robustness measure. Panel A reports the performance of the estimated shrinkage portfolios that exploit the
estimated intensities defined in Appendix IA.1, and Panel B reports the performance loss (in percentage)
of the estimated shrinkage portfolios that exploit the estimated intensities defined Appendix IA.1 relative
to the performance of the estimated shrinkage portfolios that exploit the optimal but unfeasible shrinkage
intensities.
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Table 2: Out-of-sample performance of shrinkage portfolios in bootstrap data

E[U(ŵ?(κ))]
√
V[U(ŵ?(κ))] R(ŵ?(κ))

T 120 180 240 120 180 240 120 180 240

10MOM κ̂?E 0.73 0.82 0.86 0.86 0.70 0.53 -0.99 -0.58 -0.19
κ̂?R 0.80 0.85 0.88 0.72 0.60 0.47 -0.64 -0.34 -0.05

25SBTM κ̂?E 0.45 0.55 0.69 1.07 0.78 0.57 -1.69 -1.02 -046
κ̂?R 0.60 0.65 0.74 0.80 0.60 0.49 -0.99 -0.56 -0.19

25OPINV κ̂?E 0.78 0.88 0.96 0.81 0.46 0.41 -0.84 -0.10 0.14
κ̂?R 0.88 0.92 0.97 0.61 0.38 0.33 -0.34 0.15 0.32

49IND κ̂?E 0.44 0.53 0.60 0.70 0.44 0.34 -0.96 -0.34 -0.08
κ̂?R 0.58 0.62 0.66 0.51 0.33 0.26 -0.43 -0.04 0.15

16LTANOM κ̂?E 1.22 1.40 1.50 0.80 0.59 0.48 -0.38 0.21 0.54
κ̂?R 1.21 1.36 1.47 0.63 0.49 0.41 -0.05 0.37 0.64

46ANOM κ̂?E 3.85 5.36 6.32 3.36 2.65 1.97 -2.88 0.06 2.37
κ̂?R 4.25 5.64 6.52 2.46 2.17 1.67 -0.67 1.30 3.18

Notes. This table reports the out-of-sample performance of estimated shrinkage portfolios across six different
types of bootstrap simulated data. The first two blocks of three columns report the mean and standard
deviation of the monthly out-of-sample utility (in percentage) of the estimated shrinkage portfolios. The
third block of three columns reports the mean-risk out-of-sample utility, which is the proposed robustness
metric in Section 4. We report the results for the estimated shrinkage portfolio maximizing out-of-sample
utility mean (κ̂?

E) and for the estimated shrinkage portfolio maximizing the proposed robustness measure
(κ̂?

R). For each simulation, we construct 1,000 bootstrap samples of size 2T monthly observations from each
of the six datasets described in Section 5.1. For each simulated bootstrap sample, we construct the two
shrinkage portfolios using the first T observations, and compute the out-of-sample utility of the portfolio in
the remaining T observations. Finally, we use the out-of-sample utilities of the 1,000 simulated bootstrap
samples to construct our performance metrics as in (33)-(35). We consider sample sizes of T = 120, 180
and 240 monthly observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the portfolio
robustness measure.

38



Table 3: Out-of-sample performance in real data with a sample size T = 120

Benchmark strategies Proposed strategies (κ̂?
R)

EW RTR SGMV SMV κ̂?
E λ = 2 λ = 4 λ = λ̂cv

10MOM Gross OOS CER 0.069 0.082 0.097 -0.048 0.151 0.157 0.147 0.167
Net OOS CER 0.068 0.081 0.090 -0.108 0.119 0.130?? 0.123 0.135
Gross OOS SR 0.659 0.755 0.876 0.868 0.963 0.970 0.939 1.009?

Net OOS SR 0.653 0.748 0.829 0.765 0.876 0.888 0.861 0.902
Turnover 0.040 0.047 0.300 2.704 1.360 1.158 1.022 1.331
Average κ̂ / / 0 1 0.395 0.296 0.210 0.259

25SBTM Gross OOS CER 0.080 0.086 0.109 -0.708 0.154 0.157 0.149 0.158
Net OOS CER 0.079 0.085 0.090 -0.890 0.089 0.107?? 0.111? 0.104
Gross OOS SR 0.705 0.744 0.994 0.711 0.962 1.002?? 1.022? 1.084???

Net OOS SR 0.700 0.738 0.857 0.457 0.748 0.801??? 0.845?? 0.820?

Turnover 0.045 0.047 0.783 10.06 2.776 2.163 1.619 2.236
Average κ̂ / / 0 1 0.214 0.145 0.089 0.104

25OPINV Gross OOS CER 0.089 0.097 0.122 -0.814 0.125 0.135 0.135 0.138
Net OOS CER 0.088 0.096 0.108 -0.952 0.084 0.103?? 0.113? 0.104
Gross OOS SR 0.800 0.866 1.073 0.554 0.872 0.958??? 1.054??? 1.025??

Net OOS SR 0.794 0.859 0.976 0.376 0.712 0.809??? 0.922??? 0.843??

Turnover 0.040 0.048 0.569 6.982 1.730 1.293 0.920 1.395
Average κ̂ / / 0 1 0.191 0.120 0.067 0.083

49IND Gross OOS CER 0.092 0.096 0.081 -4.667 0.077 0.082 0.083 0.084
Net OOS CER 0.091 0.095 0.061 -4.745 0.048 0.058? 0.062 0.062
Gross OOS SR 0.816 0.864 0.788 0.244 0.704 0.763? 0.793? 0.801
Net OOS SR 0.809 0.856 0.647 0.042 0.539 0.610?? 0.649?? 0.646
Turnover 0.049 0.051 0.822 15.34 1.205 0.977 0.878 0.928
Average κ̂ / / 0 1 0.043 0.024 0.016 0.008

16LTANOM Gross OOS CER 0.078 0.087 0.110 -0.274 0.148 0.152 0.143 0.157
Net OOS CER 0.077 0.086 0.098 -0.394 0.097 0.110 0.108 0.119
Gross OOS SR 0.703 0.759 1.003 0.725 0.943 0.981 0.983 1.119??

Net OOS SR 0.697 0.752 0.916 0.538 0.771 0.817?? 0.826 0.917?

Turnover 0.044 0.055 0.502 5.657 2.167 1.751 1.450 1.605
Average κ̂ / / 0 1 0.309 0.218 0.151 0.131

46ANOM Gross OOS CER 0.056 0.084 0.080 -14.74 0.339 0.541??? 0.602??? 0.513
Net OOS CER 0.055 0.083 0.043 -11.46 0.163 0.363??? 0.435??? 0.389?

Gross OOS SR 0.581 0.759 0.798 1.953 2.030 2.038 2.039 1.927
Net OOS SR 0.575 0.750 0.523 1.612 1.777 1.795?? 1.806? 1.616?

Turnover 0.044 0.055 1.520 48.03 13.57 11.55 10.50 5.377
Average κ̂ / / 0 1 0.250 0.207 0.181 0.063

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed using a sample size of
T = 120 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of γ = 3.
The table reports the annualized out-of-sample certainty-equivalent return (OOS CER), the annualized out-
of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio strategies. For
the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross performance and the
performance net of proportional transaction costs of 20 basis points. We also report the average estimated
shrinkage intensity κ̂ over time, except for the EW and RTR portfolios that do not combine the SMV and
SGMV portfolios. The stars ?, ??, ? ? ? for the OOS CER and SR of the shrinkage portfolio exploiting κ̂?

R

establish that the OOS CER and SR of the shrinkage portfolio exploiting κ̂?
R is larger than that of the

shrinkage portfolio exploiting κ̂?
E at a confidence level of 10%, 5%, and 1%, respectively. The numbers in

bold font identify the best portfolio in terms of OOS CER.
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Table 4: Out-of-sample performance in real data with a sample size T = 240

Benchmark strategies Proposed strategies (κ̂?
R)

EW RTR SGMV SMV κ̂?
E λ = 2 λ = 4 λ = λ̂cv

10MOM Gross OOS CER 0.079 0.094 0.109 0.086 0.171 0.177? 0.179 0.192
Net OOS CER 0.078 0.093 0.105 0.054 0.150 0.157?? 0.160? 0.172?

Gross OOS SR 0.739 0.857 0.993 0.946 1.019 1.031?? 1.035 1.096???

Net OOS SR 0.733 0.851 0.961 0.881 0.961 0.975?? 0.981? 1.029??

Turnover 0.039 0.037 0.184 1.416 0.915 0.838 0.790 0.831
Average κ̂ / / 0 1 0.546 0.471 0.422 0.389

25SBTM Gross OOS CER 0.092 0.098 0.127 -0.062 0.179 0.178 0.170 0.181
Net OOS CER 0.091 0.097 0.117 -0.154 0.135 0.141 0.137 0.147
Gross OOS SR 0.803 0.850 1.195 0.894 1.038 1.055? 1.050 1.183???

Net OOS SR 0.797 0.845 1.110 0.738 0.900 0.922?? 0.922 1.021???

Turnover 0.041 0.039 0.442 4.337 1.881 1.618 1.395 1.413
Average κ̂ / / 0 1 0.364 0.289 0.217 0.187

25OPINV Gross OOS CER 0.085 0.093 0.137 -0.184 0.159 0.164 0.163 0.154
Net OOS CER 0.084 0.092 0.131 -0.246 0.133 0.144 0.147 0.133
Gross OOS SR 0.786 0.859 1.225 0.679 1.009 1.099??? 1.202??? 1.095?

Net OOS SR 0.780 0.853 1.176 0.576 0.908 1.002??? 1.114??? 0.985
Turnover 0.039 0.036 0.271 2.772 1.048 0.848 0.637 0.871
Average κ̂ / / 0 1 0.320 0.232 0.147 0.161

49IND Gross OOS CER 0.080 0.082 0.061 -1.184 0.052 0.061 0.062 0.063
Net OOS CER 0.079 0.081 0.052 -1.262 0.037 0.048? 0.052 0.053
Gross OOS SR 0.752 0.793 0.678 0.162 0.563 0.642?? 0.678? 0.694
Net OOS SR 0.745 0.787 0.607 0.050 0.471 0.556?? 0.600? 0.611?

Turnover 0.048 0.040 0.361 4.332 0.634 0.503 0.421 0.429
Average κ̂ / / 0 1 0.087 0.054 0.035 0.011

16LTANOM Gross OOS CER 0.068 0.080 0.129 0.047 0.211 0.217 0.221 0.203
Net OOS CER 0.067 0.079 0.122 -0.014 0.175 0.184 0.191 0.172
Gross OOS SR 0.655 0.732 1.191 0.960 1.131 1.167?? 1.207?? 1.261??

Net OOS SR 0.650 0.726 1.139 0.854 1.024 1.061?? 1.100?? 1.119?

Turnover 0.042 0.040 0.279 2.578 1.504 1.363 1.254 1.277
Average κ̂ / / 0 1 0.522 0.449 0.388 0.309

46ANOM Gross OOS CER 0.051 0.078 0.127 -6.346 -1.044 -0.781??? -0.665??? 0.327???

Net OOS CER 0.050 0.077 0.109 -5.933 -1.101 -0.850??? -0.737??? 0.237???

Gross OOS SR 0.551 0.723 1.173 1.364 1.428 1.436?? 1.441?? 1.482
Net OOS SR 0.545 0.717 1.031 1.220 1.293 1.303??? 1.309?? 1.331
Turnover 0.046 0.042 0.769 15.52 8.488 7.912 7.626 4.401
Average κ̂ / / 0 1 0.511 0.471 0.447 0.215

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed using a sample of
T = 240 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of γ = 3.
The table reports the annualized out-of-sample certainty-equivalent return (OOS CER), the annualized out-
of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio strategies. For
the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross performance and the
performance net of proportional transaction costs of 20 basis points. We also report the average estimated
shrinkage intensity κ̂ over time, except for the EW and RTR portfolios that do not combine the SMV and
SGMV portfolios. The stars ?, ??, ? ? ? for the OOS CER and SR of the shrinkage portfolio exploiting κ̂?

R

establish that the OOS CER and SR of the shrinkage portfolio exploiting κ̂?
R is larger than that of the

shrinkage portfolio exploiting κ̂?
E at a confidence level of 10%, 5%, and 1%, respectively. The numbers in

bold font identify the best portfolio in terms of OOS CER.
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Table 5: Cumulative wealth net of transaction costs of shrinkage portfolios in real data

κ̂?E
κ̂?R

λ = 2 λ = 4 λ = λ̂cv

Panel A: T = 120 (July 1983 – December 2013)
10MOM 88.3 98.2 (+11%) 101 (+14%) 117 (+32%)

25SBTM 146 189 (+29%) 219 (+49%) 370 (+153%)

25OPINV 34.2 57.1 (+67%) 101 (+195%) 52.1 (+52%)

49IND 5.85 7.48 (+28%) 8.83 (+51%) 8.28 (+41%)

16LTANOM 27.6 33.7 (+22%) 35.6 (+29%) 88.6 (+221%)

46ANOM 2995 3248 (+8%) 3432 (+15%) 1411 (-53%)

Panel B: T = 240 (July 1993 – December 2013)
10MOM 5.87 6.35 (+8%) 6.94 (+18%) 7.27 (+24%)

25SBTM 18.3 19.3 (+6%) 19.0 (+4%) 32.7 (+78%)

25OPINV 9.87 12.4 (+26%) 16.5 (+67%) 10.6 (+7%)

49IND 2.25 2.96 (+32%) 3.37 (+50%) 3.51 (+56%)

16LTANOM 8.78 10.0 (+14%) 11.8 (+35%) 13.8 (+57%)

46ANOM 46.5 47.9 (+3%) 48.8 (+5%) 52.2 (+12%)

Notes. This table reports the cumulative wealth net of proportional transaction costs of 20 basis points of the
estimated shrinkage portfolios. We consider the estimated shrinkage portfolio that maximizes out-of-sample
utility mean (κ̂?

E), and the estimated shrinkage portfolio that maximizes the portfolio robustness measure
in Section 4 (κ̂?

R). We report the cumulative wealth of the shrinkage portfolios for the six datasets discussed
in Section 5.1. The out-of-sample returns are standardized to have the same volatility as that of the market
factor during the same time period. We only consider the overlapping out-of-sample period across the six
datasets, which spans July 1983 through December 2013 when the portfolios are estimated with a sample
size of T = 120 (Panel A) and July 1993 through December 2013 when the portfolios are estimated with a
sample size of T = 240 (Panel B). The figures in parenthesis report the percentage difference in cumulative
wealth between the shrinkage portfolio exploiting κ̂?

R and the shrinkage portfolio exploiting κ̂?
E . We use a

risk-aversion coefficient of γ = 3, and coefficients λ = 2, λ = 4, and a cross-validated λ for the shrinkage
portfolio that maximizes the proposed robustness measure.
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Table 6: Out-of-sample certainty-equivalent returns of shrinkage portfolios in real data

Mean OOS CER Std dev OOS CER Mean-risk OOS CER

T = 120 T = 240 T = 120 T = 240 T = 120 T = 240

Panel A: Without transaction costs (in %)
10MOM κ̂?E 1.332 1.523 2.510 2.739 -3.688 -3.956

κ̂?R 1.372 1.562 2.273 2.577 -3.175 -3.592
25SBTM κ̂?E 1.335 1.552 1.632 1.675 -1.929 -1.798

κ̂?R 1.349 1.543 1.508 1.397 -1.667 -1.252
25OPINV κ̂?E 0.986 1.229 1.321 1.327 -1.656 -1.425

κ̂?R 1.087 1.326 1.096 1.125 -1.105 -0.925
49IND κ̂?E 0.706 0.487 1.138 0.908 -1.570 -1.328

κ̂?R 0.735 0.552 1.045 0.782 -1.355 -1.013
16LTANOM κ̂?E 1.219 1.755 1.565 2.534 -1.911 -3.312

κ̂?R 1.259 1.801 1.304 2.351 -1.349 -2.901
46ANOM κ̂?E 5.880 -4.728 9.954 4.270 -14.03 -13.27

κ̂?R 6.674 -3.009 8.903 3.676 -11.13 -10.36

Panel B: Net of transaction costs (in %)
10MOM κ̂?E 1.060 1.344 2.477 2.730 -3.894 -4.115

κ̂?R 1.140 1.398 2.237 2.567 -3.333 -3.735
25SBTM κ̂?E 0.780 1.182 1.433 1.706 -2.086 -2.230

κ̂?R 0.914 1.224 1.311 1.424 -1.707 -1.624
25OPINV κ̂?E 0.630 1.019 1.328 1.312 -2.025 -1.605

κ̂?R 0.820 1.157 1.083 1.110 -1.346 -1.063
49IND κ̂?E 0.463 0.364 1.113 0.930 -1.763 -1.496

κ̂?R 0.538 0.454 1.018 0.799 -1.498 -1.144
16LTANOM κ̂?E 0.801 1.466 1.546 2.507 -2.291 -3.548

κ̂?R 0.919 1.541 1.276 2.322 -1.633 -3.103
46ANOM κ̂?E 3.641 -5.681 8.857 4.298 -14.07 -14.28

κ̂?R 4.657 -3.992 7.824 3.720 -10.99 -11.43

Notes. This table reports the out-of-sample certainty-equivalent return (OOS CER) mean, standard devia-
tion, and mean-risk, defined as the difference between the mean and twice the standard deviation of shrinkage
portfolios. We consider the estimated shrinkage portfolio that maximizes out-of-sample utility mean (κ̂?

E),
and the estimated shrinkage portfolio that maximizes the portfolio robustness measure in Section 4 (κ̂?

R).
We report the performance results of the shrinkage portfolios for the six datasets discussed in Section 5.1.
We estimate the shrinkage portfolios with sample sizes of T = 120 and T = 240 monthly observations, a risk-
aversion coefficient of γ = 3, and a coefficient λ = 2 for the shrinkage portfolio that maximizes the proposed
robustness measure. We obtain the performance measures applying Equations (33)-(35) to the OOS CER’s
of the shrinkage portfolios obtained by dividing the out-of-sample portfolio returns into non-overlapping
three-year windows and computing for each three-year window the OOS CER of the shrinkage portfolios.
Panel A considers the case without transaction costs, and Panel B considers the case with proportional
transaction costs of 20 basis points.
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Table 7: Value-at-risk of shrinkage portfolios in real data

OOS 1% VaR OOS 5% VaR

κ̂?E
κ̂?R κ̂?E

κ̂?R

λ = 2 λ = 4 λ = λ̂cv λ = 2 λ = 4 λ = λ̂cv

Panel A: Without transaction costs
T = 120 10MOM 0.241 0.216 0.203 0.207 0.116 0.101 0.095 0.091

25SBTM 0.202 0.164 0.149 0.131 0.100 0.081 0.067 0.068
25OPINV 0.203 0.180 0.116 0.138 0.089 0.073 0.058 0.060
49IND 0.134 0.116 0.106 0.101 0.070 0.065 0.066 0.062
16LTANOM 0.190 0.165 0.157 0.116 0.103 0.088 0.079 0.070
46ANOM 0.522 0.453 0.426 0.159 0.220 0.186 0.163 0.074

T = 240 10MOM 0.288 0.272 0.266 0.213 0.129 0.121 0.112 0.102
25SBTM 0.215 0.193 0.170 0.152 0.094 0.083 0.070 0.069
25OPINV 0.198 0.159 0.130 0.138 0.100 0.081 0.066 0.078
49IND 0.142 0.106 0.094 0.092 0.068 0.063 0.059 0.057
16LTANOM 0.180 0.163 0.148 0.108 0.113 0.100 0.092 0.080
46ANOM 0.962 0.873 0.817 0.500 0.381 0.358 0.331 0.156

Panel B: Net of transaction costs
T = 120 10MOM 0.244 0.219 0.205 0.208 0.116 0.106 0.097 0.095

25SBTM 0.216 0.168 0.155 0.138 0.109 0.085 0.071 0.073
25OPINV 0.208 0.183 0.118 0.142 0.091 0.075 0.062 0.064
49IND 0.136 0.118 0.108 0.102 0.073 0.067 0.068 0.063
16LTANOM 0.193 0.170 0.162 0.119 0.109 0.093 0.081 0.073
46ANOM 0.542 0.473 0.445 0.163 0.238 0.204 0.174 0.091

T = 240 10MOM 0.291 0.276 0.270 0.215 0.130 0.124 0.114 0.103
25SBTM 0.218 0.196 0.174 0.153 0.100 0.088 0.073 0.071
25OPINV 0.200 0.160 0.131 0.139 0.103 0.083 0.067 0.060
49IND 0.143 0.107 0.095 0.093 0.069 0.064 0.060 0.057
16LTANOM 0.182 0.165 0.151 0.115 0.116 0.102 0.094 0.083
46ANOM 0.963 0.876 0.820 0.505 0.391 0.367 0.354 0.158

Notes. This table reports the out-of-sample 1% and 5% Value-at-Risk of the estimated shrinkage portfolio
that maximizes out-of-sample utility mean (κ̂?

E) and the estimated shrinkage portfolio that maximizes the
portfolio robustness measure in Section 4 (κ̂?

R) for the six datasets discussed in Section 5.1. We estimate
the shrinkage portfolios using sample sizes of T = 120 and T = 240 monthly observations, a risk-aversion
coefficient of γ = 3, and coefficients λ = 2, λ = 4, and a cross-validated λ for the shrinkage portfolio that
maximizes the proposed robustness measure. The out-of-sample Value-at-Risk is computed as the negative
1st and 5th percentiles of the out-of-sample monthly returns. Panel A considers the case without transaction
costs, and Panel B considers the case with proportional transaction costs of 20 basis points.
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Internet Appendix to

A Robust Approach to Optimal Portfolio

Choice with Parameter Uncertainty



In Section IA.1, we provide details for the feasible estimators we use in the empirical analysis.

In Section IA.2, we check the robustness of our main results to several variations of the main

experimental setting considered in the main body of the manuscript. In Section IA.3, we

report the proofs for all the theoretical results in the manuscript.

IA.1 Feasible estimators of shrinkage intensities

The shrinkage intensities κ?E and κ?R in Equations (16) and (30) are unfeasible because they

depend on the unknown distributional parameters of stock returns. In this section, we provide

details for the feasible estimators we use in the empirical analysis.

For the return variance of the zero-cost portfolio, which is defined in (8) as ψ2, we use

the adjusted estimator proposed by Kan and Zhou (2007). Let ψ̂2 = µ̂>B̂µ̂ be the plug-in

estimator, then we estimate ψ2 as

ψ̂2
kz = (T −N − 1)ψ̂2 − (N − 1)

T
+ 2(ψ̂2)N−1

2 (1 + ψ̂2)−T−2
2

T ×B
(

ψ̂2

1+ψ̂2 ; N−1
2 , T−N+1

2

) , (IA1)

where B(x; a, b) =
∫ x

0 y
a−1(1− y)b−1dy is the incomplete beta function.

For the return variance of the GMV portfolio, which is defined as σ2
g in (7), we rely

on the shrinkage portfolio estimator proposed by Frahm and Memmel (2010, Theorem 2),

which provides smaller mean out-of-sample variance than the SGMV portfolio. Specifically,

we estimate σ2
g as

σ̂2
g = ŵ>fmΣ̂ŵfm, (IA2)

where ŵfm combines the equally weighted portfolio and the SGMV portfolio as

ŵfm = δ̂fmwew + (1− δ̂fm)ŵg,

with a shrinkage intensity

δ̂fm = min
1, N − 3

T −N + 2
ŵ>g Σ̂ŵg

w>ewΣ̂wew − ŵ>g Σ̂ŵg

 .
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IA.2 Robustness tests of empirical results

We now assess the robustness of our results to considering different risk-aversion coefficients,

a higher level of transaction costs, using a dataset of individual stocks, relying on a shrinkage

estimator of the covariance matrix, and combining the SMV and SGMV portfolios with the

equally weighted portfolio.

IA.2.1 Different risk-aversion coefficients

Tables IA.1 and IA.2 replicate the results in Tables 3 and 4 for the case where the risk-aversion

coefficient is γ = 1 and 5, respectively. For conciseness, we do not report the performance

of the EW portfolio because the RTR portfolio always outperforms it, and we do not report

the abysmal performance of the SMV portfolio either.

For the case with γ = 1 in Table IA.1, we observe that the shrinkage portfolio exploiting

κ̂?R delivers a better OOS CER than the RTR portfolio, the SGMV portfolio, and the shrink-

age portfolio exploiting κ̂?E, both before and after transaction costs. The cross-validated λ

generally delivers the best OOS CER before transaction costs, but it is often outperformed

by the constant λ = 4 after transaction costs because fixing λ yields a smaller turnover. We

also see that the outperformance net of transaction costs delivered by κ̂?R relative to κ̂?E is

larger than in the case with γ = 3.

For the case with γ = 5 in Table IA.2, we observe that the shrinkage portfolio exploiting

κ̂?R delivers a better OOS CER and OOS Sharpe ratio than the RTR portfolio, the SGMV

portfolio, and the shrinkage portfolio exploiting κ̂?E, both before and after transaction costs.

Further, we observe that the outperformance delivered by κ̂?R is not too sensitive to the value

of λ that is considered. However, the cross-validated λ tends to deliver the best out-of-sample

performance. Overall, the results presented in this section confirm that the insights shown in

the main body of the manuscript are robust to considering different risk-aversion parameters.
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IA.2.2 Higher level of transaction costs

In Table IA.3, we replicate the results in Tables 3 and 4 using a higher level of proportional

transaction cost of 30 basis points in Equation (37). For conciseness, we do not report the

performance of the EW portfolio because the RTR portfolio always outperforms it, and we

do not report the abysmal performance of the SMV portfolio either.

The main insights of the manuscript are robust to considering a higher level of propor-

tional transaction costs. Because the shrinkage portfolio exploiting κ̂?E has a larger turnover

than that of the shrinkage portfolio exploiting κ̂?R, the impact of a higher level of transaction

costs on the performance of the shrinkage portfolio exploiting κ̂?E is more severe than that

of the shrinkage portfolio exploiting κ̂?R. Comparing the SGMV portfolio and the shrinkage

portfolio exploiting κ̂?R, we find that κ̂?R continues to deliver a better performance net of

transaction costs in nearly all cases. However, the outperformance is not as large as in the

case with 20 basis points because the SGMV portfolio has a smaller turnover. Finally, the

shrinkage portfolio exploiting intensity κ̂?R maintains a superior performance to that of the

RTR portfolio, except for the 49IND dataset.

IA.2.3 Dataset of individual stocks

The six datasets considered in the manuscript are industry-sorted and characteristic-sorted

portfolios. We now assess the out-of-sample performance for a dataset of 50 individual stocks.

We construct the dataset following the methodology in Jagannathan and Ma (2003) and

DeMiguel, Garlappi, and Uppal (2009), among others. We download monthly stock returns

from the Center for Research in Security Prices (CRSP) spanning September 1966 through

December 2019. Starting from September 1986, and then every year, we identify all the

stocks that have at least 80 monthly returns available during the past 20 years and the next

year. Among those, we select the 50 stocks with the largest market capitalization to form

our dataset for the next year, as in Barroso and Saxena (2021).

In Table IA.4, we report the out-of-sample performance of the six portfolio strategies con-

sidered in Tables 3 and 4. We observe that, for this dataset, the benefits from combining the

SGMV portfolio with the SMV portfolio are more limited. Specifically, the SGMV portfolio
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has a better out-of-sample performance than the two shrinkage portfolios both before and

after transaction costs. This is because, with individual stocks, the sample mean is largely

contaminated by estimation risk. Moreover, Campbell, Lo, and Mackinlay (1997) explain

that individual security returns display much less autocorrelation than portfolio returns and

therefore past returns are not as good predictors of future returns. This finding is consis-

tent with Barroso and Saxena (2021) who also find that, for datasets of individual stocks,

minimum-variance portfolios outperform mean-variance portfolios. Our methodology better

captures the challenges faced with individual stocks and assigns a shrinkage intensity κ̂?R that

is close to zero. In contrast, the shrinkage intensity κ̂?E is larger, which results in a shrinkage

portfolio that delivers a worse out-of-sample performance than that exploiting the shrink-

age intensity κ̂?R as well as the EW and RTR portfolios. In addition, we observe that the

shrinkage portfolio exploiting κ̂?R systematically outperforms the EW and RTR portfolios.

IA.2.4 Shrinkage estimator of the covariance matrix

The theoretical results in the manuscript consider the sample estimator of the covariance

matrix in Equation (1) because its distribution is known under the assumption of iid Gaussian

stock returns. However, it is well known that this estimator contains large statistical errors,

especially when the number of stocks is large relative to the sample size. In this section, we

explain how to use our methodology when we use a shrinkage estimator of the covariance

matrix instead of the sample covariance matrix.

We use the latest developments in the field of covariance matrix estimation and rely on the

nonlinear shrinkage estimator of Ledoit and Wolf (2020a). It is optimal for the minimum-

variance loss function as in Ledoit and Wolf (2017) but is computationally much faster

because it has an analytical solution. Denoting the estimator by Σ̂lw, the combination of the

estimated mean-variance and minimum-variance portfolios is

ŵ?lw(κ) = Σ̂−1
lw e

e>Σ̂−1
lw e

+ κ

γ
Σ̂−1
lw

(
I− ee>Σ̂−1

lw

e>Σ̂−1
lw e

)
µ̂. (IA3)

Analytical expressions for the OOSU mean and variance of portfolio ŵ?lw(κ) are not available

and, thus, the optimal shrinkage intensities maximizing OOSU mean and mean-risk OOSU
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are unknown. As a remedy, Kan, Wang, and Zhou (2021) propose to deploy the optimal κ

derived under the sample covariance matrix. However, this approach overstates the impact of

estimation errors affecting the covariance matrix. Therefore, instead of using the shrinkage

intensities that take µ and Σ as unknown, we construct shrinkage portfolios assuming that

only the vector of means µ is unknown.

In the next proposition, we derive a closed-form expression for the mean-risk OOSU of

the shrinkage portfolio when only the vector of means µ is unknown.

Proposition IA.1. Let N ≥ 2, T > N , and Assumption 2 holds. When the covariance

matrix Σ is known, the mean-risk out-of-sample utility of the shrinkage portfolio ŵ?(κ) is

R(ŵ?(κ)) = µg−
γ

2σ
2
g+ 1

γ

(
κψ2 − κ2

2

(
ψ2 + N − 1

T

)
− λ κψ√

T

√
(1− κ)2 + κ2N − 1

2Tψ2

)
. (IA4)

Moreover, the optimal shrinkage intensity κ?R ≤ κ?E, where κ?E = ψ2

ψ2+(N−1)/T maximizes the

out-of-sample utility mean of the shrinkage portfolio.

Note that, contrary to the case that exploits the sample covariance matrix instead of the

true covariance matrix, κ?R does not depend on the parameters γ and σ2
g .

In Table IA.5, we report the out-of-sample performance of the shrinkage portfolio

ŵ?lw(κ) in (IA3) using the estimated shrinkage intensities κ̂?E and κ̂?R obtained from

Proposition IA.1.29 The results in Table IA.5 confirm that our main insights are robust to

considering the Ledoit and Wolf (2020a) shrinkage covariance matrix. The SMV portfolio

remains by far the worst strategy and is outperformed by the SGMV portfolio. However,

it is still useful to combine the two portfolios to enhance out-of-sample performance. The

shrinkage portfolio exploiting intensity κ̂?E often improves the gross OOS CER relative to

the SGMV portfolio, but this improvement often disappears net of transaction costs. In

contrast, our robust methodology to determine the optimal shrinkage intensity delivers, in

general, better performance. For example, when λ = 2, the shrinkage portfolio exploiting κ̂?R
outperforms the shrinkage portfolio exploiting κ̂?E in terms of OOS CER in all cases, both

before and after transaction costs. Moreover, similar to the results in the main body of

29Note that it is straightforward to obtain the optimal value of κ̂?
E from Equation (IA4) by setting λ = 0.
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the manuscript, we find that the cross-validated λ generates even superior performance.

Compared to the SGMV portfolio, the cross-validated λ yields a greater OOS CER in 11

out of 12 cases before transaction costs and eight out of 12 cases after transaction costs.

This is a remarkable result because GMV portfolios estimated with shrinkage estimators of

the covariance matrix are notoriously difficult to outperform in practice.

IA.2.5 Combining with the equally weighted portfolio

Motivated by the finding of DeMiguel, Garlappi, and Uppal (2009) that the equally weighted

(EW) portfolio often outperforms mean-variance portfolios out of sample, Tu and Zhou

(2011) extend the framework introduced by Kan and Zhou (2007) and combine several

estimates of the mean-variance portfolio with the EW portfolio. This section follows a similar

approach and applies our methodology to the shrinkage portfolio that combines the SMV,

SGMV, and EW portfolios.

Let wew = e/N denote the EW portfolio. Then, the three-fund shrinkage portfolio that

combines the SMV, SGMV, and EW portfolios is

ŵ?(δ, κ) = (1− δ)wew + δŵ?(κ) = (1− δ)wew + δ ((1− κ)ŵg + κŵ?) , (IA5)

with δ, κ ∈ [0, 1]. In the next proposition, we derive closed-form expressions for the OOSU

mean and variance of the shrinkage portfolio ŵ?(δ, κ). This result allows us to compute

the mean-risk OOSU and find the corresponding optimal shrinkage intensities (δ?R, κ?R). For

notational simplicity, we introduce the following terms

µew = w>ewµ and σ2
ew = w>ewΣwew, (IA6)

for the mean return and variance of the EW portfolio.

Proposition IA.2. Let Assumptions 1 and 2 hold. Then,

1. The out-of-sample utility mean of the three-fund shrinkage portfolio ŵ?(δ, κ) is

E[U(ŵ?(δ, κ))] = (1− δ)µew + δ

(
µg + κ

γ

T

T −N − 1ψ
2
)
− γ

2

(
(1− δ)2σ2

ew
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+ δ2
(

T − 2
T −N − 1σ

2
g + κ2

γ2
T (T − 2)(Tψ2 +N − 1)

(T −N)(T −N − 1)(T −N − 3)

)

+ 2δ(1− δ)
(
σ2
g + κ

γ

T

T −N − 1(µew − µg)
))

. (IA7)

2. The out-of-sample utility variance of the three-fund shrinkage portfolio ŵ?(δ, κ) is

V[U(ŵ?(δ, κ))] = V
[
ŵ?(δ, κ)>µ

]
+ γ2

4 V
[
ŵ?(δ, κ)>Σŵ?(δ, κ)

]
− γCov

[
ŵ?(δ, κ)>µ, ŵ?(δ, κ)>Σŵ?(δ, κ)

]
, (IA8)

where the variance of the out-of-sample mean return is

V
[
ŵ?(δ, κ)>µ

]
= δ2

(
σ2
gψ

2

T −N − 1 + κ2ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3)

)
,

(IA9)

the variance of the out-of-sample return variance is

V
[
ŵ?(δ, κ)>Σŵ?(δ, κ)

]
= δ4

(
2σ4

g(N − 1)(T − 2)
(T −N − 1)2(T −N − 3)

+
4κ2σ2

g

γ2
T (T − 2)(T +N − 3)(Tψ2 +N − 1)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ 2κ4

γ4
T 2(T − 2)C(T,N, ψ2)

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7)

)

+ 4δ2(1− δ)2
(

(σ2
ew − σ2

g)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)(µew − µg)2
)

+ 8δ3(1− δ)κ
γ

(µew − µg)(
σ2
g

T (T − 2)
(T −N − 1)2(T −N − 3) + κ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
,

(IA10)

and the covariance between the out-of-sample mean return and variance is

Cov
[
ŵ?(δ, κ)>µ, ŵ?(δ, κ)>Σŵ?(δ, κ)

]
= 2δ3κ

γ

(
σ2
gψ

2 T (T − 2)
(T −N − 1)2(T −N − 3)
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+ κ2ψ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
+ 2δ2(1− δ)(µew − µg)(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2)(T −N − 1) + 2T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

)
. (IA11)

Using the result in Proposition IA.2, we can find numerically the shrinkage intensities

(δ?E, κ?E) maximizing OOSU mean and the shrinkage intensities (δ?R, κ?R) maximizing our

proposed mean-risk OOSU robustness metric in (29). Those shrinkage intensities depend

on the following distributional parameters of stock returns: µg, σ2
g , ψ2, µew, and σ2

ew. We

estimate σ2
g and ψ2 as in Appendix IA.1. We estimate µew and σ2

ew via the plug-in estimators

µ̂ew = w>ewµ̂ and σ̂2
ew = w>ewΣ̂wew, (IA12)

as in Tu and Zhou (2011). Finally, we estimate µg as the mean return of the shrinkage

portfolio that combines the EW and SGMV portfolios instead of using the plug-in estimator

of µg, which is highly contaminated by estimation errors. We select the shrinkage intensity

π of this shrinkage portfolio as the parameter π that minimizes the mean squared error of

the out-of-sample mean return of the portfolio.

Proposition IA.3. Let Assumptions 1 and 2 hold. Then, the shrinkage portfolio ŵ(π) =

πwew + (1− π)ŵg that minimizes the mean squared error E[(ŵ(π)′µ− µg)2] is obtained for

π =
σ2
gψ

2

σ2
gψ

2 + (µew − µg)(T −N − 1) . (IA13)

Using Proposition IA.3, we estimate µg as

µ̂g = ŵ(π̂)>µ̂ with π̂ =
σ̂2
gψ̂

2
kz

σ̂2
gψ̂

2
kz + (µ̂ew − ŵ>g µ̂)(T −N − 1)

, (IA14)

where ψ̂2
kz is defined in (IA1), σ̂2

g in (IA2), and µ̂ew in (IA12). Finally, using those estimators

of the distributional parameters of stock returns, we can obtain the estimated shrinkage

intensities (δ̂?E, κ̂?E) and (δ̂?R, κ̂?R) numerically using the results in Proposition IA.2.

In Tables IA.6 and IA.7, we report the out-of-sample performance of the shrinkage portfo-
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lio ŵ?(δ, κ) in (IA5) that combines the SMV, SGMV, and EW portfolios using the intensities

(δ̂?E, κ̂?E) and (δ̂?R, κ̂?R). As in Tables 3 and 4, we consider constant values of λ = 2 and λ = 4,

as well as a three-fold cross-validated λ.

We observe that the results in the manuscript are robust to considering the EW portfolio

in the shrinkage portfolios. Specifically, the robust shrinkage portfolio optimized for λ = 2

yields a greater OOS CER than the shrinkage portfolio maximizing OOSU mean in all cases

except one before transaction costs and all cases after transaction costs. It also systematically

delivers a greater Sharpe ratio. As in Tables 3 and 4, we also find that the cross-validated λ

yields strong out-of-sample performance. In particular, the cross-validated robust shrinkage

portfolio outperforms the SMV, SGMV, and EW portfolios in terms of OOS CER in all cases

before transaction costs and in nearly all cases after transaction costs.

Overall, the results presented in this section confirm that our proposed robustness mea-

sure can be applied in the construction of other investment strategies and outperform com-

binations of portfolios that only focus on maximizing OOSU mean as well as the individual

portfolios being combined.
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Table IA.1: Out-of-sample performance in real data with lower risk aversion

T = 120 T = 240

RTR SGMV κ̂?
E

κ̂?
R RTR SGMV κ̂?

E

κ̂?
R

λ = 2 λ = 4 λ = λ̂cv λ = 2 λ = 4 λ = λ̂cv

10MOM
Gross OOS CER 0.107 0.120 0.274 0.289 0.204 0.328 0.115 0.128 0.308 0.324 0.332 0.380
Net OOS CER 0.106 0.112 0.186 0.217 0.147 0.239 0.114 0.124 0.248 0.270 0.283 0.324
Gross OOS SR 0.755 0.876 0.783 0.773 0.655 0.811 0.857 0.993 0.819 0.822 0.824 0.876
Net OOS SR 0.748 0.829 0.693 0.690 0.580 0.694 0.851 0.961 0.760 0.766 0.770 0.805
Turnover 0.047 0.300 3.955 3.219 2.571 3.779 0.037 0.184 2.681 2.391 2.212 2.372
Average κ̂ / 0 0.395 0.273 0.147 0.249 / 0 0.546 0.454 0.397 0.374

25SBTM
Gross OOS CER 0.120 0.128 0.265 0.269 0.211 0.281 0.124 0.143 0.292 0.290 0.243 0.301
Net OOS CER 0.119 0.109 0.085 0.137 0.140 0.138 0.123 0.133 0.171 0.188 0.158 0.208
Gross OOS SR 0.744 0.994 0.734 0.742 0.689 0.849 0.850 1.195 0.774 0.762 0.698 0.844
Net OOS SR 0.738 0.857 0.505 0.529 0.539 0.534 0.845 1.110 0.633 0.626 0.567 0.666
Turnover 0.047 0.783 7.920 5.728 3.070 5.910 0.039 0.442 5.416 4.536 3.727 3.866
Average κ̂ / 0 0.214 0.131 0.053 0.099 / 0 0.364 0.280 0.183 0.185

25OPINV
Gross OOS CER 0.121 0.142 0.152 0.174 0.155 0.187 0.115 0.156 0.226 0.238 0.214 0.206
Net OOS CER 0.120 0.128 0.037 0.096 0.124 0.102 0.114 0.149 0.154 0.180 0.181 0.150
Gross OOS SR 0.866 1.073 0.562 0.607 0.865 0.695 0.859 1.225 0.673 0.738 0.896 0.705
Net OOS SR 0.859 0.976 0.386 0.439 0.716 0.463 0.853 1.176 0.559 0.618 0.783 0.569
Turnover 0.048 0.569 4.899 3.244 1.259 3.519 0.036 0.271 3.025 2.374 1.360 2.351
Average κ̂ / 0 0.191 0.104 0.025 0.079 / 0 0.320 0.221 0.092 0.156

49IND
Gross OOS CER 0.119 0.100 0.091 0.098 0.105 0.112 0.102 0.076 0.047 0.078 0.081 0.082
Net OOS CER 0.117 0.080 0.027 0.064 0.083 0.079 0.101 0.067 0.010 0.055 0.070 0.066
Gross OOS SR 0.864 0.788 0.436 0.595 0.792 0.786 0.793 0.678 0.312 0.469 0.672 0.684
Net OOS SR 0.856 0.647 0.251 0.421 0.645 0.584 0.787 0.607 0.208 0.365 0.587 0.562
Turnover 0.051 0.822 2.676 1.430 0.902 1.355 0.040 0.361 1.552 0.937 0.474 0.669
Average κ̂ / 0 0.043 0.016 0.006 0.006 / 0 0.087 0.041 0.015 0.007

16LTANOM
Gross OOS CER 0.118 0.129 0.241 0.245 0.188 0.271 0.107 0.146 0.380 0.398 0.417 0.369
Net OOS CER 0.117 0.117 0.095 0.132 0.096 0.162 0.106 0.139 0.273 0.301 0.329 0.277
Gross OOS SR 0.759 1.003 0.702 0.703 0.625 0.874 0.732 1.191 0.877 0.893 0.926 0.959
Net OOS SR 0.752 0.916 0.514 0.523 0.440 0.608 0.726 1.139 0.764 0.779 0.813 0.789
Turnover 0.055 0.502 6.336 4.836 3.927 4.479 0.040 0.279 4.515 4.087 3.636 3.745
Average κ̂ / 0 0.309 0.201 0.117 0.130 / 0 0.522 0.443 0.368 0.299

46ANOM
Gross OOS CER 0.111 0.097 0.833 1.442 1.619 1.410 0.104 0.144 -3.363 -2.576 -2.227 0.753
Net OOS CER 0.109 0.061 0.575 1.045 1.234 1.035 0.103 0.126 -2.975 -2.335 -2.043 0.518
Gross OOS SR 0.759 0.798 1.973 1.974 1.968 1.840 0.723 1.173 1.363 1.367 1.370 1.357
Net OOS SR 0.750 0.523 1.683 1.702 1.719 1.531 0.717 1.031 1.218 1.223 1.227 1.202
Turnover 0.055 1.520 40.39 34.19 30.40 15.25 0.042 0.769 25.33 23.58 22.71 12.93
Average κ̂ / 0 0.250 0.205 0.175 0.065 / 0 0.511 0.471 0.446 0.217

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed using a sample size of
T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of
γ = 1. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER), the annualized
out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio strategies.
For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross performance
and the performance net of proportional transaction costs of 20 basis points. We also report the average
estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not combine the SMV and
SGMV portfolios. The numbers in bold font identify the best portfolio in terms of OOS CER.
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Table IA.2: Out-of-sample performance in real data with higher risk aversion

T = 120 T = 240

RTR SGMV κ̂?
E

κ̂?
R RTR SGMV κ̂?

E

κ̂?
R

λ = 2 λ = 4 λ = λ̂cv λ = 2 λ = 4 λ = λ̂cv

10MOM
Gross OOS CER 0.057 0.075 0.108 0.112 0.110 0.117 0.072 0.090 0.129 0.132 0.133 0.139
Net OOS CER 0.056 0.068 0.088 0.094 0.093 0.097 0.071 0.085 0.115 0.119 0.121 0.126
Gross OOS SR 0.755 0.876 1.059 1.063 1.049 1.081 0.857 0.993 1.139 1.149 1.152 1.187
Net OOS SR 0.748 0.829 0.978 0.986 0.975 0.986 0.851 0.961 1.085 1.096 1.100 1.127
Turnover 0.047 0.300 0.862 0.759 0.695 0.853 0.037 0.184 0.572 0.534 0.512 0.528
Average κ̂ / 0 0.395 0.312 0.251 0.265 / 0 0.546 0.483 0.443 0.398

25SBTM
Gross OOS CER 0.052 0.090 0.116 0.119 0.117 0.118 0.072 0.111 0.143 0.143 0.140 0.144
Net OOS CER 0.051 0.071 0.074 0.084 0.087 0.081 0.071 0.101 0.115 0.118 0.118 0.121
Gross OOS SR 0.744 0.994 1.079 1.103 1.110 1.127 0.850 1.195 1.202 1.219 1.221 1.299
Net OOS SR 0.738 0.857 0.880 0.917 0.936 0.904 0.845 1.110 1.071 1.093 1.099 1.158
Turnover 0.047 0.783 1.806 1.501 1.281 1.543 0.039 0.442 1.201 1.065 0.960 0.946
Average κ̂ / 0 0.214 0.155 0.114 0.109 / 0 0.364 0.298 0.242 0.192

25OPINV
Gross OOS CER 0.074 0.102 0.104 0.110 0.111 0.112 0.072 0.119 0.131 0.135 0.135 0.130
Net OOS CER 0.073 0.088 0.076 0.087 0.092 0.088 0.071 0.113 0.115 0.121 0.124 0.115
Gross OOS SR 0.866 1.073 1.021 1.070 1.100 1.099 0.859 1.225 1.168 1.220 1.259 1.214
Net OOS SR 0.859 0.976 0.878 0.938 0.978 0.950 0.853 1.176 1.081 1.139 1.184 1.125
Turnover 0.048 0.569 1.143 0.938 0.795 0.992 0.036 0.271 0.670 0.571 0.485 0.589
Average κ̂ / 0 0.191 0.132 0.094 0.089 / 0 0.320 0.244 0.183 0.168

49IND
Gross OOS CER 0.073 0.061 0.059 0.062 0.063 0.063 0.062 0.046 0.041 0.045 0.046 0.047
Net OOS CER 0.072 0.042 0.036 0.041 0.042 0.043 0.061 0.037 0.029 0.035 0.037 0.038
Gross OOS SR 0.864 0.788 0.768 0.788 0.796 0.801 0.793 0.678 0.642 0.671 0.683 0.690
Net OOS SR 0.856 0.647 0.615 0.642 0.653 0.654 0.787 0.607 0.558 0.592 0.608 0.613
Turnover 0.051 0.822 0.981 0.894 0.859 0.868 0.040 0.361 0.483 0.430 0.399 0.390
Average κ̂ / 0 0.043 0.029 0.022 0.012 / 0 0.087 0.061 0.047 0.018

16LTANOM
Gross OOS CER 0.056 0.091 0.114 0.117 0.115 0.119 0.053 0.112 0.164 0.167 0.169 0.156
Net OOS CER 0.055 0.079 0.082 0.090 0.090 0.093 0.052 0.105 0.142 0.147 0.150 0.136
Gross OOS SR 0.759 1.003 1.068 1.092 1.094 1.146 0.732 1.191 1.290 1.321 1.347 1.347
Net OOS SR 0.752 0.916 0.914 0.947 0.955 0.987 0.726 1.139 1.192 1.225 1.252 1.231
Turnover 0.055 0.502 1.369 1.159 1.025 1.058 0.040 0.279 0.915 0.837 0.786 0.806
Average κ̂ / 0 0.309 0.232 0.179 0.134 / 0 0.522 0.455 0.405 0.319

46ANOM
Gross OOS CER 0.057 0.062 0.226 0.346 0.383 0.320 0.052 0.110 -0.594 -0.436 -0.366 0.227
Net OOS CER 0.056 0.025 0.104 0.229 0.272 0.239 0.051 0.092 -0.652 -0.497 -0.427 0.170
Gross OOS SR 0.759 0.798 2.074 2.086 2.089 1.913 0.723 1.173 1.488 1.499 1.506 1.575
Net OOS SR 0.750 0.523 1.825 1.842 1.852 1.593 0.717 1.031 1.355 1.367 1.375 1.424
Turnover 0.055 1.520 8.265 7.096 6.535 3.514 0.042 0.769 5.141 4.799 4.632 2.743
Average κ̂ / 0 0.250 0.208 0.185 0.063 / 0 0.511 0.472 0.448 0.214

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed using a sample size of
T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of
γ = 5. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER), the annualized
out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio strategies.
For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross performance
and the performance net of proportional transaction costs of 20 basis points. We also report the average
estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not combine the SMV and
SGMV portfolios. The numbers in bold font identify the best portfolio in terms of OOS CER.
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Table IA.3: Out-of-sample performance in real data with higher transaction costs

T = 120 T = 240

RTR SGMV κ̂?
E

κ̂?
R RTR SGMV κ̂?

E

κ̂?
R

λ = 2 λ = 4 λ = λ̂cv λ = 2 λ = 4 λ = λ̂cv

10MOM
Gross OOS CER 0.082 0.097 0.151 0.157 0.147 0.167 0.094 0.109 0.171 0.177 0.179 0.192
Net OOS CER 0.080 0.087 0.103 0.116 0.111 0.120 0.092 0.102 0.139 0.148 0.151 0.163
Gross OOS SR 0.755 0.876 0.963 0.970 0.939 1.009 0.857 0.993 1.019 1.031 1.035 1.096
Net OOS SR 0.745 0.804 0.833 0.847 0.822 0.847 0.848 0.945 0.932 0.947 0.953 0.995
Turnover 0.047 0.300 1.360 1.158 1.022 1.331 0.037 0.184 0.915 0.838 0.790 0.831

25SBTM
Gross OOS CER 0.086 0.109 0.154 0.157 0.149 0.158 0.098 0.127 0.179 0.178 0.170 0.181
Net OOS CER 0.084 0.080 0.057 0.081 0.092 0.077 0.096 0.111 0.113 0.122 0.120 0.130
Gross OOS SR 0.744 0.994 0.962 1.002 1.022 1.084 0.850 1.195 1.038 1.055 1.050 1.183
Net OOS SR 0.735 0.789 0.638 0.698 0.753 0.685 0.842 1.068 0.830 0.854 0.857 0.940
Turnover 0.047 0.783 2.776 2.163 1.619 2.236 0.039 0.442 1.881 1.618 1.395 1.413

25OPINV
Gross OOS CER 0.097 0.122 0.125 0.135 0.135 0.138 0.093 0.137 0.159 0.164 0.163 0.154
Net OOS CER 0.096 0.101 0.063 0.088 0.102 0.087 0.092 0.128 0.121 0.133 0.140 0.123
Gross OOS SR 0.866 1.073 0.872 0.958 1.054 1.025 0.859 1.225 1.009 1.099 1.202 1.095
Net OOS SR 0.855 0.928 0.631 0.734 0.856 0.751 0.850 1.152 0.858 0.953 1.070 0.930
Turnover 0.048 0.569 1.730 1.293 0.920 1.395 0.036 0.271 1.048 0.848 0.637 0.871

49IND
Gross OOS CER 0.096 0.081 0.077 0.082 0.083 0.084 0.082 0.061 0.052 0.061 0.062 0.063
Net OOS CER 0.094 0.051 0.034 0.046 0.052 0.050 0.081 0.048 0.029 0.042 0.047 0.047
Gross OOS SR 0.864 0.788 0.704 0.763 0.793 0.801 0.793 0.678 0.563 0.642 0.678 0.694
Net OOS SR 0.852 0.576 0.456 0.533 0.576 0.568 0.783 0.571 0.425 0.513 0.560 0.569
Turnover 0.051 0.822 1.205 0.977 0.878 0.928 0.040 0.361 0.634 0.503 0.421 0.429

16LTANOM
Gross OOS CER 0.087 0.110 0.148 0.152 0.143 0.157 0.080 0.129 0.211 0.217 0.221 0.203
Net OOS CER 0.085 0.092 0.071 0.090 0.091 0.099 0.078 0.119 0.157 0.168 0.176 0.156
Gross OOS SR 0.759 1.003 0.943 0.981 0.983 1.119 0.732 1.191 1.131 1.167 1.207 1.261
Net OOS SR 0.748 0.872 0.684 0.733 0.746 0.813 0.724 1.112 0.970 1.007 1.047 1.047
Turnover 0.055 0.502 2.167 1.751 1.450 1.605 0.040 0.279 1.504 1.363 1.254 1.277

46ANOM
Gross OOS CER 0.084 0.080 0.339 0.541 0.602 0.513 0.078 0.127 -1.044 -0.781 -0.665 0.327
Net OOS CER 0.082 0.025 0.058 0.263 0.342 0.325 0.076 0.099 -1.136 -0.889 -0.777 0.191
Gross OOS SR 0.759 0.798 2.030 2.038 2.039 1.927 0.723 1.173 1.428 1.436 1.441 1.482
Net OOS SR 0.746 0.385 1.633 1.656 1.673 1.446 0.714 0.959 1.222 1.232 1.238 1.253
Turnover 0.055 1.520 13.57 11.55 10.50 5.377 0.042 0.769 8.488 7.912 7.626 4.401

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed using a sample size of
T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of
γ = 3. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER), the annualized
out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio strategies.
For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross performance
and the performance net of proportional transaction costs of 30 basis points. We also report the average
estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not combine the SMV and
SGMV portfolios. The numbers in bold font identify the best portfolio in terms of OOS CER.
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Table IA.4: Out-of-sample performance in a dataset of 50 individual stocks

Benchmark strategies Proposed strategies (κ̂?R)

EW RTR SGMV SMV κ̂?E λ = 2 λ = 4 λ = λ̂cv

Gross OOS CER 0.056 0.054 0.074 -1.420 0.054 0.065 0.069 0.063
Net OOS CER 0.055 0.052 0.064 -1.480 0.044 0.055 0.059 0.053
Gross OOS SR 0.596 0.592 0.721 -0.077 0.580 0.657 0.686 0.642
Net OOS SR 0.587 0.578 0.656 -0.156 0.515 0.593 0.622 0.577
Turnover 0.057 0.084 0.407 3.049 0.436 0.405 0.399 0.415
Average κ̂ / / 0 1 0.064 0.038 0.026 0.029

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
for the dataset of 50 individual stocks discussed in Appendix IA.2.3. Each estimated portfolio is constructed
using a sample size of T = 240 monthly observations. The mean-variance portfolios consider a risk-aversion
coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER),
the annualized out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the portfolio
strategies. For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross
performance and the performance net of proportional transaction costs of 20 basis points. We also report
the average estimated shrinkage intensity κ̂ over time, except for the EW and RTR portfolios that do not
combine the SMV and SGMV portfolios. The numbers in bold font identify the best portfolio in terms of
OOS CER.
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Table IA.5: Out-of-sample performance with shrinkage estimator of the covariance matrix

T = 120 T = 240

RTR SGMV κ̂?
E

κ̂?
R RTR SGMV κ̂?

E

κ̂?
R

λ = 2 λ = 4 λ = λ̂cv λ = 2 λ = 4 λ = λ̂cv

10MOM
Gross OOS CER 0.096 0.022 0.144 0.146 0.113 0.174 0.109 0.104 0.168 0.170 0.173 0.195
Net OOS CER 0.090 -0.030 0.113 0.117 0.085 0.143 0.105 0.074 0.146 0.150 0.154 0.175
Gross OOS SR 0.874 0.917 0.966 0.952 0.848 1.027 0.994 0.971 1.019 1.020 1.023 1.096
Net OOS SR 0.831 0.823 0.886 0.876 0.767 0.926 0.964 0.910 0.964 0.966 0.970 1.033
Turnover 0.265 2.308 1.386 1.240 1.220 1.323 0.174 1.324 0.933 0.875 0.834 0.819
Average κ̂ / 1 0.475 0.331 0.185 0.313 0 1 0.597 0.494 0.441 0.412

25SBTM
Gross OOS CER 0.108 -0.237 0.156 0.161 0.135 0.166 0.126 0.016 0.168 0.168 0.153 0.183
Net OOS CER 0.095 -0.373 0.091 0.107 0.095 0.110 0.117 -0.062 0.124 0.129 0.119 0.149
Gross OOS SR 1.013 0.829 0.974 0.984 0.914 1.050 1.191 0.933 1.008 1.005 0.962 1.128
Net OOS SR 0.915 0.620 0.791 0.809 0.753 0.821 1.119 0.793 0.884 0.885 0.844 0.986
Turnover 0.54 6.561 2.857 2.366 1.791 2.352 0.373 3.569 1.916 1.698 1.503 1.425
Average κ̂ / 1 0.346 0.230 0.099 0.185 0 1 0.456 0.362 0.243 0.243

25OPINV
Gross OOS CER 0.125 -0.306 0.130 0.135 0.124 0.140 0.139 -0.099 0.159 0.168 0.156 0.155
Net OOS CER 0.116 -0.405 0.088 0.102 0.101 0.106 0.134 -0.149 0.134 0.146 0.140 0.135
Gross OOS SR 1.129 0.684 0.882 0.927 0.980 0.995 1.253 0.724 0.990 1.078 1.182 1.079
Net OOS SR 1.063 0.533 0.740 0.788 0.848 0.827 1.212 0.633 0.899 0.985 1.091 0.979
Turnover 0.369 4.572 1.765 1.367 0.944 1.412 0.224 2.259 1.054 0.881 0.650 0.820
Average κ̂ / 1 0.310 0.183 0.046 0.141 0 1 0.401 0.290 0.103 0.191

49IND
Gross OOS CER 0.099 -1.399 0.076 0.089 0.090 0.099 0.075 -0.748 0.045 0.065 0.077 0.073
Net OOS CER 0.090 -1.505 0.051 0.072 0.079 0.080 0.069 -0.806 0.031 0.055 0.070 0.065
Gross OOS SR 1.014 0.312 0.676 0.813 0.918 0.898 0.827 0.141 0.522 0.678 0.839 0.799
Net OOS SR 0.938 0.177 0.556 0.703 0.824 0.768 0.774 0.050 0.444 0.603 0.778 0.731
Turnover 0.378 6.01 1.053 0.697 0.484 0.793 0.253 2.864 0.592 0.439 0.292 0.326
Average κ̂ / 1 0.125 0.043 0.005 0.032 0 1 0.139 0.058 0.005 0.007

16LTANOM
Gross OOS CER 0.114 -0.105 0.146 0.149 0.130 0.161 0.133 0.095 0.212 0.218 0.227 0.210
Net OOS CER 0.104 -0.201 0.094 0.105 0.096 0.122 0.127 0.041 0.175 0.184 0.195 0.180
Gross OOS SR 1.043 0.770 0.937 0.951 0.899 1.110 1.228 0.993 1.128 1.154 1.198 1.280
Net OOS SR 0.971 0.602 0.778 0.795 0.760 0.916 1.180 0.892 1.027 1.051 1.095 1.145
Turnover 0.412 4.330 2.209 1.875 1.457 1.625 0.254 2.260 1.522 1.427 1.325 1.243
Average κ̂ / 1 0.417 0.284 0.166 0.177 0 1 0.603 0.527 0.440 0.343

46ANOM
Gross OOS CER 0.084 -2.940 -1.062 -0.984 -0.936 0.862 0.122 -3.783 -2.379 -2.322 -2.282 0.143
Net OOS CER 0.066 -2.760 -0.988 -0.905 -0.846 0.731 0.109 -3.649 -2.324 -2.268 -2.228 0.072
Gross OOS SR 0.901 2.291 2.315 2.313 2.307 2.290 1.204 1.496 1.529 1.531 1.532 1.552
Net OOS SR 0.742 2.113 2.170 2.172 2.172 2.122 1.092 1.386 1.424 1.427 1.429 1.446
Turnover 0.765 18.22 13.68 13.31 12.92 7.027 0.549 10.42 8.760 8.663 8.581 4.606
Average κ̂ / 1 0.673 0.640 0.598 0.281 0 1 0.788 0.771 0.755 0.348

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
and Appendix IA.2.4 for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed
using a sample size of T = 120 and 240 monthly observations. The covariance matrix is estimated using
the nonlinear shrinkage estimator of Ledoit and Wolf (2020a). The mean-variance portfolios consider a risk-
aversion coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER), the annualized out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover
of the portfolio strategies. For the two return-performance metrics (i.e., OOS CER and OOS SR), we report
the gross performance and the performance net of proportional transaction costs of 20 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not
combine the SMV and SGMV portfolios. The numbers in bold font identify the best portfolio in terms of
OOS CER.
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Table IA.6: Out-of-sample performance exploiting equally weighted portfolio with T = 120

Benchmark strategies Proposed strategies (δ̂?
R, κ̂

?
R)

EW SGMV SMV (δ̂?
E , κ̂

?
E) λ = 2 λ = 4 λ = λ̂cv

10MOM Gross OOS CER 0.069 0.097 -0.048 0.144 0.147 0.119 0.155
Net OOS CER 0.068 0.090 -0.108 0.113 0.120 0.096 0.124
Gross OOS SR 0.659 0.876 0.868 0.944 0.939 0.848 0.971
Net OOS SR 0.653 0.829 0.765 0.858 0.859 0.772 0.864
Turnover 0.040 0.300 2.704 1.357 1.144 0.978 1.323
Average δ̂ 0 / / 0.708 0.670 0.560 0.609
Average κ̂ / 0 1 0.625 0.474 0.250 0.489

25SBTM Gross OOS CER 0.080 0.109 -0.708 0.157 0.157 0.139 0.159
Net OOS CER 0.079 0.090 -0.890 0.093 0.103 0.103 0.109
Gross OOS SR 0.705 0.994 0.711 0.971 0.995 0.964 1.078
Net OOS SR 0.700 0.857 0.457 0.763 0.785 0.802 0.839
Turnover 0.045 0.783 10.06 2.717 2.257 1.479 2.090
Average δ̂ 0 / / 0.648 0.628 0.538 0.543
Average κ̂ / 0 1 0.428 0.316 0.103 0.261

25OPINV Gross OOS CER 0.089 0.122 -0.814 0.119 0.126 0.111 0.127
Net OOS CER 0.088 0.108 -0.952 0.077 0.095 0.091 0.093
Gross OOS SR 0.800 1.073 0.554 0.850 0.928 0.957 0.980
Net OOS SR 0.794 0.976 0.376 0.684 0.773 0.827 0.789
Turnover 0.040 0.569 6.982 1.749 1.286 0.826 1.423
Average δ̂ 0 / / 0.821 0.787 0.619 0.697
Average κ̂ / 0 1 0.270 0.169 0.069 0.137

49IND Gross OOS CER 0.092 0.081 -4.667 0.081 0.088 0.092 0.097
Net OOS CER 0.091 0.061 -4.745 0.056 0.072 0.083 0.083
Gross OOS SR 0.816 0.788 0.244 0.726 0.817 0.855 0.875
Net OOS SR 0.809 0.647 0.042 0.581 0.710 0.793 0.782
Turnover 0.049 0.822 15.34 1.067 0.663 0.370 0.590
Average δ̂ 0 / / 0.431 0.365 0.262 0.239
Average κ̂ / 0 1 0.231 0.132 0.012 0.030

16LTANOM Gross OOS CER 0.078 0.110 -0.274 0.144 0.148 0.130 0.157
Net OOS CER 0.077 0.098 -0.394 0.093 0.107 0.094 0.118
Gross OOS SR 0.703 1.003 0.725 0.931 0.969 0.933 1.112
Net OOS SR 0.697 0.916 0.538 0.758 0.802 0.764 0.908
Turnover 0.044 0.502 5.657 2.186 1.761 1.510 1.636
Average δ̂ 0 / / 0.784 0.785 0.717 0.707
Average κ̂ / 0 1 0.441 0.300 0.199 0.188

46ANOM Gross OOS CER 0.056 0.080 -14.74 0.332 0.535 0.596 0.492
Net OOS CER 0.055 0.043 -11.46 0.156 0.358 0.429 0.365
Gross OOS SR 0.581 0.798 1.953 2.028 2.037 2.036 1.851
Net OOS SR 0.575 0.523 1.612 1.776 1.793 1.803 1.538
Turnover 0.044 1.520 48.03 13.60 11.59 10.53 5.531
Average δ̂ 0 / / 0.722 0.709 0.698 0.553
Average κ̂ / 0 1 0.499 0.459 0.434 0.260

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
and Appendix IA.2.5 for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed
using a sample size of T = 120 monthly observations. The covariance matrix is estimated using the nonlin-
ear shrinkage estimator of Ledoit and Wolf (2020a). The mean-variance portfolios consider a risk-aversion
coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER),
the annualized out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the port-
folio strategies. For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross
performance and the performance net of proportional transaction costs of 20 basis points. We also report the
average estimated shrinkage intensities δ̂ and κ̂ over time, except for the EW and RTR portfolios that do
not combine the SMV and SGMV portfolios. The numbers in bold font identify the best portfolio in terms
of OOS CER.
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Table IA.7: Out-of-sample performance exploiting equally weighted portfolio with T = 240

Benchmark strategies Proposed strategies (δ̂?
R, κ̂

?
R)

EW SGMV SMV (δ̂?
E , κ̂

?
E) λ = 2 λ = 4 λ = λ̂cv

10MOM Gross OOS CER 0.079 0.109 0.086 0.170 0.175 0.175 0.189
Net OOS CER 0.078 0.105 0.054 0.148 0.155 0.156 0.169
Gross OOS SR 0.739 0.993 0.946 1.013 1.024 1.023 1.084
Net OOS SR 0.733 0.961 0.881 0.955 0.968 0.969 1.017
Turnover 0.039 0.184 1.416 0.906 0.836 0.787 0.837
Average δ̂ 0 / / 0.781 0.781 0.766 0.731
Average κ̂ / 0 1 0.726 0.629 0.545 0.597

25SBTM Gross OOS CER 0.092 0.127 -0.062 0.182 0.180 0.166 0.182
Net OOS CER 0.091 0.117 -0.154 0.139 0.144 0.136 0.150
Gross OOS SR 0.803 1.195 0.894 1.047 1.060 1.038 1.184
Net OOS SR 0.797 1.110 0.738 0.913 0.933 0.920 1.031
Turnover 0.041 0.442 4.337 1.836 1.558 1.297 1.352
Average δ̂ 0 / / 0.662 0.657 0.628 0.619
Average κ̂ / 0 1 0.601 0.472 0.326 0.371

25OPINV Gross OOS CER 0.085 0.137 -0.184 0.153 0.158 0.156 0.147
Net OOS CER 0.084 0.131 -0.246 0.128 0.138 0.141 0.125
Gross OOS SR 0.786 1.225 0.679 0.988 1.074 1.170 1.056
Net OOS SR 0.780 1.176 0.576 0.886 0.975 1.085 0.943
Turnover 0.039 0.271 2.772 1.059 0.853 0.616 0.898
Average δ̂ 0 / / 0.864 0.863 0.809 0.806
Average κ̂ / 0 1 0.383 0.267 0.153 0.210

49IND Gross OOS CER 0.080 0.061 -1.184 0.064 0.075 0.078 0.080
Net OOS CER 0.079 0.052 -1.262 0.051 0.066 0.073 0.071
Gross OOS SR 0.752 0.678 0.162 0.634 0.745 0.798 0.811
Net OOS SR 0.745 0.607 0.050 0.556 0.683 0.760 0.747
Turnover 0.048 0.361 4.332 0.549 0.362 0.205 0.349
Average δ̂ 0 / / 0.415 0.390 0.335 0.321
Average κ̂ / 0 1 0.248 0.131 0.052 0.033

16LTANOM Gross OOS CER 0.068 0.129 0.047 0.204 0.209 0.213 0.191
Net OOS CER 0.067 0.122 -0.014 0.168 0.176 0.182 0.160
Gross OOS SR 0.655 1.191 0.960 1.112 1.144 1.181 1.215
Net OOS SR 0.650 1.139 0.854 1.003 1.035 1.072 1.071
Turnover 0.042 0.279 2.578 1.508 1.384 1.270 1.273
Average δ̂ 0 / / 0.837 0.858 0.869 0.808
Average κ̂ / 0 1 0.673 0.574 0.492 0.447

46ANOM Gross OOS CER 0.051 0.127 -6.346 -0.977 -0.723 -0.609 0.340
Net OOS CER 0.050 0.109 -5.933 -1.037 -0.795 -0.683 0.249
Gross OOS SR 0.551 1.173 1.364 1.434 1.442 1.447 1.491
Net OOS SR 0.545 1.031 1.220 1.297 1.306 1.312 1.336
Turnover 0.046 0.769 15.52 8.478 7.921 7.625 4.446
Average δ̂ 0 / / 0.793 0.787 0.788 0.534
Average κ̂ / 0 1 0.704 0.669 0.640 0.587

Notes. This table reports the out-of-sample performance of the portfolio strategies introduced in Section 5.2.1
and Appendix IA.2.5 for the six datasets discussed in Section 5.1. Each estimated portfolio is constructed
using a sample size of T = 240 monthly observations. The covariance matrix is estimated using the nonlin-
ear shrinkage estimator of Ledoit and Wolf (2020a). The mean-variance portfolios consider a risk-aversion
coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return (OOS CER),
the annualized out-of-sample Sharpe ratio (OOS SR), and the monthly out-of-sample turnover of the port-
folio strategies. For the two return-performance metrics (i.e., OOS CER and OOS SR), we report the gross
performance and the performance net of proportional transaction costs of 20 basis points. We also report the
average estimated shrinkage intensities δ̂ and κ̂ over time, except for the EW and RTR portfolios that do
not combine the SMV and SGMV portfolios. The numbers in bold font identify the best portfolio in terms
of OOS CER.
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IA.3 Proofs of all results

Throughout the proofs presented in this section, we use the fact that the shrinkage portfolio

ŵ?(κ) in (11) can be rewritten as

ŵ?(κ) = ŵg + κ

γ
ŵz. (IA15)

Proof of Proposition 1

The proof of this proposition is in Kan, Wang, and Zhou (2021).

Proof of Proposition 2

Denote µ̂g = ŵ>g µ̂ and σ̂2
g = ŵ>g Σ̂ŵg. Then, the coefficients A and B in (19) correspond

to A = 1/σ̂2
g and B = µ̂g/σ̂

2
g . Denote also f(ε) = 1 + ε/(γσ?P ). Then, the ambiguity-averse

portfolio can be rewritten as

ŵ?(ε) = 1
γf(ε)Σ̂−1

(
µ̂− µ̂ge+ γf(ε)σ̂2

ge
)

= ŵg + 1
γf(ε)Σ̂−1 (µ̂− µ̂ge) .

The result follows by noticing that Σ̂−1 (µ̂− µ̂ge) = B̂µ̂ = ŵz, which is the estimated zero-

cost portfolio, and therefore ŵ?(ε) corresponds to the shrinkage portfolio ŵ?(κ) in (11) if

κ = 1/f(ε) = (1 + ε
γσ?

P
)−1.

Finally, σ?P is monotonically decreasing in ε because Garlappi, Uppal, and Wang (2007)

show that a higher ε implies a higher exposure to the SGMV portfolio and, thus, a smaller

portfolio-return volatility. Consequently, the ratio ε/σ?P is monotonically increasing in ε.

Proof of Lemma 1

Equation (21) is directly obtained from the definition of OOSU in (12) and the formula for

the variance of a sum of two correlated random variables.
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Proof of Proposition 3

Kan, Wang, and Zhou (2021, Proposition 1) derive a stochastic representation for the out-of-

sample mean return and variance of the shrinkage portfolio ŵ(κ) that combines the SMV and

SGMV portfolios, i.e., for the two random variables ŵ?(κ)>µ and ŵ?(κ)>Σŵ?(κ). Using this

result, we can find analytical expressions for the three terms composing the OOSU variance

in (21). Specifically, the variance of the out-of-sample mean return is

V
[
ŵ?(κ)>µ

]
=

σ2
gψ

2

T −N − 1 + κ2ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3) , (IA16)

the variance of the out-of-sample return variance is

V
[
ŵ?(κ)>Σŵ?(κ)

]
=

2σ4
g(N − 1)(T − 2)

(T −N − 1)2(T −N − 3)

+
4κ2σ2

g

γ2
T (T − 2)(T +N − 3)(Tψ2 +N − 1)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ 2κ4

γ4
T 2(T − 2)C(T,N, ψ2)

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7) , (IA17)

where C(T,N, ψ2) is defined in Proposition 3, and the covariance between the out-of-sample

mean return and variance is

Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
=

2κσ2
gψ

2

γ

T (T − 2)
(T −N − 1)2(T −N − 3)

+ 2κ3ψ2

γ3
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) . (IA18)

We find the final expression for the OOSU variance in Proposition 3 by plugging (IA16)–

(IA18) into (21).

Proof of Corollary 1

First, we prove that the shrinkage intensity that minimizes OOSU variance, κ?V , is strictly

positive. The derivative of the OOSU variance in (22) with respect to κ, evaluated at κ = 0,
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is
∂V[U(ŵ?(κ))]

∂κ

∣∣∣∣∣
κ=0

= a4. (IA19)

Now, observe that a4 in Equation (28) is strictly negative when ψ2 > 0 because σ2
g > 0.

Therefore, provided that ψ2 > 0, it is always optimal to choose a shrinkage intensity κ > 0

to minimize OOSU variance.

Second, we prove that κ?V < 1, which follows from Proposition 5 where we show that

κ?V ≤ κ?E. Indeed, because κ?E < 1 as long as the sample size T is finite, it follows that κ?V < 1.

Proof of Proposition 4

Parameters T and N . From the closed-form expression of V[U(ŵ?(κ))] in Proposition 3,

it is straightforward to see that it is decreasing in T and increasing in N . In particular, it is

easy to check that V[U(ŵ?(κ))]→ 0 as T →∞ for any shrinkage intensity κ.

Parameter σ2
g . The derivative of the OOSU variance with respect to σ2

g is

∂V[U(ŵ?(κ))]
∂σ2

g

= ψ2

T −N − 1 + σ2
gγ

2 (N − 1)(T − 2)
(T −N − 1)2(T −N − 3)

+ κ2 T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) − 2κψ2 T (T − 2)

(T −N − 1)2(T −N − 3) .

(IA20)

The objective is to show that the derivative in (IA20) is always positive. Notice that it

increases with σ2
g , and thus it suffices to show that it is always positive for the case σ2

g = 0.

That is, we need to show that

ψ2

T −N − 1 + κ2 T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κψ2 T (T − 2)
(T −N − 1)2(T −N − 3) ≥ 0. (IA21)

Notice that the left-hand side of (IA21) is a second-degree polynomial in κ. Because the

coefficient in front of κ2 is positive, we can prove that inequality (IA21) holds by showing
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that the polynomial discriminant is always negative. That is, after some simplifications,

ψ2 T (T − 2)
(T −N − 1)(T −N − 3) ≤

(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 5) . (IA22)

Notice that the right-hand side of inequality (IA22) is of the form a + bψ2 with a > 0.

Therefore, we can prove the inequality by showing that the coefficient in front of ψ2 on the

right-hand side is larger than that in front of ψ2 on the left-hand side. This is equivalent to

showing that

T (T +N − 3)
(T −N)(T −N − 5) ≥

T (T − 2)
(T −N − 1)(T −N − 3) , (IA23)

which holds under Assumption 1.

Parameter ψ2. The derivative of the OOSU variance with respect to ψ2 is

∂V[U(ŵ?(κ))]
∂ψ2 =

σ2
g

T −N − 1

+ κ4

2γ2

T 2(T − 2)∂C(T,N,ψ2)
∂ψ2

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7)

− 2κ3

γ2
4ψ2T 3(T − 2) + T 2(T − 2)(T +N − 3)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ κ2

γ2
2T (N + 1) + T 2(T −N − 3) + 4T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

+ κ2σ2
g

T 2(T − 2)(T +N − 3)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κσ2
g

T (T − 2)
(T −N − 1)2(T −N − 3) . (IA24)

First, we show that the derivative (IA24) is increasing in σ2
g and thus that it suffices to show

that it is positive for σ2
g = 0. We have

∂

∂σ2
g

(
∂V[U(ŵ?(κ))]

∂ψ2

)
= 1
T −N − 1 + κ2 T 2(T − 2)(T +N − 3)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κ T (T − 2)
(T −N − 1)2(T −N − 3) . (IA25)
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Following a similar strategy to the case with σ2
g as a parameter, the derivative (IA25) is

always positive if the polynomial discriminant is negative. This amounts to showing, after

some simplifications, that

(T +N − 3)(T −N − 1)(T −N − 3)
(T − 2)(T −N)(T −N − 5) ≥ 1,

which holds under Assumption 1. Therefore, we can now prove the result of the proposi-

tion by showing that the derivative in (IA24) is positive for σ2
g = 0. That is, after some

simplifications,

κ2

2
T 2(T − 2)∂C(T,N,ψ2)

∂ψ2

(T −N)(T −N − 2)(T −N − 3)(T −N − 7)

− 2κ
(
4T 3(T − 2)ψ2 + T 2(T − 2)(T +N − 3)

)
+ (T −N − 5)

(
2T (N + 1) + T 2(T −N − 3) + 4T 2(T −N)ψ2

)
≥ 0. (IA26)

We find that the derivative of (IA26) with respect to ψ2 is positive if

∂2C(T,N, ψ2)
∂(ψ2)2 ≥ 8T 2(T − 2)(T −N − 2)(T −N − 3)(T −N − 7)

(T −N − 5) , (IA27)

where ∂2C(T,N,ψ2)
∂(ψ2)2 = 2T 2(N3 +2N2T −6N2−7NT 2 +40NT −53N +4T 3−34T 2 +88T −70),

and inequality (IA27) holds under Assumption 1. Therefore, we can now prove the result of

the proposition by showing that the derivative in (IA26) is positive for ψ2 = 0. That is,

κ2

2

T 2(T − 2)∂C(T,N,ψ2)
∂ψ2

∣∣∣∣
ψ2=0

(T −N)(T −N − 2)(T −N − 3)(T −N − 7) − 2κT 2(T − 2)(T +N − 3)

+ (T −N − 5)(2T (N + 1) + T 2(T −N − 3)) ≥ 0. (IA28)

As usual, we prove inequality (IA28) by showing that the polynomial discriminant is negative,

which amounts to showing, after some simplifications, that

∂C(T,N, ψ2)
∂ψ2

∣∣∣∣
ψ2=0

≥ 2T (T − 2)(T −N)(T −N − 2)(T −N − 3)(T +N − 3)2

(T −N − 5)(2(N + 1) + T (T −N − 3)) , (IA29)
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which holds under Assumption 1, thus concluding the proof for parameter ψ2.

Parameter κ. To prove the result we need to show that the derivative of the OOSU variance

with respect to κ is positive if κ ≥ κ?E. That is,

4a1κ
3 + 3a2κ

2 + 2a3κ+ a4 ≥ 0 (IA30)

if κ ≥ κ?E. As we show below, the derivative in (IA30) decreases with γ when κ ≥ κ?E.

Therefore, we can derive a sufficient condition on the value of κ for which inequality (IA30)

holds by considering the case γ →∞. In that case, the condition in (IA30) becomes

2κσ2
g

T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) − 2σ2

gψ
2 T (T − 2)
(T −N − 1)2(T −N − 3) ≥ 0,

which after isolating κ reduces to the sufficient condition

κ ≥ κ?E
(T − 2)(T −N − 5)

(T +N − 3)(T −N − 3) , (IA31)

which is satisfied when κ ≥ κ?E because the right-hand side of (IA31) is smaller than κ?E

under Assumption 1.

The only step missing now is to show that the left-hand side of (IA30) is decreasing in γ

when κ ≥ κ?E. To prove this result, it is useful to introduce the notation

a1 = a1γ
2,

a2 = a2γ
2,

a3,1 = ψ2 2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)
(T −N)(T −N − 1)2(T −N − 3) ,

which are all independent of γ. Now, it is straightforward to show that the left-hand side of

(IA30) is decreasing in γ when κ ≥ κ?E if

4a1κ
2 + 3a2κ+ 2a3,1 ≥ 0 (IA32)

when κ ≥ κ?E. Since a1 ≥ 0, inequality (IA32) holds for all κ if the polynomial discriminant

IA22



is negative. Otherwise, if the discriminant is positive, we need to show that the maximum

of the two real roots to the polynomial in (IA32) is smaller than κ?E. That is,

−3a2 +
√

9a2
2 − 32a1a3,1

8a1
≤ κ?E. (IA33)

After some simplifications, proving inequality (IA33) is equivalent to showing that

4a1(κ?E)2 + 3a2κ
?
E + 2a3,1 ≥ 0. (IA34)

We can reformulate inequality (IA34) as

ψ2C(T,N, ψ2)
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

− 3ψ2(Tψ2 +N − 1)(T +N − 3 + 2Tψ2)
T −N − 5

+ 2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)
(T −N)(T −N − 3)

(
ψ2 + N − 1

T

)2
≥ 0. (IA35)

Notice that inequality (IA35) holds when ψ2 = 0. Therefore, we can prove (IA35) by showing

that the derivative of the left-hand side with respect to ψ2 is positive. That is,

1
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

[
(4Tψ2 +N − 1)(N4 +N3T − 3N3

− 4N2T 2 + 22N2T − 31N2 +NT 3 − 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T

+ 70) + 3T 2ψ4(N3 + 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70)
]

− 3T
T −N − 5

[
(T +N − 3)

(
2ψ2 + N − 1

T

)
+ 2T

(
3ψ4 + 2ψ2N − 1

T

) ]

+ 2T
(T −N)(T −N − 3)

[
(2(N + 1) + T (T −N − 3))

(
ψ2 + N − 1

T

)
+ T (T −N)(

3ψ4 + 4ψ2N − 1
T

+
(
N − 1
T

)2)]
≥ 0. (IA36)

One can check that inequality (IA36) holds when ψ2 = 0 under Assumption 1. Therefore, we

can prove (IA36) by showing as before that the derivative of the left-hand side with respect
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to ψ2 is positive. That is,

2T
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

[
2(N4 +N3T − 3N3 − 4N2T 2 + 22N2T

− 31N2 +NT 3 − 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T + 70) + 3Tψ2(N3

+ 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70)
]
− 6T
T −N − 5[

T +N − 3 + 2T
(

3ψ2 + N − 1
T

) ]
+ 2T

(T −N)(T −N − 3)

[
2(N + 1) + T (T −N − 3)

+ 2T (T −N)
(

3ψ2 + 2N − 1
T

) ≥ 0. (IA37)

Again, one can check that inequality (IA37) holds when ψ2 = 0 under Assumption 1. There-

fore, we prove as usual that the derivative of the left-hand side of (IA37) with respect to ψ2

is positive. That is,

N3 + 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

− 6
T −N − 5 + 2

T −N − 3 ≥ 0. (IA38)

This last inequality holds under Assumption 1, which concludes the demonstration of in-

equality (IA32) for κ ≥ κ?E.

Proof of Proposition 5

Part 1. The proof is direct because, as shown in Proposition 3, the OOSU variance

V[U(ŵ?(κ))] → 0 as T → ∞ and, thus, the shrinkage intensity κ?R corresponds to κ?E as

T →∞, and as shown in Proposition 1 this κ?E is asymptotically optimal.

Part 2. First, κ?R ≥ κ?V because κ?V minimizes OOSU variance by definition and the OOSU

mean in (14) is increasing in κ for κ ≤ κ?E. Since κ?V ≤ κ?E as we will prove next, this means

that κ?V has a larger OOSU mean and smaller OOSU variance than any κ ≤ κ?V . Therefore,

κ?R maximizing the mean-risk OOSU metric in (29) is necessarily larger than κ?V .

Second, we prove the inequality κ?R ≤ κ?E, which also implies κ?V ≤ κ?E. To prove this

inequality, note from part 2 of Proposition 4 that OOSU variance increases with κ if κ ≥ κ?E.
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Moreover, OOSU mean in (14) is decreasing in κ for κ ≥ κ?E. As a result, any κ ≥ κ?E delivers

a smaller mean-risk OOSU than κ?E and thus κ?R is necessarily smaller than κ?E.

Proof of Proposition 6

The proof is direct because, on the one hand, the OOSU mean in (14) increases with T and

µg and decreases with N , σ2
g , and κ if κ ≥ κ?E. On the other hand, we show in Proposition 4

that OOSU standard deviation decreases with T and κ if κ ≥ κ?E, increases with N and σ2
g ,

and also is independent of µg.

Proof of Proposition IA.1

Using the fact that sample mean returns are distributed as µ̂ ∼ N (µ,Σ/T ), the shrinkage

portfolio that takes Σ as given is distributed as ŵ?(κ) ∼ N (E[ŵ?(κ)],V[ŵ?(κ)]) with

E[ŵ?(κ)] = wg + κ

γ
Bµ, (IA39)

V[ŵ?(κ)] = κ2

γ2
B
T
. (IA40)

Using this result and the formulas for the mean, variance, and covariance of quadratic forms

available in Rencher and Schaalje (2008), we can find closed-form expressions for the different

moments that define the mean-risk OOSU measure:

E
[
ŵ?(κ)>µ

]
= E[ŵ?(κ)]>µ = µg + κ

γ
ψ2. (IA41)

E
[
ŵ?(κ)>Σŵ?(κ)

]
= Tr(ΣV[ŵ?(κ)]) + E[ŵ?(κ)]>ΣE[ŵ?(κ)]

= σ2
g + κ2

γ2

(
ψ2 + N − 1

T

)
, (IA42)

V
[
ŵ?(κ)>µ

]
= µ>V[ŵ?(κ)]µ = κ2

γ2
ψ2

T
, (IA43)

V
[
ŵ?(κ)>Σŵ?(κ)

]
= 2Tr((ΣV[ŵ?(κ)])2) + 4E[ŵ?(κ)]>ΣV[ŵ?(κ)]ΣE[ŵ?(κ)]

= κ4

γ4
2
T

(
2ψ2 + N − 1

T

)
, (IA44)

Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
= 2µ>V[ŵ?(κ)]ΣE[ŵ?(κ)] = κ3

γ3
2ψ2

T
. (IA45)
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Using (IA41)–(IA42), the OOSU mean is

E[U(ŵ?(κ))] = E
[
ŵ?(κ)>µ

]
− γ

2E
[
ŵ?(κ)>Σŵ?(κ)

]
= µg −

γ

2σ
2
g + 1

γ

(
κψ2 − κ2

2

(
ψ2 + N − 1

T

))
. (IA46)

Moreover, using (IA43)–(IA45), the OOSU variance is

V[U(ŵ?(κ))] = V
[
ŵ?(κ)>µ

]
+ γ2

4 V
[
ŵ?(κ)>Σŵ?(κ)

]
− γCov

[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
= κ2

γ2
ψ2

T

(
(1− κ)2 + κ2N − 1

2Tψ2

)
. (IA47)

Using (IA46)–(IA47), the mean-risk OOSU defined in (29) simplifies to Equation (IA4).

To conclude the proof, we need to prove that the shrinkage intensity κ?R maximizing

(IA4) is smaller than the intensity κ?E that maximizes the OOSU mean in (IA46). Note that

the OOSU mean decreases with κ if κ ≥ κ?E. Therefore, to prove that any κ ≥ κ?E delivers a

smaller mean-risk OOSU than κ?E, and thus that κ?R ≤ κ?E, we need to prove that the OOSU

variance in (IA47) increases with κ if κ ≥ κ?E. Taking the derivative of the OOSU variance

with respect to κ, this is the case if

4κ2
(

1 + N − 1
2Tψ2

)
− 6κ+ 2 ≥ 0 (IA48)

for κ ≥ κ?E. If
4(N−1)
Tψ2 ≥ 1, the polynomial on the left-hand side of inequality (IA48) has no

real roots and it is positive for any κ. Otherwise, it has only one positive real root and we

need to prove that it is smaller than κ?E. That is, it must hold that

6 +
√

36− 32
(
1 + N−1

2Tψ2

)
8
(
1 + N−1

2Tψ2

) ≤ ψ2

ψ2 + N−1
T

(IA49)

for 4(N−1)
Tψ2 ≤ 1. Inequality (IA49) simplifies to

√
1− 4(N − 1)

Tψ2 ≤
ψ2 − N−1

T

ψ2 + N−1
T
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holds for 0 ≤ N−1
T
≤ ψ2/4, which is indeed the case and concludes the proof.

Proof of Proposition IA.2

To prove the results in this proposition, we use Okhrin and Schmid (2006, Theorem 1) to

find that, under Assumptions 1 and 2, the mean and covariance matrix of the shrinkage

portfolio ŵ?(κ) in (11) are

E[ŵ?(κ)] = wg + κ

γ

T

T −N − 1Bµ, (IA50)

V[ŵ?(κ)] =
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)
B

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)Bµµ>B. (IA51)

Moreover, we use the following useful properties: Be = 0, BΣB = B, µ>BΣwew = µew−µg,

and w>ewΣBΣwew = σ2
ew − σ2

g .

Part 1. The OOSU mean of the shrinkage portfolio ŵ?(δ, κ) in (IA5) is

E[U(ŵ?(δ, κ))] = (1− δ)µew + δE
[
ŵ?(κ)>µ

]
− γ

2

(
(1− δ)2σ2

ew

+ δ2E
[
ŵ?(κ)>Σŵ?(κ)

]
+ 2δ(1− δ)E

[
w>ewΣŵ?(κ)

] )
. (IA52)

From Kan, Wang, and Zhou (2021, Lemma 1), we have

E
[
ŵ?(κ)>µ

]
= µg + κ

γ

T

T −N − 1ψ
2, (IA53)

E
[
ŵ?(κ)>Σŵ?(κ)

]
= T − 2
T −N − 1σ

2
g + κ2

γ2
T (T − 2)(N − 1) + T 2(T − 2)ψ2

(T −N)(T −N − 1)(T −N − 3) . (IA54)

Moreover, using Equation (IA50), we find that

E
[
w>ewΣŵ?(κ)

]
= σ2

g + 1
γ

T

T −N − 1(µew − µg). (IA55)

Plugging (IA53)–(IA55) into (IA52), we find that the OOSU mean is given by Equa-

tion (IA7).
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Part 2. We derive the expressions for the three components of the OOSU variance in (IA8).

First, the variance of out-of-sample mean return is

V
[
ŵ?(δ, κ)>µ

]
= δ2V

[
ŵ?(κ)>µ

]
,

where V
[
ŵ?(κ)>µ

]
is given by (IA16), which results in Equation (IA9).

Second, the variance of out-of-sample return variance is

V
[
ŵ?(δ, κ)>Σŵ?(δ, κ)

]
= δ4V

[
ŵ?(κ)>Σŵ?(κ)

]
+ 4δ2(1− δ)2w>ewΣV[ŵ?(κ)]Σwew

+ 4δ3(1− δ)Cov
[
ŵ?(κ)>Σwew, ŵ?(κ)>Σŵ?(κ)

]
. (IA56)

The first term, V
[
ŵ?(κ)>Σŵ?(κ)

]
, is given by (IA17). Using Equation (IA51), the second

term is

w>ewΣV[ŵ?(κ)]Σwew = (σ2
ew − σ2

g)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)(µew − µg)2.

The third term is similar to (IA18) and is

Cov
[
ŵ?(κ)>Σwew, ŵ?(κ)>Σŵ?(κ)

]
= 2κ

γ
(µew − µg)

(
σ2
g

T (T − 2)
(T −N − 1)2(T −N − 3)

+ κ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
. (IA57)

Putting these three terms together into (IA56) gives Equation (IA10).

Third, the covariance between out-of-sample mean return and variance is

Cov
[
ŵ?(δ, κ)>µ, ŵ?(δ, κ)>Σŵ?(δ, κ)

]
= δ3Cov

[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
+ 2δ2(1− δ)Cov

[
ŵ?(κ)>µ, ŵ?(κ)>Σwew

]
. (IA58)

The first term, Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
, is given by (IA18). Using Equation (IA51),
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the second term is

Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σwew

]
= µ>V[ŵ?(κ)Σwew

= (µew − µg)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2)(T −N − 1) + 2T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

)
.

Putting these two terms together into (IA58) results in the final expression in Equa-

tion (IA11) and concludes the proof.

Proof of Proposition IA.3

To prove this proposition, we use Okhrin and Schmid (2006, Theorem 1), who show that if

T > N , N ≥ 2, and Assumption 2 holds, then the mean and covariance matrix of the SGMV

portfolio ŵg are

E[ŵg] = wg and V[ŵg] =
σ2
g

T −N − 1B.

Using this result, the mean and covariance matrix of the shrinkage portfolio ŵ(π) = πwew +

(1− π)ŵg are

E[ŵ(π)] = πµew + (1− π)µg,

V[ŵ(π)] = (1− π)2 σ2
g

T −N − 1B.

Therefore, the mean squared error E[(ŵ(π)>µ− µg)2] is given by

E
[
(ŵ(π)>µ− µg)2

]
=
(
E
[
ŵ(π)>µ

]
− µg

)2
+ V

[
ŵ(π)>µ

]
= π2(µew − µg)2 + (1− π)2 σ2

gψ
2

T −N − 1 .

Taking the derivative of E[(ŵ(π)>µ−µg)2] with respect to π and setting it to zero yields the

final expression for π in (IA13).
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