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Groups act by automorphisms, Lie algebras by derivations

Via a semidirect product construction
0 ,2 X ,2 X ¸ξ B ,2 B ,2lr 0

actions correspond to isomorphism classes of split extensions.

Actions are codified differently depending on the context.

§ Groups: homomorphism ξ : B Ñ Aut(X) – (tX
– ,2Xu, ˝, 1X)

§ Lie algebras: morphism ξ : B Ñ Der(X) ø details later

Let K be a field.
A K-algebra is a K-vector space X with a bilinear multiplication

¨ : X ˆ X Ñ X : (x, y) ÞÑ xy = x ¨ y = [x, y].
Together with the K-algebra morphisms, this defines a category AlgK.

The notation V ď AlgK means that V is a variety of K-algebras:
additional identities hold for the algebras in V .

Can we extend the above to V ď AlgK?

§ V -algebras: morphism ξ : B Ñ ???
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Actions of Lie algebras

LieK is the variety of K-algebras determined by the equations
#

xx = 0 multiplication is alternating

x(yz) + y(zx) + z(xy) = 0 Jacobi identity

§ Example: V a K–vector space, then Gl(V) is End(V) with bracket
f ¨ g – f ˝ g ´ g ˝ f for f, g : V Ñ V.

§ Example: X a Lie algebra, Der(X) ď Gl(X) consists of derivations,
D : X Ñ X such that D(xy) = D(x)y ´ xD(y) for all x, y P X.

Via a semidirect product construction

0 ,2 X k ,2 X ¸ξ B ,2 B ,2
slr 0

actions correspond to isomorphism classes of split extensions.

Given ξ : B Ñ Der(X), construct X ¸ξ B as X ‘ B with
(x, b) ¨ (y, c) – (xy+ ξ(b)(y) ´ ξ(c)(x), bc),

while the sequence determines ξ via b ÞÑ (X Ñ X : x ÞÑ s(b)k(x)).

How to extend this to other varieties of K-algebras?
Can the concept of a derivation be generalised?
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Action representability [Borceux–Janelidze–Kelly, 2005]

0 ,2 X k ,2 X ¸ξ B ,2 B ,2
slr 0

We look for a global solution:
a construction valid for all split extensions in a given variety V .

Categorically, this is called action representability:
Equivalence classes of split extensions in V by an object X
are representable, by an object [X].

SplitExt(´, X) – Hom(´, [X]) : V op Ñ Set

For each X, an object [X] exists such that equivalence classes of split
extensions of B by X correspond to morphisms B Ñ [X], naturally in B.

§ Groups: [X] = Aut(X)
§ Lie algebras: [X] = Der(X)

Conditions for V ď AlgK to be action representable?
Then the object [X] plays the role of Der(X),
so it contains “generalised derivations”.
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Action representable varieties of K-algebras
Recall that V ď AlgK means V consists of K-algebras (X, ¨)
that satisfy an additional set of (polynomial) equations.

V is semi-abelian, as a variety of groups with operations [Porter, 1987].

Are known to be action representable such:

§ LieK;

§ qLieK (Jacobi and xy = ´yx) when char(K) = 2:
then LieK š qLieK since xy = ´yx does not imply xx = 0;

§ Boolean rings: K = Z2 with xx = x, xy = yx and x(yz) = (xy)z.

Is there anything else? For infinite K: No!

Theorem

When K is infinite, an action representable variety V ď AlgK
is either LieK, qLieK, or VectK (the algebras are abelian, xy = 0).

Der(X) cannot be generalised in a way which is globally valid.
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Representability of representations

To prove the theorem, we reduce to abelian actions:
B acts on an abelian algebra X (where xy = 0: X is just a vector space).

(We make representability fail for a simpler subclass of the actions.)

In the present context, such an action happens to be the same thing as
a representation or Beck module: an abelian group (f,m, s) in (V Ó B).

Unit:
B s ,2

1B
�$

A

f
z�

B
Multiplication:

X ˆ X
�$

,2 X
z�

A ˆB A
m ,2

f˝π1=f˝π2
�$

A

f
z�

B

Representability of representations (RR) means that each functor
Rep(´, X) : V op Ñ Set : B ÞÑ tclasses of B-module structures on Xu

is representable—by an vXw for which Rep(´, X) – Hom(´, vXw).

In LieK, we have vXw = Gl(X). Gl(X) is typical for Lie algebras:

We show that for V ď AlgK non-abelian with K infinite,
(RR) implies that V = LieK or V = qLieK.
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(RR) implies algebraic coherence [Cigoli–Gray–VdL, 2015]

Theorem [García-Martínez–VdL, 2019]

For K infinite and V ď AlgK, are equivalent and hold under (RR):

(i) V is algebraically coherent: B5X+ B5Y ↠ B5(X+ Y), where

0 ,2 B5Z ,2 B+ Z
p1B 0q

,2 B ,2lr 0;

(ii) for λ1, …, λ8, µ1, …, µ8 in K, the following identities hold in V :
z(xy) = λ1y(zx) + λ2x(yz) + λ3y(xz) + λ4x(zy) + λ5(zx)y+ λ6(yz)x+ λ7(xz)y+ λ8(zy)x,

(xy)z = µ1y(zx) + µ2x(yz) + µ3y(xz) + µ4x(zy) + µ5(zx)y+ µ6(yz)x+ µ7(xz)y+ µ8(zy)x;

(iii) V is an Orzech category of interest;

(iv) V is a 2-variety: I◁ A ñ I2 ◁ A;

(v) Higgins commutators of normal subobjects are normal in V ;

(vi) V is an action accessible category. □

Under (RR), the functors Rep(´, X) – Hom(´, vXw) : V op Ñ Set
send coproducts in V to products in Set.

We call the equations in (ii) the λ/µ-rules.
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Why an infinite field?

The assumption that K is an infinite field
is relevant for the following reason.

Theorem [Zhevlakov–Slin’ko–Shestakov–Shirshov, 1982]

If V ď AlgK for K infinite, then for any identity ϕ(x1, . . . , xn) = 0,
its homogeneous components are again identities. □

For instance:

§ xy+ yx+ x(yz) + (xy)z = 0 entails
xy = ´yx and x(yz) = ´(xy)z;

§ xx = x entails x = 0, so that Boolean rings are excluded.
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Structure of the proof

We know that any V ď AlgK with K infinite and (RR)
is “weakly associative” in the sense of the λ/µ-rules.
We want to show that V = LieK or V = qLieK when it is non-abelian.

Lemma

If V ď AlgK satisfies a non-trivial homogeneous identity of degree 2,
then V is either a variety of commutative algebras,
or a variety of anticommutative algebras. □

§ Commutative case: we may show that V does not satisfy (RR);

§ Anticommutative case: here Jacobi follows from the λ/µ-rules.

Can we show that an identity of degree 2 holds in V ? Yes!

When this is done, proving that there are no subvarieties
besides LieK and qLieK is straightforward.
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Finding non-trivial identities of degree 2
Proposition

Let K be a field of characteristic 0 and V ď AlgK.
If (RR) holds in V , then V satisfies a non-trivial identity of degree 2.

Sketch of proof.

In V with (RR), from the λ/µ-rules we deduce a system of polynomial
equations, which is inconsistent when there are no degree 2 identities.

We let X be a certain 79-dimensional vector space and consider
three copies B1, B2 and B3 of the free V -algebra on a single generator,
each with a chosen (abelian) action on X. The isomorphism

Rep(B1 + B2 + B3, X) – Rep(B1, X) ˆ Rep(B2, X) ˆ Rep(B3, X)
gives us an action ξ of B1 + B2 + B3 on X, and
the λ/µ-rules in X ¸ξ (B1 + B2 + B3) give rise to
a system (fi = 0)1ďiď224 of 224 polynomial equations.

Assuming there are no identities of degree 2, we may show
that there exist αi P Z[λ1, . . . , λ8, µ1, . . . , µ8] such that
m =

ř

i αifi for some non-zero integer m—a contradiction.
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m =
ř

i αifi for some αi P Z[λ1, . . . , λ8, µ1, . . . , µ8]

To find an integer m and polynomials αi P Z[λ1, . . . , λ8, µ1, . . . , µ8]
for which m =

ř

i αifi, we had to use a computer.

Using Gröbner bases, the package Singular tells us that we may take m
equal to the number 145679959084559802430969530553780449546
31566240653468532985722705486804720454721162503860068674
68944668940571897397172623649920632890267296075654343504
20878447841877721000590295768558884307124148778177377876
83006491666659252329159304174905496937087738581344349487
06688018655694558517577569557620995746293278480812431412
26057440402445559832044185972204201826090047396984682860
86456278718305987356616291033342422821290606589434367054
05397251478428615134881732782202177457769419650118822781
315636327042662036615068825734248984068309403420950318.
The file that contains the corresponding αi is over 8 megabyte large.

Checking that the equality does indeed hold is relatively simple.
The proof may be extended to infinite fields of prime characteristic.
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Conclusion

§ We showed that, at least when we work over an infinite field,
the concept of a derivation (when used for characterising actions)
cannot be extended from Lie algebras to other types of algebras.

§ Representability of representations suffices
for the Jacobi identity to hold in V ď AlgK.

§ It follows that LieK is the only action representable
variety of K-algebras when K is infinite and char(K) ‰ 2.

§ Our proof depends on computer algebra.
Currently, we know of no alternative argument.

§ Likely, the condition that we work over an infinite field
may be avoided by considering operadic varieties of K-algebras
(which have multilinear identities).
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Thank you!


