2020 |EEE International Conference on Big Data (Big Data)

Privacy Preserving Time-Series Forecasting of User
Health Data Streams

Sana Imtiaz*, Sonia-Florina Horchidan*,

Zainab Abbas*, Muhammad Arsalan’,

Hassan Nazeer Chaudhry?, Vladimir Vlassov*
*KTH Royal Institute of Technology, Stockholm, Sweden
Otto-von-Guericke Universitit Magdeburg, Magdeburg, Germany
iDEIB, Politecnico di Milano, Milan, Italy
{sanaim,sfhor,zainabab,vladv } @kth.se, muhammad.arsalan@ovgu.de, hassannazeer.chaudhry @polimi.it

Abstract—Privacy preservation plays a vital role in health care
applications as the requirements for privacy preservation are very
strict in this domain. With the rapid increase in the amount,
quality and detail of health data being gathered with smart
devices, new mechanisms are required that can cope with the
challenges of large scale and real-time processing requirements.
Federated learning (FL) is one of the conventional approaches
that facilitate the training of AI models without access to the raw
data. However, recent studies have shown that FL alone does not
guarantee sufficient privacy. Differential privacy (DP) is a well-
known approach for privacy guarantees, however, because of the
noise addition, DP needs to make a trade-off between privacy and
accuracy. In this work, we design and implement an end-to-end
pipeline using DP and FL for the first time in the context of health
data streams. We propose a clustering mechanism to leverage the
similarities between users to improve the prediction accuracy as
well as significantly reduce the model training time. Depending
on the dataset and features, our predictions are no more than
0.025% far off the ground-truth value with respect to the range of
value. Moreover, our clustering mechanism brings a significant
reduction in the training time, with up to 49% reduction in
prediction accuracy error in the best case, as compared to
training a single model on the entire dataset. Our proposed
privacy preserving mechanism at best introduces a decrease
of =~ 2% in the prediction accuracy of the trained models.
Furthermore, our proposed clustering mechanism reduces the
prediction error even in highly noisy settings by as much as
38% as compared to using a single federated private model.

Index Terms—Federated Learning, Differential Privacy,
Streaming k-means, Generative Adversarial Networks

I. INTRODUCTION

Advancements in cloud computing and the Internet of
Things (IoT) paradigms inspired the creation of highly in-
terconnected heterogeneous computing environments that are
capable of generating and processing tremendous volumes
of data. Consequently, the past decades witnessed a notable
growth in the adoption of wearable smart devices, which
further enabled the development of applications and services
employing the collected data. For instance, numerous health
applications are adopting cloud platforms for real-time health
monitoring, achieving fitness goals, disease diagnostics, and
medical data analysis leading to personalized medicine. Mod-
ern health trackers such as Fitbit are equipped with multiple
sensors capable of recording complex health metrics like the

978-1-7281-6251-5/20/$31.00 ©2020 | EEE 3428

caloric burn, sleep quality, or the wearer’s activity level [1].
Besides, health-tracking mobile applications, such as MyFit-
nessPal, are freely accessible to users and can be paired with
wearable devices to provide an intricate glimpse into user
health [2]. Typically, health and fitness applications require
processing enormous amounts of personal user data. In some
cases, this data is handled by an untrusted third party for data
analytics or machine learning (ML) based services. In light of
this discussion, it can be stipulated that personal health infor-
mation is not absolutely private. Moreover, the General Data
Protection Regulation (GDPR) demands to enforce privacy
preservation policies, particularly in the health care domain,
as this data could be potentially maltreated.

Real-time or low-latency systems and services, such as
wearable smart device services, continuously process an enor-
mous influx of data streams. In the traditional health care
domain, data anonymization and de-identification are usually
employed as the privacy preservation practices. This is owing
to their relatively lower complexity, although they lack effec-
tive privacy guarantees [3], [4]. An alternative approach uti-
lizes synthetic but representative datasets for improved privacy
guarantees [5], [6]. On the contrary, privacy preservation solu-
tions based on cryptography, blockchains, and private compute
units are often compute-intensive, and hence, not suitable for
distributed low-latency environments [4]. On the other hand,
decentralized privacy-preserving ML-based solutions like fed-
erated learning (FL) facilitate collaborative training of models
without exposing raw data and can be acclimated to real-time
environments [7]. Moreover, solutions based on differential
privacy (DP) can be integrated into ML systems to provide
strong privacy guarantees. However, these solutions may intro-
duce computational and performance overheads in the system,
such as accuracy loss and degraded quality of service. These
overheads become critical in time-series forecasting, particu-
larly in the health care domain, as a small error in the fore-
cast may lead to dire consequences. Moreover, devices may
experience connectivity issues in distributed environments, so
the system necessitates catering to asynchronous learning and
service provisioning. All these issues make privacy-preserving
forecasting of health data streams a challenging problem. The
investigation of privacy preservation trade-off for low-latency
environments is a significant research problem, particularly

in the context of health data streams, as they demand strong
privacy guarantees.

This work proposes a novel technique for privacy preser-
vation on real-time predictions. In particular, an end-to-end
pipeline for time-series forecasting is implemented. Further-
more, the impact of applying several privacy preservation
solutions on the application performance in terms of prediction
accuracy and model training time is studied.

Our contributions can be summarized as follows:

e Design and implementation of an end-to-end pipeline
for time-series forecasting of health data streams in a
federated learning environment.

o Design and implementation of a clustering mechanism
using streaming k-means algorithm and pattern matching.

o Integration of state-of-the-art privacy preservation solu-
tions in the designed pipeline and evaluating their impact
on the time-series forecasting.

o Collection and refinement of a real-world dataset from
geographically distributed users.

o Creation of a privacy-preserving smart health care dataset
employing Generative Adversarial Networks (GANSs).

II. BACKGROUND
A. Time-Series Forecasting

Time-series data: Time-series are sequences of obser-
vations ordered by some temporal information. Time-series
analysis is done to extract meaningful trends in data. It
has applications in numerous fields such as recommender
systems, personalized shopping, or targeted advertising. Time-
series forecasting is an active field of research since it plays
a fundamental role in decision-making. For example, data
collected from various traffic sensors can help predict traffic
conditions to help the drivers avoid traffic jam in future [8].

In this work, we focus on forecasting and discuss how time-
series clustering can improve the predictions. More specifi-
cally, we will exploit the similarities between time-series to
build better models. We use a raw-data-based approach [9]
for time-series clustering in our work as it is best suited to
the requirements of our use case, as this approach discovers
groups of similar time-series directly from raw data.

Distributed k-means algorithm: The k-means algorithm
works by finding k centroids corresponding to k clusters such
that the distance between each point and its closest center
gets minimized. We will focus on the scalable variant of
k-means for big datasets that parallelize the algorithm by
distributing the computation to multiple workers and provide a
good approximation of the solution. [10] tackles the problem
by proposing a parallel k-means algorithm based on the
Single Program Multiple Data (SPMD) model, using message-
passing. Our implementation adapts the SPMD message pass-
ing model [10] to work on the streaming data.

Pattern matching: In time-series clustering, the pattern
matching process is employed to discover groups of series
that exhibit similar patterns. In the case of symbols sequences,
the simplest method is to compare each symbol of the series

3429

at a given time in pairs. Techniques such as Hamming and
Levenshtein distance are mostly used for measuring distance.
We cluster the users’ time-series to capture similar trends in
user diets using Hamming distance.

B. Neural Networks for Time-Series Data

Long Short-Term Memory networks (LSTMs) [11] are well
suited for learning order dependence in sequence prediction or
classification problems including text [12] and speech recog-
nition, anomaly detection, and time-series data forecasting [8].

The main idea of LSTMs is making the network decide
which information is relevant and which information can be
forgotten. Three special gates control which information is
kept or forgotten at each step: the forget gate which decides
which information should be thrown away, the input gate
determines what new input information is useful and should
be added to the state, and the output gate builds the output.

C. Federated Learning

Federated learning is a novel approach in distributed ma-
chine learning (ML) with two highly appealing characteristics:
the gains in privacy and performance [13], [14].

FL mechanism learns from all participants’ data without
actually seeing it. The actors of the FL algorithm are the
clients and a central coordinator (often called server). Each
client holds a local dataset which contains only their data. The
server shares a central model with all the clients. Then, each
client improves the current model using information from their
local data and sends the update back to the server. The server
aggregates the updates from multiple users and an improved
central model is created and shared with the clients. The
process repeats as the clients’ devices collect more data.

FL caters to a variety of features suited to distributed ML
on mobile client devices, such as catering to non-independent
and identically distributed data, unbalanced and massively dis-
tributed datasets, and high capability to function in scenarios
with limited communication.

D. Differential Privacy

Differential privacy comes in many flavours. However, the
most popular mathematical tool used to express it is as it
follows [15]: given a randomized algorithm A, the set of all
datasets D and D’ that differ on at most one row (i.e. the data
of one individual), and any subset S C range(A),

Pr[A(D) € 8] < e Pr[A(D') € S| (1)

The e parameter is used to quantify the loss of privacy.
As can be noted, absolute privacy is obtained when € equals
0. Achieving higher levels of accuracy involves adding more
noise to the data which leads to a decrease in the accuracy
of the algorithm. Thus, decreasing the parameter £ means
increasing the accuracy. A trade-off must be found between
keeping the information private and achieving meaningful
and accurate results. When an algorithm requires multiple
additive noise mechanisms, the privacy guarantee follows from
the basic composition theorem [16], [17] or from advanced
composition theorems and their extensions [18]—[20].

ITI. USER CLUSTERING USING STREAM PROCESSING

Our end-to-end health forecasting pipeline is implemented
in Apache Flink [21]. It has two main components: (1) the
clustering mechanism, which includes the streaming k-means
subsystem and the pattern matching subsystem, and (2) the FL
system with privacy preservation mechanism.

Our proposed pipeline consumes a stream of time-series diet
and health logs from several users and attempts to predict the
next logs by leveraging the history of each individual and the
similarities between users. Due to the volume and velocity
of the ingested data, the system has to be highly scalable.
Besides, the streaming nature of the problem imposes strict
requirements in terms of latency, as the system should be
able to provide real-time predictions. And most importantly,
the proposed pipeline has to ensure a strict level of privacy
preservation because we are dealing with sensitive data.

First, we cluster the users and use this information to build
separate federated models for each group. In this way, we
ensure that the prediction caters to individuals with unique
dietary patterns and lifestyles, thus offering personalised fore-
casts. We introduce our two-step clustering mechanism, that
is able to group multidimensional time-series data based on
common characteristics.

Clustering mechanism: The users’ meal logs are first
clustered using the streaming k-means clustering algorithm.
Each meal log of a day consists of breakfast, lunch and dinner.
We assign the meals in the stream into three groups/clusters
that represent breakfast, lunch and dinner. At the beginning of
k-means clustering, first unique meals that appear in the stream
are chosen as centroids for each meal group. We have three
centroids to represent our three meal groups, i.e. breakfast,
lunch and dinner. Each user’s meal is mapped to the closest
centroid value during processing. Once user meals are mapped
to clusters for a period of 7 days, pattern matching is done
on the clustered data. In pattern matching, the centroid IDs
are considered as numbers of sequences. For example, for
simplicity we have a pattern for each user for one day, user
1 has a pattern (1,2,1) and user 2 has a pattern (1,3,1). Here
the numbers indicate the centroid ID of the group/cluster to
which the meals (breakfast, dinner, lunch) belonged to. For
pattern matching, Hamming distance is computed over the
given sequences of centroid IDs or patterns. In the end, we get
groups of users with closest meal patterns. These groups are
then used to train a separate FL. model for each group. This
approach whilst simple and intuitive, comes with a drawback
in terms of implementation, as it has to be performed by a
central entity. However, this approach is not only efficient
in terms of improvements in training performance but also
beneficial in terms of privacy preservation. This is because
the central coordinator stores patterns, which are essentially
sequences of centroid IDs, and not raw data, and can not be
exploited to extract a specific user from the system.

We now overview the privacy preserving techniques used in
the proposed time-series forecasting pipeline.

3430

IV. PRIVACY PRESERVATION TECHNIQUES IN
TIME-SERIES FORECASTING

Since stream processing requires low latency and real-time
response, we select the techniques that ensure strong privacy
guarantees with low performance overhead in terms of model
training time and with a minimal loss in prediction accuracy.

A. Categorical Data Anonymization

We study the impact of sensitive Individually Identifiable
Data (IID) on user clustering by using k-modes for categorical
data clustering [22] and k-means for numerical data clustering.
k-modes was used as the expert clustering mechanism to
validate the correctness of our streaming k-means approach.
We observed that our proposed approach can cluster similar
users using non-private data. As this work strongly advocates
user privacy, we removed all the IID from users’ data except
gender and location (country). The latter were retained only
for the synthetic data generation with GANS, as both attributes
have a major impact on diet patterns; and to observe the
correctness of the clustering patterns. However, our proposed
pipeline does not make use of any IID in any mechanism.

B. Differential Privacy for Federated Learning

TensorFlow-Federated (TFF) is used for our implementation
[23], [24]. We employ two well-established mechanisms for
DP: Gaussian and Laplacian mechanisms [7]. We use the
former mechanism in the noisy learning approach and the latter
mechanism in the data noising approach.

Noisy learning: Gaussian noise addition to the output of a
function f of sensitivity Sy on database D is defined by:

M(D) £ f(D)+ N(0,S70%),)

where N (0, 5%02) is the normal distribution with mean 0 and
standard deviation Syo [7].

TensorFlow Privacy mainly uses a differentially private
version of stochastic gradient descent (DP-SGD) to modify
the learned gradients. Models trained with DP-SGD provide
provable DP guarantees for their input data. It uses two ad-
ditional hyperparameters with the stochastic gradient descent
optimizer: the clip and the noise_multiplier. The
former is used to clip each gradient computed on each training
point in a mini-batch. Then, random noise from a Gaussian
distribution is sampled and added to the clipped gradients
to make it statistically impossible to know whether or not
a particular data point was included in the training dataset.
A differentially private query DPQuery is responsible for
clipping gradients computed by the optimizer, accumulating
them, and returning their noisy average to the optimizer [25].

Noisy data: For this approach, we use the Laplacian
differential privacy by adding noise directly to the aggregated
data records. Traditionally, for Laplace mechanism, random
noise is drawn from a Laplacian distribution with mean 0
and variance Sy/e to achieve e-differential privacy [26]. In
this work, all the data points in an aggregated data record are
individually noised as we pick random noise samples for each
point from a Lap(0,1/¢) distribution.

V. PROPOSED END-TO-END PRIVATE LEARNING PIPELINE

This section presents the proposed pipeline and describes
the interaction of each subsystem in the noisy learning and
noisy data approaches for privacy preservation.

A. System Overview

First, raw data points are aggregated as individual user data
records. As explained in Section II-C, central coordinator uses
updates from the clients to improve a global model. The global
model is described using a set of hyperparameters. We use
Adam optimizer for both client and server, and Standard Fed-
erated Averaging algorithm [14] as the aggregation method.
Moreover, a random sample of 10% users is used in each
round of FL as this fraction achieves a good trade-off between
model convergence and computational efficiency [14].

The records are forwarded to the clustering mechanism,
where we use streaming k-means algorithm with pattern
matching to find similar users as explained in Section III.
Afterwards, the central coordinator in FL stores these cluster
patterns, which are essentially the sequences of centroid IDs,
and not the aggregated raw data records.

Based on the clustered patterns, the server maintains k
federated models, where k is the number of groups. Figure
1 depicts the process in one communication round for a
randomly sampled client. client, sends its updates (step 1).
Then, the coordinator looks up client, and finds that this
client belongs to cluster k — 1 (step 2). The coordinator finds
the model that corresponds to cluster £ — 1 (model;—1) and
updates it using the information received from client, (step
3). In the final step, the coordinator shares the updated model
with the client.

client,

Send update (1)

Share updated model (4)

Server
Coordinator

Find corresponding Update corresponding

cluster (2) model (3)

Client Cluster Models

T e-e o
model; model,_; modely

Fig. 1: An overview of the communication round in the FL
process with clustering, assuming grouping into & clusters

B. Client Confidentiality with DP

We now explain the proposed pipeline in noisy learning
and noisy data settings. Both approaches achieve the goal of
noising the updates that are sent to the coordinator so that
no sensitive information can be leaked by exchanging these
updates.

Noisy learning: The weights are noised and sent to the
federated aggregator with the mechanisms provided in Tensor-
Flow Privacy. As depicted in Figure 2, each client adds noise

3431

to the true update, in both baseline and clustered scenarios
and the amount of added noise is controlled by the clip and
noise multiplier parameters, as explained in Section IV-B.
The standard deviation of the added noise is computed by
multiplying these two parameters. Moreover, aggregated user
records are also sent separately to the clustering mechanism,
as can be seen in Figure 2.

coe D D G coe

Send raw
update

_ Senddata
for clustering

Share updated model

Server Send noised update

Update user |
groups

Clustering mechanism

Federated aggregator
(coordinator)

| K-means H Pattern matching ‘

Fig. 2: Noisy learning: clustered FL using streaming k-means.
Baseline model is traditional FL setup (not shown separately)

Noisy data: In this setup, the FL process remains very
similar to the standard process, with the small modification
that the clients noise their local datasets before trying to
improve the federated model. Thus, the weights of each model
sent as updates to the coordinator implicitly contain noise.
Figures 3 and 4 show a high level image of the process. It
should also be noted that the clustering mechanism receives
noised aggregated data records, meaning that the quality
of clustering will be affected. It should be noted that the
prediction is performed locally and on clean data.

-—.— =

Raw data model

Send update Share updated model
Federated aggregator
(coordinator)

Fig. 3: Noisy data: a) Baseline FL

Improve 2
Raw data model
t

Send data for clustering

°:|l‘°

Share updated model

SEREr Send update

Update user l
groups

Clustering mechanism

Federated aggregator
(coordinator)

‘ K-means H Pattern matching ‘\

Fig. 4: Noisy data: b) Clustered FL using streaming k-means

Researchers state that an epsilon higher than 1 does not give
good privacy protection in general. However, Apple MacOS’s

DP has an epsilon as large as 6 and Google’s version of DP
claims to achieve an epsilon value of 2 in certain scenarios
[27]. We will use these values as a guideline in our study and
strive to achieve a compromise between the achieved level of
privacy and the performance of the system.

VI. EXPERIMENTS AND RESULTS

This section presents the impact of introducing our cluster-
ing mechanism and DP techniques on the system performance
in terms of model training time and prediction accuracy.

A. Datasets

We used 3 datasets for our evaluation: MyFitnessPal [28],
collected Fitbit dataset and Fitbit-GAN dataset. An overview
of the datasets in terms of scale is shown in Table I.

TABLE I: Datasets used for evaluation

Dataset # of users | # of days | # of raw records Size
MyFitnessPal 9.9K 207 1.9M 2.1GB
Fitbit 25 60 ~17M 3.2GB
Fitbit-GAN 630 60 ~435M ~ 83GB

MyFitnessPal: MyFitnessPal [2] contains records from
9900 users who logged their foods for almost 207 days.
Each entry contains an anonymized user ID, logging date,
name of the food, and respective macronutrients’ breakdown:
carbohydrates, protein, and fat. The dataset was analyzed to
drop the users with missing or inconsistent logs. Only the users
who logged at least one meal per day over a consistent period
of time are included. Afterward, all the meals were aggregated
into 3 categories: breakfast, lunch, and dinner. The snacks
were summed up with their corresponding meal category (for
example, the morning snacks were added to breakfast). After
preprocessing, the dataset contained 89 users who concurrently
recorded their meals for 151 days.

Fitbit: Fitbit Charge 2 HR devices were used for this study
to observe 25 subjects distributed across Belgium and Sweden.
12 devices were used for dataset collection, with 2 continual
participants (male and female), and 10 users in circulation.
The users were asked to record a minimum of 60 days of
observations. We collected more than 17M measurements
related to users’ meal logs, heart rate (HR), calories burned,
steps taken, activity and sleep. Nutritionix API [29] was used
to impute the missing nutritional breakdown for meals. The
measurements were aggregated into 3 records per day for
each user. Each aggregated record contained the nutritional
breakdown for a meal (breakfast/lunch/dinner), calories burned
during the mealtime, resting HR from the previous day, and
activity records for that day. The complete spectrum of data
ranges is shown in Table II.

Since a huge amount of IID is collected by the Fitbit
platform, the number of participants is relatively small as
it requires fully informed consent for data disclosure. The
biggest advantage of experimenting on this dataset is the pri-
vate information available for each user. However, as discussed
in IV-A, all the IID were removed for actual processing.

3432

TABLE II: Recorded features for Fitbit dataset

. Granularit
Features Unit Recorded Aggl}-]ega ted Range
Fat gm food meal 0.03 - 25
Macro- Carbs gm food meal 0.01 — 105
nutrients Protein gm food meal 0.04 — 55
Calories Burned kcal food meal 416 — 1435
Heart rate Resting bpm 75s day 49.5 - 834
Light mins day day 2 — 481
. Moderate | mins da da 0 - 211
Activity High | mmns daz daz 0-253
Sedentary | mins day day 600 — 998

Fitbit-GAN: We employed conventional Generative Adver-
sarial Networks [30] to generate augmented Fitbit data for
training our models. We refer to this dataset as Fitbit-GAN.

| Real Records H Discriminator H ReaI/Fake|
Random Distribution H Generator H Fake Records |

Fig. 5: GAN model for data augmentation.

The proposed GAN approach is showed in Fig. 5. The
generator creates a data record from a random distribution.
Next, the generated record is fed to the discriminator, along-
side aggregated records taken from the actual data. The two
models are trained together in an adversarial zero-sum game
i.e. with time the discriminator is updated to become stronger
in discrimination (real or fake) and the generator is updated
to fool the discriminator based on how well or not the
fake records are created. This process continues until the
discriminator model is fooled about half the time, meaning
the generator model is generating plausible examples.

A sample of the synthetically generated data record of two
days for a user using GAN is shown in Table III. It can be seen
that the GAN is able to learn the macronutrients breakdown
for meals, calories burned, resting HR and daily activities.

TABLE III: Synthetic data using GAN

Calories | Resting Active Minutes

Meal Fat Carbs | Protein Burned HR Lightly | Moderately | Very Y
Breakfast | 297 | 35.04 10.56 515.27 64.21 170 22 10 768
Lunch 11.97 | 47.83 25.64 | 655.858 64.21 170 22 10 768
Dinner 12.73 | 46.46 21.06 679.38 64.21 170 22 10 768
Breakfast | 330 | 28.92 10.76 505.71 64.67 171 23 12 723
Lunch 13.92 | 49.80 14.40 665.38 64.67 171 23 12 723
Dinner 13.61 | 54.84 15.91 869.65 64.67 171 23 12 723

B. Results - Federated Learning without Privacy

In all the experiments, we predict the health data streams for
the next day (3 meals’ breakdown, calories burned, HR and
activities) based on the previous day (3 meals’ breakdown,
calories burned, resting HR and activities). We discuss our
findings and highlight the contributions they bring in the
context of these research questions:

o How accurately can we predict the dietary and health-

related behaviour of a user?

o Does grouping similar users bring any benefit in terms of

accuracy and/or model training time?

e What impact do privacy preservation methods have on

the accuracy of the forecasting?

1) Choosing the right model: First, we compared the
most common statistical models for multivariate time-series
forecasting such as Vector Autoregression (VAR), Vector Au-
toregression Moving-Average (VARMA), and Vector Autore-
gression Moving-Average with Exogenous Regressors (VAR-
MAX); with popular NN architectures to choose the best
configuration for our experiments. For NN architectures, we
experimented with FNNs, LSTMs and GRUs with a sample
of 10% from MyFitnessPal dataset. Our results indicate that
the NN architectures are better candidates for our problem.

Next, we performed a grid search for the following hyper-
parameters for the NN architectures: learning rate (1), batch
size (b), and the number of neurons on each layer [. Table IV
shows the results of the best three models obtained, tested for
a different number of epochs e and rounds r in a federated
learning (FL) process. We chose the LSTM-2 architecture, i.e.
LSTM with two hidden layers with 5 epochs per round for our
following experiments as it offers the best prediction accuracy.

TABLE IV: Accuracy of the FL. models using a grid search

Best | oo eters | Federated d0c - 5t | Federated 20c - 10r
models MAE | RMSE | MAE
7 = 0.001

b=132

Federated 10e - 20r | Federated Se - 40r
RMSE MAE RMSE MAE RMSE

FNN-2 14.351 17.94 9.238 10.717 4.71 5.525 133 1.603

LSTM-2 11.278 14.398 6.391 7.965 235 2.69 0.655 0.853

n = 0.001

GRU-2 b=32 10.226 12.703 16.11 18.473 4.104 5.064 1.289 1.621

2) MpyFitnessPal dataset: We now present and analyze our
results for the MyFitnessPal dataset.

Baseline FL. model: We analyze the accuracy of the model
trained on the whole dataset and refer to it as the baseline FL
model in this case. Table V shows the achieved performance
by training the model with parameters discovered using the
grid search in terms of Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). As can be noted, our model can
forecast the next time-series with an MAE equal to 0.246,
meaning that each predicted value will be at most 0.246
gms higher or lower than the ground truth. Given that the
macronutrients in this dataset have a minimum value of 0.5
and a maximum of 609, we believe our system is capable of
making highly accurate predictions.

Clustered FL models: Next, we analyze the performance
of training a separate model for each cluster of users. Our
clustering method identified 4 user clusters in this dataset.
Table V shows the prediction accuracy of the FL. models. It is
important to remember that all the models in this comparison
were trained using the same hyperparameters and number of
epochs as the baseline FL model. Our results show that most of
the clustered models are able to achieve high accuracy, though
not as high as the baseline model. In particular, cluster 3
shows the highest increase in observed error. However, cluster
3 contains only 8 users and the least amount of data. So, we
believe the data might not be enough for the model to learn
from in this case.

We now analyze the training time needed for each model.
Even though the clustered models did not outperform the
baseline model, it is noteworthy that we are still able to achieve

3433

TABLE V: Comparison between the baseline model and the
clustered FL. models. Dataset: MyFitnessPal.

FL Model MAE | RMSE | Change in observed error | Training time (sec)
Baseli 0.246 0.319 - 5966
Cluster 1
(14 users) 0.712 0.811 +2.89x 1082
Clustered | Cluster 2 1 5301 64 +2.18% 3036
(43 users)
Cluster 31 798 | 1501 +5.28x 691
(8 users)
Cluster 4 1 136 | 0,508 +1.77x 822
(10 users)

accurate predictions with a drastic decrease in training time.
For example, cluster 4 manages to predict the macronutrients
with an MAE equal to only 0.436 after training for a period
which is around 7x smaller than the baseline model.

Discussion: This set of experiments leads to the following
conclusions: (1) we can accurately predict the macro-nutrient
breakdown of meals, (2) clustering similar users does not
improve the prediction accuracy with small clusters, but (3)
we are still able to achieve high performance in terms of
significantly less training time.

It is challenging to say why the clustering mechanism failed
to improve accuracy. One possible reason could be the small
number of users available for each cluster for the clustering
mechanism to actually exhibit its benefits. Another plausible
cause could be the homogeneity of the dataset. In this case,
even if our method managed to discover some groups, the
similarity between members of the same group might not be
high enough for the model to benefit from. A third cause might
reside in the process of choosing an appropriate model for our
data. As mentioned before, we ran a grid search to find the
parameters that would perform the best on our entire dataset.
However, doing so optimizes the model for the entire dataset.
Using the same configuration for the clusters might train an
overfitted model, which in turn becomes a potential source of
performance drop.

3) Fitbit dataset: The Fitbit dataset serves as a real-world
example for our specific use-case, as it exhibits gaps in the
time-series. This dataset contains 25 users and more private
information, such as resting HR and active minutes throughout
the day. Similar to the previous dataset, we performed a grid
search to find the optimal hyperparameters.

Baseline FL. model: We first investigate the performance
of our FL procedure on the entire dataset. Table VI shows
the accuracy of our baseline FL. model. It should be noted
that the number of training rounds needed to be adjusted due
to the size of the dataset. Training for a longer period led to
overfitting. Here we notice an overall accuracy drop as MAE is
higher as compared to the MyFitnessPal dataset results. This is
probably caused by two factors: a considerably smaller amount
of training data and gaps in the time-series. Nonetheless,
predicting the next macronutrients intake with a precision of
+3.27 gms is still remarkable. The same reasoning can be
applied to other features.

Clustered FL models: We cluster our users based on their
similarities. Our method found 4 clusters of various sizes.
We trained a separate FL. model for each cluster. Table VII

TABLE VI: Prediction accuracy of the baseline model.
Dataset: Fitbit

Predicted MAE RMSE | Training time (sec)
Macronutrients 3.27 4.047
Calories burned | 11.831 15.261 245
Resting HR 0.859 1.044
Active minutes 4.495 5.320

contains the prediction accuracy of these models. The average
change in observed error is in comparison to the model trained
on the entire dataset. An increase in average observed error
suggests a decrease in the model prediction accuracy.

TABLE VII: Prediction error obtained by training clustered

TABLE VIII: Prediction accuracy of the baseline model.
Dataset: Fitbit-GAN

Predicted MAE RMSE | Training time (sec)
Macronutrients 0.806 1.054
Calories burned | 11.395 14.460 9891
Resting HR 0.044 0.058
Active minutes 2.365 2.983

the entire dataset. We ran a grid search for optimal parameters
for each cluster and found a less complex model configuration
to be appropriate for the groups. Moreover, it has been found
that the same model configuration can cater to all groups (a
small FNN-2 and the same hyperparameters). This will also
lead to a major improvement in training time.

Table IX shows a significant increase in prediction accuracy
for three out of four clusters as compared to the baseline
performance. Moreover, the highest training time, which has
been recorded for cluster 4, is 20x faster than the training
time of the baseline model.

TABLE IX: Prediction accuracy for training one model per
cluster of users. Dataset: Fitbit-GAN

FL models. Dataset: Fitbit
FL Model Predicted MAE | RMSE | Average changein [y oo fime (sec)
observed error
Macronutrients 7.776 9.429
Cluster 1 | Calories burned | 57.544 | 77.070 45.63 64
(3 users) Resting HR 9.462 12.321 S
Active minutes | 19.303 | 23.290
Macronutrients 6.651 7.780
Cluster 2 | Calories burned | 38.816 | 51.437 +3.08x 62
(3 users) Resting HR 5.269 6.754 o
Active minutes | 12.923 | 15.459
Macronutrients 4.119 4.933
Cluster 3 | Calories burned | 21.791 | 28.054 +1.9% 110
(9 users) Resting HR 2.447 3.093)
Active minutes 7.555 9.120
Macronutrients 3.571 4.293
Cluster 4 | Calories burned | 28.165 | 33.643 +1.84% 88
(6 users) Resting HR 2.012 2.566)
Active minutes 7.093 8.612

Discussion: As expected, the clusters with the less training
data show a considerable decrease in accuracy (clusters 1
and 2). Groups that have more training data manage to
achieve better predictions. For these reasons, the baseline
model outperforms all clustered models in this case. Although
this dataset contains very interesting yet sensitive data, we
believe that the amount of data in this dataset is a major
impediment to drawing relevant conclusions. Hence, we focus
on the Fitbit-GAN dataset for further experiments.

4) Fitbit-GAN dataset: The experiments performed on the
Fitbit-GAN dataset aim to investigate whether a higher amount
of data influences the outcome as compared to our previous
experiments. The hyperparameters for the baseline model in
this section have been chosen using a grid search. We now
evaluate the performance of the FL mechanism.

Baseline FL. model: Firstly, we focus on determining
how well we can predict the features of our dataset. We
perform multi-step forecasting and compute the MAE and
RMSE as before. Table VIII shows the performance achieved
by the model trained on the entire dataset. Similar to the
MyFitnessPal dataset results, we conclude that our model can
predict user behaviour very accurately, as our prediction is at
most 0.025% as far from the ground truth value with respect
to the range of each feature.

Clustered FL models: We cluster the users and train
separate models for each group. Again, the baseline model
outperforms the clustered models for all features. We note that
optimizing the hyperparameters for the entire dataset might
lead to overfitting for smaller chunks of the dataset as the data
distribution for the groups will be different than the one for

3434

FL Model Predicted MAE | RMSE | Average changein | oi time (sec)
observed error
Macronutrients 0.458 0.553
Cluster 1 Calories burned | 4.359 5.369
(167 users) Resting HR 0.031 0.037 ~49% 314
Active minutes 0.829 1.017
Macronutrients 0.639 0.788
Cluster 2 Calories burned | 6.296 7.792 17% 199
(63 users) Resting HR 0.04 0.0485
Active minutes 2.459 2.822
Macronutrients 1.199 1.467
Cluster 3 Calories burned | 12.152 14.65 +57% 167
(44 users) Resting HR 0.088 0.107 :
Active minutes 4.101 4.884
Macronutrients 0.527 0.63
Cluster 4 Calories burned | 5.493 6.8
(213 users) Resting HR 0.02 0.031 7% 478
Active minutes 1.18 1.468

Discussion: In order to address the impact of the cluster size
on the overall performance of the system, it should be noted
that the clusters discovered by our mechanism are imbalanced.
Our results might give the impression that the accuracy is
directly proportional to the size of the dataset. However, this
assumption is incorrect. The cluster size influences the results
only when the NN does not have enough data to learn from. As
long as the group contains enough data, the similarity between
the members of each group can be leveraged to improve
the prediction accuracy. We can, for example, consider the
unclustered version to be a considerably larger cluster. The
model trained on this group achieves poorer performance than
the ones trained on real but smaller clusters. This proves that
the similarity between users is the only factor that determines
the increase in accuracy, and not the size of the dataset. It
should also be noted that clustering improves the prediction
accuracy as well as significantly improving the training time.

C. Results - Differentially Private Federated Learning

The impact of adding privacy preservation methods in the
FL mechanism is evaluated by investigating the performance
of the system by first noising the learning process and then

noising the data itself. The average results for each config-
uration are obtained by running each experiment at least 3
times.

1) Noisy learning: In this case, noise is added to the
updates and sent to the federated aggregator using TensorFlow
Privacy mechanisms.

Baseline private FL. model: First, a baseline FL. model
for all users is trained. The results are presented in Table
X. Adding Gaussian noise with a higher standard deviation
decreases the prediction accuracy of the model but increases
the achieved privacy level. Even for the lowest level of privacy,
with € = 10.3 corresponding to the standard deviation (sd) of
0.225, the model performance is approximately 35x poorer
than the non-private baseline model.

TABLE X: Results for noising the learning process to achieve
DP in the baseline scenario. clip and noise specify the clip
and noise applied to the gradients, with sd standard deviation.
sd increases from left to right, suggesting that more noise is
added. Contrarily, € decreases from left to right, suggesting
that better privacy levels are achieved as we add more noise.

clip=10.3 clip=10.5 clip=10.75 clip=1 clip=1.5
noise = 0.75 | noise = 0.75 | noise = 1.2 | noise = 1.3 | noise =2
(sd =0.225) | (sd =0.375) (sd =0.9) (sd =1.3) (sd=3)
Macronutrients MAE 25.899 24.637 36.308 37.176 77.838
RMSE 26.835 25325 37.62 38.457 79.022
Calories MAE 678.038 423.555 698.392 818.229 881.288
burned RMSE 687.112 437.704 709.221 837.541 900.358
Resting Heart MAE 1.133 2.065 3.089 3.859 4.129
Rate RMSE 1.208 2.115 3.1581 3.939 4.194
Active MAE 45.942 77.553 104.254 116.546 176.347
minutes RMSE 49.342 80.0 107.647 121.102 180.743
Epsilon (¢ 10.3 10.3 427 38 2.2

Clustered private FL. models: When applying noise to the
clustered scenario, our results showed that the models became
unable to learn anything from the data, as they showcased an
MAE higher than 1000 in some cases. Therefore, the results
are not presented in this work.

Discussion: The main reasons behind the drastic decrease
in prediction accuracy is the number of participants in the
federated averaging algorithm which plays a major role on the
achieved model performance [31]. Since our dataset is very
small as compared to the one used by [31], our results are
justifiable. Moreover, the fact that clustering the users caused
an even greater performance drop in our experiments is also
to be expected in this context, as the number of participants
decreases even more when the model is trained for each
separate cluster. This analysis shows that the noisy learning
method is not appropriate for our use-case.

2) Noisy data: In this scenario, we add noise to the data
itself. Each participant in the learning process learns from
the noised data and tries to improve the FL. model. It should
also be noted that, when training on clusters of users, the
clustering mechanism also receives noised data, hence, the
clusters change for each experiment.

Baseline private FL. model: We study the baseline scenario
with only one private FLL model for all the clients. Table XI
shows the effect of various levels of data privacy on the model
performance. Google can achieve DP with € = 2 in certain
conditions [27], and this is taken as a starting point for our
experiments. Laplacian noise with 0 mean and é variance is

3435

TABLE XI: Results of noising the training data to achieve DP
in the baseline scenario.

e=2 e=1 e=0.5 e=0.11]e=0.025 | € =0.01

Macronutrients MAE 0.743 0.715 0.752 0.874 0.984 1.336
RMSE 0.969 0.943 0.995 1.135 1.378 1.843

Calories MAE 11.596 | 11.937 12.231 14.383 14.891 19.634

burned RMSE 14.687 | 15.451 16.116 18.482 19.903 27.392
Resting Heart MAE 0.048 0.055 0.058 0.067 0.077 0.122
Rate RMSE 0.065 0.07 0.077 0.088 0.108 0.161
Active MAE 2.483 2.246 2293 2.344 2.832 3.832
minutes RMSE 3.012 2.953 2.768 3.159 3.941 5.438
Average increase in observed error 2% 3% 7% 21% 37% 94%

added to the data. With ¢ = 2, we see an average increase
in prediction error of only 2%. Moreover, the best trade-off
between privacy and accuracy is obtained for ¢ = 0.1 where
€ is ranging from 1 to 0.025. With this setting, we observe an
increase in prediction error of around 21%, with good accuracy
and a very high level of privacy is observed.

Clustered private FL. models: We now focus on the clus-
tering mechanism and its impact in the FL context. Firstly, as
expected, clustering users with noised data alters the clusters.
It can be noted that adding more noise to the data has two
effects: (1) overall, fewer users are assigned to clusters, and (2)
the algorithm discovers a higher number of smaller clusters.
As the noise increases, the similarity between users decreases.
Hence, the users that were previously very similar might still
be clustered together, but the overall size of the groups is
expected to decrease. The increased number of found clusters
can be observed when applying privacy levels of 0.025, where
the algorithm finds 5 clusters, instead of 4.

We examine the results obtained with the best € value we
discovered in the baseline case, 0.1. Table XII shows that
unlike the noisy learning case, clustering the users can still
improve the quality of prediction, even if the data is noised.
The clusters show that several users maintain some degree of
similarity that can be used to boost the accuracy of the model.

TABLE XII: Results of noising the training data to achieve
DP in the clustered FL scenario. ¢ = 0.1 noise is added. A
decrease in the average observed error (compared to baseline
model) implies an increase in accuracy.

FL Model Predicted MAE | RMSE | Average changein [oo ime (seo)
observed error
Macronutrients 0.982 1.131
Cluster 1 Calories burned | 9.897 12.379
(73 users) Resting HR 0.039 0.049 -20% 22
Active minutes 1.869 2.283
Macronutrients 1.025 1.209
Cluster 2 Calories burned | 11.96 14.961 6% 150
(37 users) Resting HR 0.052 0.061
Active minutes 2218 2.68
Macronutrients 0.593 0.715
Cluster 3 Calories burned 7.56 9.43
(161 users) Resting HR 0.031 0.038 -38% 392
Active minutes 1.842 2.208
Macronutrients | 0.587 0.712
Cluster 4 Calories burned | 9.653 11.463
(97 users) Resting HR 0.033 0.04 -34% 262
Active minutes 1.861 2.225

Discussion: Noising the data improves prediction accuracy
without any measurable effect on the training time. Adding
noise to the data has been popularly used as a regularization
technique for deep NN to avoid overfitting and improve
accuracy. This could explain the very high accuracy we obtain,
and a relatively small performance drop compared to the non-

noised model. Composing the overall € experienced at the user
end is outside the scope of this work. In principle, removing a
user’s data has no measurable impact on the overall clusters as
well as the prediction accuracy of the system, although more
data is shared in the clustering scenario. So, we believe that
the overall experienced ¢ or privacy loss at the user end is also
very small as the data is highly noised.

VII. RELATED WORK

We discuss similar approaches found in the literature and
compare them to our proposed pipeline. To the best of our
knowledge, there is no other work that aims to investigate the
problem of user diet and health forecasting in a streaming
context with privacy guarantees. Thus, in the following sub-
sections, we present works that are comparable to each of the
steps chosen in our pipeline.

A. Multivariate Time-Series Clustering Mechanism

Our work is inspired by [32] whose clustering technique is
composed out of two logical steps, discretization to univariate
time series and clustering the resultant data. We adapted their
framework to implement a streaming variant of for the first
step — discretization, followed by computing the Hamming
similarity for the second step — pattern matching. Since pattern
matching is trivial compared to the discretization process, we
focus on the related work for the latter.

Discretization of time-series: Our discretization process is
very similar to the one proposed by [33]. The goal is to map
each multivariate data point of a time-series into a discrete
value. According to the authors, the shape of the pattern is the
most important trait of a series instead of actual values. In their
study, the real-valued time-series was split into windows. Each
subsequence is clustered using k-means. Discretized version of
the time-series is obtained by using the ID of the cluster with
the closest centroid to each subsequence. Lastly, the series of
symbols are clustered using a suitable similarity measure.

The symbolization method proposed by [33] is suitable
for our case for two main reasons: (1) working with low-
dimensional symbols decreases the execution time of the
algorithm, which is crucial in low-latency systems such as
streaming applications, and (2) working with symbols instead
of raw data brings benefit in terms of stronger user privacy.

Our work is also inspired by the work proposed by [34],
where the authors aimed to discover similar patterns in the
traveling habits of the subjects over streaming trajectories.
Their approach partitions the stream into windows applies a
clustering algorithm to observe the movements of the individ-
uals in the given time frame and uses the clusters to detect
co-movement patterns. The authors cluster the locations with
respect to a specific threshold and we follow the same principle
with a few tweaks that suit our problem.

B. Approaches for Federated Learning

We focus on studies that aim to solve two of the drawbacks
of FL: the shortcomings of training only one federated model
that should provide accurate predictions for all the participants,

3436

and the need for additional privacy methods so that sensitive
data cannot be inferred from the updates sent to the server.
We organize our discussion around these two problems.

Clustered federated learning: Clustered Federated Learn-
ing framework [35] was introduced to improve the perfor-
mance of classic federated algorithms by leveraging natural
groups that exist in the client population. The concept has
been adopted by several studies, such as [36], who applied a
clustering technique on patients’ data to boost the performance
in predicting the hospitalization time and mortality using
electronic medical records. Moreover, [37] studied time-series
forecasting and showed that training separate global models
for different clusters of time-series improves the performance.

This procedure is not very different from the classic FL.
The server clusters the clients according to a chosen similarity
metric. Let us assume it discovers k groups. Then, the FL
algorithm proceeds with the small modification that the server
maintains k models instead of one. When an update from a
client arrives, the server must first check the cluster label of the
client to decide which model the user’s update will contribute
to. Also, each client has to download the model corresponding
to its cluster. We adapted this approach for our work.

Differentially private FL: Federated learning made a sig-
nificant step towards better privacy protection by offering a
training mechanism that can learn from clients’ data without
having access to the actual data. However, sensitive informa-
tion can still be inferred from the updates sent to the central
server. Zhu et al. [38] proved in their study that it is, in fact,
possible to obtain such information from shared gradients.

Other aggregation algorithms only use the weights obtained
from training the local model. Studies show that this technique
is not safe either and that private information of individuals
can still be divulged [39], [40]. Regardless of the parameters
chosen to be shared, each new communication round in an FL
algorithm can lead to data leaks, which accumulate in time
throughout the process. DP can, thus, be used to conceal the
contribution of each client during the training process. Similar
to the general idea of DP, a trade-off must be found between
privacy loss and model performance.

Geyer et al. [31] address the problem of differentially private
FL from a client point of view. Their algorithm distorts the
updates sent at each communication round by adding Gaussian
noise. This method can maintain the privacy of the clients with
only a small decrease in performance, given the dataset size
is large enough. Similarly, [41] tackle the same problem in
the context of sensitive health data. In their work, the authors
add noise to the optimization function and prove this approach
offers good data privacy while maintaining an adequate model
performance. We applied this DP technique and studied its
effect on the prediction accuracy of the model.

C. Noisy Data with LSTMs for Forecasting

We also study the effect of another DP method, which
involves disturbing the training datasets themselves by adding
noise. The study that served as our main inspiration for this DP
algorithm has been undertaken by [42], in which the authors

used DP for stock price predictions. Albeit in a non-federated
context, this study is closely related to our work because it
noises the data directly to achieve better privacy preservation.

VIII. CONCLUSIONS AND FUTURE WORK

We provide an online system that can forecast the dietary
habits and health data of users of fitness tracking applications
and/or wearable devices. To this extent, we have designed and
implemented a pipeline capable of accurately predicting user
behaviour and that can leverage similarities between individ-
uals to improve model performance while guaranteeing data
privacy. Depending on the dataset and features, our predictions
are no more than 0.025% far off the ground-truth value with
respect to the range of the value. Moreover, our clustering
mechanism leverages similarity between the users to improve
prediction accuracy while reducing the model training time,
with up to 49% error reduction as compared to an FL model
trained for the whole dataset. With high privacy guarantees on
user data € = 0.1, we show that the baseline model has a small
drop in prediction accuracy and that data noising mechanism
benefits from user clustering. Our clustering system manages
to sustain the prediction accuracy and, in most cases, improve
it, with a reduction of 38% error in prediction accuracy as
compared to the baseline noisy data model in the best case.
For future work, we consider investigating adaptive k-means
and online ML models. We believe adaptive modeling will
help in improving the performance of the system.

ACKNOWLEDGMENT

This work is partly funded by the Erasmus Mundus Joint
Doctorate program in Distributed Computing (EACEA of the
European Commission under FPA 2012-0030). The authors are
truly grateful to the anonymous participants who volunteered
to provide their data for this study. We are also thankful to
Prof. Paris Carbone and Prof. Sonja Buchegger at KTH, and
Prof. Ramin Sadre at UCLouvain, Belgium, for their valuable
advice, guidance and support during this research project.

REFERENCES
[1]
[2]
[3]

[4]

Fitbit. [Online]. Available: https://www.fitbit.com/se/home
MyFitnessPal. [Online]. Available: https://www.myfitnesspal.com/

M. K. Kundalwal et al., “An improved privacy preservation technique
in health-cloud,” ICT Express, vol. 5, no. 3, pp. 167-172, 2019.

S. Imtiaz, R. Sadre, and V. Vlassov, “On the case of privacy in the IoT
ecosystem: A survey,” in International Conference on Internet of Things
(iThings). 1EEE, 2019, pp. 1015-1024.

M. Young et al., “Beyond open vs. closed: Balancing individual privacy
and public accountability in data sharing,” in Proceedings of the ACM
FAT, 2019, pp. 191-200.

J. Jordon, J. Yoon, and M. van der Schaar, “PATE-GAN: Generating
synthetic data with differential privacy guarantees,” in /CLR, 2018.

S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in Proceedings of the 12th ACM AlSec, 2019, pp. 1-11.

Z. Abbas, J. R. Ivarsson, A. Al-Shishtawy, and V. Vlassov, “Scaling
deep learning models for large spatial time-series forecasting,” in IEEE
Big Data, 2019, pp. 1587-1594.

T. W. Liao, “Clustering of time series data - a survey,” Pattern Recog-
nition, vol. 38, no. 11, pp. 1857-1874, 2005.

I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on dis-
tributed memory multiprocessors,” in Large-scale parallel data mining,
Workshop at SIGKDD. Springer, 2002, pp. 245-260.

[5]

[7]
[8]

[9]
[10]

3437

(1]

(12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

(271

(28]

[29]
[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]
(39]
[40]
[41]

[42]

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

M. Arsalan and A. Santra, “Character recognition in air-writing based on
network of radars for human-machine interface,” IEEE Sensors Journal,
vol. 19, no. 19, pp. 8855-8864, 2019.

H. B. McMahan et al, “Federated learning of deep networks
using model averaging,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1602.05629

B. McMabhan et al., “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS. PMLR, 2017, pp. 1273-1282.
C. Dwork et al., “Calibrating noise to sensitivity in private data analysis,”
in TCC. Springer, 2006, pp. 265-284.

C. Dwork et al., “Our data, ourselves: Privacy via distributed noise
generation,” in EUROCRYPT. Springer, 2006, pp. 486-503.

C. Dwork and J. Lei, “Differential privacy and robust statistics,” in
Proceedings of STOC’09, 2009, pp. 371-380.

M. Bun and T. Steinke, “Concentrated differential privacy: Simplifi-
cations, extensions, and lower bounds,” in Theory of Cryptography
Conference. Springer, 2016, pp. 635-658.

C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential
privacy,” in FOCS’10. IEEE, 2010, pp. 51-60.

P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for
differential privacy,” in ICML, 2015, pp. 1376-1385.

P. Carbone et al., “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Engineering Bulletin, vol. 38, pp. 28-38, 2015.

Z. Huang, “Extensions to the k-means algorithm for clustering large data
sets with categorical values,” Data mining and knowledge discovery,
vol. 2, no. 3, pp. 283-304, 1998.
TensorFlow-Federated.
https://www.tensorflow.org/federated
K. Bonawitz et al., “Towards federated learning at scale: System design,”
arXiv preprint arXiv:1902.01046, 2019.

H. B. McMahan et al., “A general approach to adding differential privacy
to iterative training procedures,” arXiv preprint arXiv:1812.06210, 2018.
C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” FnT-TCS, vol. 9, no. 3-4, pp. 211-407, 2014.

U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggre-
gatable privacy-preserving ordinal response,” in Proceedings of the 2014
ACM SIGSAC CCS, 2014, pp. 1054-1067.

I. Weber and P. Achananuparp. Myfitnesspal food diary dataset.
[Online]. Available: https://doi.org/10.13140/RG.2.2.14511.64167
Nutritionix API. [Online]. Available: https://developer.nutritionix.com/
I. Goodfellow et al., “Generative adversarial nets,” in NIPS, 2014, pp.
2672-2680.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” NIPS’17. arXiv:1712.07557, 2017.
T. W. Liao, “A clustering procedure for exploratory mining of vector
time series,” Pattern Recognition, vol. 40, no. 9, pp. 2550-2562, 2007.
[Online]. Available: https://doi.org/10.1016/j.patcog.2007.01.005

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule
discovery from time series.” in KDD, vol. 98, no. 1, 1998, pp. 16-22.
L. Chen et al., “Real-time distributed co-movement pattern detection on
streaming trajectories,” Proceedings of the VLDB Endowment, vol. 12,
no. 10, pp. 1208-1220, 2019.

F. Sattler, K.-R. Miiller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multi-task optimization under privacy con-
straints,” arXiv preprint arXiv:1910.01991, 2019.

L. Huang et al., “Patient clustering improves efficiency of federated
machine learning to predict mortality and hospital stay time using dis-
tributed electronic medical records,” Journal of biomedical informatics,
vol. 99, p. 103291, 2019.

F. Diaz Gonzilez, “Federated learning for time series forecasting using
LSTM networks: Exploiting similarities through clustering,” Master’s
thesis, KTH, EECS, 2019.

L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NIPS,
2019, pp. 14774-14784.

C. Ma et al., “On safeguarding privacy and security in the framework
of federated learning,” IEEE Network, 2020.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC CCS, 2015, pp. 1310-1321.

O. Choudhury et al., “Differential privacy-enabled federated learning for
sensitive health data,” arXiv:1910.02578, 2019.

X. Li et al., “DP-LSTM: Differential privacy-inspired LSTM for stock
prediction using financial news,” arXiv:1912.10806, 2019.

[Online]. Available:

