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Abstract—Massive MIMO systems provide high angular reso-
lution in the next generation of wireless systems. This opportunity
can be used to estimate the location of user terminals (UTs) ac-
curately. In this paper, we analyze the Cramer-Rao lower bound
(CRLB) of planar antenna arrays in Massive MIMO systems
for Angle of Arrival (AoA) estimation. With the help of Random
Matrix Theory, we prove that for Massive antenna arrays with
independent and identically distributed (i.i.d) multipath signals,
instantaneous CRLB for AoA estimation converges toward a
deterministic value, regardless of channel distribution. In this
scenario, CRLB is a function of channel variance instead of
instantaneous realizations. Then, antenna selection is studied,
and it is shown that using different subsets significantly affects
the CRLB of a planar array. Numerical results confirm the
convergence of deterministic results and indicate the benefits of
antenna selection and the importance of the selection strategy.

I. INTRODUCTION

Massive MIMO systems are among the primary candidates
for the next generation of wireless systems [1]. By virtue of
large number of antennas, many opportunities arise in such
systems [2]. In particular, high angular resolution can be used
for accurate AoA estimation of UTs [3]. Many applications
need real-time information about UTs’ locations, such as auto-
driving cars and health services [4]. This information can also
help reduce the interference in the system by directing beams
in the BS to each UT’s position, saving power and improving
efficiency.

One of the fundamental criteria for assessing an estimator
is CRLB, which sets a lower bound on the variance of any
unbiased estimator [3]. Many works have studied CRLB for
AoA estimation in Massive MIMO settings [2], [5], [6]. A
common assumption among these studies is to consider one
dominant path as the primary carrier of information. In this
scenario, for each UT, all of the antennas will have the same
channel coefficient. However, in Massive MIMO, the paths
that signals take to different antennas might significantly differ
from one another [1]. Moreover, based on Dense Multipath
Channel (DMC) model [7], a dominant path can be accom-
panied by many multipath signals. New studies have used
multipath signals to extract more information about AoA [2],
[4].

In this regard, [8] studied the probability of AoA detection
in Massive MIMO i.i.d channels. In [9], we presented an
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analysis for CRLB of AoA estimation in DMC channels for
a linear antenna array. In this work, we extend the analysis by
presenting a deterministic form of CRLB for AoA estimation
for a planar antenna array under the DMC model in 3D
settings.

In the next part, the idea of antenna selection is studied.
Antenna selection is motivated by different goals in wireless
systems. Initially, it was presented as a solution for hardware
shortages, when the number of antennas is more than available
RF-chains, and the goal is to take full advantage of available
hardware by using them for the best possible set of antennas
[10]. Later, regarding growing concerns about energy con-
sumption, antenna selection was revived again, this time to use
valuable and limited energy budget in the best possible way
to maximize the trade-off between performance and energy
consumption [11], [12].

In [9] we presented an antenna selection method to maxi-
mize the localization efficiency of a linear array. It has been
shown that depending on the antenna selection strategy, the
behavior of CRLB with respect to (w.r.t) number of antennas
changes and the optimal antenna selection method has been
presented. In this paper, we show that in the case of a planar
array, when 3D localization is considered, the optimal antenna
selection strategy changes. As the proposed antenna selection
is for the Multi-User scenario, it is based on minimizing the
expected CRLB over the possible range of UT’s AoA. The
initial optimal subset of antennas is presented, which serves as
the starting point of a greedy algorithm. This algorithm finds
the best greedy set of antennas when only a limited number
of antennas have to be utilized.

Notation: Boldface lower case is used for vectors, x, and
upper case for matrices, X . XT , XH and Xm,k denote
transpose, hermitian and (m, k)th entry of X , respectively.
IK is K×K identity matrix. Ex{.} denotes expectation w.r.t
x, j =

√
−1, |.| is absolute value, tr is trace operator, �

is Hadamard product, ⊗ is Kronecker product, diag(x) is a
diagonal matrix with the elements of vector x on the main
diagonal and a.s.−−→ means Almost Sure convergence.

II. SYSTEM MODEL

We consider the uplink of a single-cell Multi-User Massive
MIMO system with a BS at the center, equipped with M =
M1M2 antennas. M1 antennas are installed along the x axis
and M2 antennas along the y axis. On each axis, adjacent



CRLBθ(k, k)
a.s.−−→ v(M1, 2M1) cos2(θk) + v(M2, 2M2)sin2(θk) + 3v(M1,M2) cos(θk) sin(θk)

ρkβ2(2σ2
h + |h̄k|2)v(M1,M2)(v(2M1,2M2)

3 − 3
4v(M1,M2)) sin2(ϕk)

. (13)

antennas are separated by distance d (Fig 1). There are K
uniformly distributed single-antenna UTs in the cell. The BS
uses pilot signals transmitted by UTs to localize them. The
received signal at the BS is

y = (ARx �H)s+ n, (1)

where s is the vector of transmitted pilots and n ∼
CN (0, σ2

nIM ) is additive white Gaussian noise. Also,

ARx = [aR(θ1, ϕ1) . . . aR(θK , ϕK)], (2)

contains K columns of M × 1 steering vectors of BS antenna
array response, where θk and ϕk are kth UT’s AoA and
azimuth for k ∈ {1, . . . ,K}. The mth element of kth steering
vector is [13]

aR(θk, ϕk)m =
e−jβ sin(ϕk)((m1−1) cos(θk)+(m2−1) sin(θk))

√
M

,

(3)
m = (m2 − 1)M1 +m1,

m1 = 1, . . . ,M1, m2 = 1, . . . ,M2,

where β = 2πd
λ and λ is the wavelength of pilots. H =

[h1 . . . hK ] is an M ×K matrix whose (m, k)th element,
hm,k, is the channel coefficient between kth UT and mth BS
antenna. The mean of hk is equal to the channel coefficient
of kth UT’s dominant path, h̄k. The random part of each
elements, ĥm,k, accounts for the random effects of aggregated
multipath signals at each antenna with limited fourth and
eighth moments. The variance of the random part is assumed
to be constant and equal to σ2

h for every antenna and user [9]

hm,k = hrm,k + jhim,k,

E{hrm,k} = Re{h̄k}, E{him,k} = Im{h̄k},
var(hrm,k) = var(him,k) = σ2

h. (4)

III. CRLB ANALYSIS

The vector containing desired parameters for estimation is

η = [

ηθ︷ ︸︸ ︷
θ1 θ2 . . . θK |

ηϕ︷ ︸︸ ︷
ϕ1 . . . ϕK ]T . (5)

Defining η̂ as the unbiased estimator of η, its mean square
error is lower bounded as [3]

Ey|η{(η − η̂)(η − η̂)T } ≥ CRLB = J−1, (6)

where J is Fisher Information Matrix (FIM) and can be written
in block matrix form as [3]

J =

[
Jθ,θ Jθ,ϕ
Jϕ,θ Jϕ,ϕ

]
, (7)

and
Ja,b = Re[( ∂w

∂ηa
)H(

∂w

∂ηb
)], (8)

M1

d
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Figure 1: Configuration of the antenna array.

in which w , (ARx �H)s and a, b ∈ {θ, ϕ}. Therefore,
using block matrix inversion properties, CRLB of ηθ is

CRLBθ =
σ2
n

2
(Jθ,θ − Jθ,ϕJ−1ϕ,ϕJϕ,θ)−1. (9)

The derivatives of w w.r.t ηθ and ηϕ can be written as

∂w

∂ηθ
= M(Σ2(A+ jB)Cθ −Σ1(A+ jB)Sθ)Sϕ, (10)

∂w

∂ηϕ
= M(Σ1(A+ jB)Cθ + Σ2(A+ jB)Sθ)Cϕ, (11)

where

Σ1 = β(IM2 ⊗ diag(0,
1

M
, . . . ,

M1 − 1

M
)),

Σ2 = β(diag(0,
1

M
, . . . ,

M2 − 1

M
)⊗ IM1

),

A = Ā+ σhÂ, B = B̄ + σhB̂,

Ām,k = Re{h̄kaR(θk)msk}, B̄m,k = Im{h̄kaR(θk)msk},

Âm,k =
1

σh
Re{−jĥm,ksk(aR(θk)m)},

B̂m,k =
1

σh
Im{−jĥm,ksk(aR(θk)m)},

Sa = diag(sin(a1), . . . , sin(aK)), a ∈ {θ, ϕ}
Ca = diag(cos(a1), . . . , cos(aK)). a ∈ {θ, ϕ} (12)

By defining ρk , |sk|2
σ2
n

and v(m1,m2) = (m1 − 1)(m2 − 1),
the following theorem presents a deterministic expression for
CRLBθ of a planar antenna array.

Theorem 1. In the Massive MIMO settings, CRLBθ almost
surely converges toward a deterministic diagonal matrix whose
(k, k)th entry is given by (13), written at the top of this page.



Proof. Replacing (10) and (11) in (8), we have

Jθ,θ = M2STϕ [STθ (ATΣ2
1A+BTΣ2

1B)Sθ

+CT
θ (ATΣ2

2A+BTΣ2
2B)Cθ

− STθ (ATΣ1Σ2A+BTΣ1Σ2B)Cθ

−CT
θ (ATΣ2Σ1A+BTΣ2Σ1B)Sθ]Sϕ, (14)

Jϕ,ϕ = M2Cϕ[CT
θ (ATΣ2

1A+BTΣ2
1B)Cθ

+ STθ (ATΣ2
2A+BTΣ2

2B)Sθ

+CT
θ (ATΣ1Σ2A+BTΣ1Σ2B)Sθ

+ STθ (ATΣ2Σ1A+BTΣ2Σ1B)Cθ]Cϕ, (15)

Jθ,ϕ = JTϕ,θ = M2STϕ [−STθ (ATΣ2
1A+BTΣ2

1B)Cθ

+CT
θ (ATΣ2

2A+BTΣ2
2B)Sθ

− STθ (ATΣ1Σ2A+BTΣ1Σ2B)Sθ

+CT
θ (ATΣ2Σ1A+BTΣ2Σ1B)Cθ]Cϕ. (16)

From [9] (lemmas 1-3) we know that for M →∞

ATΣpΣqA+BTΣpΣqB
a.s.−−→ 1

M
tr(ΣpΣq)(2σ

2
h + H̄)

(17)

for p, q ∈ {1, 2} and H̄ = diag(|h̄1|2, . . . , |h̄K |2). Also,

tr(Σ2
1) = β2(M1 − 1)(2M1 − 1)/M/6, (18)

tr(Σ2
2) = β2(M2 − 1)(2M2 − 1)/M/6,

tr(Σ1Σ2) = tr(Σ2Σ1) = β2(M1 − 1)(M2 − 1)/M/4.

Replacing (17) and (18) in (14)-(16), we have

Jθ,θ
a.s.−−→β2STϕ(

v(M1, 2M1)

6
S2
θ +

v(M2, 2M2)

6
C2
θ

− v(M1,M2)

2
CθSθ)Sϕ(2σ2

h + H̄),

Jϕ,ϕ
a.s.−−→β2CT

ϕ(
v(M1, 2M1)

6
C2
θ +

v(M2, 2M2)

6
S2
θ

+
v(M1,M2)

2
CθSθ)Cϕ(2σ2

h + H̄),

Jθ,ϕ
a.s.−−→β2STϕ(

v(M2, 2M2)− v(M1, 2M1)

6
CθSθ

+
v(M1,M2)

4
(C2

θ − S
2
θ))Cϕ(2σ2

h + H̄). (19)

By replacing (19) in (9), using the fact that Jθ,θ, Jϕ,ϕ,
Jθ,ϕ and Jϕ,θ are diagonal matrices, after some algebraic
simplifications, all the elements of CRLBθ are obtained as
(13).

It is seen that the effects of individual channel realizations
are completely removed in the instantaneous CRLBθ. In fact,
what matters is the variance of these coefficients when large
number of antennas are utilized. Also, (13) shows that in
Massive MIMO systems, AoA information is (almost surely)
never lost due to the contribution of the multipath signals.

These results, along with those presented in [9] for linear
arrays, provide a complementary theoretical basis for AoA
estimation (or refinement) using several path-loss signals with
the same order of power, like methods reported in [2], [14].

Now that we have a deterministic value for CRLBθ, we
can use it to study how different antennas contribute in θ
estimation and prioritize the antennas with high contribution
when only a portion of the total available antennas are utilized.

IV. ANTENNA SELECTION

This section studies the antenna selection for planar antenna
array configurations. The expectation of CRLBθ is mini-
mized w.r.t set of utilized antennas, using a greedy algorithm
whose optimal starting point will be presented.

In the following, we assume that F ≤ M number of
antennas has to be used. F can be either the number of
available RF-chains or the optimal point of the trade-off
between CRLB and energy consumption. We assume that
array dimensions are much smaller than UTs’ distances from
it, so the difference of received power for different antennas
is negligible.

From (9) and Theorem 1 it is seen that CRLBθ for a
planar array is a function of the traces of squared Σ1, Σ2,
and their product. When F antennas are utilized, Σ1 and Σ2

will be changed to Σ̃1 and Σ̃2, both with the size of F × F .
The diagonal elements of these matrices will be corresponding
values of selected antennas from Σ1 and Σ2. As the antenna
selection has to be done before the estimation of θ (and if
F is the number of RF-chains, even before reception of the
transmitted pilots by the UTs), there is no apriori knowledge
about the θ, except its distribution. With this in mind, we
minimize Eθ{tr(CRLBθ)}. So, noting that when F antennas
are utilized, the M−

1
2 normalization factor in (3) will be

changed to F−
1
2 and uniform distribution of UTs, we obtain

Eθ{tr(CRLBθ)} =
F
∑K
k=1(ρk(2σ2

h + |h̄k|2))−1

8β2 sin2(ϕk)
×(

tr(Σ̃
2

1 + Σ̃
2

2)

tr(Σ̃
2

1)tr(Σ̃
2

2)− (tr(Σ̃1Σ̃2))2

)
︸ ︷︷ ︸

U(S)

, (20)

where S is the set of selected antennas according to which
the elements of Σ̃1 and Σ̃2 are determined. The only part
affected by the selected set of antennas is U(S) (the part inside
parentheses), so we just need to minimize it. Minimization of
U(S) is a combinatorial optimization problem that we use a
greedy algorithm to solve it. F = 3 is the minimum possible
number of antennas for a planar antenna array (so they form a
plane). These first three antennas have to be selected together.
After selecting the first three antennas (starting point of the
antenna selection), we can proceed with a greedy algorithm
that, step by step, selects an antenna that reduces U(S) the
most.

Lemma 1. The best choice for first three antennas is S3 =
{(1, 1), (M1, 1), (1,M2)}.



Proof. The first choice has to be (1, 1)th antenna that is the
reference point w.r.t which the θ is measured. Moreover, the
other two antennas must have different indices in both di-
mensions, otherwise they compose a linear array. For notation
convenience, we define M ′1 = M1− 1 and M ′2 = M2− 1. Let
S̄3 = {(1, 1), (M1− a, 1 + b), (1 + c,M2− d)}, for any set of
non-negative integers {a, b, c, d} where

{a, c} ≤M ′1, {b, d} ≤M ′2,
a+ b+ c+ d ≥ 1,

(a+ c, b+ d) 6= (M ′1,M
′
2), (21)

be a set of three distinctive antennas other than S3. Evaluating
the corresponding U(S) for both S̄3 and S3 by using indices
of each group in (20), we have

U(S̄3) =
(M ′1 − a)2 + b2 + c2 + (M ′2 − d)2

((M ′1 − a)(M ′2 − d)− bc)2
,

U(S3) =
M ′21 +M ′22
(M ′1M

′
2)2

. (22)

Accordingly,

U(S̄3)((M ′1M
′
2)2)((M ′1 − a)(M ′2 − d)− bc)2

= (M ′1M
′
2)2(M ′1 − a)2 + (M ′1M

′
2)2b2 + (M ′1M

′
2)2c2

+ (M ′1M
′
2)2(M ′2 − d)2

(e)
> (M ′1(M ′2 − d))2(M ′1 − a)2

+ (M ′21 +M ′22 )b2c2 + ((M ′1 − a)M ′2)2(M ′2 − d)2

≥ ((M ′2 − d)(M ′1 − a)− bc)2(M ′21 +M ′22 )

= U(S3)((M ′1M
′
2)2)((M ′1 − a)(M ′2 − d)− bc)2, (23)

where (e) follows from the fact that b ≤M ′2 and c ≤M ′1 and
if both are equal either to zero or their maximum, due to (21),
either a or d has to be greater than zero. So,

U(S̄3) > U(S3). (24)

Based on (24), selecting any other set than S3 results in higher
U(S). Therefore, S3 is the best set of the first three antennas
that minimize U(S).

Now that the optimal start point for selection has been
found, the remaining F − 3 antennas will be selected using
a greedy algorithm. In each step, the antenna that decreases
U(S) more than others is added to the S until all of the
required antennas are selected. The algorithm is summarized in
Table I. It should be noted that as this selection is a static one,
the mentioned algorithm is only needed to run once for the
antenna configuration of the system. So, although it is low,
the algorithm’s computational complexity is not of concern
because it is not used in real-time.

In SectionV, it will be shown that although for a 2D
linear array, the optimal set is composed of furthest antennas
from the reference point [9], S∗ of a planar array mostly
consists of most separated antennas (whose x and y indices
has maximum difference), accompanied by a few numbers of
furthest antennas. We compare S∗ with both of these sets
separately, in addition to another algorithm that selects the

get F
S := S3

For f := 4 to F do
For x := 1 to M1 do

For y := 1 to M2 do
If (x, y) /∈ S do

S(f) := (x, y)
V (x, y) := U(S)

EndIf
EndFor

EndFor
S(f) := arg min

(x,y)
V

EndFor
return S

Table I: Greedy algorithm for optimal antenna selection

Figure 2: Deterministic and MC simulations of tr(CRLBθ).

closest antennas to the reference point. The latter’s importance
is that the behavior of its CRLB w.r.t number of antennas
can present some information about designing better antenna
arrays when it is not possible to build a larger one.

V. NUMERICAL RESULTS

In this section we verify the analytical results obtained in
previous sections using Monte-Carlo (MC) simulations and
illustrate the benefits of antenna selection. In the following,
ρk = 3, d

λ = 0.5, θk = {0, 2πK , . . . ,
2π(K−1)

K }, h̄k = 1 and
ϕk = π/3 for i ∈ {1, . . . ,K}. Also, channel coefficients are
Gaussian distributed random variables with σ2

h = 0.5.
Fig. 2 shows the values of tr(CRLBθ) in which dashed

lines are generated by MC simulations of (9), while solid ones
are computed using the deterministic expression in (13), when
M1 = M2 for K = 5, 15, 30. It should be noted that as the
trace ofCRLBθ is plotted, the gap between deterministic and
MC curves is actually the sum of K errors of each almost sure
convergence in (13). This explains the seeming increment of
the gap between MC and deterministic corresponding curves
as K grows. It is seen that (13) completely mimics the



Figure 3: Eθ{tr(CRLBθ)} for various antenna selection strategies.

behavior of actual CRLBθ with high accuracy. In the rest
of the figures, we only use deterministic formula.

Fig. 3 represents Eθ{tr(CRLBθ)} for four different an-
tenna selection algorithms, when M1 = 7, M2 = 6 and
K = 5. The reason that Eθ{tr(CRLBθ)} has increasing
behavior for some algorithms stems from the fact that the
received power is normalized w.r.t the number of utilized
antennas (3). So, for certain F , some algorithms have lower
Eθ{tr(CRLBθ)} compared to the case when all of the M
antennas are used (where all curves merge). The scenario
where the power is not normalized is also presented in Fig. 5.
It is seen that using the greedy algorithm, Eθ{tr(CRLBθ)}
is significantly reduced. Also, using antenna selection, there
will be a global optimal point in which Eθ{tr(CRLBθ)}
is minimized. In other words, there is an optimal point
for the trade-off between number of utilized antennas and
Eθ{tr(CRLBθ)} that happens before using all of the avail-
able antennas. In this regard, the greedy algorithm obtains
its minimum for F = 6, which is the lowest among all
algorithms. Moreover, other algorithms experience several
rapid deterioration and refinements, that is due to disordered
addition of antennas with low and high contributions in
Eθ{tr(CRLBθ)}, respectively.

In order to clarify these behaviors, Fig. 4 shows the antenna
configurations associated with different algorithms, when F =
12, for the same setting as that of Fig. 3. Selected antennas
of each method are specified using the same color and marker
as Fig. 3. The first set algorithm tries to complete a square in
each step. The 12th selected antenna of this method is (4, 2),
which has a mild effect in reducing CRLB in Fig. 3, while
the previous two antennas, (4, 1) and (1, 4), decreased the
CRLB relatively more. Therefore, sudden decreases happen
when the added antenna belongs to the most separated set. This
shows that in a planar array, antennas inside the array shape
do not contribute as high as those on the sides in terms of
the CRLB. The same phenomenon (with different intensities)

Figure 4: Selected antennas of each selection method for F = 12.

happens with the furthest and most separated sets at different
points. Finally, the greedy algorithm selects some of the most
separated antennas alongside some of the furthest ones (mostly
from the former) to achieve the best possible outcome. All in
all, Fig. 3 and Fig. 4 show that antennas on the boundary sides
of the array have higher contributions than those in the middle,
i.e., the further away from the main diagonal an antenna is,
the more the contribution it has. Interestingly, we see that
the optimal selection strategy creates a collection of four
divided sub-arrays for AoA estimation. This effect that four
smaller but separated sub-arrays can have better performance
in localization rather than one big array has also been reported
in [15] for systems that utilize large intelligent surfaces. Our
results show that similar effects happen for the Massive MIMO
systems, and the best performance is obtained when the sub-
arrays vary in size.

Fig. 5 illustrates the percentage of achieved CRLBθ versus
the percentage of utilized antennas when the M−

1
2 normaliza-

tion factor in (3) is removed. CRLBθ(f) is the CRLB when
f antennas are used. This figure indicates the efficiency of
hardware usage when antenna selection is utilized, correspond-
ing to the selection method. It is seen that by using the greedy
antenna selection method, more than 80% of the best possible
performance is achieved, only by using half of the antennas on
the array (i.e., the CRLBθ by using half of the total available
antennas is only 1

0.8 = 1.25 times the CRLBθ when all of
antennas are used). This can significantly increase both the
hardware and energy efficiency of the system. Therefore, with
or without the normalization factor, antenna selection has its
advantages, especially with the optimal selection method.

Fig. 6 presents the Eθ{tr(CRLBθ)} for K = 5, when
number of selected antennas is constant, F = 16, and the
array size increases with M1 = M2 + 2. This figure shows
how different methods appreciate the size of the antenna array.
Clearly, the first antenna set will remain constant as it does not
care about the total array size. The greedy algorithm and most



Figure 5: Ratio of obtained CRLBθ versus ratio of utilized antennas.

Figure 6: Eθ{tr(CRLBθ)} versus M for F = 16.

separated have a uni-mode behavior as the size increases. For
the furthest set, as long as the array is small enough, it will
contain more antennas on the array’s boundary sides relative
to those near the main diagonal. As the array size grows, the
ratio of antennas from the boundary to near diagonal ones will
decrease. Eventually, selected antennas will form a square (or
a rectangle) shape, in which the ratio will remain the same.
When this ratio starts to decrease, the CRLBθ rises, and
after the formation of the square (or the rectangle), CRLBθ

remains the same. So, only the greedy and most separated
methods always take full advantage of the total array size.

VI. CONCLUSION

In this paper, we have investigated the behavior of CRLB
for AoA estimation for planar antenna arrays in Multi-User
Massive MIMO system by using Random Matrix Theory.
We showed that in the asymptotic case, regardless of the
distribution of channel coefficients, CRLB almost surely

converges toward a deterministic expression that depends on
system parameters, namely the channel’s variance, instead of
its instantaneous realizations. This means that when dominant
path is in poor condition, AoA information is not lost and
theoretically confirms the results of recent works that use
multipath signals to refine their estimation. Moreover, antenna
selection for minimizing the CRLB is studied, and the best
method to minimize the expected CRLB when a fraction of
available antennas have to be used is presented as a greedy
algorithm. As a benchmark, other antenna selection methods
are also compared with the output of the greedy algorithm. We
showed that a greedy antenna selection significantly increases
system performance in terms of AoA estimation.
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