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In hand surgery, given the variety of available surgical techniques, the 

choice of the “right” treatment (the treatment that gives the best results) is 

complicated, even for experienced surgeons. Nowadays, the surgeon’s 

opinion is no longer sufficient; a detailed clinical exam must include 

objective assessments as well as the patient’s perception so that the post-

operative outcome can match the patient's expectations. Hand surgery 

practice is shifting towards evidence-based treatments with the aim of 

providing the best results when treating patients. Therefore, health 

professionals need robust tools to evaluate objectively the effectiveness of a 

surgical treatment of the hand. This thesis explores new tools the hand 

surgeon can use for the evaluation of treatment effects.  

1.1. Hand pathologies and function impairment 

The hand is a highly specialized functional, sensory, and aesthetic unit. 

It can suffer a unique and wide range of lesions such as bone fractures, nerve 

compressions, ligament and tendon injuries, cartilage degeneration, vascular 

lesions and skin conditions. In addition, hand functioning can be impaired 

by pathologies that affect the brain-hand connection such as stroke or neuro-

degenerative diseases. Hand injuries and pathologies can cause functional 

loss in young and active workers (e.g. wrist fracture when skiing), as well as 

in the older population (e.g. osteoarthritis). Irrespective of the etiology, 

impaired hand function limits the individual’s ability to perform activities of 

daily living (ADL), and increases demands on caregivers and workers’ 

compensation costs (Desrosiers et al., 2006; Kwakkel et al., 2003). When the 

costs of medical care, rehabilitation, and productivity loss are computed, the 

burden of hand disorders is massive (de Putter et al., 2012). Therefore, the 

evaluation and management of hand disorders is critical to individuals and 

to society. As health care delivery and reimbursement undergo rapid and 

substantial changes, the focus on quality and value of care continues to 

increase (Giladi and Chung, 2013), with the aim of reducing the costs of 

medical care, and increasing the use of high-value treatments, while 
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discouraging low-value treatments. This is done by emphasizing 

appropriate and evidence-based surgical interventions or conservative 

treatments.  

The first step in determining the appropriate treatment for a given 

patient is to accurately identify and evaluate the impaired function. Based 

on an accurate and reliable assessment, clinicians are able to establish 

treatment goals. Therefore, as a complement to the clinical examination and 

medical history, many tests have been developed such as radiography to 

visualize bones, goniometry to measure range of motion, or dynamometry 

to measure grip strength. However, the relation between impairments 

(dysfunction at the organ/segment level) and disability (dysfunction at the 

person level) is not straightforward (Arnould et al., 2007; Vandervelde et al., 

2009). This means that one cannot deduce the ability to carry out activities of 

daily life just by looking at the impaired functions (such as loss in grip 

strength or range of motion). For this reason, patient functioning in daily life 

must be measured per se, and not merely inferred from underlying 

impairments. Therefore, clinicians need to use outcome measures (i.e. 

assessments) that target the adequate domain and have strong psychometric 

properties, as will be developed in the next chapters. 

1.2. Outcome measurement 

Treatment methods have benefits, as well as associated risks, 

disadvantages and costs. Therefore, robust criteria are needed to justify these 

costs and to reinforce patient education regarding the risks and outcomes of 

a procedure. Outcome evaluations are needed to assess the effectiveness and 

reliability of a treatment. The trend in the reimbursement of treatments by 

private or social insurances is shifting from “pay for an act” to “pay for 

results” (Porter, 2009), with the goal of achieving high value for patients 

(Porter, 2010). 
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Physical tests and biomechanical measurements (such as grip strength, 

pinch strength, or range of motion) are the most commonly reported 

outcome measures in hand surgery (Alderman and Chung, 2008). These 

simple empirical measures of physical function are easily captured by 

clinicians and therapists, and are helpful metrics of functional recovery after 

hand surgery (Klum et al., 2012). Although objective and reproducible 

measurements can be obtained, these outcomes may not be the most 

appropriate to reflect the true benefit of a treatment to the patient. Indeed, 

these methods do not reflect the patient’s ability to carry out activities of 

daily living, the ability to return to previous occupations, and pain. What the 

surgeon might view as a considerable improvement in grip strength may not 

correspond to improved hand function from the patient’s perspective (Giladi 

and Chung, 2013). Likewise, demonstration of fracture union on a 

radiograph is insufficient to determine whether a patient is satisfied with 

their outcome and is capable of resuming their usual activities or returning 

to work (Giladi and Chung, 2013; Jaremko et al., 2007; Synn et al., 2009; 

Young and Rayan, 2000).  

In hand surgery, most of the procedures aim at improving functional 

outcomes and giving patients better quality of personal and social life 

(Dubert, 2014). Evaluating such outcomes requires patient-centered 

instruments, as patients are in the best position to describe their stated of 

health, functional capacity and satisfaction. Accordingly, Patient-Reported 

Outcome Measures (PROMs) have been developed. PROMs were once 

considered subjective and unreliable, but are now recognized as 

fundamental to understanding the impact of clinical decisions (MacDermid, 

2014). Contrary to the sole use of clinical evaluation, the inclusion of outcome 

measures completed by patients themselves is based on the principle that no 

one is better placed than patients to know their own needs and criteria for 

results. Patients' self-evaluation is especially adapted to certain aspects of 

health such as daily activities, satisfaction, social well-being, pain and 

quality of life (Dubert, 2014). 
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Since their introduction, the quality of PROMs has improved and their 

performance is evaluated using criteria similar to clinical measurement tools, 

such as validity, reliability, and sensitivity. It has become increasingly 

recognized that new drugs, devices and interventions must prove 

themselves in terms of better outcomes at the patient level to warrant private 

or public investments. For example, the Belgian Federal Institute for Health 

Insurance (INAMI, institut national d'assurance maladie-invalidité) has 

adopted PROMs and cost-efficiency as outcome measures for the evaluation 

of a mobile application for the rehabilitation after hip and knee replacements 

(INAMI, 2021). On a global scale, the International Consortium for Health 

Outcomes Measurement (ICHOM) has been set up as a non-profit 

organisation with the purpose of transforming health care systems 

worldwide by measuring and reporting outcomes that matter most to 

patients (ICHOM, 2021a). In this respect, PROMs constitute a substantial 

part of the standard evaluation sets developed by ICHOM (ICHOM, 2021b). 

The research community has also recognized the importance of PROMs, and 

most large clinical trials now use them as the primary outcome of interest to 

determine the effectiveness of interventions, with impairment and imaging 

considered as secondary measures (Chen et al., 2021).  

1.2.1. Patient-reported outcome measures in hand surgery 

A wide variety of PROMs have been developed for the evaluation of 

upper extremity disorders, including those for the evaluation of wrist and 

hand function. These questionnaires are classified as generic, system-specific 

and disease-specific (Fitzpatrick et al., 1998).  

Generic instruments are intended to capture a very broad range of 

aspects of health status, without focusing on any specific disease or organ 

system. The Short Form (SF)-36 (Ware et al., 1994), and its shortened version 

the SF-12 (Ware et al., 1996) are generic measures frequently used as an 

outcome measure in hand surgery. They ascertain general well-being, 



Chapter 1. Introduction 

18 
 

including components of pain, vitality, emotional and mental health, and 

self-assessment of ability to perform daily functions and activities. The main 

advantage is that this type of instrument can be used for a broad range of 

conditions, thereby allowing comparisons of health outcomes across 

different pathologies and fields. By including items across a broad range of 

aspects of patients’ life, generic instruments must sacrifice some level of 

detail in terms of relevance to any one illness. The risk is therefore some loss 

of relevance of questionnaire items when applied to any specific context, and 

the loss of sensitivity to change that might occur as a result of an 

intervention. 

System-specific instruments focus on an organ system or functional unit. 

They assess health problems in a specific part of the body. The most 

commonly used instruments of this type in upper extremity studies are the 

Michigan Hand Outcomes Questionnaire (MHQ) (Chung et al., 1998), the 

Disabilities of the Arm, Shoulder and Hand (DASH) (Hudak et al., 1996), and 

the Patient-Rated Wrist Evaluation (PRWE) (MacDermid et al., 1998). The 

MHQ assesses each hand independently, and provides data for overall hand 

performance as well as unique scores of separate domains related to hand 

function, daily activities, work performance, pain, aesthetics, and 

satisfaction. The DASH is a self-administered questionnaire of 38 items 

designed to measure disability for any region in the upper limb. The subjects 

are asked to rate their ability to carry out activities of daily life regardless of 

the limb needed to perform that activity. As such, the questionnaire 

produces a score of patient function representing the composite abilities of 

both upper extremities. The QuickDASH (Beaton et al., 2005) is the 11-item 

shortened version of the DASH that was developed to minimize time and 

responder burden. The PRWE is a 15-item questionnaire measuring wrist 

pain and function during daily activities. The PRWE stem questions have 

been modified to allow its application for wrist and hand problems 

(MacDermid and Tottenham, 2004). 
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Disease-specific instruments focus on a particular disorder. Their 

focused nature often results in high responsiveness when used in the 

appropriate patient population (Szabo, 2001). One of the drawbacks is that 

the design of such questionnaires often limits their use for the evaluation of 

other diseases. For instance, the Boston Carpal Tunnel Questionnaire (CTQ) 

evaluates the severity of symptoms and functional status associated with 

carpal tunnel syndrome (Levine et al., 1993). 

1.2.2. Manual activities monitoring 

Ambulatory monitoring devices are enabling a new paradigm of health 

care by collecting and analyzing data for reliable diagnostics or patient 

follow-up. This is the case in many fields of medicine, especially cardiology 

(Sana Furrukh et al., 2020). Monitoring devices are also increasingly present 

in our daily lives in the form of wearable instruments such as sports watches. 

These could offer the opportunity to collect data from everyday life for 

healthcare purposes such as diagnostic, evaluation, and rehabilitation 

purposes. 

A great number of patients have activity limitations caused by 

impairment of the upper extremities. PROMs in the form of questionnaires 

have been developed to assess the disability and recovery of the upper limb, 

as previously seen. These types of tests are very useful to gather information 

about patients’ ability to perform their daily life activities, through self-

perceived performance. However, these tests do not generate information 

about the number of daily activities actually performed by patients in their 

natural environment. Additionally, many patients can overcome activity 

limitations by executing activities in a different manner, such as using two 

hands for an activity that usually requires one (Barbier et al., 2003). Common 

examples of activities for which patients can develop compensatory 

mechanisms are typically unimanual activities such as brushing teeth, 

writing and drinking. Therefore, measuring the actual amount of daily 
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activity performed by patients is essential to understand the impact of their 

restrictions on their daily lives. An objective evaluation of activities could 

complement the input of patients through questionnaires. 

An instrument that measures 1) the activities that are actually performed 

with the hands, 2) the quantity of activity execution (i.e. the amount of hand 

use), and 3) the quality of execution of the movement, is currently lacking. A 

device that could be used for patients monitoring in their natural 

environment should meet the following specifications: 1) the measurement 

should be objective, i.e. not requiring subjective interpretations by the 

patient or clinician, 2) the instrument should be portable and unobtrusive for 

ambulatory use in daily life conditions, 3) the instrument should be able to 

identify specific activities and provide measures of the quality of activity 

performance, and, finally 4) the instrument should be applicable in different 

patient populations (Lemmens et al., 2015). 

Wearable inertial sensors are the most common devices for the 

measurement of motion and physical activities associated with daily living. 

They combine an accelerometer, a gyroscopic sensor, and sometimes a 

magnetometer, which makes them particularly effective for evaluating 

movements (Tamura, 2014). Accelerometers measure acceleration, 

gyroscopes measure angular velocity, and magnetometers measure 

magnetic fields (i.e. the orientation towards the Earth’s magnetic field). 

Inertial sensors have been used for monitoring activities as they are small, 

affordable, and generally unobtrusive (Yang and Hsu, 2010). They have been 

used for upper limb motion analysis with good accuracy and reliability 

(Cuesta-Vargas et al., 2010; Zhou et al., 2008). They have been shown useful 

for clinical applications (Thanawattano et al., 2015), and proved to be more 

sensitive than questionnaires to detect changes in shoulder movement, thus 

adding a complementary objective component to outcome measurement 

(Körver et al., 2014). 
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The ability to monitor activities of daily living in the patient’s natural 

environment could thus become a valuable tool for clinical decision-making, 

evaluating healthcare interventions and tracking rehabilitation progress. The 

process of developing a manual activities monitoring device will be 

discussed in chapter 5. 

1.3. Theoretical framework of measurement 

Health status is a multi-faceted concept. Therefore, its accurate and 

uncontroversial measurement is complex and elusive (Ziebland et al., 1993). 

Improvements observed by the clinician may not necessarily correspond to 

the patient's perceptions and experiences, as patients are the best positioned 

to judge their levels of disability and health-related quality of life 

(Berkanovic et al., 1995; Hewlett, 2003). The development of PROMs, has 

been a development of quite revolutionary significance as it allowed to 

capture the multiple facets of health. Respondents are asked to report on 

their ability to perform tasks, their energy and sleep patterns, their mood 

state, experience of pain, social activities, physical mobility and dexterity. 

The inclusion of such diverse domains comes with the burden of accurately 

capturing these aspects and measuring them reliably. In this section, the 

theoretical framework for measuring health outcomes will be exposed, as 

well as measurement theories for quantifying such variables. 

1.3.1. The ICF classification 

When choosing an instrument to assess an outcome in clinical practice 

or research, it is important to consider the construct or domain to be 

measured, and to evaluate its appropriateness in the given context. PROMs, 

like any other measurement tool, have specific measurement properties in 

terms of their scope. It is particularly useful to understand and measure 

health outcomes that look beyond mortality and morbidity, as they reflect a 
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biopsychosocial perspective describing the impact of a disease from an 

individual and societal perspective (Jerosch-Herold et al., 2006). 

The adoption of the World Health Organization's International 

Classification of Functioning, Disability and Health (ICF) has changed the 

way health and disability are viewed (World Health Organization, 2001). 

According to the ICF, the consequences of a disease are considered in three 

domains: (1) body functions and structures, (2) activity, and (3) participation. 

Body functions refer to physiological and psychological function of the body 

systems (e.g. motor skills or sensitivity), and body structures are anatomical 

parts of the body such as bones, muscles and ligaments. Activity is defined 

as the execution of a task or action by an individual (e.g. manual activities of 

daily living). Participation refers to the patient’s involvement in society, such 

as in hobbies and work. The impact of a pathology or a surgical intervention 

in these three domains is also conditioned by personal factors (e.g. 

motivation, capacity to develop compensatory strategies) and 

environmental factors (e.g. social or professional context). Pathologies can 

affect each domain and a patient can have (1) impairments, (2) activity 

limitations, and (3) participation restrictions. The ICF provides a framework 

for classifying diseases and their effect on body structure and functioning, 

activities and participation.  
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Figure 1.1. Overview of the dimensions of the ICF (adapted from World Health 

Organization, 2001). 

Impairments are typically evaluated using clinical examination, or 

proven tools such as radiography to visualize bones, goniometry to measure 

range of motion or dynamometry to measure grip strength. However, these 

measurements do not inform the clinician about the performance of upper 

limb activities in everyday life (Barbier et al., 2003). Activity limitations are 

more complex to quantify. If we ought to define a gold standard for 

measuring activities, we would observe the patients while they are 

performing manual activities in their domestic environment. However, this 

is not practical for physicians given the burden and complexity of real-life 

assessments, so the patient’s ability is assessed via a proxy, or PROMs in this 

case. For example, the ABILHAND questionnaire was designed to measure 
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manual ability, which is the ability of a person to use his/her hands and 

upper limbs to perform manual activities of daily living. The scale has been 

validated in populations with rheumatoid arthritis (Durez et al., 2007), 

chronic stroke (Penta et al., 2001), pediatric cerebral palsy (Arnould et al., 

2004), systemic sclerosis (Vanthuyne et al., 2009) and neuromuscular 

diseases (Vandervelde et al., 2010). The validation for its use in hand surgery 

is described in the next section. 

1.3.2. The classical test theory 

The classical test theory (CTT) is a traditional quantitative approach to 

testing the reliability and validity of a questionnaire based on its items. Items 

are scored according to a rating scale (e.g. Impossible = 0, Difficult = 1, Easy 

= 2), and scores to each item are then summed up to generate a total 

questionnaire score. The CTT framework focuses on the questionnaire as a 

whole. It is based on the idea that a person's observed score on a test is the 

sum of a true score (error-free score) and an unsystematic (i.e. random) error 

(Spearman, 1904).  

True scores quantify the latent trait to be measured (i.e. the attribute of 

interest). As values of the true score increase, responses to items representing 

the same concept should also increase, assuming that item responses are 

coded so that higher responses reflect more of the underlying latent trait. 

Random errors found in the observed scores are normally distributed, and 

therefore, the mean of such random fluctuations is taken to be zero. Random 

errors are assumed to be uncorrelated with the true score. 

The previously cited questionnaires (MHQ, DASH, PRWE and CTQ) 

have been developed using the classical test theory. The premise is that 

individual item scores can be summed up (without weighting or 

standardization) to produce a total score (Lord and Novick, 1968). The CTT 
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is widely used for questionnaire development, but has several limitations 

(Smith et al., 2002):  

- Scores are not necessarily objective as item and test indices depend 

on the examined sample. For example, a more able group will score 

higher than a less able one on the same test, and a person will seem 

more able if an easy test is administered, compared to a more difficult 

one. 

- The CTT cannot predict an individual response to a given item. For 

example, it is not possible to predict how a person who answered 

“easy” to 50% of the items on a questionnaire would rate the 

difficulty of an item that was answered “easy” by 80% of the patients 

taking the same questionnaire (Smith et al., 2002). 

- People’s level of function cannot be measured independently of the 

difficulty of the test used.  

- Total scores obtained by adding up the values of each response are 

ordinal and not necessarily linear, which means that the 

measurement unit is not constant throughout the measurement 

range. The same distance between scores (e.g. from 0 to 1 and from 1 

to 2) may not reflect the same amount of increase in ability. This 

distortion of the score is especially noticeable at the extremes of the 

score range, compared to the center of the scale. For example, a 2-

point difference at the center may represent a smaller true score 

difference than a 2-point difference at the extremities (DeVellis, 

2006). As a consequence of ordinal scores, many of the statistical 

models to make mathematical comparisons among individuals or 

groups are invalid, as these assume an interval scale (Merbitz et al., 

1989; Wright and Linacre, 1989). 

- The standard error of measurement is only know at sample-level, but 

not at subject-level. Hence, only the average error of measurement 
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across the whole sample is known, and assumed to be the same for 

all subjects, even though it is known that scores at the extremities are 

generally less precise. As a consequence, the CTT prevents an 

individual approach to assess functional change for patient follow-

up. Using the CTT, functional change can only be quantified based 

on group-level indices such as the variance between subjects at a 

given point in time or the average change between assessments. 

- Scores are not easily interpretable, nor comparable between patients 

unless the data is complete, and missing responses are difficult to 

manage.  

- The CTT cannot validate response patterns. If a patient affirms that 

the easiest items are “difficult” and that the most difficult items are 

“easy”, does their score truly reflect their ability level?  

1.3.3. The Rasch model 

When assessing variables in medicine, we can measure either observable 

or latent variables. Observable variables (i.e. physical features) such as grip 

strength or range of motion can be directly measured with an instrument 

such as a dynamometer for grip strength and a goniometer for range of 

motion. Latent variables (e.g. manual ability or intelligence) are variables 

that are not directly observed, but can be accessible to measurement if they 

manifest themselves through external physical events (Tesio, 2003). For 

example, intelligence can become manifest through problem solving, and 

manual ability through the execution of activities requiring the use of the 

hands. By observing and counting these observable events, we can deduce 

the amount of the latent variable that is concealed within the subject (e.g. the 

more activities can be accomplished, the higher the level of manual ability). 

However, counting does not provide cues to valid quantitative 

measurements. For this reason, we need a model that relates counts of 
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observations to an abstract linear continuum from “less” to “more” (Tesio, 

2003). Measurement requires an abstraction or construct which represents 

the attribute being measured. When measuring an observable variable, such 

as the length of an object, we refer to an abstract continuum on the 

measurement instrument being used. A line conceptualized from “less” to 

“more” represents a gradient of increasing levels of the variable. 

Measurement of any variable should comply with the fundamental 

principles of measurement, as will be developed in this section: linearity, 

unidimensionality, invariance, and objectivity (Tesio, 2003).   

The Rasch model (Rasch, 1980) is a statistical approach to measuring 

latent variables such as human performance, attitudes, and perceptions 

(Tesio, 2003). It was developed by the Danish mathematician Georg Rasch in 

the 1960s, and has become increasingly popular in health and human 

sciences as awareness of the limitations of the CTT has grown (Conrad and 

Smith, 2004; Smith et al., 2002). The measurement principles and 

methodological concepts underlying the Rasch model have been detailed in 

the referred textbooks (Andrich, 1988, 1978; Rasch, 1980; Thurstone, 1959; 

Wright and Stone, 1979; Wright and Masters, 1982). It is based on the 

assumption that patients with a higher level of the measured latent trait 

(manual ability in this case), will have a higher probability to successfully 

pass an item, compared to patients with lower ability levels. The model states 

that the probability to pass an item depends only on subject ability and item 

difficulty (Rasch, 1980), according to the formula 

𝑃(𝑋 = 1|0,1) =
𝑒𝛽−𝛿

1 + 𝑒𝛽−𝛿
 

where P is the probability of passing an item, β is the subject ability and δ is 

the item difficulty. Figure 1.2 illustrates the dichotomous Rasch model where 

each item has only two possible outcomes: pass or fail (i.e. able or unable to 

achieve the activity). 
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Figure 1.2. Probability of passing or failing an item in the dichotomous Rasch model. 

The thick and thin lines represent the probability of passing or failing an item, 

respectively, as a function of the difference between subject ability (β) and item 

difficulty (δ). The top panel illustrates the manual ability continuum. The blue tick 

on the ruler is positioned at 0 logits, for which β=δ, and the probability of passing or 

failing an item is 50%. The higher the subject ability, the higher the probability of 

success will be. 

 These two parameters can be estimated based on the proportions of 

responses to each item. For example, the item that got the highest proportion 

of “passes” over “fails” (the item that most subjects were able to pass) is the 

easiest one, while the item that got the lower pass/fail proportion is the most 

difficult one. Likewise, the subject that managed to pass most items is the 

most able one, while the one who failed most items is the least able one. 

Using the Rasch model, subjects and items can be placed on a common linear 



 

29 
 

scale. The latent variable “manual ability” can thus be conceptualized as an 

infinite continuum representing ability levels from “less able” to “most 

able”. Measuring a patient’s manual ability involves determining the patient 

location along this continuum. 

The graduations of this scale are formed by the items of the 

questionnaire. As in a physical measuring instrument such as a ruler, the 

whole range of measurement should be covered by graduations in order to 

achieve the greatest precision.  

 

Figure 1.3. Manual ability continuum. Arrows represent patient (upper arrows) and 

item (lower arrows) locations on the continuum. 

Figure 1.3 shows the continuum, represented by a ruler, along which the 

patients are located from the least to the most able, and the items from the 

easiest to the most difficult. As illustrated in Figure 1.3, patient A has a low 

manual ability level since his/her ability level is just enough to pass the first 

(easiest) item. Patient B has a moderate ability level and is expected to 

successfully pass the two easiest items and fail the three most difficult ones. 

Patient C has a high ability level and can likely succeed in all items except 

the most difficult one. As the Rasch model is probabilistic, exceptions can 

sometimes occur and a patient can potentially succeed in a difficult item 

while failing an easier one.  
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The Rasch model has been adapted to the polytomous response format, 

where an item can have different response categories such as 

impossible/difficult/easy (Andrich, 1978; Masters, 1982; Wright and Masters, 

1982). These models state that the probability of response to an item depends 

only on the patient’s ability, item difficulty, and threshold difficulties. 

Thresholds are located between two adjacent response categories, and 

correspond to the ability level needed for the patient to have a higher 

probability of selecting a particular response category rather than the 

previous adjacent one. In a polytomous response format (Figure 1.4) where 

activities can be answered on a three-level scale (impossible/difficult/easy), 

the thresholds between successive response categories are the graduations 

of the scale (compared to the items in the dichotomous model, since these 

only have one threshold). Therefore, patients whose manual ability is located 

beneath the first threshold are most likely to be unable to accomplish the 

activity; patients with an ability level located between the two thresholds are 

expected to perform the activity with difficulty, and patients with a manual 

ability located after the second threshold are most likely to complete the 

activity easily. 
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Figure 1.4. Polytomous response format. The blue, red and green lines represent the 

probability of answering “Impossible”, “Difficult” or “Easy”, respectively, to a given 

item as a function of manual ability. The larger the ability of a subject, the more 

probable he/she is likely to choose the higher response category. The intersection 

between two consecutive response categories corresponds to a threshold (τ), 

represented by the dotted lines. The first threshold (τ1) corresponds to the ability 

level required to respond “difficult” rather than “impossible”, while the second 

threshold (τ2) is located at the ability level required to respond “easy” rather than 

“difficult”. The item difficult δ corresponds to the mean of the two thresholds.  

The more graduations are found on the scale, the more the measurement 

will be precise, as is the case with a ruler that is graduated each millimeter, 

compared to one tick each five millimeters (Tesio, 2003). When the 

measurement continuum is divided into more parts, the sensitivity to change 

and reliability are also expected to increase (Cano et al., 2006; Hobart et al., 

2007). The more response categories constitute an item, the more the number 

of thresholds increases, and thus the more scale graduations per item. 

However, a certain balance must be achieved between increasing the scale 

precision and not confusing the respondent, which would increase the 
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measurement error. For example, as an answer to the question “How do you 

feel after surgery?”, a patient can be presented with the following response 

categories: almost the same/a little better/somewhat better/moderately 

better/a good deal better/a great deal better/a very great deal better (Jaeschke 

et al., 1989). While the presence of seven categories in this Likert scale gives 

the illusion of increased precision, it might just confuse the patient who 

would not be able to discriminate between so many categories (Penta et al., 

2001). The Rasch model can determine if the response categories are 

functioning as intended (i.e. they are well discriminated by patients). 

Successive response categories such as impossible/difficult/easy should 

represent increasing levels of ability. For a patient with a given manual 

ability level who performs an activity with difficulty, it is expected that a 

more able patient would answer “easy”, and a less able patient would 

answer “impossible”. The Rasch model investigates category functioning by 

verifying whether thresholds between adjacent categories are located at 

increasing levels of ability (i.e., that the thresholds are correctly ordered) 

(Andrich, 1996). 

A very important property of a measuring instrument is 

unidimensionality, which means that the scale measures only one variable 

(or attribute of an object) without being influenced by other factors (Brentani 

and Golia, 2007). For example, a ruler measures only one property of an 

object (size) and is not influenced by other object properties such as shape 

and color. In the case of latent variables, the theoretical concept of 

unidimensionality is never totally met in practice, since the separation of one 

trait from the others is extremely difficult (Andrich, 1988). Approximating 

this ideal in the observed data is required so that subjects can be 

quantitatively compared based on the same attribute (manual ability in this 

case) (Wright and Linacre, 1989). Unidimendionality is tested by comparing 

the observed responses to an item with the expected responses predicted by 

the model. The differences between the two responses are compared using 

fit statistics reported by the different softwares used for Rasch analysis. 
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These statistics determine how closely the items define the underlying 

construct, and detect items that do not contribute to the definition of a 

uinidimensional scale of manual ability. 

As by the definition of unidimensionality, the measured variable should 

not be influenced by other patients’ characteristics such as gender or age. The 

invariance of the scale can be tested among subgroups of patients with 

differential item functioning (DIF) (Holland and Wainer, 1993). A DIF is 

present if for a given manual ability level, a subgroup of patients (e.g. male 

patients) find an item easier or more difficult than another subgroup (e.g. 

female patients). The presence of a DIF introduces a systematic misfit to a 

common scale calibrated for all subjects, and therefore restricts the use of the 

same scale for all subjects. The Rasch model can recognize DIF among 

subgroups and identify items presenting such bias. This allows the 

development of a common scale calibrated for all subjects. 

A linear scale is obtained by converting ordinal raw scores into linear 

measures of the latent variable (manual ability). The units of the scale are 

“logits”, a probabilistic unit that defines the pass/fail probability ratio for a 

patient to be able to achieve an activity: the higher the logit value, the higher 

the probability that a patient will manage an activity easily. This unit is 

constant along the entire range of the scale, which allows measures to be 

quantitatively compared and treated as a linear variable. Based on 

questionnaire raw scores, the model estimates a location for each patient (i.e. 

their ability) and for each item and threshold (i.e. their difficulty). All 

locations are scaled along a common linear, unidimensional continuum that 

defines the latent variable of interest (manual ability in this case). Each 

location has an associated standard error, which quantifies the degree of 

uncertainty associated with the estimated ability or difficulty. The standard 

error is not uniform across the range of the scale, but is generally smaller at 

the center and larger at the extremities of the scale. A good fit of the data 

with the model and the lack of DIF affirm invariant locations along the 
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continuum and indicate that the measures are unbiased with respect to 

patients’ characteristics other than the one being assessed, i.e. manual ability. 

Summary 

The formulation of the Rasch model ensures that the resulting scale 

verifies the fundamental requirements of a measuring instrument: linearity, 

unidimensionality, invariance and objectivity (Merbitz et al., 1989; Rasch, 

1980; Wright and Linacre, 1989). Linearity is ensured by the properties of the 

interval scale: the distance between scale graduations is constant throughout 

the range of measurement. Unidimensionality is verified by selecting the 

items that fit with the model; the model requires that only one patient 

attribute (i.e. their manual ability) determines the response probability. 

Invariance in the patient-item interaction is also confirmed by testing that 

the probability of observing a given response does not vary with patient 

factors (e.g. age, gender, level of education…) other than the one being 

measured (manual ability) (Rasch, 1980; Wright and Linacre, 1989). 

Objectivity is achieved when comparisons between individuals become 

independent of which particular instruments (e.g. questionnaires) have been 

used to generate the measures (Rasch, 1980). With these criteria met, the 

resulting questionnaire verifies the properties of a measuring instrument, as 

a ruler is used for size measurement. Just like one centimeter represents the 

same length throughout the range of any size measurement instrument 

(linearity), the increase in subject manual ability by one logit corresponds to 

the same increase in manual ability by a constant factor of 2.71 (i.e. the 

Neperian constant) (Wright and Masters, 1982). The ruler measures only one 

property of the object (i.e. size) and is thus unidimensional. A 

multidimensional instrument that combines two properties of the object (e.g. 

size and weight) in a single score would be less intuitive to interpret. The 

measures of two objects obtained with the same ruler do not depend on other 

objects properties like shape and color (size measurement instruments are 

invariant relative to objects qualities other than their size). The size of the 

object remains the same whether the measure has been made with a ruler or 
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a measuring tape, hence the objectivity of the measure, or the independence 

of the measure relative to the instrument. 

1.4. Thesis content 

In this thesis, we explore different patient-centered tools that aim to 

improve outcome assessment in hand surgery. In this introduction (Chapter 

1), we presented the general context of outcome measurement and current 

tools and theories to evaluate the domains of interest. In Chapter 2, we 

describe the validation of the ABILHAND questionnaire for hand surgery. 

In Chapter 3, we illustrate how the developed questionnaire can be used in 

clinical practice. In Chapter 4, we study the responsiveness and minimal 

clinically important difference of the ABILHAND-HS. In Chapter 5, we 

present the prototype of a device that could be used to monitor manual 

activities of daily living. We also describe an algorithm that classifies manual 

activities into different categories. In Chapter 6, we summarize the 

contributions of this thesis, we identify the future directions that could 

follow the preliminary results of this work, and we discuss the potential 

contributions of the work to the field of outcome measurement. 
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CHAPTER 2 

Manual ability in hand surgery patients: validation 

of the ABILHAND scale in four diagnostic groups 

 

Published as: El Khoury G, Barbier O, Libouton X, Thonnard JL, Lefèvre P, 

Penta M. Manual ability in hand surgery patients: Validation of the 

ABILHAND scale in four diagnostic groups. PLoS One. 2020 Dec 

3;15(12):e0242625.  
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Patients treated in hand surgery (HS) belong to different demographic 

groups and have varying impairments related to different pathologies. HS 

outcomes are measured to assess treatment results, complication risks and 

intervention reliability. A one-dimensional and linear measure would allow 

for unbiased comparisons of manual ability between patients and different 

treatment effects. A preliminary 90-item questionnaire was presented to 216 

patients representing the diagnoses most frequently encountered in HS, 

including distal radius fracture (n=74), basal thumb arthritis (n=66), carpal 

tunnel syndrome (n=53), and heavy wrist surgery (n=23). Patients were 

assessed during the early recovery and in the late follow-up period (0-3 

months, 3-6 months and >6 months), leading to a total of 305 assessments. 

They rated their perceived difficulty with queried activities as impossible, 

difficult, or easy. Responses were analyzed using the RUMM2030 software. 

Items were refined based on item-patient targeting, fit statistics, differential 

item functioning, local independence and item redundancy. Patients also 

completed the QuickDASH, 12-item Short Form Survey (SF-12) and a 

numerical pain scale. The rating scale Rasch model was used to select 23 

mostly bimanual items on a 3-level scale, which constitute a unidimensional, 

linear measure of manual ability with good reliability across all included 

diagnostic groups (Person-Separation Index = 0.90). The resulting scale was 

found to be invariant across demographic and clinical subgroups and over 

time. ABILHAND-HS patient measures correlated significantly (p<0.001) 

with the QuickDASH (r=-0.77), SF-12 Physical Component Summary 

(r=0.56), SF-12 Mental Component Summary (r=0.31), and pain scale (r=-

0.49). ABILHAND-HS is a robust person-centered measure of manual ability 

in HS patients.  
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2.1. Introduction 

In hand surgery (HS), as in other medical specialties, outcome 

evaluations are needed to assess the effectiveness and reliability of the 

intervention, as well as to reinforce patient education regarding the risks and 

outcomes of the procedure and, potentially, to justify therapeutic practices 

to payers (Dubert, 2014). Physician-documented reports of HS outcomes 

based on clinical examination and imaging should be complemented with 

patient reported outcomes assessed by questionnaires designed to capture 

patients’ perspectives with respect to the impact of their conditions and 

interventions on their daily lives (Berkanovic et al., 1995; Hewlett, 2003; 

Ziebland et al., 1993). 

Current views of health and disability have been shaped by the World 

Health Organization's International Classification of Functioning, Disability, 

and Health (World Health Organization, 2001), which parses disease 

consequences into three domains: impairment of anatomical structures (e.g. 

bones, muscles, ligaments) or body functions (e.g. motor skills, sensitivity), 

activity limitations (e.g. manual activities), and participation restrictions (e.g. 

in hobbies and work). The impact of a pathology or a surgical intervention 

in these three domains is also conditioned by personal factors (motivation, 

capacity to develop compensatory strategies) and environmental factors 

(social or professional context). Although impairment measurements such as 

imaging can provide clues regarding functional prognosis, it does not 

provide good information about performance in everyday life, especially of 

the hands, which are important for a great variety of activities (Barbier et al., 

2003; Bobos et al., 2018; Penta et al., 2001). For example, demonstration of a 

bone fracture union is insufficient to determine whether a patient is capable 

of resuming their usual activities or returning to work (Giladi and Chung, 

2013; Jaremko et al., 2007; Synn et al., 2009; Young and Rayan, 2000). 

The patient-reported questionnaires that have been most commonly 

used in HS (Changulani et al., 2008) are the Disability of the Arm, Shoulder 
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and Hand questionnaire (DASH) (Hudak et al., 1996), the Patient Rated 

Wrist Evaluation (PRWE) (MacDermid et al., 1998), and the Carpal Tunnel 

Questionnaire (CTQ) (Levine et al., 1993). Each of these questionnaires has 

been reported to have good psychometric properties, but each has a 

particular focus on its own area(s) of disablement. The DASH assesses body 

functions, activities, and participation (Coenen et al., 2013) and can be 

divided into 3 subscales based on dimensionality (Franchignoni et al., 2010). 

Meanwhile, the PRWE is specific to the wrist joint and the CTQ is specific to 

carpal tunnel syndrome (CTS). The Michigan Hand Outcomes Questionnaire 

(MHQ) (Chung et al., 1998) is a multidimensional hand-specific outcomes 

instrument consisting of six subscales, measuring overall hand function, 

activities of daily living, pain, work performance, aesthetics, and 

satisfaction. It measures impairment by hand (left and right separately), 

rather than overall disability. Interpretation of total scores on multi-

dimensional instruments can be less than straightforward given that patients 

can show simultaneous improvement in one domain with deterioration in 

another (Merbitz et al., 1989; Wright and Linacre, 1989). Assessment of 

functional recovery on a unidimensional (Thurstone, 1959) and linear 

(Wright and Linacre, 1989) scale would allow for quantitative comparisons 

of ability among different patients and treatments. Such a scale can be 

developed with state-of-the-art psychometric methods, such as the Rasch 

model (Grimby et al., 2012; Rasch, 1980).  

The ABILHAND questionnaire is a Rasch-model built measure of 

manual ability (Penta et al., 1998) that provides an invariant linear scale and 

allows for quantitative comparisons of manual ability between patients and 

over time. The scale has been validated in populations with rheumatoid 

arthritis (Durez et al., 2007), chronic stroke (Penta et al., 2001), pediatric 

cerebral palsy (Arnould et al., 2004), systemic sclerosis (Vanthuyne et al., 

2009) and neuromuscular diseases (Vandervelde et al., 2010). These previous 

validations have shown that the difficulty of most manual activities was 

diagnosis-dependent (Arnould et al., 2012). Therefore, the objective of this 
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work was to adapt the ABILHAND scale to the most frequent diagnoses 

treated in HS. 

2.2. Methods 

2.2.1. Questionnaire adaptation to HS patients 

The ABILHAND is a measure of manual ability that assesses one’s 

ability to manage daily activities requiring upper limb use, regardless of 

strategy (Penta et al., 1998). The necessary permissions were obtained from 

the developer of the original questionnaire to modify it. To develop a HS-

adapted ABILHAND, a preliminary item list was compiled from previous 

versions of the ABILHAND questionnaire, the DASH, PRWE, CTQ, and 

MHQ items together with some new items. This pool of items was submitted 

to nine HS experts (hand surgeons, physical medicine and rehabilitation 

physicians, physical therapists, and occupational therapists), who were 

asked to assess each item’s relevance to hand surgery patients on a yes/no 

basis and propose additional items that might be affected by the relevant 

pathologies (e.g. sensation for CTS and wrist loading for distal radius 

fractures (DRF)). A final list of 90 items constituted the experimental 

ABILHAND-HS questionnaire. 

2.2.2. Patients 

A convenience sample of 216 patients was recruited from February 2018 

to February 2019 at the HS consultation center at Cliniques Universitaires 

Saint-Luc, Belgium representing the following four diagnostic categories: 

CTS, DRF, basal thumb arthritis (BTA), and heavy wrist surgery (HWS, 

including 1st row carpectomy and partial or total wrist arthrodesis). The 

inclusion criteria for patients were being >18 years old and being able to read 
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and understand French. The exclusion criteria included comorbidities that 

may impede manual ability substantially (i.e. tremor, paralysis and active 

rheumatologic disease) and any mental or cognitive dysfunction (i.e. 

dementia and mental retardation). The patient characteristics are 

summarized in Table 2.1. Patients provided written informed consent to 

participate. This study was approved by the ethical committee of Cliniques 

Universitaires Saint-Luc-Université catholique de Louvain (N° 

B403201523492). 
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Table 2.1. Sample characteristics (n = 216). 

Characteristic N (%)a 

Gender  

Women 145 (67%) 

Men 71 (33%) 

Mean age (range), years 60.3 (19–93) 

Education level  

Basic 109 (51%) 

Postsecondary 107 (49%) 

Work status  

Student 2 (1%) 

Unemployed 22 (10%) 

(Self-)Employed 83 (38%) 

Retired 109 (51%) 

Hand dominance  

Right 194 (90%) 

Left 15 (7%) 

Ambidextrous 7 (3%) 

Involved dominant hand  

Yes 136 (63%) 

No 80 (37%) 

Diagnostic group  

Distal radius fracture (DRF) 74 (34%) 

Basal thumb arthritis (BTA) 66 (31%) 

Carpal tunnel syndrome (CTS) 53 (24%) 

Heavy wrist surgery (HWS) 23 (11%) 

Follow-up assessments (n = 305)  

0–3 months 

(57 DRF, 52 CTS, 22 BTA, 1 HWS) 

132 (43%) 

3–6 months 

(38 DRF, 16 CTS, 3 BTA, 1 HWS) 

58 (19%) 

>6 months 

(30 DRF, 18 CTS, 46 BTA, 21 HWS) 

115 (38%) 

aExcept where otherwise indicated  
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2.2.3. Procedures 

The French-language experimental ABILHAND-HS items were 

presented in five random orders to avoid a systematic item sequence bias. 

Patients were asked to indicate their perceived difficulty associated with 

completing the activities without technical or human assistance, 

independent of the hand used to perform the activity on a three-level scale: 

impossible (0), difficult (1), or easy (2) (Penta et al., 2001). Activities not 

attempted during the last week were treated as missing responses. Patients 

also completed the QuickDASH (Beaton et al., 2005), 12-item Short Form 

Survey (SF-12) questionnaire (Ware et al., 1996) and a 10-level numerical 

pain scale, for external validation purposes. 

Patients were first assessed as soon as they presented to their hand 

surgery consultation appointments and had experienced manual activities 

in their own environment: after hand surgery and cast removal for DRF, BTA 

and HWS and at the first consultation for non-operated CTS and BTA.  For 

the first assessment, patients were interviewed by the principal investigator 

in order to ensure clarity, obtain feedback from participants, and make sure 

instructions are properly followed. Patients were also asked to suggest 

additional items they felt the questionnaire was missing. However, these 

were either gender related (e.g. fastening a bra) or very specific and were 

thus not retained. Follow-up assessments were completed in our consulting 

office or returned by mail, leading to a total of 305 completed assessments, 

which provides sufficient power to support the planned Rasch analysis 

(Hagell and Westergren, 2016). 

2.2.4. Rasch analysis 

The 90-item experimental ABILHAND-HS questionnaire responses 

were analyzed using the Rasch model in RUMM2030 software (RUMM 

Laboratory Pty Ltd., Perth, Australia). The Rasch model (Rasch, 1980), a 
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prescriptive model, requires that specified response probabilities depend on 

only item difficulty and patient ability. Polytomous datasets with thresholds 

between successive response categories can be analyzed with either a rating 

scale model that constrains all threshold locations to be equal across items 

(Andrich, 1978) or a partial credit model that allows threshold locations to 

vary across items (Masters, 1982). Patient abilities and item difficulties are 

located along a common linear, unidimensional continuum that defines the 

latent variable of interest (i.e. manual ability). The locations are expressed in 

logits, calculated as the logarithm of the pass/fail probability ratio of an item 

or threshold. The logit locations were converted into centiles to facilitate 

clinical interpretation on a linear scale ranging from 0% (smallest ability) to 

100% (largest ability) (van Nes et al., 2011). Expected responses, determined 

based on the patient and item locations, were compared to the responses 

actually reported to compute residual and fit statistics, which were then used 

to assess the scale’s unidimensionality (Andrich et al., 2013). A good fit of 

the data with the model affirms invariant locations along the continuum and 

indicates that the measure can be used to compare manual ability across 

patients and diagnoses. 

2.2.5. Item selection 

From the experimental version of the questionnaire, the ABILHAND-

HS was refined through successive analyses of 305 assessments with the goal 

of selecting items that define a unidimensional and clinically relevant scale 

of manual ability. P values < 0.05 were considered significant for each of the 

following analysis steps: 

1) Item-patient targeting. Based on examination of patient distributions 

and item locations, items that showed a floor effect (too easy) or did 

not target the patients sample ability were removed. 
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2) Rating scale. Items with disordered thresholds and items with 

thresholds that were too narrow (<1.4 logits) or too wide (>5 logits) 

were removed before applying the rating scale model (Linacre, 

2002). 

3) Unidimensionality. Only items that delineated a common manual 

ability construct according to the following four criteria were 

retained: (1) standardized residuals obtained over three class 

intervals had to be within ±2.5 with a non-significant χ2 (Andrich et 

al., 2013); (2) no observable major differential item functioning (DIF) 

(Holland and Wainer, 1993), uniform or non-uniform, shown by a 2-

way analysis of variance of the residuals with Bonferroni correction 

(Armstrong, 2014), according to gender (male vs. female), age (above 

vs. below the median age of 63 years), pathology (CTS vs. DRF vs. 

BTA vs. HWS), involved hand (dominant vs. non-dominant), level 

of education (basic vs. superior), and follow-up (0-3 months vs. 3–6 

months vs. >6 months); (3) overall fit of the response set based on a 

non-significant item-trait interaction χ2 (Andrich et al., 2013); and (4) 

statistically similar patient locations, according to paired t-tests, 

calculated with items that loaded either positively or negatively on 

the first residuals principal component (Linacre, 1998; Pallant and 

Tennant, 2007; Smith, 2002). 

4) Local independence. When items were found to be querying 

redundant content (Wright B.D., 1996), demonstrated by a residual 

correlation > 0.3, the item with the poorer fit statistic was deleted 

(Ramp et al., 2009). 

5) Item redundancy. To shorten the scale, when two or more items had 

similar locations on the continuum, the one with the best fit was 

retained. 
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2.2.6. Scale reliability 

The Person-Separation Index (PSI), i.e. the proportion of total variance 

(including error) that is attributed to patient location variance, was used to 

determine the ABILHAND-HS scale’s reliability and its degree of precision 

with the dataset, and thus how many statistically different ability strata can 

be distinguished along the scale (Fisher, 1992).  

2.2.7. Construct validity 

The construct validity of the ABILHAND-HS was examined with a 

comparison of means for associations with gender, involved hand, and 

diagnosis. The relationships of the ABILHAND-HS with age, the 

QuickDASH scale, the numerical pain scale, the SF-12 Physical Component 

Summary (PCS), and the SF-12 Mental Component Summary (MCS) were 

assessed with a correlation analysis. 

Patient perceptions were compared between ABILHAND-HS and 

QuickDASH items by adding the six QuickDASH activity items to the 

anchored data matrix. The locations of similar items were then compared 

between the scales. 

2.2.8. Statistical analyses 

Statistical analyses were completed in IBM SPSS Statistics for Windows, 

version 25 (IBM Corp., Armonk, N.Y., USA). Data normality was verified for 

statistical tests using the Shapiro-Wilk test and Q-Q plots. Parametric tests 

were used for normal data and continuous variables, non-parametric tests 

for non-normal data and ordinal variables. A Mann-Whitney u-test (two-

tailed) was used for gender differences, an independent-samples t-test (two-

tailed) for association with the involved hand, and an analysis of variance 

for diagnosis. Pearson correlation coefficient was calculated for association 
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with age, while relationships with the QuickDASH scale, the numerical pain 

scale, the SF-12 Physical Component Summary (PCS), and the SF-12 Mental 

Component Summary (MCS) were assessed with Spearman correlation 

coefficients. P values < 0.05 were considered significant. Mean values are 

reported with standard deviations (SD). Chi-square and t values are reported 

with degrees of freedom (df). 

2.3. Results 

2.3.1. Item selection for the ABILHAND-HS scale 

Successive analyses led to the selection of 23 items defining a 

unidimensional manual ability scale in HS. Of the 90 experimental items, 34 

were removed because they were too easy (e.g. ‘Drinking a glass of water’), 

3 items had too-narrow thresholds (e.g. ‘Using a touch screen’), 4 items were 

misfitting (e.g. ‘Carrying a shopping bag’), and 26 items had a location 

redundant with another better fitting item (e.g. ‘Peeling onions’ was deleted 

in favor of ‘Peeling potatoes with a knife’). 

2.3.2. Metric properties 

The calibration obtained for the 23 mostly bimanual activities retained 

for ABILHAND-HS is reported in Table 2.2 in descending difficulty order. 

The standardized residuals obtained matched the expected standard normal 

distribution for items [mean (SD), -0.30 (0.99)] and for patients [0.31 (0.97)], 

indicating that the ABILHAND-HS scale is globally unidimensional. An 

invariant item location was obtained for more- and less- able patients as 

shown by a nonsignificant item-trait interaction (χ² = 57.76, 46 df, p = 0.11). 

An invariant patient ability was obtained with items with different content 

as shown by a non significant t-test when using items that loaded positively 
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or negatively on the first principal residual component (t = 1.24, 304 df, p = 

0.22). 

 

Table 2.2. Calibration of the 23 items of the ABILHAND-HS.  

Item 
Bi-

manual 

Difficulty 

logits  

(centiles) 

SE  

logits 
Residual z 

Fit 

χ² 
P 

a. Doing push-ups x 3.54 (78) 0.21 0.61 0.46 0.79 

b. Playing a racket sport x 2.30 (68) 0.25 0.04 1.66 0.44 

c. Cutting a hedge x 2.00 (65) 0.18 0.05 3.83 0.15 

d. Opening a screw-topped jar x 1.30 (59) 0.12 0.48 6.19 0.05 

e. Applauding vigorously x 1.11 (58) 0.16 2.09 2.00 0.37 

f. Lifting a full pan x 0.96 (57) 0.12 -0.53 5.69 0.06 

g. Wringing a towel x 0.86 (56) 0.12 -2.00 0.14 0.93 

h. Opening a can with a can opener x 0.76 (55) 0.12 -1.83 0.49 0.78 

i. Hammering a nail x 0.45 (52) 0.16 -0.70 5.31 0.07 

j. Shaking bed sheets x 0.13 (50) 0.17 -1.95 3.49 0.17 

k. Using a screwdriver x -0.05 (48) 0.14 -0.14 0.54 0.77 

l. Peeling potatoes with a knife x -0.16 (47) 0.13 -0.75 5.75 0.06 

m. Ironing x -0.38 (45) 0.15 -0.44 3.12 0.21 

n. Taking the cap off a bottle x -0.52 (44) 0.13 -0.32 2.75 0.25 

o. Cutting one’s nails x -0.55 (44) 0.13 -0.05 0.33 0.85 

p. Shuffling and dealing cards x -0.77 (42) 0.16 -1.21 6.18 0.05 

q. Wiping windows  -0.77 (42) 0.15 0.01 1.29 0.52 

r. Tying shoelaces x -0.96 (41) 0.14 -0.61 2.02 0.36 

s. Tearing open a pack of chips x -1.16 (39) 0.15 1.70 1.31 0.52 

t. Fastening the zipper of a jacket x -1.45 (37) 0.14 0.32 1.58 0.45 

u. Turning a car steering wheel x -1.69 (35) 0.18 -0.26 0.78 0.68 

v. Putting on gloves x -2.24 (30) 0.19 -0.80 1.99 0.37 

w. Spreading butter on a slice of 

bread 
x -2.68 (26) 0.18 -0.60 0.86 0.65 
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Analysis of DIF of the ABILHAND-HS with six criteria yielded only four 

instances of uniform DIF among the 23 items (Table 2.3). A small magnitude 

DIF was revealed among diagnoses (Figure 2.1) with no substantial impact 

on scale invariance, as evidenced by a good overall fit.  Note that items were 

not specifically calibrated to the HWS group because of a limited sample size 

(n=23) (Chen et al., 2014). No DIF was observed between the first and last 

assessments, showing satisfactory invariance to support the scale follow-up 

stability. Likewise, an intraclass correlation coefficient across the first and 

last assessments was 0.94, indicating excellent item-difficulty-hierarchy 

consistency and providing confidence for data pooling over different time 

points (Chang and Chan, 1995). The PSI in this sample was equal to 0.90, 

indicating the distinguishability of four strata of manual ability (Fisher, 

1992). 

Table 2.3. Differential item functioning (DIF) summary. 

Label 
Person 

factor 

Magnitude 

(logits) 
Type Difficulty 

Taking the cap off a bottle Gender 1.36 Uniform Women > Men 

Opening a screw-topped jar Gender 0.93 Uniform Women > Men 

Opening a screw-topped jar Diagnosis 0.61 Uniform BTA > CTS > DRF 

Using a screwdriver 
Involved 

hand 
1.26 Uniform 

Non-dominant > 

Dominant hand 

involved 
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Figure 2.1. Differential item functioning (DIF) plots comparing the item difficulty 

hierarchy between subgroups. In each plot, the lines represent the 95% confidence 

interval of an ideal invariance between subgroups; the items are represented by the 

dots or by their letter if they display significant DIF. The most difficult items (dots) 

are plotted in the top right part of each plot. When comparing the item difficulty 

hierarchy between each diagnostic group relative to the whole sample, most of the 

ABILHAND-HS items lie within 95% confidence interval of the ideal invariance, 

indicating an invariant difficulty across diagnostic groups. When comparing the 

item difficulty hierarchy between the first and last assessment, all items fall within 

the 95% confidence interval of an ideal invariance, affirming invariance of item 

difficulties between the assessments.  
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2.3.3. Scale description 

The ABILHAND-HS structure and targeting of HS patients are 

illustrated in Figure 2.2, showing an average patients’ manual ability of 1.17 

logits (SD = 1.85 logits; i.e. 58 (15) centiles). Twenty-four patients (7.9%) were 

able to perform all 23 activities easily, and were thus identified as extreme 

patients. Extreme patients tended to be younger men evaluated more than 6 

months after treatment, and were more likely to have a CTS rather than a 

HWS. The three response categories were well distinguished in HS patients, 

with an inter-threshold distance of 2.93 logits (24 centiles), indicating that, 

regardless of patient ability, rating an item as ‘easy’ is about 20 (i.e. e2.93=18.7) 

times more difficult than rating it as ‘impossible’. Although the threshold 

distribution (range, -4.15 to 5 logits) was well targeted to the range of patient 

abilities, the patients’ ability levels skewed high, indicating that the scale 

could measure patients that are more severely disabled than in this sample.  
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Figure 2.2. Structure of the ABILHAND-HS scale. Top: distribution of manual 

ability measures for the whole sample expressed in logits (log of the pass/fail 

probability ratio) and centiles (fraction of the measurement range). Twenty-four 
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patients (7.9%) were able to perform all 23 activities easily, and were thus identified 

as extreme patients. None of the participants reported that they could not perform 

any of the 23 activities. Middle: most probable patient response to each item based 

on the patient manual ability and on the difficulty of the item’s response category. 

The average item difficulty was set to 0 logits and the items are ordered from most 

(top) to least (bottom) difficult. The distance between thresholds (middle bar) is 

constant for all items (2.93 logits or 24 centiles). A patient with a manual ability 

measure of 0 logits would be expected to perform the first 3 activities easily, to have 

some difficulty with the following 17 activities, and to be unable to perform the 3 

most difficult activities. A patient with a measure of 2.1 logits should be able to 

perform all activities easily or with some difficulty. Bottom: conversion of ordinal 

raw scores into a linear continuum of manual ability for complete response sets. The 

raw scores ranged from 0 to 46 (sum of scores of 0–2 for 23 items). This curve is linear 

in its central (30th~70th percentile) range, with sigmoid flattening outside the central 

range, highlighting a non-linear relationship, especially at the extremities of the 

score range. 

2.3.4. Construct validity 

ABILHAND-HS measures were normally distributed across the whole 

sample and subgroups, except for men (W = 0.97; 100 df; p = 0.038). An effect 

of gender on ABILHAND-HS manual ability measures was observed, with 

men [1.88 (2.39) logits; median 1.74 logits] reporting a significantly higher 

mean manual ability than women [1.32 (1.93) logits; median 1.4 logits; U = 

8642; p = 0.026]. Manual ability was not found to be significantly associated 

with age (R = -0.04; p = 0.47), the hand involved (t = 0.96; 303 df; p = 0.37), or 

the patient’s diagnosis (F = 1.92; 3 df; p = 0.12). Although variance across 

diagnosis groups was not significant, we did observe a broad spectrum of 

manual ability. Patients with CTS reported the highest manual ability [1.9 

(2.0) logits], followed by patients with BTA [1.5 (2.3) logits], DRF [1.4 (2.1) 

logits], and HWS [0.9 (1.8) logits]. 
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The relationships between ABILHAND-HS measures and scores 

obtained with other instruments are shown in Figure 2.3. Briefly, 

ABILHAND-HS correlated strongly with QuickDASH scores, moderately 

with SF-12 PCS scores and pain scale scores, and weakly with SF-12 MCS 

scores. We observed substantial similarity with respect to manual ability 

scale locations between the ABLHAND-HS and QuickDASH activity items 

(Figure 2.4). 

 

Figure 2.3. Correlations of ABILHAND-HS scores with QuickDASH, PCS, MCS, 

and numerical pain scale scores. Spearman correlation coefficients are indicated in 

the top right of each graph. All correlations were statistically significant (p < 0.001). 
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Figure 2.4. Comparison of difficulty levels (vertical axis) between similar items of 

the ABILHAND-HS (left) and QuickDASH (right) scales. QuickDASH item 

responses were added to the anchored data matrix of ABILHAND-HS responses to 

equate both measures. 

2.4. Discussion 

Here, we report the adaptation and validation of an ABILHAND-HS 

questionnaire for use with HS patients. Impairments present in our study 

cohort included weakness (e.g. following DRF), loss of sensation (e.g. in 

CTS), and stiffness (e.g. in BTA), with some patients presenting with a 

combination of these impairments. The ABILHAND-HS was constructed to 

measure manual ability on a common, linear, and unidimensional scale 

wherein the 23 activities retained delineate an invariant item difficulty 
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hierarchy independent of patient diagnosis. All ABILHAND-HS activities 

with the exception of one involve both hands and, consistent with our 

clinical experience, the most difficult ones require high levels of force (e.g. 

‘doing push-ups’ loads the wrist in extension). Of the experimental 90 items, 

those that could be interpreted in different ways, for instance using the 

injured or uninjured hand, were misfitting and thus omitted (e.g. ‘carrying a 

shopping bag’). The sample size was adequate for the statistical 

interpretation of fit statistics (Hagell and Westergren, 2016), and was within 

the same range of studies dealing with the development of outcome 

measures (Beaton et al., 2005; Chung et al., 1998; Hudak et al., 1996; 

MacDermid et al., 1998). The fit statistics for the 23 retained items support 

the item hierarchy invariance across the latent trait (Tennant and Conaghan, 

2007). A few instances of minor DIF were retained to maintain the scale’s 

construct validity (Hagquist and Andrich, 2017). The resulting scale is well 

targeted to the studied HS population, despite a small persistent ceiling 

effect, most likely due to missing responses for the most difficult activities. 

This observation of apparent ceiling effect involves 7.9% (24/305) of the 

records, which is well below the maximum recommended allowance of 15% 

(McHorney and Tarlov, 1995).  

Although reliability indices should be compared with caution across 

potentially different study conditions, it is noteworthy that the PSI obtained 

for the ABILHAND-HS (0.90) was higher than prior values obtained for the 

activities subscales of the PRWE (Esakki et al., 2018) (0.78 and 0.81 for the 

usual and specific activities subscales, respectively, in DRF patients), for the 

Patient-Rated Wrist and Hand Evaluation (Packham and MacDermid, 2013) 

(0.83 in HS patients), for the QuickDASH scale (Franchignoni et al., 2011) 

(0.84 in patients with various upper limb dysfunctions) and for the Manual 

Ability Measure (Chen et al., 2005) (MAM-16; 0.83 for HS patients), while 

being equal to that for the DASH manual functioning subscale (Franchignoni 

et al., 2010). PSI values reflect sensitivity to clinical evolution over time, with 

greater values indicating a greater number of distinguishable ability strata. 
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We obtained person separation among patients using three response levels 

(impossible, difficult, and easy), consistent with previous studies showing 

patients unable to discriminate more than three levels of difficulty 

(ABILHAND (Penta et al., 2001), DASH activity items (Franchignoni et al., 

2010) and QuickDASH activity items (Franchignoni et al., 2011)). 

Accurate communication of scale administration instructions is critical 

for targeting patient manual ability as defined by the ABILHAND-HS. 

Generally, patients focus on their ability to perform the queried activities 

with their injured hand; likewise, the PRWE explores use of the affected 

hand explicitly (MacDermid et al., 1998). The ABILHAND-HS, like the 

QuickDASH, is oriented towards real daily life behaviors and is intended to 

be independent of the limb(s) or strategy used and unbiased by activities that 

are never performed with the affected hand or avoided during recovery 

(Penta et al., 2001). Our findings of stable item calibrations and lack of DIF 

across the assessments indicate that the ABILHAND-HS can be used 

confidently to assess the patient recovery at different time points during 

follow-up. Moreover, the stability of items hierarchy between the first and 

last evaluation indicate that the results were not influenced by the method 

of administration (interview with the investigator versus self-reported). 

ABILHAND-HS construct validation results fit well with our clinical 

observations. The patients with the highest manual ability scores on the 

ABILHAND-HS also had the highest SF-12 PCS and SF-12 MCS scores as 

well as the lowest QuickDASH and numerical pain scale scores, which was 

also observed in other validation studies (Chung et al., 1998; MacDermid et 

al., 1998). Correlations of ABILHAND-HS with other instruments, including 

the QuickDASH, SF-12 and a pain scale are also consistent with prior 

findings suggesting that generic instruments are less sensitive than specific 

ones (Aktekin et al., 2011). The present ABILHAND-HS manual ability 

scores were not related significantly to age, consistent with other versions of 

the ABILHAND (Durez et al., 2007; Penta et al., 2001; Vandervelde et al., 

2010). Our findings of a small, but significant gender effect, with men 
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tending to report a higher manual ability than women (mean difference, 0.56 

logits), varied across HS diagnoses but, generally, were consistent with 

previous reports in patients with DRFs and wrist arthrodesis (Amorosa et 

al., 2011; Cowie et al., 2015; Owen et al., 2016). A possible explanation is that 

manual ability is related to grip strength, which is more important in men 

compared to women (Arnould et al., 2007; Penta et al., 2001). The construct 

validity of the ABILHAND-HS was further supported by our confirmation 

of a similar item difficulty hierarchy for QuickDASH items in our patients 

sample. Notably, those ABILHAND-HS activities that require a great 

amount of force (e.g. ‘Opening a screw-topped jar’) have been reported to 

likewise be among the most difficult items in the DASH and QuickDASH 

(Franchignoni et al., 2011, 2010) and in the MAM-16 (Chen et al., 2005).  

The ABILHAND-HS, developed using Rasch methodology, has several 

advantages over questionnaires developed using classical test theory. These 

are summarized in Table 2.4. Firstly, the ABILHAND-HS can tolerate 

missing responses, which enables it to remain valid even in patients who 

scarcely perform some of the queried activities. Secondly, the ability to 

analyze response patterns can identify those patients whose responses do 

not fit the model due to random or careless answers, a particular injury or 

comorbidities. Finally, the high precision of the ABILHAND-HS items 

minimizes the need for interpretation, thereby allowing more reliable 

comparisons between patients (e.g. recreational activities involving force or 

impact are broken down into the items ‘doing push-ups’, ‘practicing a racket 

sport’). 
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Table 2.4. Pros and cons of the ABILHAND-HS. 

Pros 

Feature Benefit 
Unidimensional and linear scale Quantitative comparisons of manual ability 

can be made between patients, between 

treatments and along follow up 

Invariant scale calibration 

validated in four diagnostic 

groups 

Unbiased comparisons of manual ability can 

be made within and between clinical 

subgroups (different HS diagnostics, stage of 

recovery) 

Precise item definition Inaccurate responses and guessing are 

avoided 
Amenable to incomplete 

responses 

The test is specific to activities really 

performed by the patient 

Capacity to analyze response 

patterns 

The test can identify unexpected patient 

responses linked to patient specific behaviors, 

random or careless answers or comorbidities 

Precision of the measure The standard error of measurement is specific 

to each patient measure allowing statistical 

assessment during follow-up 

 Feature Compensation 

Cons 

Yet another test for hand surgery 

outcomes evaluation 

Takes five minutes to complete 

Complex statistical background 

 

Necessary for the analyst, but not for routine 

clinical use 

Use of dedicated computer 

programs 

A free web service (www.rehab-scales.org) 

can be used to interpret patient responses 

Ceiling effect of 7.9% of records Well below the maximum recommended 

allowance of 15% 

 

Limitations of this research include a sample of patients with hand and 

wrist disabilities from one hand surgery outpatient clinic.  The unbalanced 

diagnostic groups and genders might have influenced the item calibrations. 

However, the gender distribution is similar in studies involving DRF and 
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CTS (Beaton et al., 2005; Levine et al., 1993; MacDermid et al., 1998) and the 

DIF analysis allowed us to select items where the diagnosis and gender 

effects were absent. Future studies with a larger sample size should confirm 

or refine our findings. Furthermore, the way participants responded to the 

90 items in the questionnaire may not be the same as responses to the final 

23-item instrument. One limitation to the availability of Rasch model-based 

questionnaires is that they have a complex statistical background and 

require the use of dedicated computer programs that are not easy to learn 

and implement. To facilitate and spread the use of the ABILHAND-HS, a 

website (www.rehab-scales.org) developed by Université catholique de 

Louvain and Arsalis, a spin-off of the ABILHAND authors’ laboratory, can 

be used to convert the questionnaire raw scores into manual ability 

measures. The web service is free-to-use for daily practice in clinical and 

research applications although a license is required for commercial 

applications and for clinical trials. 

2.5. Conclusion 

ABILHAND-HS was demonstrated to be a successful adaptation for 

application in HS patients. The resulting scale was shown to be a valid, 

patient-oriented, clinically meaningful and precise instrument. It targets 

commonly performed manual activities and allows stable and linear 

measurement of manual ability over multiple time points in patients treated 

for DRF, BTA, CTS, or HWS. The scale reveals unexpected responses that 

may provide clues regarding the patient’s clinical state, as summarized at 

www.rehab-scales.org. The questionnaire is available online, and the web 

service is free-to-use for daily practice in clinical and research applications 

although a license is required for commercial applications and for clinical 

trials. Future research should include more patients with HWS, as well as 

other diagnoses such as tendinopathies, ligamentous injuries and complex 

hand injuries, and an assessment of scale responsiveness.
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CHAPTER 3 

ABILHAND-HS: a linear scale for outcome 

measurement in hand surgery 

 

Published as:  El Khoury G, Penta M, Barbier O. ABILHAND-HS: a linear 

scale for outcome measurement in hand surgery. J Hand Surg Eur Vol. 2021 

Feb 8:1753193421991485. 
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The ABILHAND questionnaire is a Rasch-model (Rasch, 1980) built 

measure of manual ability (Penta et al., 1998). It provides an invariant linear 

scale allowing quantitative comparisons of manual ability between patients 

and over time. Manual ability is defined as the capacity to manage daily 

activities with the upper limbs whatever the strategies involved. The 

adaptation of ABILHAND to hand surgery (HS) was recently reported (El 

Khoury et al., 2020a). Patients were asked to indicate their perceived level of 

difficulty associated with completing manual activities without technical or 

human assistance, regardless of the hand used, on a three-level scale: 

impossible, difficult, or easy. Successive Rasch model-based analyses led to 

the selection of 23 items that constitute a unidimensional manual ability 

scale.  

We illustrate the use of the ABILHAND-HS scale in clinical practice. A 

55-year-old patient with a displaced distal radial fracture of her right, 

dominant wrist underwent an osteosynthesis with an anterior plate. Figure 

3.1 shows her manual ability evolution. The panels show her responses at 

two (T1), three (T2) and 12 months (T3) postoperatively. A website 

(www.rehab-scales.org) developed by Université catholique de Louvain and 

Arsalis, a spin-off of the ABILHAND authors’ laboratory can be used to 

determine the patient’s manual ability at each time-point. The website 

implements a Rasch analysis routine that has been validated against one of 

the most popular Rasch analysis software packages (RUMM2010, RUMM 

Laboratory Pty Ltd., Perth, Western Australia, Australia). The web service is 

free-to-use for daily practice in clinical and research applications although a 

license is required for commercial applications and clinical trials. For each 

assessment, the patient’s manual ability is reported in logits and in centiles, 

with the associated 95% confidence interval (CI). Patient’s improvement (0 

logits (50%) at T1, 2.2 logits (68%) at T2 and 3.2 logits (77%) at T3) can be 

quantified on a linear scale. The CI, which reflects the precision of the 

instrument, is larger at the extremities of the scale (T3) compared to the 

center (T1), and it increases with missing responses (T1 compared to T2). 
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Using the web service, the clinician can verify the response pattern coherence 

by comparing the observed responses with the expected ones, given the 

patient’s manual ability. Unexpected responses are those that lie outside the 

CI. For instance, the patient overestimated the difficulty of ‘‘Spreading butter 

on a slice of bread’’ at T1 and T2, and “Shuffling and dealing cards” at T2. 

The clinician can try to make sense of the unexpected responses. A small 

number of them can be found as part of a normal response pattern, but they 

can also be due to random answers, not following test instructions or 

additional comorbidities. 

 

 

Figure 3.1. A sample scoring form showing the evaluation of a patient with a distal 

radial fracture of her right wrist at three time-points after surgery. Items are ordered 

from most (top) to least (bottom) difficult. Horizontal grey bars: patients’ expected 

response to each item as a function of manual ability. The red vertical line represents 

the patient’s manual ability, the dashed lines the confidence interval (+/- 

1.96*standard error). The figure allows analyzing the response coherence by 

comparing the observed responses (black bars) to the expected responses (located 

inside the 95% confidence interval). 
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One might wonder about the advantages of this new scale, given the 

plethora of well-established questionnaires (El Khoury et al., 2020a). One 

major asset is the conversion of the ordinal raw scores into a true interval 

and linear unit. Raw scores represent discontinuous levels, whereas the logit 

is continuous and presents a fixed unit along the measurement scale. This 

allows for quantitative comparisons between different treatments and over 

time. The ability to tolerate missing responses enables the ABILHAND-HS 

to remain valid when some of the queried activities are rarely performed or 

not permitted during the recovery period; this is the most manifest at T1 

(nine missing responses). The ability to analyze response patterns can single 

out patients’ answers that are unexpected given their manual ability level. 

For example, a patient who answers “easy” on difficult items and 

“impossible” on easy items should elicit further investigation. Items are 

ordered by their difficulty, thus item hierarchy can be used for goal setting 

during the rehabilitation process. 

The ABILHAND-HS was developed using the Rasch model to assess 

manual ability in hand surgery patients. It is oriented towards real daily life 

behaviors and is intended to be independent of the limb(s) or strategy used 

and unbiased by activities that are never performed with the affected hand 

or avoided during recovery. It can be used equally to measure patients with 

various types of impairments, as item difficulties have been shown to be 

stable across the tested pathologies (El Khoury et al., 2020a). This new 

instrument still requires validation across cultures and more hand surgical 

pathologies (such as tendinopathies, ligament injuries), as well as a study of 

its responsiveness. Nonetheless, the ABILHAND-HS is a clinically valid and 

methodologically sound scale for individual patient evaluation and follow-

up. Together with the web-based data analysis service, it achieves high 

standards of functional assessment and treatment follow-up through a 

robust instrument for outcome measurement.
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CHAPTER 4 

Minimal clinically important difference and 

responsiveness of the ABILHAND questionnaire 

for hand surgery 
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We recently reported the adaptation of the ABILHAND scale to hand 

surgery (HS) patients. The purpose of the present study was to examine its 

responsiveness and minimal clinically important difference (MCID). Eighty-

seven patients were assessed multiple times with the ABILHAND-HS 

questionnaire and with a global rating of change scale (GRCS). 

Responsiveness was tested according to both group-level and individual-

level approaches. Mean score change, effect size, standardized response 

mean and reliable change index were calculated for groups of patients 

according to their GRCS. The responsiveness indices showed that the change 

in manual ability measures was higher in patients who reported a great 

improvement in their perceived status. On an individual level, the 

proportion of patients with a significant improvement was higher with the 

increase in the GRCS. A MCID of 0.50 logits (4.2 centiles) was determined 

based on the ROC curve, the value corresponding to a small effect size and 

the value of the change score in the “minimal improvement” group. The 

ABILHAND-HS questionnaire showed a good sensitivity to change and can 

thus be used for the evaluation of the effect of treatments for hand surgery 

and in a research setting. 
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4.1. Introduction 

Hand surgery (HS) practice is shifting towards evidence-based 

treatments with the aim of providing the best results when treating patients. 

The growing need to assess treatment outcomes at the patient level has led 

to the development of patient-reported outcome measures (PROMs). Their 

importance has been recognized and they have been increasingly used as the 

primary outcome in clinical studies (Swiontkowski et al., 1999). A 

prerequisite for meaningful use of such PROMs is the quality of their 

clinimetric properties (Terwee et al., 2007). 

Using the Rasch model, we recently developed and validated the 

ABILHAND questionnaire (Penta et al., 1998) to measure manual ability in 

HS patients (El Khoury et al., 2020b). The units of the scale are “logits”, a 

probabilistic unit that defines the pass/fail probability ratio for a patient to 

be able to achieve an activity: the higher the logit value, the higher the 

probability that a patient will manage an activity easily. Logits can be 

converted to centiles for a more intuitive clinical interpretation. This new 

questionnaire presents very good psychometric properties such as linearity, 

unidimensionality, invariance and construct validity. Such a scale would 

allow for unbiased comparisons between patients and different treatment 

effects (Wright and Linacre, 1989). Nevertheless, its responsiveness has not 

been studied yet. Responsiveness, or the sensitivity to change, reflects the 

ability of a scale to detect a change over time when it occurs (Guyatt et al., 

1989), and is a required psychometric quality for any instrument to be used 

in clinical studies for treatments evaluation (Terwee et al., 2007). Within this 

change, the minimal clinically important difference (MCID) is the minimum 

change in a score that indicates a meaningful change in the patient’s status 

(Jaeschke et al., 1989).  

The use of a questionnaire with known responsiveness and MCID could 

help quantify the effects of different treatments on manual ability. The aim 
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of this study was to investigate the responsiveness of the ABILHAND-HS 

questionnaire and to determine its MCID in a sample of HS patients. 

4.2. Methods 

4.2.1. Patients 

Data were prospectively collected from patients recruited from the HS 

consultation center at Cliniques Universitaires Saint-Luc, Belgium. To be 

included, patients had to be over 18 years old and to read and understand 

French. The exclusion criteria included any comorbidity that may impede 

manual ability substantially (e.g. tremor, paralysis, or active rheumatologic 

disease) and any mental/cognitive dysfunction. Patients provided written 

informed consent to participate. This study was approved by the ethical 

committee of Cliniques Universitaires Saint-Luc-Université catholique de 

Louvain (N° B403201523492). 

4.2.2. Procedures 

Patients were asked to indicate their perceived level of difficulty 

associated with completing the activities without technical or human 

assistance, independent of the hand used to perform the activity on a three-

level scale: impossible (0), difficult (1), or easy (2). Activities not attempted 

during the last week were treated as missing responses.  

For the first evaluation, patients were given instructions and 

interviewed by the experimenter (GEK). For the follow-up evaluation, 

patients were asked to provide their subjective assessment of clinical 

evolution on a five-level global rating of change scale (GRCS) (Jaeschke et 

al., 1989) in comparison to their previous evaluation: great deterioration, 

minimal deterioration, no change, minimal improvement and great 
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improvement. To minimize ambiguity and ensure valid information, the 

anchor question was formulated according to Kamper et al (Kamper et al., 

2009). The question reads: “With respect to your hand pathology, how would 

you rate your current condition compared to the last assessment?” The 

follow-up data were collected during a consultation or were sent by mail. 

Patients presenting with the maximum score at the first assessment were 

excluded from the study, provided they did not judge their situation as 

“deteriorated”, due to the ceiling effect when assessing improvement in 

these patients. Twenty-four patients were assessed more than twice and 

treated as distinct entries: one for each pair of consecutive assessments (i.e 

one between the first and the second assessment, and another one between 

the second and third assessment). Three patients did not answer the GRCS 

and eight presented with maximum scores at the first evaluation, these were 

thus excluded from the study. Our final sample consisted of 116 records from 

87 patients (Table 4.1). 
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Table 4.1. Sample characteristics (N = 87) 

Characteristic N (%) 

Gender  

Women 62 (71%) 

Men 25 (29%) 

Mean age (SD; range), years 62 (14.6; 26-93) 

Diagnostic group  

Distal radius fracture (DRF) 43 (49%) 

Basal thumb arthritis (BTA) 10 (11%) 

Carpal tunnel syndrome (CTS) 33 (38%) 

Heavy wrist surgery (HWS) 1 (1%) 

Hand dominance  

Right 78 (90%) 

Left 7 (8%) 

Ambidextrous 2 (2%) 

Involved dominant hand  

Yes 59 (68%) 

No 28 (32%) 

Mean (SD) time between follow-up 

assessments, days 
181 (153) 

 

4.2.3. Data analysis 

Patients' responses to ABILHAND-HS were first converted into linear 

measures of manual ability (in logits and centiles) using the Rasch model, 

implemented with the RUMM2030 software (RUMM Laboratory Pty Ltd., 

Perth, Western Australia) (El Khoury et al., 2020b). The different assessments 

could then be treated as a continuous variable and be quantitatively 

compared. Standard errors of measurement (SEM) associated with the 

ability level of each patient were displayed by the software. Change scores 
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were calculated as the difference in manual ability levels between the two 

assessments. To make sure that the GRCS assesses the same construct 

measured by ABILHAND-HS under longitudinal investigation, the 

correlation between the GRCS and the change score had to be at least fair 

(r>0.30) (Revicki et al., 2008).  

4.2.4. Responsiveness 

The sensitivity to change of ABILHAND-HS was tested on group and 

individual levels. Groups of patients were constituted according to their 

response to the GRCS. Few patients reported minimal (n=8) or great (n=5) 

deterioration on the GRCS and were thus combined into a single 

“deterioration” group. The mean change (difference between the two 

measures) was calculated for each group.  

The effect size (ES) and standardized response mean (SRM) were 

computed in the four groups of patients. The ES (Kazis et al., 1989) was 

calculated by dividing the mean of the difference between the two 

assessments by the standard deviation (SD) of the first measure. The value 

of the effect size represents the number of SDs by which the scores have 

changed from baseline. The standardized response mean (Liang et al., 1990) 

was calculated by dividing the mean change between the two assessments 

by the SD of the change. Higher effect sizes and standardized response 

means correspond to a higher magnitude of change. According to Cohen 

benchmarks, an ES of 0.2 is considered small, 0.5 moderate, and 0.8 large 

(Cohen, 1988). The same values apply for the interpretation of the SRM 

(Beaton et al., 1997). Responsiveness indices were expected to be larger in 

groups of patients who reported a larger change compared to those who 

reported a smaller change or a stable functional status. 

The individual approach to testing the ABILHAND-HS sensitivity to 

change consisted in computing the reliable change index (RC) for each 
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patient. The RC was first proposed by Jacobson et al. (Jacobson et al., 1984) 

and was later modified by Christensen and Mendoza (Christensen and 

Mendoza, 1986). The RC is based on the standard error of measurement, and 

indicates to what extent the observed change exceeds the random error 

associated with the measuring instrument (Crosby et al., 2003). 

𝑅𝐶 =
𝑚2 − 𝑚1

√(𝑆𝐸2)2 + (𝑆𝐸1)2
 

where m1 and m2 are the ability measures of the first and the second 

evaluations, respectively, and SE1 and SE2 are their associated standard 

errors of measurement. Therefore, a value above 1.96 or below -1.96 indicates 

a significant improvement or deterioration, respectively (Jacobson and 

Truax, 1991).  

4.2.5. Statistical analysis 

Statistical analyses were completed in IBM SPSS Statistics for Windows, 

version 25 (IBM Corp., Armonk, N.Y., USA). Data normality was verified 

using Q-Q plots. Non-parametric tests were used when the data was found 

to be non-normal. A paired-samples t-test (two-tailed) was used to compare 

the manual ability levels at baseline and follow-up. Spearman correlation 

coefficient was calculated for the association between the GRCS and the 

manual ability change score, and between length of follow-up, the change 

score and the GRCS. A Mann-Whitney test was conducted to compare the 

differences in manual ability change between the “minimal improvement” 

group and the adjacent categories (“no change” and “great improvement”). 

The null hypothesis was rejected when the p-value was below 0.05.  

4.2.6. Minimal clinically important difference 

The value of the MCID was estimated using different methods: 
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Mean change approach. The MCID was determined as “the smallest 

difference in score which patients perceived as beneficial” (Juniper et al., 

1994) by computing the mean change in the minimal improvement group 

(Sloan et al., 2003). 

Small effect size. Based on a comprehensive review of the literature, 

Samsa et al. (Samsa et al., 1999) advocated that an effect size of 0.2 (small ES) 

could serve as an appropriate definition of a MCID. We verified these 

findings by looking at the effect size value in the “minimal improvement” 

group. 

Standard error of measurement. The SEM takes into consideration that 

some observed change might be due to random error of measurement. 

Wyrwich et al. proposed that the one-SEM criterion could serve as a 

validated method for identifying the MCID (Kathleen W. Wyrwich et al., 

1999; K.W. Wyrwich et al., 1999). 

Receiver Operating Characteristic ROC curve. The ROC curve (Metz, 

1978; Ward et al., 2000) plots sensitivity (i.e. the true positive rate) against  

1 – specificity (i.e. the false positive rate). The ABILHAND-HS change score 

was considered true when the direction of change corresponded to the rating 

on the GRCS (i.e. a positive change with an “improvement” rating and a 

negative change with a “deterioration” rating). For the “no change” group, 

the change in ability measure was considered true (i.e. no change in ability 

measure) if the value of the RC was between -1.96 and 1.96, indicating a non-

significant change. The entire cohort was used to derive the ROC curve, 

rather than the groups of patients adjacent to the dichotomization point, to 

increase precision and obtain more logical estimates of the MCID (Turner et 

al., 2009). The area under the curve (AUC) can be interpreted as the 

probability that a randomly chosen patient with a major improvement will 

have a higher manual ability measure than another random patient with an 

unimportant change (Wright et al., 2011). The greater the AUC, the greater 

the test is able to distinguish patients who have improved from those who 
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have not. AUC values between 0.7 and 0.8 are considered acceptable, values 

above 0.8 are considered to have excellent discrimination (Copay et al., 2007; 

Hosmer and Lemeshow, 2004). The optimal cutoff was chosen as the point 

that jointly maximized sensitivity and specificity, and thus lead to the least 

amount of misclassifications (Franchignoni et al., 2014). 

The MCID value was estimated by integrating the results of the above 

methods, giving more weight to anchor-based procedures (mean change and 

the ROC curve). 

4.3. Results 

The mean ability level was 0.98 logits (56.7 centiles) at baseline and 1.75 

logits (63.1) centiles at follow-up, indicating an overall increase in manual 

ability between consecutive assessments (t=-4.08, 115 df, p<0.001). Spearman 

correlation coefficient between the GRCS and the manual ability change 

score was 0.49 (p<0.001) indicating an overall coherence between the 

measured change in manual ability and the patients’ perception of change. 

Length of follow-up was neither correlated to the measured change (ρ =0.105, 

p=0.26), nor to the GRCS (ρ=-0.056, p=0.55). 

Patient GRCS distribution, mean change and responsiveness indices are 

reported in Table 4.2. The mean change score increased with the GRCS. The 

ES and SRM were small for the “minimal improvement” group and large for 

the “great improvement” group. The difference in change scores between the 

“minimal improvement” group and the “great improvement” group was 

statistically significant (Z=-2.6, p=0.009), and non significant between 

“minimal improvement” and “no change” (Z=-1.2, p=0.22). 
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Table 4.2. Responsiveness indices based on group approach 

 Global rating of change scale 

 

Deteriorated 

n=13 

No change 

n=22 

Minimal 

improvement 

n=21 

Great 

improvement 

n=60 

Mean change, 

logits (centiles) 
-0.62 (-5.2) -0.35 (-2.9) 0.48 (3.9) 1.58 (13.11) 

Effect size -0,36 -0,18 0,21 0,98 

Standardized 

response mean 
-0,43 -0,19 0,24 0,86 

 

Based on the values of the reliable change (RC) index obtained for the 

individual approach, patient records could be divided into four categories, 

according to limits of significance: 1) significant improvement (RC > 1.96), 2) 

improvement (0 < RC < 1.96), (3) deterioration (-1.96 < RC < 0) and 4) 

significant deterioration (RC < -1.96). No patient had an unchanged score 

(RC=0). Patient proportions in each of these categories are shown in Figure 

4.1. The proportion of patients with an improvement or a significant 

improvement was higher with the increase in the GRCS. For example, 18% 

of patients who reported a “minimal improvement” had a RC index 

indicating a significant improvement. This proportion increased to 40% in 

the group of patients who reported a “great improvement”. 
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Figure 4.1. Patients distribution based on the reliable change (RC) index and the 

global rating of change scale (GRCS). Patients were divided into four categories 

based on RC significance level (significant deterioration <-1.96; deterioration -1.96-

0; improvement 0-1.96; significant improvement >1.96). The proportion of patients 

with an improvement or a significant improvement increased with the GRCS. 

MCID estimation. Based on the ROC curve (Figure 4.2), the cut-off 

point that best identified meaningful improvements in functional status with 

75% sensitivity and 86% specificity corresponded to 0.51 logits (4.2 centiles). 

The AUC was 0.815 (95% CI: 0.73, 0.90), which corresponds to excellent 

discrimination. When compared to the mean change in the minimal 

improvement group of 0.48 logits (3.9 centiles), which corresponded to a 

small effect size of 0.21, and to the median SEM associated with patients’ 

ability measures of 0.52 logits (4.3 centiles), the three estimates of MCID were 
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quite close, with an average of 0.50 logits (4.2 centiles). Among the patients 

that identified themselves as “improved”, the value of 0.50 logits (4.2 

centiles) correctly identified 77% of the patients. 

 

Figure 4.2. Receiver-operating-characteristic (ROC) curve. The ROC curve shows 

the accuracy in identifying patients with a minimal improvement compared to no 

improvement. The arrow shows the value that maximizes sensitivity and specificity, 

corresponding to a change score of 0.51 logits (4.2 centiles). AUC: area under the 

curve. 

4.4. Discussion 

The responsiveness of the ABILHAND-HS questionnaire was 

investigated in 116 entries from 87 patients by computing responsiveness 

indices after separation into four groups (deterioration, no change, minimal 

improvement and great improvement) based on their GRCS.  The mean 

change in manual ability measures, ES and SRM increased with the GRCS.  

Although we obtained a clear hierarchy and a good separation between 
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categories confirming our initial hypothesis, the difference between “no 

change” and “minimal improvement” was non-significant. However, the 

statistical significance depends not only on the magnitude of the change, but 

also on the sample size and the variability of the measure, and conveys little 

information about the clinical meaningfulness of that change (Crosby et al., 

2003). The statistical tests performed in our sample were thus 

underpowered, mainly because of a large variance and our limited sample 

size. The responsiveness of the ABILHAND-HS was also investigated 

according to an individual approach using the RC index. The proportion of 

patients with a significant improvement in manual ability level increased 

with the GRCS, which is consistent with the results of the group-level 

approach (increase in ES and SRM). Consequently, the individual-level 

approach provides clinicians an alternative method of drawing conclusions 

from group results to individuals. 

The MCID was estimated by using four methods (mean change, small 

ES, one-SEM and ROC curve) that yielded approximately the same value of 

0.50 logits (4.2 centiles). The ABILHAND MCID was found to be equal to 

0.47 logits for rheumatoid arthritis patients (Batcho et al., 2011), and 0.26 to 

0.35 logits in patients with stroke (T. Wang et al., 2011). These minor 

differences with our MCID estimation (0.50 logits) can be attributed to 

patient characteristics and different methods of estimation. While each of 

these methods presents inherent limitations, the convergence of the MCID 

computed with distribution- and anchor-based methods reinforces our 

confidence in the MCID estimation. Mean change is a poor descriptor of non-

normally distributed data, which is sometimes the case in clinical change, 

and is susceptible to outliers. The SEM is not constant across the range of 

ability (it is the largest at both extremes of the scale). The ES is influenced by 

the sample distribution at baseline (i.e. for the same given change score, a 

larger baseline SD will give a smaller resultant ES). The ROC approach 

accommodates skewed data, uses all available data, is not vulnerable to a 

small number of values within a category, and maximizes the number of 
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individuals correctly classified (Turner et al., 2009). The chosen MCID value 

of 0.50 logits (4.2 centiles) separated the GRCS categories “no change” and 

“minimal improvement” with 75% sensitivity and 86% specificity. These 

results are comparable to the results for the DASH (82% sensitivity; 74% 

specificity; 79% correctly classified) and the QuickDASH (79% sensitivity; 

75% specificity; 78% correctly classified) (Franchignoni et al., 2014). The 

obtained values of ES and SRM were in line with the values obtained in other 

studies for the DASH, QuickDASH, Carpal Tunnel Questionnaire and 

Michigan Hand Questionnaire (Chatterjee and Price, 2009; Hong et al., 2018; 

Kotsis and Chung, 2005; da Silva et al., 2020). 

There is no standard format for the GRCS question, thus the wording of 

the GRCS question has the potential to influence patients’ responses, and 

hence the MCID estimation (Sloan et al., 2003). Different authors have used 

different cutoffs for determining the minimum change. For instance, The 

MCID has previously been derived using small (e.g.,  1-3 on a -7 to +7 point 

GRCS (Wyrwich and Wolinsky, 2000)) or moderate change (e.g.,  4-5 on -7 to 

+7 point GRCS (Cleland et al., 2008)). To date, there is no consensus on the 

optimal threshold to use (Turner et al., 2010) and this threshold is often 

arbitrary (Copay et al., 2007). We used a 5-level GRCS, which contains fewer 

categories than most reports. This presents the advantage of better 

discrimination between categories and not choosing an arbitrary cut-off to 

determine the MCID. The variability obtained within each category (see Fig 

1) suggests that adding more categories to the GRCS would have generated 

more noise in the data. The GRCS may be influenced by recall bias (Schwarz 

and Sudman, 1994), especially over the long term, or the lack of patient 

ability to understand the context of improvement (Kamper et al., 2009). 

Although follow-up duration was variable in our study, it was not correlated 

with the GRCS nor with the change score. The GRCS may also be 

disproportionately affected by the current health status rather than the 

change over time (Norman et al., 1997). The GRCS may also be influenced 

by other domains of improvements or deterioration (such as pain), while 
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ABILHAND-HS measures the patient’s activity (El Khoury et al., 2020b). 

Nonetheless, the GRCS correlated well with the measured change (ρ =0.49), 

which suggests that they measure the same construct (Revicki et al., 2008). 

MCID estimation values were around 0.50 logits (4.2 centiles) in our 

sample. We recommend using this value on a group level, as when assessing 

large groups of patients to compare different treatments. One must keep in 

mind that MCID values are dependent on sample characteristics, 

pathologies, and time interval between evaluations (Y.-C. Wang et al., 2011). 

Stucki et al. cautioned against using one general benchmark for ordinal 

scales, as numerically equal gains of ability will be different depending on 

the baseline health status (Stucki et al., 1996).  Total scores obtained by 

adding up the values of each response are ordinal and not necessarily linear, 

which means that the measurement unit is not constant throughout the 

measurement range. The same distance between scores (e.g. from 0 to 1 and 

from 1 to 2) may not reflect the same amount of increase in ability. This 

distortion of the score is especially noticeable at the extremes of the score 

range, compared to the center of the scale. For example, a 2-point difference 

at the center may represent a smaller true score difference than a 2-point 

difference at the extremes (DeVellis, 2006). However, ABILHAND-HS is an 

interval scale and a change of 0.50 logits (4.2 centiles) corresponds to the 

same in manual ability whatever the initial patient ability. Nonetheless, this 

result should be confirmed in different samples (e.g. different upper limb 

pathologies) with varying baseline status.  

The magnitude of change necessary to be considered meaningful may 

be different between the group and the individual approaches (Beaton et al., 

2001; Cella et al., 2002). Relatively modest improvements at the individual 

level may be considered clinically important when considered at the group 

level (Crosby et al., 2003). For this reason, the RC index, derived from the 

confidence interval around the patient’s ability (+/- 1.96*SEM) can be used as 

a guidance for the MCID of individual patients. A RC index above 1.96 or 

below -1.96 means that the observed change exceeds the random error 
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associated with the measuring instrument. When an improvement or 

deterioration is not reflected by the measured change, other dimensions 

(such as pain or psychological state) that might explain the discrepancy 

between the patient’s assessment and the questionnaire should be assessed. 

In conclusion, this study shows that the ABILHAND-HS is a responsive 

tool to assess the effects of different treatments in hand surgery. It can thus 

be used for clinical evaluation or as an outcome measure in clinical studies. 

Future research should aim at confirming our initial results in a larger 

sample and more varied diagnoses. 
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The ability to monitor activities of daily living in the natural 

environments of patients could become a valuable tool for various clinical 

applications. In this paper, we show that a simple algorithm is capable of 

classifying manual activities of daily living (ADL) into categories using data 

from wrist- and finger-worn sensors. Six participants without pathology of 

the upper limb performed 14 ADL. Gyroscope signals were used to analyze 

the angular velocity pattern for each activity. The elaboration of the 

algorithm was based on the examination of the activity at the different levels 

(hand, fingers and wrist) and the relationship between them for the duration 

of the activity. A leave-one-out cross-validation was used to validate our 

algorithm. The algorithm allowed the classification of manual activities into 

five different categories through three consecutive steps, based on hands 

ratio (i.e., activity of one or both hands) and fingers-to-wrist ratio (i.e., finger 

movement independently of the wrist). On average, the algorithm made the 

correct classification in 87.4% of cases. The proposed algorithm has a high 

overall accuracy, yet its computational complexity is very low as it involves 

only averages and ratios.  
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5.1. Introduction 

Hands can be affected in different neurologic, rheumatologic, 

degenerative or traumatic conditions. To evaluate this manual impairment, 

physicians rely on medical history and clinical examination, but have also 

several tools at their disposal. For instance, they can use diagnostic tests such 

as electromyography and patient-reported outcome measures that reflect the 

patient’s point of view (Barbier et al., 2003). Motion capture analysis can also 

provide additional information, though it is more commonly used in 

research rather than in a routine clinical setting. Medical practice has shifted 

towards evidence-based treatments with the aim of providing the best 

results when treating patients. Therefore, robust outcome evaluations are 

needed to assess the effectiveness and reliability of a treatment (Porter, 2009).  

An activity is defined in the International Classification of Functioning, 

Disability and Health (ICF) as the execution of a task or action by an 

individual (World Health Organization, 2001). Measuring the activity 

domain is a key point in determining the impact of different treatments on 

functional recovery, as the consequences of a pathology on patients’ 

functioning are the most manifest through their inability to carry out 

activities of daily living (ADL) (Arnould et al., 2007). Activity performance 

cannot be measured directly, but can either be inferred by direct observation, 

which is time consuming in practice, or can be self-reported by patients 

through questionnaires. 

Questionnaires can provide self-reported measures focused on the 

patients’ perceptions of their activity limitations. They inform clinicians on 

how well patients manage their activity in their home environment. For 

example, ABILHAND is a questionnaire that measures manual ability 

through activities that present a common perceived difficulty among 

patients (Penta et al., 1998). It provides an invariant linear scale allowing 

quantitative comparisons of manual ability between patients and over time. 

The units of this scale are expressed in logits, and can be converted into 
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centiles for a more intuitive clinical interpretation. The scale has been 

validated in populations with various pathologies (Arnould et al., 2004; 

Durez et al., 2007; El Khoury et al., 2020b; Penta et al., 2001; Vandervelde et 

al., 2010; Vanthuyne et al., 2009). Other questionnaires such as the 

Disabilities of the Arm, Shoulder and Hand (DASH) (Hudak et al., 1996), the 

Patient-Rated Wrist Evaluation (PRWE) (MacDermid et al., 1998) and the 

Carpal Tunnel Questionnaire (CTQ) (Levine et al., 1993) have been 

developed to measure different aspects of upper limb function. These self-

reported measures are based on the respondent’s memory of the perceived 

difficulty and their ability to accurately judge their capability (Holsbeeke et 

al., 2009). Items that compose these questionnaires are representative of the 

patients’ daily manual activities (e.g., using a spoon or tying shoelaces). 

Another complementary approach to that of the questionnaires would 

be a direct assessment of the patient’s actual activities. A direct assessment 

could be used to monitor a patient’s actual activity objectively, without 

relying on the patient’s memory, and systematically, witnessing what 

activities the patient actually does or does not do. The ability to monitor 

activities of daily living in the patient’s natural environment could become a 

valuable tool for clinical decision-making, evaluating healthcare 

interventions, and supporting and tracking rehabilitation progress. Inertial 

sensors have been used for monitoring activities as they are small, 

affordable, and generally unobtrusive (Yang and Hsu, 2010). They have been 

used for upper limb motion analysis with good accuracy and reliability 

(Cuesta-Vargas et al., 2010; Zhou et al., 2008). They have been shown to be 

useful for clinical applications (Thanawattano et al., 2015), and proved to be 

more sensitive than questionnaires to detect changes in shoulder movement, 

thus adding a complementary objective component to outcome 

measurement (Körver et al., 2014). 

Different authors have worked on recognizing upper limb movements 

using accelerometry alone (Biswas et al., 2014; Lemmens et al., 2015) or in 

combination with surface electromyography (Roy et al., 2009), and on 
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building devices that could track hand use (Rowe et al., 2013). For instance, 

the “manumeter” determines hand use by tracking the total angular distance 

traveled by the wrist and fingers using magnetometers (Rowe et al., 2013). 

This device is able to track global hand use, but performs poorly for tasks 

requiring small yet intensive movements such as handwriting (Rowe et al., 

2014). Another limitation is the interaction with ferromagnetic objects, which 

are commonly used in everyday life, and can alter the device readings. 

As a complementary approach to questionnaires that are common to a 

patient population, a hand activity monitoring device that not only tracks 

the global hand use, but is also able to categorize the manual activities that 

are actually performed, would offer a more personalized approach and 

would have implications in many aspects of patient care. In this paper, we 

show that a simple algorithm is capable of classifying manual activities of 

daily living using data from wrist- and finger-worn sensors.  

5.2. Materials and Methods 

5.2.1. Prototype 

We used a prototype device (InSense©, Arsalis, Belgium) to capture 

human activity signals using inertial measurement units (IMUs). The device 

is shown in Figure 5.1A. Each sensor integrates a triaxial accelerometer and 

a triaxial gyroscope. The measurement range is ±16 g and ±2000 °/s for each 

axis of accelerometer and gyroscope, respectively. The device is wired and 

transmits sampled sensor data to a laptop computer via a USB interface. The 

sensors are small in size (9.4 × 8 × 5.5 mm) and lightweight enough (2 g) to 

be worn comfortably without altering the hand movements. The inertial 

signals of all sensors are sampled synchronously (inter sensor delay < 0.125 

ms) with a 16-bit resolution at a rate of 500 Hz. 



Chapter 5. Recognizing manual activities using wearable sensors 

90 
 

 

Figure 5.1. (A). Photograph showing the device prototype, which consists of eight 

inertial measurement units connected to a processor. A close-up of one of the sensors 

is shown. (B). Photograph showing the placement of the sensors on 3D-printed 

supports on the participant’s hands. 

5.2.2. Sensor Calibration 

Accelerometers and gyroscopes were calibrated prior to performing the 

experiments so that the readings were accurate and reliable. Accelerometers 

were calibrated by applying 0 g, 1 g and −1 g on each accelerometer of each 

sensor. Their calibration reported an average absolute error of 0.18% of full 

scale (FS) on any axis of any sensor (range: 0.05 to 0.62 %FS). Gyroscopes 

were calibrated using a rotating device equipped with a 1024 point 

resolution optical encoder that was used to determine the reference angular 

speed (Video S1 in Supplementary Materials). They were calibrated at 

angular speeds ranging from -600 to +600 °/s and reported an average 

absolute error of 0.23 %FS on any axis of any sensor (range: 0.13 to 0.71 %FS). 

Raw data were converted to physical values of angular velocity and 

acceleration expressed in °/s and g, respectively, using individual sensor 

calibration coefficients. 
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5.2.3. Participants 

Six healthy adults participated in this study; their characteristics are 

detailed in Table 5.1. Participants were included in the study if they were 

above 18 years old and had no pathology that could affect the use of their 

upper limbs. The study was conducted according to the guidelines of the 

Declaration of Helsinki, and approved by the ethics committee of Cliniques 

Universitaires Saint-Luc Université catholique de Louvain (2015/26JAN/025, 

N° B403201523492). Participants provided written informed consent to make 

use of their anonymized data. 

  Table 5.1. Participants’ characteristics. 

 Age Sex Height (cm) Weight (kg) Work 
 

Participant 1 31 F 152 42 Office worker 
 

Participant 2 65 M 162 80 Dentist 
 

Participant 3 28 M 173 74 Office worker 
 

Participant 4 24 F 176 78 Student 
 

Participant 5 31 M 171 70 Office worker 
 

Participant 6 57 F 164 53 Housewife 
 

 

5.2.4. Activities Selection 

In order to explore the wide range of hand movements, activities were 

selected from the different pathology-specific versions of the ABILHAND 

questionnaire (hand surgery, stroke and rheumatoid arthritis). Items from 

this questionnaire have been rigorously selected to report patient-perceived 

difficulty unbiased by patient demographics (e.g., age, gender) nor clinical 

conditions (e.g., side affected, manual ability). Twelve activities were 
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selected to cover the whole range of measurement of the ABILHAND scale. 

Two additional items were added for their relevance in everyday life, 

namely “typing on a computer keyboard” and “using a spoon”. The final list 

of 14 activities is shown in Table 5.2. We hypothesized that these activities 

could be classified into five different categories, based on the way they are 

actually executed. Some activities are unimanual while others are bimanual. 

Bimanual activities could require the action of a stabilizing hand or involve 

both hands equally. In addition, some activities require the use of the fingers 

(the fingers move independently of the wrist), while others involve the 

whole hand (the fingers move together with the wrist), for example, when 

manipulating a tool. When some manual activities could be performed in 

different ways (e.g., some participants brushed their hair with both hands 

while others used only their dominant hand), the experimenter’s judgement 

was used to classify each activity into a category, depending on the way it 

was executed by the participant. 
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   Table 5.2. List of manual activities and their respective categories. 

 Activity Category 

1 Using a spoon 
Unimanual 2 Drinking a cup of water 

3 Brushing one's hair 

4 Writing a sentence 

Bimanual with a stabilizing hand 

and finger activity of the active 

hand 

5 Spreading butter on a slice of bread Bimanual with a stabilizing hand 

and global activity of the active 

hand 6 Opening a can with a can opener 

7 Typing on a computer keyboard 

Bimanual with finger activity of 

both hands 

8 Shuffling and dealing cards 

9 Peeling potatoes with a knife 

10 Buttoning a shirt 

11 Tying shoelaces 

12 Opening a screw-topped jar Bimanual with a global activity of 

both hands 13 Lifting a full pan 

14 Wringing a towel 

 

5.2.5. Experimental Setup and Recordings 

Participants were equipped with the prototype device sensors on the 

first phalanges of the first two fingers of both hands and on the wrists (Figure 

1B). Sensors were fitted on 3D-printed supports in the shape of rings for the 

fingers and wristbands for the wrists. These sites were chosen to correspond 

to sites where everyday accessories are worn (watch and rings) and do not 

hinder activities of daily living. 

Participants were asked to perform the 14 activities in a random order 

for five repetitions each, while sitting on a chair at a table. The tools used 

(e.g., can opener, pen) were from the participants’ home environment. They 
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were instructed to perform each activity as they would do in their normal 

life, with no constraints except for the duration of each activity (no more than 

25 seconds per repetition). Each activity started and ended with the hands 

still on the table, separated by five seconds of inactivity. Experiments were 

performed under the supervision of the experimenter. 

5.2.6. Data Analysis 

Each recording was processed to isolate the activity period (i.e., when 

the participant is actually executing the task) from inactivity periods 

(between two consecutive repetitions). The main goal was to focus on 

activity recognition, based on the assumption that the start and end of an 

activity were known. 

Gyroscope signals were used to analyze the angular velocity pattern for 

each activity, as they demonstrated the most distinctive pattern compared to 

the accelerometers. No filter was applied to the raw data. For each gyroscope 

signal, the norm of the angular velocity vector was computed by combining 

the x, y and z components. Signals were combined to compute the hand 

signal (mean of the three IMUs on one hand) and the fingers signal (mean of 

the two IMUs placed on the fingers) for both limbs. The elaboration of the 

algorithm was based on the examination of the activity at the different levels 

(hand, fingers and wrist) and the relationship between them for the duration 

of the activity. 

The hands ratio (HR) was calculated by dividing the angular velocity of 

the most active hand by that of the least active one. 

𝐻𝑅 =  
𝑀𝑜𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑎𝑛𝑑

𝐿𝑒𝑎𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑎𝑛𝑑
 ( 

It was chosen as a criterion to differentiate between bimanual activities 

involving both hands equally and those involving a stabilizing hand. When 

both hands are involved equally, the HR is expected to be close to one. 
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During unimanual activities or when one hand stabilizes an object, one hand 

is less active than the hand performing the movement, and the HR is 

expected to increase. 

The fingers-to-wrist ratio (FWR) was computed by dividing the fingers’ 

angular velocity (mean of both fingers) by the wrist angular velocity.  

𝐹𝑊𝑅 =  
𝐹𝑖𝑛𝑔𝑒𝑟𝑠′ 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑊𝑟𝑖𝑠𝑡 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 ( 

When the hand moves as a whole (e.g., when manipulating a hammer), 

the angular velocity in the fingers is close to that of the wrist; hence, the FWR 

is close to one. If the fingers are involved in independent movements (e.g., 

when writing), the FWR increases. The FWR was computed on the dominant 

hand for bimanual activities with a stabilizing hand, and by taking the 

average of the two hands for bimanual activities. 

5.2.7. Determining Cutoff Points 

The Receiver Operating Characteristic (ROC) curve was used to 

determine the cutoff points for HR and FWR that best discriminate between 

the different categories of activities (Metz, 1978). The ROC curve is a 

graphical plot that illustrates the diagnostic ability of a binary classifier 

system as its discrimination threshold is varied. The ROC curve plots 

sensitivity (i.e., the true positive rate) against 1–specificity (i.e., the false 

positive rate) at various threshold settings. The optimal cutoff value (i.e., 

threshold) was chosen as the point that jointly maximized sensitivity and 

specificity, hence leading to the least number of misclassifications. The area 

under the curve (AUC) is the measure of the ability of the classifier to 

distinguish between classes. The greater the AUC, the better the criterion is 

able to distinguish between the different categories. AUC values between 0.7 

and 0.8 are considered acceptable, and values above 0.8 are considered to 

have excellent discrimination levels (Hosmer and Lemeshow, 2004).  
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5.2.8. Algorithm Validation 

A leave-one-out cross-validation was used to validate our algorithm 

(Halilaj et al., 2018), as detailed in Figure 5.2. For each iteration of the 

validation, one participant was left out of the training sample, and data from 

the five remaining participants were used to derive cut-off values for the HR 

and FWR and establish the algorithm. The latter was then applied to the data 

of the participant left out to evaluate the performance of the algorithm. Each 

individual repetition was categorized using these cutoffs and following the 

steps laid by the algorithm. This process was repeated six times in total to 

compute the validation errors. Activities were considered correctly 

identified into their respective categories if both criteria (HR and FWR) for 

this category were in the right range at each step of the algorithm. The 

performance of the algorithm was then calculated by comparing the activity 

category as established by the experimenter and the categorization provided 

by the algorithm. 

 

 

Figure 5.2. Diagram showing the validation process of the algorithm. 
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5.3. Results 

5.3.1. Cutoff Points 

The ROC curves used to determine the cutoff points for the hands ratio 

(HR) and fingers-to-wrist ratio (FWR) for the whole sample are shown in 

Figure 5.3. The sensitivity ranged between 96% and 100%, and the specificity 

from 85.7% to 98.7%. The AUCs for all criteria were above 0.978, providing 

excellent discrimination. The individual values for the different iterations of 

the leave-one-out cross-validation are detailed in Table 5.3. These did not 

vary substantially in comparison with values for the whole sample, 

demonstrating the robustness of the approach. 
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Figure 5.3. Receiver-operating-characteristic curve showing the cut-off points for the 

hands ratio (HR) and the fingers-to-wrist ratio (FWR). The arrows show the point 

that maximizes sensitivity and specificity. Panel A: HR for the discrimination 

between uni- and bimanual activities. Panel B: HR for the discrimination between 

activities involving a stabilizing hand and those involving both hands. Panel C: FWR 

for identifying finger activity in activities involving a stabilizing hand. Panel D: FWR 

for identifying finger activity in activities involving both hands. AUC: Area Under 

the Curve. 
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Table 5.3. Cut-off values for the hands ratio and the fingers-to-wrist ratio. 

 

HR1 for 

classification 

between uni- and 

bimanual 

activities 

HR1 for 

classification 

between 

bimanual 

activities 

involving a 

stabilizing hand 

and those using 

both hands 

FWR1 for fingers 

involvement of 

bimanual 

activities using a 

stabilizing hand 

FWR1 for fingers 

involvement of 

bimanual 

activities using 

both hands 

Participant 1 

excluded 
20.96 4.25 2.68 2.50 

Participant 2 

excluded 
20.96 4.67 2.61 2.42 

Participant 3 

excluded 
20.96 4.67 2.61 2.26 

Participant 4 

excluded 
22.01 4.71 2.56 2.26 

Participant 5 

excluded 
20.96 4.67 2.61 2.42 

Participant 6 

excluded 
20.95 4.62 2.61 2.25 

Whole sample 20.96  4.67 2.61 2.26 
1 HR: Hands Ratio; FWR: Fingers-to-Wrist Ratio. 

 

5.3.2. Description of the Algorithm 

The algorithm (Figure 5.4) allows the classification of manual activities 

into five different categories through three different steps, based on HR and 

FWR. The first step of the algorithm separates unimanual from bimanual 

activities based on HR. A HR greater than 20.96 is indicative of unimanual 

activities, i.e., one of the hands is over 20 times more active than the other 

hand. For the second step of the algorithm, a cutoff HR of 4.67 can be used 

to separate bimanual activities that use a stabilizing hand from those that 

involve both hands equally. The HR for this second step is smaller than that 

of the first step, as the stabilizing hand still performs low amplitude 
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movements. The third step separates activities based on whether the 

movement involves the fingers or not. A FWR larger than 2 (actually 2.61 for 

bimanual activities involving a stabilizing hand and 2.26 for bimanual 

activities involving both hands equally) means that the fingers are about two 

times more active than the wrists, indicating that the fingers are mainly 

performing the movement such as when writing or buttoning a shirt. On the 

contrary, “spreading butter on a slice of bread”, for example, involves using 

the hand as a whole when manipulating a tool (global hand activity, FWR< 

2). In summary, the algorithm can classify manual activities based on the 

involvement of the hands relative to one another, and the presence or 

absence of finger activity. 
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Figure 5.4. Algorithm for the classification of manual activities. The values shown 

for the hands ratio (HR) and fingers-to-wrist ratio (FWR) are those extracted from 

the whole sample. Typical traces for five tasks performed by a right-handed subject 

show the signals of the six sensors for one repetition of one selected activity for each 

category. RW: Right Wrist, RI: Right Index; RT: Right Thumb; LT: Left Thumb, LI: 

Left Index; LW: Left Wrist.  
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5.3.3. Performance of the Algorithm 

Cutoff values for HR and FWR were derived from the learning sample 

and then tested for validation on the participant left out using the 

classification algorithm. An example of the validation method is shown in 

Table 4. For each repetition of each activity, the HR and FWR were extracted 

for participant 3. Each one of these values was then compared to the cutoffs 

derived when excluding participant 3 (see Table 5.3), according to the steps 

previously detailed in the algorithm. When the observed value was in the 

expected range, the cell was colored in green. When outside the range, it was 

colored in red. For example, the HR for the first repetition of “Using a spoon” 

was 56.73, which is >20.96 and, thus, verified the criteria for being a 

unimanual activity. The FWR for the fifth repetition of “Opening a screw-

topped jar” was 2.43, which was slightly above the expected value for a 

bimanual activity with global activity of both hands (the FWR should be 

<2.26). The observed value was outside the range, and the cell was colored 

in red. This process was repeated for each one of the six participants, and the 

sum of correct classifications was computed. 
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The performance of the algorithm on the validation sample is detailed 

in Table 5.5. Each column in the table represents a step in the algorithm, and 

the percentage of correct classification is detailed for the classification of each 

activity in the correct category. 

For the first step, the algorithm was able to classify uni- from bimanual 

activities based on HR with an average accuracy of 97%. The activity 

“writing a sentence” was incorrectly classified in 33% of the cases as a 

unimanual activity. This is explained by the fact that the stabilizing hand is 

only active at the beginning and the end of the movement, and thus, has little 

influence on HR, especially as the activity lasts longer. This misclassification 

originated almost exclusively from two subjects (nine out of ten incorrect 

classifications). 

For the second step of the algorithm, activities requiring a stabilizing 

hand were classified correctly in 95% of cases and those involving both 

hands equally in 98% of cases. The third step correctly identified the presence 

or the absence of fingers’ involvement in 89 to 100% of cases, per category.  

For an activity to be classified in the correct category, it had to verify the 

HR and FWR criteria for every repetition. On average, this was achieved in 

87.4% of the activities, as shown by the overall accuracy in the last column 

of Table 5.5. 
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5.4. Discussion 

In this paper, we show the applicability of a very simple algorithm for 

the categorization of 14 manual ADL. Using gyroscope data from six IMUs 

located on the thumb, index finger and wrist of both hands, we were able to 

classify manual ADL into five categories. The proposed algorithm has a high 

overall accuracy, yet its computational complexity is very low as it involves 

only averages and ratios of sensor measurements. 

Our algorithm was able to classify manual activities into their correct 

category in 87.4% of cases. The poorest performance in categorization 

corresponded to the activity “writing a sentence” (category “bimanual 

activities with a stabilizing hand and finger activity of the active hand”), for 

which the accuracy was 67% on average. Our results show that it is a 

borderline activity that can be performed using only one hand if the support 

is stable enough. Contrary to lower limb movements, most manual activities 

are complex to analyze, mainly because they are non-cyclical and variable 

(Rau et al., 2000). Differences in movement patterns exist across individuals 

and across repetitions by the same individual. This was especially evident in 

our study for the activity “brushing one’s hair”. Participants used either one 

or both hands to brush their hair, and the activity was, thus, considered 

either unimanual or bimanual depending on the actual performance. In 

practice, this misclassification can be tolerated and only highlights the 

variability across all subjects and movement patterns used to perform these 

manual ADL. Nevertheless, most activities performed in this study were 

conducted in a similar manner across subjects and repetitions, which is 

encouraging for the future automated applications of the algorithm. 

Classifying activities into different categories is an important first step, 

because manual activities that belong to the same category are likely to be 

equally impaired in a given pathology since they involve the same 

movement pattern. Indeed, the perceived difficulty of the activities of 

ABILHAND has shown that, for instance, for stroke patients, manual 



 

107 
 

activities are more challenging if they require both hands and even more 

challenging if they involve the fingers of both hands (Penta et al., 2001). In 

rheumatoid arthritis, challenging activities are those that involve higher 

stress at the joints, whether uni- or bi-manual (Durez et al., 2007). Therefore, 

for clinical follow-up of manual activity, we can hypothesize that the 

achievement of a type of activity is likely a very good indicator of recovery. 

In addition, some activities are usually only seldom performed during the 

day (e.g., “tying shoelaces” and “buttoning a shirt”), and grouping them as 

categories allows continuous monitoring whatever actual activities are 

performed during the day. Another argument for grouping the activities is 

the ability to target patients with different occupational profiles. For 

example, an office worker would spend most of the day typing on a 

keyboard or writing, while a manual worker would, rather, manipulate 

tools. 

One strength of our study is the selection of activities that have been 

shown to characterize manual ability in patients with various pathologies 

(Durez et al., 2007; El Khoury et al., 2020b; Penta et al., 2001). The possibility 

to recognize the activity categories, or, in a later step, the execution of these 

individual activities in daily life will pave the way for comparisons between 

the patient-reported questionnaire scores and objective automated 

monitoring. Indeed, the correlations observed between the kinematic 

analysis of the upper limb, questionnaire scores and observational methods 

(Patel et al., 2010; Subramanian et al., 2010) indicate that an approach 

combining objective activity monitoring and questionnaire scores could help 

clinicians in the selection of the optimal treatments for their patients. Using 

such a combined approach, clinicians will better discern between capability, 

which describes what the patient can do in their daily environment, from 

performance, which refers to what the patient actually does (Holsbeeke et 

al., 2009).  

The upper extremity is conceptualized as a single functional unit with 

the shoulder, elbow and wrist joints used to position the end-effector organ, 
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the hand, in space. The chosen localizations for the sensors allowed the 

capturing of the functioning of both hands very well. The wrist sensors are 

able to measure the movement of the hand in space, while the finger sensors 

record the movement of the fingers. The presence of sensors on the thumb 

and index finger allowed our device to be sensitive to movements of the 

hand involving different types of pinches and grasps (e.g., writing and 

handling tools), as well as activities involving fine finger movements (e.g., 

typing) (Napier, 1956). The addition of sensors on other locations, such as 

the third finger and the fingernails for precise manipulation, and the fifth 

finger for power grasping, could possibly provide more information 

regarding the type of movement. However, this additional information 

would come at the cost of obtrusiveness and a plethora of data. The number 

of sensors used in the current study is higher than in similar studies dealing 

with recognizing activities of the upper limb (Biswas et al., 2014; Lemmens 

et al., 2015). However, they provide a very good amount of data for the 

development of a more complex algorithm, and their location corresponds 

to that of everyday accessories (rings and wristbands), allowing the 

definitive monitoring device to be unobtrusive and ergonomic. 

Cut-off values were found to be quite similar across the different 

analyses, except for that of the fourth participant, whose exclusion yielded 

slightly different results. The stability of the HR and FWR is promising 

regarding the generalization of the algorithm to a larger population. 

Participants performed the ADL as they would do in their normal life and 

with objects of their home environment. Unconstraining the experiment in 

this manner helped to generate a wide range of variability in the data, which 

could ultimately result in the development of an algorithm that is more 

readily applicable in real life. We obtained very good results in spite of 

potential measurement errors due to the small displacement of the sensor 

over the skin.  

Commonly used pattern recognition approaches are neural networks, 

structural matching, template matching and statistical classification (Jain et 
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al., 2000; Preece et al., 2009). The latter approach was used in the present 

paper, in which each pattern is represented in terms of features of 

measurement. This has proven effective in developing a simple algorithm 

for hand activities’ classification. Results are encouraging and show that 

activities can be reliably detected in normal subjects performing 

unconstrained movements. Future research should include a larger sample 

size to test for the stability of our chosen cutoffs, and testing of the algorithm 

on patients with an impaired hand function. Improvements in the algorithm 

could be made by using artificial intelligence (e.g., machine learning and 

pattern recognition), which could ultimately distinguish between individual 

activities. With these improvements, one should be able to determine the 

benefit of recognizing individual activities compared to categories. The 

simpler process of categorizing activities might prove sufficient for clinical 

applications. Nonetheless, substantial impairments can alter the execution of 

an activity through compensatory mechanisms, and more sophisticated 

algorithms might prove more appropriate in this case. A critical 

development of the current prototype would be an extension to a wireless 

system connected to a smartphone. This would allow recognition of manual 

activities as well as the context in which they are carried out (e.g., while 

sitting or walking). Recognizing the beginning and end of an activity was 

not addressed in this paper, but will be an essential step for the future 

implementation of the monitoring device in real life. 

Using the monitoring device in combination with the questionnaires, the 

clinician will be able to optimize the patient’s treatment and follow-up. A 

clinical improvement should manifest into more hand use and, thus, more 

ADL recorded on the device, as well as higher scores on the questionnaires 

due to a decrease in perceived difficulty. The physician will also be able to 

personalize the patient’s therapy by tracking and focusing on a particular 

activity that is judged as important for the patient.  

Ultimately, we aim at developing a manual activity monitoring device 

with wireless sensors and an autonomous power supply in order to capture 
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manual activities in the patient’s natural environment. The compatibility of 

the chosen locations for the sensors with everyday life accessories will not 

hinder the execution of ADL. Gathering objective data from this device could 

be combined with patient-reported data from questionnaires in order to 

provide a comprehensive and global approach for outcome evaluation, 

clinical decision-making, patient monitoring and the tracking of 

rehabilitation progress.  
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6.1. Summary of contributions 

In this thesis, we first validated the ABILHAND questionnaire for use 

in hand surgery, using the Rasch model. A preliminary 90-item 

questionnaire was presented to 216 patients representing the diagnoses most 

frequently encountered in hand surgery, including distal radius fracture, 

basal thumb arthritis, carpal tunnel syndrome, and heavy wrist surgery. The 

Rasch model was used to select 23 items (mostly bimanual) that constitute 

the ABILHAND-HS questionnaire. The obtained scale is a linear, invariant 

and unidimensional continuum that defines manual ability. 

Unidimensionality means that only one construct (i.e. manual ability) is 

measured by the instrument. The scale is linear, which means that the scale 

unit, the logit, is continuous and presents a fixed increment along the whole 

scale. This allows comparing and quantifying patient improvement. 

Invariance means that the measures are unbiased with respect to patients’ 

characteristics (such as age, gender or involved hand) other than the one 

being assessed, i.e. manual ability. 

We then showed through a clinical case how the scale can be used in 

clinical practice for patients' evaluation. Patient’s responses can be entered 

into a form available on the website www.rehab-scales.org to convert the 

questionnaire raw scores into manual ability measures. The web routine also 

gives a visual representation of the patient’s answers, as well as patient 

location in logits and centiles, confidence interval and outlier answers. The 

items have an established difficulty hierarchy, which can provide clinicians 

with useful information regarding the activities that patients can or cannot 

do, so that treatment goals are appropriately challenging for the patient. 

One important property of a scale is its ability to detect change. The 

responsiveness of the ABILHAND-HS has been studied, and its minimal 

clinically important difference has been defined for use in clinical studies 

and practice. Eighty-seven patients were assessed multiple times with the 

ABILHAND-HS questionnaire and with a global rating of change scale 
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(GRCS). Responsiveness was tested according to both group-level and 

individual-level approaches. Mean score change, effect size, standardized 

response mean and reliable change index were calculated for groups of 

patients according to their GRCS. The responsiveness indices showed that 

the change in manual ability measures was higher in patients who reported 

a great improvement in their perceived status. On an individual level, the 

proportion of patients with a significant improvement was higher with the 

increase in the GRCS. A minimal clinically important difference of 0.50 logits 

(4.2 centiles) was determined based on the ROC curve, the value 

corresponding to a small effect size and the value of the change score in the 

“minimal improvement” group. The ABILHAND-HS questionnaire showed 

a good sensitivity to change and can thus be used for the evaluation of the 

effect of treatments for hand surgery and in a research setting. 

Finally, we showed that a simple algorithm is capable of classifying 

manual activities of daily living into categories using data from wrist- and 

finger-worn inertial sensors. Six participants without pathology of the upper 

limb performed 14 activities of daily living. Gyroscope signals were used to 

analyze the angular velocity pattern for each activity. The elaboration of the 

algorithm was based on the examination of the activity at the different levels 

(hand, fingers and wrist) and the relationship between them for the duration 

of the activity. A leave-one-out cross-validation was used to validate our 

algorithm. The algorithm allowed the classification of manual activities into 

five different categories through three consecutive steps, based on hands 

ratio (i.e. activity of one or both hands) and fingers-to-wrist ratio (i.e. finger 

movement independently of the wrist). On average, the algorithm made the 

correct classification in 87.4% of cases. The proposed algorithm has high 

overall accuracy, yet its computational complexity is very low as it involves 

only averages and ratios, making its interpretation very intuitive, which is 

important to guarantee its potential use in clinical practice.  
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6.2. Future directions 

The ABILHAND-HS scale described in chapter 2 has been validated in 

a sample of 216 patients with four diagnostic groups. Future research should 

aim at verifying item calibrations and their stability in a larger sample of 

hand surgery patients. The scale should also be validated in more diagnostic 

groups such as ligament injuries and tendinopathies. Hospitals are switching 

to electronic medical records to improve the quality of health care. One major 

advantage of this transformation would be the integration of electronic 

questionnaires into patients’ medical records (Franklin et al., 2017). This 

would allow data coming from a big number of patients to be effortlessly 

collected. Such large-scale calibrations would refine our initial findings and 

confirm the applicability of the ABILHAND-HS to most hand surgery 

patients. 

We built a prototype device (InSense©, Arsalis, Belgium) to capture 

human activity signals using inertial measurement units. Using the angular 

velocity readings from the gyroscopes, we were able to develop an algorithm 

that classifies manual activities into five categories (see Chapter 5). Many 

steps are still needed to achieve a fully operational hand activities 

monitoring device. Improvements of the algorithm could be made to allow 

recognizing individual activities. This step could be achieved by using 

artificial intelligence (e.g. machine learning, pattern recognition). The main 

input would be a large database of signals recorded during identified 

relevant activities. One would select the most relevant signals that allow 

accurate discrimination among these activities. One challenge would be to 

find a trade-off between classification accuracy and the number of signals 

used. The goal is to find the lowest number of signals – hence a potentially 

minimal device footprint – that allows a reasonable classification success 

rate. The hand activity monitoring device will embed artificial intelligence 

to (1) identify the activity performed by the user and (2) extract indices that 

can quantify how well each activity is performed. 
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The device will be made more ergonomic with wireless sensors and an 

autonomous power supply in order to capture manual activities in the 

patient’s natural environment. The incorporation of sensors into everyday 

life accessories (such as rings and wristbands or watches) will allow testing 

the device in the patient’s natural environment, as they will not hinder the 

execution of activities of daily living. 

In a daily life setting, the data from the new prototype device will first 

be collected on a limited number of patients and at a single time point to 

confirm the device operability in realistic situations of daily life. In contrast 

with the laboratory setting in which patients can adapt their behavior and 

performance due to the specificity of the context, the daily life setting will be 

much more ecological and realistic, albeit with more frequent compensation 

strategies at home than in the lab. At this stage, it will be very useful to 

compare the performance measured by the new prototype device with the 

patient-reported ABILHAND scores and with the gold standard expert 

observer. The ABILHAND questionnaire measures manual ability as a latent 

variable, while the monitoring device measures it as an observable variable. 

Comparing both results will inform us whether the measures taken with the 

two tools are two facets of the same construct or not. If the two tools measure 

the same construct, the most cost-effective one would be adopted for routine 

patient evaluation. If they show some divergence, comparing them with the 

gold standard expert observer would provide some insights about the 

different aspects they measure, and they could thus be used in combination 

for a more comprehensive clinical evaluation. This task will also consist in 

collecting patients' feedback on the device ergonomics and operability in 

view of the ergonomic validation of the prototype device.  

6.3. Contribution of outcome measures to patient care 

As discussed throughout this thesis, patient-reported outcome 

measures are valuable and crucial tools to assess patients’ functioning and 
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to evaluate different treatment options. They have an already well 

established place in research as the primary outcome measure in most 

clinical studies. However, their implementation in clinical practice and 

adoption by physicians remains scarce, and these are not consistently used 

in decision making (MacDermid, 2014). The reasons for this might be the 

limited time in consultation to read and interpret the results, the lack of 

familiarity of the physicians with these instruments, and the lack of 

knowledge to interpret the results. 

At the patient level, data from PROMs can help clinicians guide their 

patients by providing them with crucial information. They allow patients to 

understand what to expect during recovery (Baumhauer, 2017). For example, 

patients who undergo surgery often want to know when they can return to 

work or resume their sports activities. By collecting prospective data 

gathered at the population level, we could create a roadmap of recovery that 

describes the natural evolution as a function of the pre-operative score. We 

could compare an individual patient’s preoperative score with this global 

data to give more accurate personalized predictions. This could help answer 

patients’ questions and set appropriate expectations. PROM data can also be 

used to minimize variation in patient care. For example, institutions could 

compare data from different surgical procedures performed for the same 

condition, in order to determine which one(s) have the best outcomes from 

the patient’s perspective. For procedures with similar outcomes, other 

factors such as costs, risks, and time to full recovery after surgery could be 

compared. When certain procedures are found to have less favorable 

outcomes, institutions could determine whether an individual surgeon’s 

technique needs improvement or if the treatment approach should be 

abandoned completely (Baumhauer, 2017). With such a strategy, surgeons 

could identify areas where they need improvement, eliminate procedures 

with less favorable outcomes, and avoid performing surgeries on patients 

who are unlikely to benefit from them. It could also enhance patient 

satisfaction with care by helping physicians set appropriate expectations 
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regarding a patient’s return to work, school, or sports. Most importantly, 

PROMs place the patient’s voice at the forefront of health care delivery. 

As stated in the introduction, the trend in the reimbursement of 

treatments by private or social insurances is shifting from “pay for an act” to 

“pay for results” (Porter, 2009). Therefore, current healthcare system reforms 

are focusing on increasing patient value, which is defined as the health 

outcomes achieved per unit of currency (Porter, 2010) 

𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 =
𝐻𝑒𝑎𝑙𝑡ℎ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝐶𝑜𝑠𝑡
 

This goal is what matters most to patients and unites the interests of all actors 

in the healthcare system. The ABILHAND-HS could be used as an outcome 

in hand surgery to further implement the concept of value. Indeed, the logit 

that is used to measure manual ability is linear, which means that the 

distance between units is constant throughout the measurement range. This 

could open the way for the development of a new index based on the change 

in manual ability in logits, divided by the cost: 

𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 ℎ𝑎𝑛𝑑 𝑠𝑢𝑟𝑔𝑒𝑟𝑦 =  
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑖𝑛 𝑙𝑜𝑔𝑖𝑡𝑠)

𝐶𝑜𝑠𝑡
 

For a given pathology that has several treatment options, the treatment that 

gives the best value (the best increase in manual ability while minimizing the 

costs) should be favored by hand surgeons and reimbursed third-party 

payers. The concept of value, as presented with manual ability as an 

outcome, can also be applied to other important outcomes in hand surgery 

such as grip strength, return to work, complication rates or pain reduction. 

Valuable data could be gathered using a hand activities monitoring 

device, for all conditions that affect the upper extremity. This could be in the 

form of quantitative data (i.e. the amount of hand use) or qualitative data: 

which activities the patient does or does not perform. Analysis of such data 

could provide insight into the type of impairment that a patient has. Loss of 
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strength for example can manifest through the impossibility of performing 

tasks such as opening a jar. The absence of activities requiring grip strength 

can prompt the clinician to question the patient about the reason such 

activities have not been performed. A surgical procedure destined to 

improve the patient’s hand function should have a noticeable impact on the 

patient’s daily life activities, and this could be tracked with the monitoring 

device in the postoperative period. Such data could be gathered on a large 

scale to determine which procedure(s) have the most impact on the 

restoration of daily life activities.  

The objective aspect of the device could provide insight into cases where 

the clinical examination and diagnostic tests do not align with the patients’ 

report of symptoms and limitations in their daily life activities. By 

confirming the patient’s claims, it could reinforce the physician-patient 

relationship. 

6.4. Conclusion 

The implementation of patient-centered outcomes throughout the 

medical field in general, and throughout hand surgery in particular, is 

advantageous for patients and clinicians alike. These measures are critical 

components of numerous aspects of health care delivery, including shared 

decision-making, post-intervention monitoring, research, quality, and value-

based health care (Makhni et al., 2021).  Patient-reported outcome measures 

and a manual activities monitoring device, as developed in this thesis, have 

the potential to improve medical practice by promoting a patient-centered 

model of healthcare delivery. We hope that this work lays the foundation for 

many research projects in the field of outcome measurement.
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