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Boosting techniques and neural networks are particularly effective machine learning methods for 
insurance pricing. Often in practice, the sum of fitted values can depart from the observed totals to a 
large extent. The possible lack of balance when models are trained by minimizing deviance outside the 
familiar GLM with canonical link setting has been documented in Wüthrich (2019, 2020, 2021). The 
present paper aims to further study this phenomenon when learning proceeds by minimizing Tweedie 
deviance. It is shown that minimizing deviance involves a trade-off between the integral of weighted 
differences of lower partial moments and the bias measured on a specific scale. Hence, there is no 
guarantee that the sum of fitted values stays close to observed totals if the latter bias term is dominated 
by the former one entering deviance. Autocalibration is then proposed as a remedy. This new method 
to correct for bias adds an extra local GLM step to the analysis with the output of the first step as 
only predictor. Theoretically, it is shown that it implements the autocalibration concept in pure premium 
calculation and ensures that balance also holds on a local scale, not only at portfolio level as with existing 
bias-correction techniques.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In the 1960s, North-American actuaries pioneered risk classification with the help of minimum bias methods, after Bailey and Simon 
(1960) and Bailey (1963). The central idea is that an acceptable set of premiums should reproduce the experience within sub-portfolios 
corresponding to each level of meaningful risk factors (like gender or age, for instance) and also the overall experience, i.e. be balanced 
for each level and in total (leading to the method of marginal totals, or MMT in short).

In the late 1980s, it turned out that for any GLM with canonical link function and a score containing an intercept, there is an exact 
balance between fitted and observed aggregated responses over the whole data set and for any level of the categorical features. This 
formally related GLMs to minimum bias and MMT, as documented in Mildenhall (1999). This connection greatly facilitated the wide 
acceptance of GLMs in actuarial practice that has been particularly fast after the development of powerful computer tools. The objective 
function used for model training (often call loss function in machine learning) generally corresponds to deviance or log-likelihood, in 
a model accounting for the nature of insurance data under consideration: typically, Poisson for claim counts, Gamma for average claim 
severities and compound Poisson sums with Gamma-distributed terms for claim totals, all belonging to the Tweedie family with power 
variance function.

Actuarial risk classification remained bridged to statistical regression models and naturally followed their evolution from GLMs to GAMs, 
trees and random forests, gradient and statistical boosting, projection pursuit and neural networks, to name just a few. This evolution took 
place gradually, following the availability of computational resources in statistical software. The deviance established itself as the only 
objective function, even when the interpretability of the likelihood equations in terms of balance was lost, and the underlying MMT 
caution to GLMs has been progressively forgotten.
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However, it turned out that tree-based boosting models and Neural Networks trained to minimize deviance often violate total balance, 
even on the training data set. This has been documented by Wüthrich (2019, 2020, 2021). Advanced learning models are indeed able to 
produce scores that better correlate with the response, as well as with the true premium compared to classical GLMs. This comes from 
letting scores depend in a flexible way on available features, not only linearly. But breaking the overall balance is the price to pay for this 
higher correlation. Because no constraint on the replication of the observed total, or global balance is imposed, machine learning tools 
are also able to substantially increase overall bias. As pointed out by Wüthrich (2021), machine learning tools may provide accurate fit at 
individual policy level but the global price level may be completely wrong. It is therefore crucial to correct candidate premiums produced 
by flexible machine learning tools before they can be used in practice.

A natural remedy consists in restoring global balance at each step of the iterative procedure used to optimize the loss function. This 
is easily implemented by revising the intercept (under canonical link function) or by constraining the optimization so that the observed 
total matches its fitted counterpart. This simple solution restores global balance but does not ensure that financial equilibrium also holds 
in meaningful sub-portfolios (remember that GLMs with canonical link not only imposes global balance, at portfolio level when the score 
comprises an intercept, but also at the level of risk classes determined by binary features).

For this reason, we propose a new strategy based on the concept of autocalibration (see, e.g., Kruger and Ziegel, 2020). This approach 
guarantees global balance as well as local equilibrium in the spirit of the original MMT. This simple and effective solution to the problem is 
implemented by adding an extra step implementing MMT within a local GLM analysis. Specifically, after the analysis has been performed 
with a method that does not necessarily respect marginal totals, a local constant GLM fit is achieved in order to restore the connection 
with MMT. Thus, as advocated by Wüthrich (2019, 2020, 2021), we also combine GLMs with advanced statistical learning tools but in a 
different way. Wüthrich (2019, 2020, 2021) used Neural Networks to produce new features in the last hidden layer, to be used in a GLM 
replacing the output layer. In this approach, Neural Networks allow actuaries to perform feature-engineering to feed the GLM score and 
marginal totals are respected by the use of GLMs in the last step. Wüthrich (2019, 2020) then explains how to interpret the working 
features generated by the last hidden layer of Neural Networks. This approach can also be related to the polishing procedure proposed by 
Zumel (2019) where random forests predictions are used to train a linear model in a second step. As pointed out by this author, the extra 
step should not be performed on the same data in order to avoid a potential source of overfitting (called nested-model bias). The local 
GLM approach proposed in this paper applies to any statistical learning model, not specifically to Neural Networks or random forests. It 
consists in using the candidate premium produced in the first step as unique feature in the second autocalibration step. This ensures that 
the feature space reduces to the real line. By using a local constant, or intercept-only GLM, the output of the first step defines optimal 
neighborhoods to perform local averaging of observed losses.

The remainder of the paper is structured as follows. Section 2 provides the reader with formal definitions and notation used throughout 
the text. Section 3 recalls Tweedie model and associated deviance. In Section 4, a mixture representation of Tweedie deviance is derived. 
Precisely, Tweedie deviance is decomposed into the sum of the integral of weighted differences of lower partial moments and the bias 
measured on a specific scale. This decomposition is used to understand the consequences of training the model by minimizing Tweedie 
deviance. Special attention is devoted to the Poisson regression case. The concept of Tweedie dominance is also introduced there, as 
a natural counterpart to Bregman dominance, or forecast dominance discussed in Kruger and Ziegel (2020). In Section 5, we propose a 
simple and powerful method to restore balance at both global and local levels, based on the concept of autocalibration. Tweedie dominance 
between autocalibrated predictors reduces to the well-known convex order, or stop-loss order with equal means that has been proposed 
to compare predictors by Denuit et al. (2019) and Kruger and Ziegel (2020). A numerical study is provided in Section 6. The final Section 7
discusses the results and concludes.

2. Context, definition and notation

Let us now describe the notation used in this paper. We consider a response Y and a set of features X1, . . . , Xp gathered in the vector 
X ∈ X (classically, X ⊂ Rp). In this paper, the response is typically the number of claims reported to the insurance company by a given 
policyholder, the average claim severity or the total claim amount in relation with this contract. The dependence structure inside the 
random vector (Y , X1, . . . , Xp) is exploited to extract the information contained in X about Y . In actuarial pricing, the aim is to evaluate 
the pure premium as accurately as possible. This means that the target is the conditional expectation μ(X) = E[Y |X] of the response Y
(claim number or claim amount) given the available information X . Henceforth, μ(X) is referred to as the true (pure) premium. Notice 
that in some applications, μ(X) only refers to one component of the pure premium. For instance, working in the frequency-severity 
decomposition of insurance losses, μ(X) can be either the expected number of insured events or the expected claim size, or severity.

The function x �→ μ(x) = E[Y |X = x] is unknown to the actuary, and may exhibit a complex behavior in x. This is why this function 
is approximated by a (working, or actual) premium x �→ π(x) with a simpler structure. When the analyst is working in the frequency-
severity decomposition of insurance losses, π(x) targets the expected number of insured events or the mean claim severity, separately. 
Once fitted on the training data set using an appropriate learning procedure, this produces estimates π̂ (x) for μ(x), or fitted values.

The developments in this paper apply in any setting where a global balance is desirable, that is, where it is important that the sum 
of estimates does not deviate too much from the sum of actual observations at both the entire portfolio level and also more locally, in 
meaningful classes of policyholders. The reason is obvious: the sum of the pure premiums must match the claim total as accurately as 
possible so that the insurance company is able to indemnify all third-parties and beneficiaries in execution of the contracts, without excess 
nor deficit, by the very definition of pure premium (expense loadings and cost-of-capital charges are added into the calculation at a later 
stage, when moving to commercial premiums). This naturally translates into a global balance constraint: considering that the total claim 
figures are representative of next-year’s experience, it is important that the sum of fitted premiums π̂(x) matches the sum of responses 
Y taken as proxy for the total premium income (i.e., the sum of μ(x)), as closely as possible. But local equilibrium is also essential to 
guarantee a competitive pricing.

The merits of a given pricing tool can be assessed using the pair 
(
μ(X), ̂π(X)

)
so that we are back to the bivariate case even if there 

were thousands of features comprised in X . What really matters is the correlation between π̂ (X) and μ(X) but as μ(X) is unobserved 
the actuary can only use its noisy version Y to reveal the agreement of the true premium μ(X) with its working counterpart π̂ (X). In 
insurance applications, π̂ (X) is supposed to be used as a premium so that correlation is important, but it is also essential that the sum 
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Table 3.1
Tweedie distributions and corresponding power parameters.

Type Name

ξ < 0 Continuous -
ξ = 0 Continuous Normal
0 < ξ < 1 Non existing -
ξ = 1 Discrete Poisson
1 < ξ < 2 Mixed, non-negative Compound Poisson sum

with Gamma-distributed terms
ξ = 2 Continuous, positive Gamma
2 < ξ < 3 Continuous, positive -
ξ = 3 Continuous, positive Inverse Gaussian
ξ > 3 Continuous, positive -

of predictions π̂ (X) matches the sum of actual losses as closely as possible, as explained before. This is expressed by the global balance 
condition and its local version.

To ease the exposition, we assume that predictor π̂ (X) under consideration, as well as the conditional expectation μ(X) are continuous 
random variables admitting probability density functions. This is generally the case when there is at least one continuous feature contained 
in the available information X and the function π̂ is a continuously increasing function of a real score built from X . However, this rules 
out predictions based on discrete features only, as well as piecewise constant predictors, e.g., a single tree. Indeed, then π̂ (X) takes only 
a limited number of values. As actuarial pricing is nowadays based on more sophisticated models (trees being combined into random 
forests, for instance), this continuity assumption does not really restrict the generality of the approach.

3. Tweedie model and deviance

In this paper, we assume that the response obeys a probability distribution belonging to the Tweedie subclass of the Exponential 
Dispersion family. Precisely, this means that we assume that the logarithm of the probability mass function for a discrete response, or of 
the probability density function for a continuous response, is of the form ln f = (yθ − a(θ))/φ up to a constant term, for some known 
dispersion parameter φ (that may include a weight) and non-decreasing and convex cumulant function a(·) with a′(θ) = E[Y ] = μ. The 
variance is then given by

Var[Y ] = φa′′(θ) = φV (μ)

where the variance function V (·) corresponds to the second derivative of the cumulant function whose argument θ has been replaced in 
terms of μ, that is, θ = (a′)−1(μ).

The Tweedie subclass corresponds to variance functions of the form V (μ) = μξ for some power parameter ξ . Table 3.1 lists all Tweedie 
distributions. Negative values of ξ give continuous distributions on the whole real axis. For 0 < ξ < 1, there is no Exponential Dispersion 
distribution with such variance function. Only the cases ξ ≥ 1 are thus interesting for applications in insurance. In the remainder of this 
paper, we thus restrict our analysis to ξ ≥ 1.

For ξ ∈ (1, 2), Tweedie distributions correspond to compound Poisson-Gamma distributions, that is, compound Poisson sums with 
Gamma-distributed summands. Starting from

d

dμ
ln f = y − μ

φV (μ)
,

we get with V (μ) = μξ that the probability density function over (0, ∞) is given by

ln f (y) =
∫

y − m

φmξ
dm

= 1

φ

(
y
μ1−ξ

1 − ξ
− μ2−ξ

2 − ξ

)
+ constant

with probability mass at zero exp
(
− μ2−ξ

φ(2−ξ)

)
. Such compound Poisson-Gamma distributions can be used for modeling annual claim 

amounts, having positive probability at zero and a continuous distribution on the positive real numbers. This offers an alternative to 
the decomposition of total losses into claim numbers and claim severities, using Poisson distribution for modeling claim counts and 
Gamma distribution for claim severities. We refer the reader to Delong et al. (2021) for a thorough presentation of Tweedie models.

Let π̂ be the estimated mean response Y built from some training set (all formulas in this paper are meant given this training set). 
The respective performances of competing models can then be assessed on the basis of a validation set {(Yi , X i), i = 1, 2, . . . , n}, that 
has not been used to obtain π̂ . Performances of π̂ are generally assessed with the help of out-of-(training) sample deviance, also called 
predictive deviance and given by

Dn(ξ, π̂ ) = 1

n

n∑
i=1

L
(
Yi, π̂ (X i)

)
where L(·, ·) is the loss function adopted to train the model. If n is large enough then we can resort to the limiting value

Dn(ξ, π̂ ) → D(ξ, π̂ ) = E
[
L
(
Y new, π̂ (Xnew)

)]
as n → ∞,
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where (Y new, Xnew) is a new observation, independent of, and distributed as those (Yi , X i) contained in the training set. In this paper, we 
compare models on the basis of the large-sample version of the predictive deviance. This approach is meaningful in insurance applications 
where the analyst is typically in a data-rich situation.

Henceforth, we compare models on the basis of the predictive Tweedie deviance that reduces to

D(ξ, π̂ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E
[
π̂ (Xnew) − Y new ln π̂ (Xnew)

]
for ξ = 1

E
[

ln π̂ (Xnew) + Y new

π̂ (Xnew)

]
for ξ = 2

E
[

π̂ (Xnew)2−ξ

2−ξ
− Y newπ̂ (Xnew)1−ξ

1−ξ

]
for ξ > 1 and ξ 
= 2

. (3.1)

In the remainder of the paper, we use (3.1) to assess the performances of a given predictor π̂ .

4. Tweedie dominance

Tweedie dominance is defined as dominance for every Tweedie deviances (3.1). Precisely, π̂2 outperforms π̂1 in terms of Tweedie 
dominance if the inequality D(ξ, ̂π2) ≤ D(ξ, ̂π1) holds true for every power parameter ξ ≥ 1. Tweedie dominance appears to be a particular 
case of Bregman dominance, also called forecast dominance defined as dominance for every Bregman loss function. We refer the interested 
reader to Kruger and Ziegel (2020) and the references therein for an extensive presentation of this concept. Tweedie dominance is thus a 
particular stochastic order relation used to compare the performances of two estimators π̂1 and π̂2 for the conditional means. We refer 
the reader to Shaked and Shanthikumar (2007) for a general presentation of stochastic order relations and to Denuit et al. (2005) for 
applications to insurance.

The next result provides the actuary with a sufficient condition for a model to outperform a competitor in terms of Tweedie dominance.

Proposition 4.1. Define

ψξ (π) =

⎧⎪⎨⎪⎩
lnπ for ξ = 2

π2−ξ

2−ξ
else.

(4.1)

Then, ̂π2 outperforms ̂π1 in terms of Tweedie dominance if

E
[
ψξ (π̂1(Xnew))

] ≥ E
[
ψξ (π̂2(Xnew))

]
for all ξ ≥ 1 (4.2)

and

E
[
Y newI

[
π̂1(Xnew) ≤ t

] ] ≥ E
[
Y newI

[
π̂2(Xnew) ≤ t

] ]
for all t ≥ 0. (4.3)

Proof. For ξ = 1, π̂2 is superior to π̂1 if

E
[
π̂1(Xnew)

] − E
[
Y new ln π̂1(Xnew)

] ≥ E
[
π̂2(Xnew)

] − E
[
Y new ln π̂2(Xnew)

]
⇔ E

[
π̂1(Xnew)

] − E
[
π̂2(Xnew)

] + E
[
Y new ln π̂2(Xnew)

] − E
[
Y new ln π̂1(Xnew)

] ≥ 0. (4.4)

Since the identity

E
[
Y new ln π̂ (Xnew)

] =
∞∫

0

E
[
Y newI

[
ln π̂ (Xnew) > t

] ]
dt −

0∫
−∞

E
[
Y newI

[
ln π̂ (Xnew) ≤ t

] ]
dt

=
∞∫

1

E
[
Y newI

[
π̂ (Xnew) > s

] ]1

s
ds −

1∫
0

E
[
Y newI

[
π̂ (Xnew) ≤ s

] ]1

s
ds

holds true for any predictor π̂ , we have

E
[
Y new ln π̂2(Xnew)

] − E
[
Y new ln π̂1(Xnew)

]
=

∞∫
1

(
E
[
Y newI

[
π̂2(Xnew) > s

] ] − E
[
Y newI

[
π̂1(Xnew) > s

] ])1

s
ds

−
1∫ (

E
[
Y newI

[
π̂2(Xnew) ≤ s

] ] − E
[
Y newI

[
π̂1(Xnew) ≤ s

] ])1

s
ds
0
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=
∞∫

1

(
E
[
Y new (

1 − I
[
π̂2(Xnew) ≤ s

]) ] − E
[
Y new (

1 − I
[
π̂1(Xnew) ≤ s

]) ])1

s
ds

+
1∫

0

(
E
[
Y newI

[
π̂1(Xnew) ≤ s

] ] − E
[
Y newI

[
π̂2(Xnew) ≤ s

] ])1

s
ds

=
∞∫

0

(
E
[
Y newI

[
π̂1(Xnew) ≤ s

] ] − E
[
Y newI

[
π̂2(Xnew) ≤ s

] ])1

s
ds

≥ 0

by (4.3). Hence, both conditions (4.2) and (4.3) ensure inequality (4.4).
Turning to the case ξ = 2, π̂2 is superior to π̂1 if

E
[
ln π̂1(Xnew)

] + E

[
Y new

π̂1(Xnew)

]
≥ E

[
ln π̂2(Xnew)

] + E

[
Y new

π̂2(Xnew)

]
⇔ E

[
ln π̂1(Xnew)

] − E
[
ln π̂2(Xnew)

] + E

[
Y new

π̂1(Xnew)

]
− E

[
Y new

π̂2(Xnew)

]
≥ 0. (4.5)

Hence, it suffices to notice that (4.3) implies E 
[

Y new

π̂1(Xnew)

]
− E 

[
Y new

π̂2(Xnew)

]
≥ 0 since the identity

E

[
Y new

π̂ (Xnew)

]
=

∞∫
0

E

[
Y newI

[
1

π̂ (Xnew)
≥ t

]]
dt

=
∞∫

0

E

[
Y newI

[
π̂ (Xnew) ≤ 1

t

]]
dt

=
∞∫

0

E
[
Y newI

[
π̂ (Xnew) ≤ s

]] 1

s2
ds,

is valid for every predictor π̂ .
Finally, in the remaining cases, i.e. ξ > 1 and ξ 
= 2, π̂2 is superior to π̂1 if

E

[
π̂1(Xnew)2−ξ

2 − ξ

]
+ 1

ξ − 1
E

[
Y new

π̂1(Xnew)ξ−1

]
≥ E

[
π̂2(Xnew)2−ξ

2 − ξ

]
+ 1

ξ − 1
E

[
Y new

π̂2(Xnew)ξ−1

]
⇔ E

[
π̂1(Xnew)2−ξ

2 − ξ

]
− E

[
π̂2(Xnew)2−ξ

2 − ξ

]
+ 1

ξ − 1

(
E

[
Y new

π̂1(Xnew)ξ−1

]
− E

[
Y new

π̂2(Xnew)ξ−1

])
≥ 0. (4.6)

Whatever the predictor π̂ , we can write

E

[
Y new

π̂ (Xnew)ξ−1

]
=

∞∫
0

E
[
Y newI

[
π̂ (Xnew)1−ξ ≥ t

]]
dt

=
∞∫

0

E

[
Y newI

[
π̂ (Xnew) ≤ 1

t
1

ξ−1

]]
dt

=
∞∫

0

E
[
Y newI

[
π̂ (Xnew) ≤ s

] ]ξ − 1

sξ
ds.

The announced result then follows from

E

[
Y new

π̂1(Xnew)ξ−1

]
− E

[
Y new

π̂2(Xnew)ξ−1

]
=

∞∫
0

(
E
[
Y newI

[
π̂1(Xnew) ≤ s

] ] − E
[
Y newI

[
π̂2(Xnew) ≤ s

] ]) ξ − 1

sξ
ds.

This ends the proof. �
Instead of Tweedie dominance, the actuary could select a specific parameter ξ , only. This is typically the case with ξ = 1 (Poisson 

regression for counts), ξ = 2 or ξ = 3 (Gamma or Inverse Gaussian regression for claim severities). In this case, condition (4.2) in Proposi-
tion 4.1 is imposed only for that specific valued of ξ .
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The main ingredient of the proof of Proposition 4.1 is the integral of the difference of functions in (4.3) weighted by

ξ − 1 + I[ξ = 1]
sξ

= ξ − 1 + I[ξ = 1]
V (s)

where V (·) is the variance function associated with the response distribution. Weights thus appear to be inversely proportional to the 
variability. Under the Tweedie variance function, V (s) is a power of s so that smaller weights are assigned to the differences at larger 
values of the response.

Proposition 4.1 shows that improving a predictor π̂ can be achieved by

(i) increasing the overall bias measured on a modified scale induced by the auxiliary function ψξ defined in (4.1). This may act against 
the conservation of observed totals.

(ii) increasing the dependence between π̂ and the response, so to decrease

E
[

Y newI
[
π̂ (Xnew) ≤ t

]] = Cov
[

Y new, I
[
π̂ (Xnew) ≤ t

]] + E
[

Y new
]

P
[
π̂ (Xnew) ≤ t

]
= E

[
Y new

∣∣∣π̂ (Xnew) ≤ t
]

P
[
π̂ (Xnew) ≤ t

]
.

The latter lower partial moment essentially depends on the correlation structure of the pair 
(
Y new, ̂π(Xnew)

)
. Notice that the quanti-

ties appearing in the decomposition above are closely related to expectation dependence as defined by Wright (1987).
In an insurance ratemaking context, the lower partial moment can be interpreted as best-profile premium income

E
[

Y newI
[
π̂ (Xnew) ≤ t

]] = E
[
μ(Xnew)I

[
π̂ (Xnew) ≤ t

]]
≈ 1

n

∑
i|π̂ (X i)≤t

μ(X i).

Here, 
∑

i|π̂ (X i)≤t μ(X i) is the true premium income for the sub-portfolio formed by gathering all policyholders with predicted pre-
mium at most equal to t . These policyholders exhibit the best risk profiles according to the candidate premium π̂ .

Of course, there is a trade-off between these two goals when computing D(ξ, ̂π). If the model is very flexible then it can produce a 
predictor that correlates a lot with the response and the lower partial moment can be decreased to a large extent compared to models 
imposing a rigid form for the predictor (like GLMs). There is in fact a fundamental trade-off between (4.2) and (4.3). Since ψξ is increasing, 
(4.2) favors small values of π̂2. By contrast, (4.3) requires large values of π̂2 so that the indicator function on the right-hand side is 0. 
There is thus no guarantee that balance holds on a particular data set: if one component dominates, we may end up with candidate 
premiums that are either too small or too large compared to observed responses.

Example 4.2 (Poisson regression). Poisson deviance is by far the most widely used one in insurance applications. It applies for instance 
to claim counts in property and casualty insurance, death counts in life insurance, and numbers of transitions in health insurance. We 
assume that we deal with a response Y obeying the Poisson distribution. A vector X of features is available to predict the mean response 
μ(X). To ease the presentation, we assume unit exposures.

Considering (4.1)-(4.2) with ξ = 1, the bias is thus measured on the response scale. Condition (4.2) then favors π̂2 if

E[μ(Xnew)] − E[π̂2(Xnew)] ≥ E[μ(Xnew)] − E[π̂1(Xnew)]
or, equivalently,

E[Y new] − E[π̂2(Xnew)] ≥ E[Y new] − E[π̂1(Xnew)].
A larger bias may thus be advantageous, depending on the fundamental trade-off between (4.2) and (4.3) explained above. As a conse-
quence, adopting Poisson deviance as loss function outside GLMs may create a total premium income gap

E
[

Y new
]
− E

[
π̂ (Xnew)

]
= E

[
μ(Xnew)

]
− E

[
π̂ (Xnew)

]
≈ 1

n

n∑
i=1

μ(X i) − 1

n

n∑
i=1

π̂ (X i)

where 
∑n

i=1 μ(X i) is the true premium income for the validation set whereas 
∑n

i=1 π̂ (X i) is the one obtained by adopting predictor π̂
for premium calculation. This gap may become quite large with highly flexible models such as Neural Networks or boosting.

5. Restoring balance at global and local scales

5.1. Autocalibration

Recall that a predictor π̂ is said to be autocalibrated if π̂ (X) = E[Y |π̂ (X)]. We refer the reader to Kruger and Ziegel (2020) for a 
general presentation of this concept. By Jensen inequality, autocalibration thus ensures that

E[g(π̂ (X))] ≤ E[g(Y )] for every convex function g,
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or equivalently, that

E[π̂ (X)] = E[Y ] and E[(π̂ (X) − t)+] ≤ E[(Y − t)+] for all t ≥ 0.

These inequalities correspond to the convex order between π̂ (X) and Y . Thus, autocalibration implies that the predictor is less variable 
than the response, in the sense of the convex order.

Under mild technical requirement, a simple way to restore global balance consists in switching from π̂ to its balance-corrected version 
π̂BC defined as

π̂BC(X) = E[Y |π̂ (X)]
that averages to E[Y ], as shown in the next result.

Property 5.1. If s �→ E[Y |π̂ (X) = s] is continuously increasing then the balance-corrected version π̂BC of the candidate premium π̂ satisfies the 
autocalibration property.

Proof. If s �→ E[Y |π̂ (X) = s] is continuously increasing, that is, if π̂BC(X) is continuously increasing in π̂ (X), then Lemma 2.2 in Shaked 
et al. (2012) allows us to write

E[Y |π̂ (X)] = E[Y |π̂BC(X)] = π̂BC(X)

so that the resulting π̂BC(X) is indeed autocalibrated. This ends the proof. �
In insurance applications, autocalibration induces local balance and imposes financial equilibrium not only at portfolio level but also in 

any sufficiently large sub-portfolio. This concept thus appears to be particularly appealing in a ratemaking context.

5.2. Autocalibrating a given predictor

We can restore global balance, or unbias the predictor by reconciling the predicted and observed total on the training set. In this 
way, we recover the global balance property imposed after the seminal work by Bailey and Simon (1960). However, this does not ensure 
that balance holds locally. Indeed, global balance is only one of the GLM likelihood equations under canonical link, corresponding to the 
intercept. In order to extend the other likelihood equations imposed in the GLM setting to general machine learning procedures, we need 
to mimic the way local GLM proceeds for fitting, by defining meaningful neighborhoods for statistical learning.

To this end, we work under canonical link function with data points (Yi, ei, ̂π(xi)) for some relevant exposure ei . An intuitively 
acceptable solution would consist in imposing marginal constrains on local neighborhoods defined by mean of π̂ . This allows for some 
local transfers of claims and premiums from neighboring policyholders and so implements local balance conditions in sub-portfolios 
corresponding to these neighborhoods. This is in essence the local GLM approach (see Loader, 1999, for a detailed account) that allows 
the actuary to maintain the relationship with MMT.

In order to obtain an autocalibrated version π̂BC of π̂ , let us consider a specific risk profile x. A weight νi(π̂ (x)) is assigned to each 
(Yi, ei, ̂π(xi)), i = 1, . . . , n, computed from some weight function ν(·) chosen to be continuous, symmetric, peaked at 0 and defined on 
[−1, 1]. These weights depend on the relative distance of π̂ (xi) with respect to π̂ (x). A common choice for ν(·) is the tricube weight 
function but several alternatives are available, including rectangular (or uniform), Gaussian or Epanechnikov, for instance. Here, νi(π̂ (x))

is larger for policyholders i such that π̂ (xi) is close to π̂ (x) and decreases when π̂ (xi) gets far away from π̂ (x).
The local GLM likelihood equation

n∑
i=1

νi(π̂ (x))yi =
n∑

i=1

νi(π̂ (x))eiπ̂BC(x)

thus matches MMT constraints: smoothing is ensured by transferring part of the experience at neighboring π̂ values to obtain π̂BC. A local 
constant, or intercept-only GLM thus provides the appropriate fitting procedure when balance must be respected. Opting for a rectangular 
weight function complies with MMT: the weights νi are constant within the smoothing window and zero otherwise so that the sums 
reduce to observations comprised within this window and the uniform weights factor out.

Our main message here is thus that a local, intercept-only GLM with rectangular weights implements local balance, or MMT in a 
second step, within sub-portfolios gathering policyholders with about the same predicted value according to the first step. The rectangular 
weight function involved in the statistical procedure optimally transfers part of claim experience between neighboring policyholders. This 
approach implements smoothness from a statistical point of view while remaining fully transparent and understandable. Indeed, local 
averaging can just be seen as an application of the mutuality principle at the heart of insurance.

6. Numerical illustrations

In this section, we first consider the freMTPL2freq dataset, from the CASDataset R package of Charpentier (2014). The variable 
of interest is annual claim frequency. Precisely, we run Poisson regression on response ClaimNb, with exposure Exposure and various 
explanatory features (continuous and categorical). Then we use the freMTPL2sev dataset, with the severity, and use a Tweedie model 
to get an estimation of total annual losses.
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Fig. 6.1. Histogram of {π̂ (x1), · · · , ̂π(xn)} on the validation dataset. In this section, corresponds to the standard Poisson regression (GLM), corresponds to the smooth 
additive regression (GAM), is the boosting model and is the Neural Network. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Table 6.1
Summary statistics on {π̂ (x1), · · · , ̂π(xn)}, on the validation dataset (assuming an exposure of 1 to provide annualized 
predictions), for π on the left, and the corrected version πBC on the right.

π̂glm π̂gam π̂bst π̂nn

average π 0.1091 0.1091 0.0821 0.1230
10% quantile 0.0602 0.0592 0.0494 0.0529
90% quantile 0.1688 0.1729 0.1264 0.2051

π̂
glm
BC π̂

gam
BC π̂bst

BC π̂nn
BC

average π 0.1051 0.1059 0.1028 0.1051
10% quantile 0.0573 0.0570 0.0518 0.0499
90% quantile 0.1687 0.1806 0.1711 0.1776

Fig. 6.2. Evolution of s �→ E[Y |π̂ (X) = s] (the thin straight line corresponds to μ = π̂ ).

6.1. Claim frequency

Four models are considered: a generalized linear model π̂glm , a generalized additive model π̂gam where continuous features are trans-
formed nonlinearly using spline functions, a boosting algorithm π̂bst and a Neural Network model π̂nn . For the boosting models, we use 
the h2o package, with h2o.gbm. For the Neural Network approach, we use combined actuarial neural net (CANN1), from Schelldorfer 
and Wüthrich (2019), using Keras. Notice that in the latter case, even with the same seed, outputs of the Neural Nets procedure change.

In order to model our counting variable, we set distribution = "poisson" and offset_column = "Exposure". For the 
boosting inference procedure, we use ntrees = 30 (the impact of the number of iterations will be discussed later on) and nfolds = 
5.2 From the initial dataset, with 678,013 rows, 70% are randomly chosen for our training dataset (474,609 rows) and used to construct 
π̂ , and the remaining 30% (203,404 rows) are used as a validation dataset, to draw the following graphs.

On Fig. 6.1, we can visualize the distribution of predictions π̂ (xi). The average value π for the four models, on the training dataset, is 
given on the left of Table 6.1 (additional information is also given there, namely quantiles). As a benchmark, if we run a simple Poisson 
regression of the intercept only, we obtain β̂0 = −2.2911, corresponding to a baseline prediction π = 0.10115. Observe that the boosting 
procedure globally underestimates claims frequency, while neural nets globally overestimate.

Fig. 6.2 displays s �→ E[Y |π̂ (X) = s] when s ∈ [0, 0.2]. For the Generalized Linear Model E[Y |π̂ (X) = s] ∼ s, while E[Y |π̂ (X) = s] > s
for the boosting model. The positive bias we observe on π̂bst means that this model underestimates the true price of the risk almost 
everywhere; similarly, the negative bias we observe on π̂nn almost everywhere means that this model overestimates the true price. As 
shown on Table 6.1, the bias correction step solves this issue.

On Fig. 6.3, we can compare π̂ and π̂BC: on top, we have the QQ plot of π̂BC against π̂ and on the bottom, a scatterplot of 
{π̂ (xi), ̂πBC(xi)} (for a subset of the validation database). The distribution of π̂BC can be visualized on Fig. 6.4.

1 see https://www.kaggle.com/floser/glm-neural-nets-and-xgboost-for-insurance-pricing for a discussion and the codes used here.
2 The codes used in this section can be found on the github repository https://github.com/freakonometrics/autocalibration.
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Fig. 6.3. QQ plot of π̂BC against π̂ (plain line), on top, and scatterplot a subset of points {π̂ (xi), π̂BC(xi)} from the validation dataset, below.

Fig. 6.4. Histogram of {π̂BC(x1), · · · , π̂BC(xn)} on the validation dataset.

The specification of bandwidth h(s) is discussed in Loader (1999, Section 2.2.1). For a nearest neighbor bandwidth, compute all dis-
tances |s − si | between the fitting point s and the data points si , we choose h(x) to be the kth smallest distance, where k = [nα]. In the R
function locfit, when alpha is given as a single number, it represents a nearest neighbor fraction (the default smoothing parameter is 
α = 70%). But a second component can be added, α = (α0, α1). That second component represents a constant bandwidth, and h(s) will be 
computed as follows: as previously, k = [nα0], and if d(i) represents the ordered statistics of di = |s − si |, h(s) = max{d(k), α1}. The default 
value in R is alpha=c(0.7,0).

As we can see on Table 6.1, the boosting algorithm was globally underestimating the average premium. Using a local regression 
can actually lower the bias. On Fig. 6.5, we used 60% of the original dataset to train our three models (training dataset), then the local 
regression was performed on 20% of the dataset (smoothing dataset) and finally various quantities (bias and empirical loss) were computed 

on the remaining 20% (validation dataset). On the left, we can visualize the evolution of the bias 
1

n

n∑
i=1

(π̂bst
BC (xi) − yi) as a function of α. 

Here, smoothing has no impact on the overall bias of GLM and GAM (here the two models have a (small) positive bias on the validation 
dataset). Smoothing has an impact on the correction of π̂bst . We can observe that a small α can lead to a much smaller bias (possibly 
null). Note that we used α = 5% for previous graphs of this section. In the middle of Fig. 6.5, we can visualize the evolution of the 

empirical Poisson loss 
1

n

n∑
(π̂bst

BC (xi) − yi ln π̂bst
BC (xi)). Note that again, a small α leads to a smaller loss. It is also interesting to see that 
i=1
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Fig. 6.5. Evolution of the bias as a function a α, from 2.5% to 97.5%, on the left, of the Poisson loss in the center, and joint scatterplot of bias and empirical loss on the 
right. Horizontal light lines correspond to original estimates π̂ while strong curves are π̂BC for various smoothing parameter α. As previously corresponds to the standard 
Poisson regression (GLM), corresponds to the smooth additive regression (GAM), while is the boosting model with 30 trees (as previously) and is the boosting model 
with 1000 trees (overfitting).

Fig. 6.6. Spearman’s rank correlation between π̂glm , π̂gam , π̂bst , π̂nn and their autocalibrated counterparts, π̂
glm
BC , π̂

gam
BC , π̂bst

BC and π̂nn
BC , on the validation dataset.

similar performances are obtained in case of overfitting. Thus, autocalibration also corrects for overfitting by locally averaging the initial 
predictors.

As we have seen when moving from π̂ to π̂BC the distribution of premiums changed substantially (see Figs. 6.1 and 6.4) and the 
transformation was not (perfectly) monotonic (see Fig. 6.3). Nevertheless, the rank correlation between π̂ and π̂BC is rather high (0.99 for 
all models), as reported in Fig. 6.6.

Finally, on Fig. 6.7 we can visualize the concentration curves of the three models, against π̂gam
BC . We refer the reader to Denuit et al. 

(2019) for a thorough presentation of this diagnostic tool. Concentration curves clearly demonstrate here the improved performances of 
the autocalibrated version of the predictor.

6.2. Claims totals

Let us now consider aggregate losses and Tweedie deviance with ξ ∈ (1, 2). Three models are considered: a generalized linear model 
π̂glm , a generalized additive model π̂gam where continuous features are transformed nonlinearly using spline functions, and a boosting 
algorithm π̂bst . For the boosting models, we used the TDboost package. We did remove all observations with an exposure not close to 1, 
to avoid major corrections when the exposure was too small (and additional uncertainty).

On Fig. 6.8, we can visualize the distribution of predictions π̂ (xi), with the three models. A grid search lead to ̂ξ = 1.6. On Fig. 6.9, we 
can visualize the evolution of s �→ E[Y |π̂ (X) = s] when s varies between 0 and 300. Observe that 300 is about 4 times the average value 
on the training dataset (y = 84.9).

On Fig. 6.10, we illustrate the impact of an underestimation of the power index, with respectively 1.5 and 1.4 (instead of 1.6) for the 
GLM and GAM procedures. We can see there that the results remain stable when the value of ξ changes. On Fig. 6.11 we exclude policies 
with an annual loss exceeding 10,000. Note that those represent 0.0539% of the training dataset (10,000 is the 99% quantile of losses, for 
policies experiencing a loss).
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Fig. 6.7. Concentration curves, with π̂glm , π̂gam , π̂bst , against π̂bst
BC , from the left to the right on top and π̂glm − π̂bst

BC , π̂gam − π̂bst
BC and π̂bst − π̂bst

BC from the left to the right, 
on the bottom.

Fig. 6.8. Histogram of {π̂ (x1), · · · , ̂π(xn)} on the validation dataset. In this section, corresponds to the standard Poisson regression (GLM), corresponds to the smooth 
additive regression (GAM), and is the boosting model, with a Tweedie loss function.

7. Discussion

The main message of this paper is as follows. Advanced learning models are able to produce scores that better correlate with the 
response, as well as with the true premium compared to classical GLMs. This comes from letting scores depend in a flexible way on 
available features, not only linearly. But breaking the overall balance is the price to pay for this higher correlation. Because no constraint 
on the replication of the observed total, or global balance is imposed, machine learning tools are also able to substantially increase overall 
bias.

To prevent this to occur, the balance-corrected version of any predictor can be obtained by local GLM, recognizing the nature of the 
response Y : local Poisson GLM for claim counts, local Gamma GLM for average claim severities and compound Poisson sums with Gamma-
distributed terms for claim totals. The canonical link function is adopted so that maximum-likelihood estimates replicate observed totals. 
An intercept-only GLM is fitted locally, with rectangular weight function, on a reduced set of observations consisting in observed responses 
and candidate premiums, with proximity assessed with the help of the candidate premium to be corrected.
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Fig. 6.9. Evolution of s �→ E[Y |π̂ (X) = s] (the thin straight line corresponds to μ = π̂ ).

Fig. 6.10. Evolution of s �→ E[Y |π̂ (X) = s], when the Tweedie power is 1.5 on top, and 1.4 below.

In this approach, the supervised learning model is used to produce a real-valued signal π̂ (X), reducing the high-dimensional feature 
space to the real line. In fact, the score of the model is enough to compute π̂BC so that the learning model is essentially used to assess 
proximity among individuals, before performing local averaging. In that respect, the proposed approach shares some similarities with k-
NN, or k nearest-neighbors except that here, proximity is assessed with the help of the real-valued π̂ produced by the learning model. 
And the proposed extra autocalibration step also counteracts possible overfitting by locally averaging the initial predictor.

The approach proposed in this paper reconciles minimum bias and method of marginal totals, at the origin of insurance risk classi-
fication, with modern learning tools. With minimum bias, the amount of premium is computed in order to compensate insurance risks 
within meaningful sub-portfolios, maintaining an overall balance. The proposed balance correction mechanism implements the very same 
idea, using machine learning tools to define meaningful neighborhoods where collected premiums must match claims to be compensated. 
This is in accordance with the fundamental mutuality principle at the heart of insurance. Autocalibration applies very generally, to any 
machine learning model and only requires a statistical smoother like locfit.
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Fig. 6.11. Evolution of s �→ E[Y |π̂ (X) = s], when online policies with claims below 10,000 are kept in the training dataset.
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