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Abstract

Aims The form of nitrogen (N) supply influences photorespiration in C3 plants, but whether nitrate (NO3
-)

regulates photorespiration and, if so, the underlying mechanisms for such regulation are still unclear.

Methods Three hydroponic experiments were conducted in a  greenhouse to investigate  the relationships

between leaf NO3
- concentrations and photorespiration rates in rice (Oryza sativa L.) genotypes cv. ‘Shanyou

63’ hybrid  indica and ‘Zhendao  11’ hybrid  japonica or  using mutants  that  overexpress  NRT2.1 (in cv.

‘Nipponbare’ inbred japonica). We estimated photorespiratory rate from the CO2 compensation point in the

absence of daytime respiration (Γ*) using the biochemical model of photosynthesis.

Results Higher Γ* values under high N level or NO3
- were significantly and positively correlated with leaf

NO3
-  concentrations. Further elevating leaf NO3

-  concentrations by either resuming NO3
- nutrition supply

after N depletion (in cv. ‘Shanyou 63’ hybrid indica and ‘Zhendao 11’ hybrid japonica) or using mutants that

overexpress NRT2.1 (in cv. ‘Nipponbare’ inbred japonica) increased Γ* values. Additionally, the activities of

leaf nitrate reductase (Nr) and concentrations of organic acids involving in the tricarboxylic acid (TCA)

cycle synchronously changed as environmental conditions were varied.

Conclusions Photorespiration rate is related to the leaf NO3
-  concentration, and the correlation may links to

the photorespiration-TCA derived reductants required for NO3
- assimilation. 

Keywords Rice (Oryza sativa L.) · Ammonium · Nitrate · Photorespiration rate · Tricarboxylic acid cycle · 

Malic acid
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Abbreviations

A, net photosynthetic rate; Ci, intercellular CO2 concentration; Ci*, apparent CO2 compensation point in the

absence of respiration; gm, mesophyll conductance; gs, stomatal conductance; JT, total electron transport rate

N,  nitrogen;  NH4
+,  ammonium;  NO3

-,  Nitrate;  Nr,  nitrate  reductase;  PPFD,  photosynthetic  photon  flux

density; Rd, day respiration rate; TCA, tricarboxylic acid; Γ*,  CO2 compensation point in the absence of

daytime respiration. 
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Introduction

The rate of photosynthesis in C3 plants is related to the carboxylation capacity of ribulose-1,5-bisphosphate

carboxylase/oxygenase (Rubisco), which catalyzes both the carboxylation and oxygenation of ribulose-1,5-

bisphosphate (RuBP) (Long et al. 2006; Timm et al. 2016). The product of the RuBP oxygenation reaction,

2-phosphoglycolate, is further metabolized in chloroplast, mitochondria, and peroxisomes (Long et al. 2006;

Somerville  2001).  This  process  is  called  photorespiration  and  is  closely  linked  to  many  physiological

processes,  including the carbon and nitrogen (N) cycle,  cell energy metabolism and redox regulation in

plants  (Hodges et al.  2016).  Generally,  photorespiration is regarded as an energetically wasteful process

(Voss et al. 2013; Walker et al. 2016), which consumes 25%–50% of the produced NADPH and 25%-30% of

the fixed carbon (Bauwe et al. 2010). However, more recent studies suggested that photorespiration maybe

more energy-efficient than previous assumed and this process stimulates chloroplastic malate production to

provide reductants for plant energy-intensive activities, therefore have positive effects on plant physiological

responses (Bloom and Lancaster 2018; Busch 2020). This aligns with observations that photorespiration is

extremely important for plant normal growth, despite its general adverse effects on carbon fixation and plant

productivity  at  normal  CO2/O2 conditions.  For  example,  the  knock-down  of  the  key  genes  encoding

photorespiratory enzymes will provoke abnormal plant growth (Timm and Bauwe 2013). In water-stressed

grapevine  (Guan  et  al.  2004),  high irradiated  soybean  (Jiang  et  al.  2006),  and  P.  syringae  pv.  tabaci

challenged Arabidopsis (Rojas et al. 2012), reduced photorespiration was linked to decreased plant tolerance

to indicate the role of the photorespiratory cycle in countering environmental stresses in  C3 plants. These

findings underline the importance of understanding the physiological  contribution of photorespiration in

plant growth and productivity. 

N nutrition is essential for photosynthesis and photorespiration  (Hodges et al. 2016). Generally, leaf

photosynthetic rates can be increased by N fertilization (Dordas and Sioulas 2008; Makino 2003; Makino

2011), but increasing N supply leads to a significant decrease in photosynthetic N use efficiency (PNUE,

calculated as the photosynthetic rate per unit leaf organic N content) (Li et al. 2012). One reason for this, is

the relative insufficient CO2 supply at the Rubisco carboxylation sites under high N conditions  (Li et al.

2012; Yamori et al.  2011),  which would enhance photorespiration rate  (Guilherme et al.  2019;  Li  et al.

2009). N concentrations in plant tissues decrease at elevated atmospheric CO2 condition, and the magnitude

of  the  decrease  exceeds  what  would  be  expected  by any dilution effect  from N driving production of

additional biomass (Bloom et al. 2002; Wujeska-Klause   et al.  , 2019; Dong   et al.  , 2018). Wujeska-Klause   et
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al.   (2019)  suggested that the decrease in N concentration may relate to the decreased activity of nitrate

(NO3
-) reductase, due to a limited supply of reductant from lower photorespiration at elevated atmospheric

CO2. Such changes are most probably connected to changes of organic acids in the tricarboxylic acid (TCA)

cycle  (Obata  et  al.  2016;  Timm et  al.  2015).  This highlights  the  link  between  photorespiration  and  N

metabolism.

Ammonium (NH4
+) and NO3

- are two forms of inorganic N and  photorespiration rates are higher in

NO3
- compared to NH4

+ fed plants (Guo et al. 2005). Moreover,  Oliveira et al. (2002)   described a negative

relationship  between  leaf  NH4
+ concentrations  and  photorespiration  rates  in  transgenic  tobacco  plants

overexpressing cytosolic glutamine synthetase. This clearly suggested that NO3
-, rather than NH4

+, is related

to photorespiration. However, the question of whether NO3
- is involved in photorespiratory regulation and its

mechanism has not been systematically studied. 

In the present  study, three different  experiments were conducted in rice  (Oryza sativa L.) plants to

address these questions. Firstly, two rice genotypes (cv. ‘Shanyou 63’ and ‘Zhendao 11’) were supplied with

the combinations of three different N levels (Low-N: 10 mg L-1; Medium-N: 40 mg L-1 and High-N: 100 mg

L-1) and three different N forms (NH4
+,  NO3

-,  and the mixture of equal mol of NH4
+ and  NO3

-), to study

whether photorespiration rate is related to the bulk leaf N content, or related to the inorganic N of NH4
+ or

NO3
-.  Secondly,  the  rice  plants  of  ‘Shanyou  63’ and  ‘Zhendao  11’ were  supplied  with  N-free  nutrient

solutions for one week to deplete leaf inorganic nitrogens. They were then supplied with three different

concentrations of NO3
- (20, 40 and 60 mg NO3

- L-1) for three days to assess the effect of exogenous supply of

NO3
- on  photorespiration  rates.  Thirdly,  the  differences  in  photorespiration  rate  were  studied  in  two

transgenic lines of rice plants (cv. Nipponbare), overexpressing the OsNRT2.1 which encodes a high-affinity

NO3
- transporter,  to  investigate  whether  photorespiration  rates  can  be  influenced  through  genetic

manipulation.  Finally,  the  underlying  mechanisms  were  discussed,  linking  leaf  NO3
- content, leaf  N

metabolism, and the photorespiration process. 
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Material and methods

Plant material and growth conditions

Two rice cultivars ‘Shanyou 63’ hybrid indica China and ‘Zhendao 11’ japonica China were selected in this

study. Rice seeds were surface sterilized in 10% H2O2 (V/V) for 30 min and washed thoroughly with water;

then they were transferred to a mesh for germination at 37 °C. When the seedlings had developed an average

of 2-3 visible leaves, they were transplanted into 6.0 L containers (30×20×10 cm) containing 1/4 strength of

NH4
+ and  NO3

- mixture nutrient solution (see compositions below) with 12 seedlings per container. Three

days later, the seedlings were supplied with a 1/2 strength NH4
+ and NO3

- mixture nutrient solution. Another

three days later, they were then supplied with full-strength NH4
+ and NO3

- mixture solutions. One week later,

different treatments were applied to the plants as indicated by the requirements of a given experiment. 

The  compositions  of  the  full-strength  of  NH4
+ and  NO3

- mixture  nutrients  were  as  follows.

Macronutrients: 40 mg L-1 (2.85 mM) N as equal mol of (NH4)2SO4 and Ca(NO3)2, 10 mg L-1 phosphorus (P)

as KH2PO4, 40 mg L-1 potassium (K) as K2SO4 and KH2PO4, and 40 mg L-1 magnesium (Mg) as MgSO4.

Micronutrients: 2.0 mg L-1 iron (Fe) as Fe- EDTA, 0.5 mg L-1 manganese (Mn) as MnCl2·4H2O, 0.05 mg L-1

molybdenum  (Mo)  as  (NH4)6Mo7O24·4H2O,  0.2  mg  L-1 boron  (B)  as  H3BO3,  0.01  mg  L-1 zinc  (Zn)  as

ZnSO4·7H2O, 0.01 mg L-1 copper (Cu) as CuSO4·5H2O, and 2.8 mg L-1 silicon (Si) as Na2SiO3·9H2O. A

nitrification inhibitor (dicyandiamide, DCD) was added to each nutrient solution to prevent the oxidation of

NH4
+. The nutrient solution was changed every 3 days, and the pH was adjusted to 5.50 ± 0.05 by every day

using  0.1  mM HCl  and  0.1  mM  NaOH.  All  of  the  following  three  experiments  were  conducted  in  an

environmental-controlled growth room.  The environmental conditions in the growth chamber were set to

30/20°C day/night temperature, 70% air humidity,  400 μmol mol-1 CO2 concentration, 1000 μmol m-2 s-1

photosynthetic photon flux density (PPFD) at the leaf level, and a 12-h photoperiod. 

Experiment I

After growth on full-strength of NH4
+ and NO3

- solution for one week, ‘Shanyou 63’ and ‘Zhendao 11’

were  divided  into  nine  groups,  with  the  combinations  of  three  different  N  levels  (Low-N:  10  mg  L-1;

Medium-N: 40 mg L-1 and High-N: 100 mg L-1) and three different N forms (NH4
+, NO3

-, and the mixture of

equal mol of NH4
+ and NO3

-). All other nutrients, except for N, were as listed above. N was supplied with

different concentrations, with either NH4
+,  NO3

-, or an equal mol of NH4
+ and  NO3

-. The Ca content with

NH4
+ and the equal mol of NH4

+ and NO3
- treatments were compensated by the addition of CaCl2 to the level

in  NO3
- solution.  Three  weeks  after  treatments,  gas-exchange  and  fluorescence  measurements  were
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conducted and the fresh leaf samples were flash-frozen with liquid nitrogen, and then stored at -80 °C before

further analysis.

Experiment II 

After the supplement of full-strength of NH4
+ and NO3

- mixture solution for one week, ‘Shanyou 63’

and  ‘Zhendao  11’ were  supplied  with  N-free  nutrient  solutions  for  one  week  to  deplete  leaf  inorganic

nitrogens. All other nutrients were as listed above. Afterwards, the seedlings were divided into three groups

and supplied  with  different  levels  of NO3
- (20,  40 and  60 mg NO3

- L-1)  for  three  days.  Thereafter,  the

measurements of gas-exchange, fluorescence and biochemical parameters were conducted. 

Experiment III

Two transgenic  lines of rice (ssp.  Japonica cv. ‘Nipponbare’) plants,  overexpressing the  OsNRT2.1

gene using a ubiquitin (Ubi) promoter (pUbi: OsNRT2.1) or the OsNAR2;1 promoter (pOsNAR2.1-NRT2.1).,

together  with  their  wild  type  were  supplied with  full-strength NH4
+ and NO3

- solutions  for  two  weeks.

Thereafter, the measurements of gas-exchange, fluorescence and biochemical parameters were conducted.

Detailed description of the transgenic genotypes can be found in Chen et al. (2016)  .

Gas exchange and fluorescence measurements 

The  light-saturated  photosynthetic  rate  and  chlorophyll  fluorescence  of  newly  expanded  leaves  were

measured from 9:30 to 15:30 in the growth chamber  using a Li-Cor 6400 portable photosynthesis  open

system  (LI-COR,  Lincoln,  NE,  USA).  Leaf  temperature  during  measurements  was  maintained  at

28.0±0.5°C, with a photosynthetically active photon flux density (PPFD) of 1500 μmol photons m-2 s-1. The

CO2  concentration in the chamber was adjusted to 400±10 μmol CO2 mol-1, and the relative humidity was

maintained  at approximately  40%.  After  equilibration to  a  steady-state  (about  10 min),  0.8  s  saturating

pulses of saturating light (~8,000 mol m-2 s-1) were supplied to measure the total electron transport rate (JT),

the  maximum  and  steady-state  fluorescence  (Fm´and  Fs,  respectively),  the  net  photosynthesis  rate  (A),

stomatal conductance (gs), and intercellular CO2  concentration (Ci). The actual photochemical efficiency of

photosynthetic system II (ϕPSII) was calculated as:

ϕPSII=
(Fm´−F s)
Fm´

Then the total electron transport rate (JT) was calculated as:

JT=ϕPSII×PPFD×α leaf×β
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where  αleaf is the leaf absorptance and β is the partitioning of absorbed quanta between PSII and PSI.

The values of αleaf and β were designated as 0.85 and 0.5 respectively according to Manter and Kerrigan

(2004)  .

Measurement of day respiration rate (Rd) and the CO2 compensation point in the absence of respiration (Γ*)

The Rd and apparent CO2 compensation point in the absence of respiration (Ci*) were measured through the

A/Ci response curves on newly expanded leaves of rice plants. This takes advantage of the photorespiration

rate being dependent on and Rd being independent of PPFDs. When A/Ci response curves were conducted at

a various of CO2 concentrations and PPFDs, they intersected at a single point where A was taken as -Rd, and

Ci represented Ci* (Supplementary Fig. 1). The PPFDs used in the cuvette were a series of 150, 300, and 600

μmol photons m-2 s-1. At each PPFD, ambient CO2 concentration (Ca) was adjusted to a series of 25, 50, 75,

and 100 μmol CO2 mol-1. Thirty minutes prior to initiating measurements, leaves were placed in a cuvette at

a PPFD of 600 μmol photons m-2 s-1 and a Ca of 100 μmol CO2 mol-1. 

According to  Pons et al.  (2009)   and  Harley et al.  (1992)  , Γ* was then calculated according to the

following equations:

Γ
¿=C i

¿+
Rd

gm

gm=
A

{C i−Γ ¿
×

[JT+8 (A+Rd )]
[JT−4 (A+Rd ) ]}

where gm represents leaf mesophyll conductance.

Measurement of leaf total N, NH4
+ and NO3

- content

The total N in rice leaves was determined by the Kjeldahl H2SO4–H2O2 digestion method of  Nelson and

Sommers (1972)  . The extraction and measurement of NH4
+ and NO3

- were conducted following the method

of  Cataldo et al. (1975)   and  (Cataldo et al. (1975); Wang et al. (2016)), with minor modification. For the

measurement of leaf NH4
+ content, 0.5 g fresh sample was homogenized with 5 mL of 0.3 mM H2SO4, and

NH4
+ content was determined using the phenol–hypochlorite method after centrifugation at 15,000×g for 15

min. To measure NO3
- content, 0.5 g leaf sample was homogenized with 5 mL distilled water, followed by

the transfer to 10 mL centrifuge tubes. They were then boiled in a water bath for 30 min, cooled down to
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room temperature and then centrifuged at  5,000×g for 10 min. Afterwards, 0.1 mL supernatant liquid was

taken to a new tube, with an addition of 0.4 mL 5% sulfuric acid-salicylic acid solution. Following vortexing

for 20 min at room temperature, 9.5 mL 8% sodium hydroxide were added and the Ab410nm was measured in

a spectrophotometer.

Measurement of nitrate reductase (Nr) activity

In order to measure Nr activity, 1.0 g fresh weight of rice leaf was ground with fine sand beads in a cold

mortar containing 4 mL of 0.1 M potassium phosphate buffer (pH 7.5), 1 mM EDTA, 3 mM cysteine, and

3% (w/v) casein. The homogenate was centrifuged at 4,000×g for 15 min, and the supernatant was reacted

with 100 mM potassium nitrate buffer (pH 8.8) and 2 mg mL-1 NADH at 25 °C for 30 min. The reaction was

terminated by adding 1 % sulphanilamide. 1 % N-(1-naphthyl) ethylene-diamine hydrochloride was then

added, centrifuged at 4,000×g for 5 min, and the Ab540nm measured in a spectrophotometer.

Organic acid measurement

The organic acids were extracted and identified according to the method developed by Ji et al. (2005)  . 500

mg frozen leaf sample was ground in a mortar with 2 mL of methanol: water (80:20, v/v). The solvent was

collected into a microcentrifuge tube, shaken at 1200 rpm for 3 min and then centrifuged at 12,000×g for 5

min. The supernatant was assessed using high-performance liquid chromatography (HPLC) analyses. 

Standard organic acid compounds for HPLC are used, including oxalic acid, malic acid, glycolic acid,

glyoxylic acid, 2-ketoglutarate acid and oxaloacetic acid. The compounds were identified using an HPLC

system (Agilent 1200, USA) with an XDB-C18 column (4.6×250 mm, Agilent, USA) (Ling et al. 2011). The

analytical  conditions  were  as  follows,  chromatographic  column:  XDB-C18  (4.6  mm  ×  250  mm),  the

temperature of column: 40 °C, detector wavelength: 210 nm, and injection volume: 20 μL. The mobile phase

consisted  of  70%:30% (v/v) acetonitrile  (A)  and  20  mM  ammonium  acetate  buffers  (B)  with  gradient

elution. The gradients were established as follows: 0 min, 95% A plus 5% B at a flow rate of 0.4 mL min-

1→1 min, 95% A plus 5% B at a flow rate of 0.4 mL min-1→16 min, 90% A plus 10% B at a rate of 0.5 mL

min-1→20 min, 90% A plus 10% B at a rate of 0.5 mL min-1→stop. Only high purity chemicals were used,

and the solvents were HPLC spectral grade. Major peaks were identified by comparing the retention time

with that of the matching standards.
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Statistical analysis

One-way analysis of variance (ANOVA) was applied to assess differences using the SPSS 16.0 statistical

software package. Each mean was based on 4 experimental replicates and calculated standard deviations

(SD) are reported. Significance was tested at the 5% level.
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Results

Effects of different N supply on rice growth and leaf gas-exchange parameters 

Feeding with high N significantly increased plant height and shoot biomass (P < 0.01) but limited the root

growth in both  ‘Shanyou 63’ and  ‘Zhendao 11’ (Supplementary  Table 1). This resulted in a significantly

lower  root/shoot ratio with increasing N supply. Different  N forms also have a significant effect on root

growth. Root length and root biomass were both larger in  NO3
- than in NH4

+ treatments, although shoot

biomass did not significantly differ (Supplementary Table 1).

In both genotypes, A, gs, Ci and JT were significantly increased with N concentration (P < 0.01). N form

had no influence on leaf A in rice seedlings growth at low-N and medium-N levels (P = 0.56 and P = 0.115,

respectively). However, at high-N, N form had significant effect on leaf A values (P = 0.03) with the lowest

value in NO3
- treated ‘Zhendao 11’ seedlings (Table 1). Further, Ci was significantly higher in NO3

- than in

NH4
+ supply, regardless of N levels and rice cultivars.

Effects of different N supply on Ci*, Rd, gm and Γ*

Γ* values  were significantly different  between rice cultivars,  N levels  and  N forms (Table  1).  Γ* was

significantly increased with increased N levels, in both ‘Shanyou 63’ (P < 0.001) and ‘Zhendao 11’ (P <

0.001).  The changes in Ci* and gm were consistent with Γ*, while Rd was significantly reduced under high-N

compared with low-N and medium-N conditions. Ci* and Γ* values were significantly higher in  NO3
-  fed

than in NH4
+ fed seedlings (P < 0.001). No significant difference was observed in Rd and gm between the N

forms (Table 2). 

Leaf total N and inorganic N concentrations in newly expanded rice leaves

In both ‘Shanyou 63’ and ‘Zhendao 11’, leaf total N concentrations increased with the increasing N levels (P

< 0.01),  regardless  of N forms (NH4
+  vs  NO3

-)  (Fig.  1 A,  B).  NH4
+ concentration in ‘Zhendao  11’ was

remarkably higher than that in ‘Shanyou 63’ (P < 0.001), in contrast, leaf NO3
- concentration was lower in

‘Zhendao 11’ than in ‘Shanyou 63’. Leaf NH4
+ concentration in rice seedlings was not significantly changed

by N supply forms. However, the leaf NO3
- concentration was dramatically higher in NO3

- fed than in NH4
+

fed seedlings (Fig. 1 E, F).

Correlations between leaf Γ* and N status
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The linear correlation analysis was conducted between Γ* and total N, NH4
+ or NO3

-  (Fig. 2). A significant

positive  correlation  was  observed  between  leaf  NO3
- concentrations  and  Γ*  values,  regardless  of  rice

cultivars or treatments. In contrast, no significant relationship was observed between Γ* values and leaf total

N or NH4
+ concentrations. 

Effect of short-term exogenous NO3
- supply after N depletion on Γ*

Leaf NO3
- concentrations and Γ* were gradually increased by increasing exogenous NO3

- levels in both rice

cultivars (Fig. 3A and 3B). There were no significant differences in the concentrations of leaf glycolic acid

and glyoxylic acid, the two most important metabolites in the photorespiratory pathway, between 20 and 40

mg L-1 NO3
- supply after N depletion (Fig. 3C). Compared with those under 20 mg L-1 NO3

- supply, under 60

mg  L-1 NO3
- treatment,  glycolic  acid  and glyoxylic  acid  concentrations  were  increased  by 26.44% and

166.32%, respectively, in ‘Shanyou 63’; while they were increased by 92.87% and 22.82%, respectively, in

‘Zhendao 11’. In addition,  leaf  NO3
- concentrations and  Γ* were significantly and positively correlated in

both ‘Shanyou 63’ (P < 0.01) and ‘Zhendao 11’ (P < 0.05) (Fig. 3 D).

The variation in Γ* between the wild type lines and the lines overexpressing OsNRT2.1 

Leaf NO3
- concentrations in pOsNAR2.1:OsNRT2.1 and pUbi:OsNRT2.1 Nipponbare leaves were 57% and

102% higher  than in  WT (Fig.  4A).  Interestingly,  leaf  Γ* values  also  increased  by 15.7% and  26.4%,

respectively (Fig. 4B). A significant positive correlation between leaf NO3
- concentration and Γ* value was

also  seen  in  different  lines  of  Nipponbare  plants  (Fig.  4C).  However,  glycolic  acid  and  glyoxylic  acid

concentrations did not significantly differ between different lines (Fig. 4D).

Leaf nitrate reductase (Nr) activity and organic acids concentrations 

Nr activities increased with the exogenous NO3
- supply in both cultivars (Fig. 5A). When comparing plant

treated with 20 mg L-1 NO3
- with 60 mg L-1 NO3

-, Nr activity was significantly increased by 112.64% and

66.45%,  respectively,  in  ‘Shanyou  63’ and  ‘Zhendao  11’.  Nr  activities  in  transgenic  Nipponbare lines

(pOsNAR2.1:OsNRT2.1 and pUbi:OsNRT2.1) were also much higher than WT (Fig. 5 B). 

In  both  ‘Shanyou 63’ and  ‘Zhendao  11’,  the content  of  organic  acids  involved  in  the  TCA cycle

increased with exogenous NO3
- supply (Fig. 6). Similarly, transgenic Nipponbare lines exhibited markedly

increased oxalic acid and 2-ketoglutaric acid concentrations compared to WT (Fig. 6 B, H). However, the
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concentrations of oxaloacetic acid and malic acid did not significantly changed in the transgenic lines of

Nipponbare plants (Fig. 6 D, F).
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Discussion

The estimation of photorespiration rate

Some time ago,  Sharkey (1988)   considered the four different methods used for the determination of leaf

photorespiration rate, which are the post illumination burst of CO2, inhibition of photorespiration by O2, CO2

efflux into CO2-free air, and the ratio of 14CO2 to 12CO2 uptake. However, neither of them have been widely

used due to their respective limitations  (Busch et al. 2012; Sage and Pearcy 1987; Sharkey 1985).  Busch

(2013)   characterized multiple newly developed techniques, including 12CO2 efflux into a 13CO2 atmosphere,

14C-labelling  of  photosynthates,  photorespiratory  ammonia  production,  18O-labelling  of  photorespiratory

metabolites  and  13C-labelling  of  phosphorylated  Calvin–Benson cycle  intermediates.  Nevertheless,  these

methods  may  underestimate  photorespiration  rate  as  they  neglect  the  responses  of  Rd to  high  CO2

concentrations,  mitochondrial ammonia refixation and O2 uptake, or  re-assimilation of the photorespired

CO2 (Busch et al. 2012; Cousins et al. 2008; Mattsson 1996). 

Both Sharkey (1988)   and Busch (2013)   emphasized the applicability of the Farquhar, von Caemmerer,

and Berry (FvCB) model (Farquhar et al. 1980) to indirectly estimate photorespiration rate, by measuring �

*. This method has been used widely during the past decades (Busch 2013; Li et al. 2013; Wujeska-Klause

et al. 2019). Moreover, the consistent changes seen between photorespiratory metabolites contents and the

estimated  photorespiration  rate  from  �*,  using  the  FvCB model,  support  the  applicability  of  the  latter

method (Shen et al. 2019; South et al. 2019). In the present study, the responses of �* to N nutrition as well

as rice genotypes proved to be more sensitive than that of photorespiratory metabolites (Fig. 3,  Fig. 4),

which again suggested the  value of  the FvCB model.  Therefore,  this  method was used to  evaluate  the

photorespiration rate.

The interactive relationship between leaf NO3
- concentrations and �*

Our results clearly showed that Γ* was related to leaf NO3
- content, rather than reflecting bulk leaf N content

or leaf NH4
+ content, and the process of N metabolism may involve in the linkage (Fig. 2, Fig. 5). Moreover,

we also found that Γ* can be genetically modified by overexpressing the gene of OsNRT2.1 (Fig. 4). These

findings are of great importance to agricultural production, especially in the context of global warming,

because photorespiration increases exponentially with temperature. Interestingly, the variations of  gm to N

supply are much greater than that of Γ* (Table 1). The main reason for such an event is the sensitivity of gm

determinants,  including  cell  wall  thickness,  chloroplast  size  and  carbonic  anhydrase  activity, to
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environmental changes  (Flexas et al. 2008; Xiong et al. 2015). However, the  Γ* responses are relatively

smaller due to the photorespiratory CO2 re-assimilation and the affinity of Rubisco for CO2 (Berghuijs et al.

2017). 

Our positive correlation between leaf NO3
- content and photorespiration rate is supported by previous

studies  (Frechilla et al. 1999; Lawlor et al. 1987), where  leaf  photorespiration rate and glycolate oxidase

activity were higher in NO3
- fed wheat and pea plants. Moreover, the expressions of PGP (phosphoglycolate

phosphatase) and GDCT (glycine decarboxylase T-protein) genes, which encode the enzymes involving in

the photorespiratory processes, were upregulated by NO3
- supply (Parker and Armbrust 2005). 

The variation in Nr activity with different NO3
- treatments and across different transgenic lines were

similar to those in Γ* values (Figs. 3-5). This has also been observed in Eucalyptus trees (Wujeska-Klause et

al. 2019). A positive relationship between photorespiration rate and  NO3
- assimilation was also indirectly

suggested by the responses of plant growth to environmental CO2 concentrations, which can significantly

affect  photorespiration rate.  For  instance,  the adverse  effect  of sub-ambient  CO2 on the  growth rate  of

loblolly  pine  was  relieved  when  receiving  NO3
- rather  than  NH4

+ nutrition  (Bloom  2015).  Such  a

phenomenon  may  be  caused  by  increased  NO3
- assimilation  under  high-photorespiration  condition.

Conversely, growth promotion with enriched CO2 concentrations was lower in NO3
- compared to NH4

+-fed

California grassland, wheat, and Arabidopsis (Bloom 2015; Bloom et al. 2010; Rachmilevitch et al. 2004).

Moreover,  the enriched CO2 inhibits  NO3
- assimilation into organic nitrogen compounds. Taken together

these data indicate the close relationship between photorespiration with NO3
- and NO3

- metabolic processes. 

The potential mechanisms linking photorespiration and nitrate assimilation 

The present study showed increases in TCA cycle organic acids with increased NO3
- content and enhanced

photorespiration  rate  (Fig.  6).  Such  links  between  leaf  NO3
- and  organic  acids  have  been  previously

documented in tobacco (Scheible 2000), tomato (Martinez-Andujar et al. 2013) and cucumber (Wang et al.

2018) plants. The reducing power (NADH) required for NO3
- reduction may be the key link between NO3

-

and such organic acids due to the derivation of NADH from the “malate shuttle” between cytoplasm and

mitochondria (Martinoia 1994; Scheible 1997). This is relevant as photorespiration is a vital redox transport

system which increases the ratio of cytosolic NADH/NAD+ through malate transport, from the chloroplast

through the cytoplasm and into the peroxisome (Bloom 2015; Bloom et al. 2010; Voss et al. 2013). Thus, the

TCA cycle is proposed as the critical metabolic process that connecting photorespiration, respiration, and N
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assimilation (Foyer et al. 2011). 

The  relationships  between  leaf  NO3
- and  photorespiration  is  clear  when  all  of  these  features  are

considered. When NO3
- is transported and accumulated in leaf tissue, NADH is required for NO3

- reduction.

The required NADH is produced from mitochondrial “malate shuttle”,  which is tightly coupled with the

photorespiratory pathway that consumes malic acid in the peroxisome. Hence, the photorespiration cycle

may  be  driven  by  NO3
- assimilation  (Bauwe  et  al.  2010;  Rachmilevitch  et  al.  2004). Interestingly,  the

NADH/NAD+ ratio  was  surprisingly  higher  under  photorespiration  conditions  (low  CO2),  which  was

inhibited  in  the  glycine  decarboxylase  complex-deficient  mutants  (Taniguchi  and  Miyake  2012).  This

provides more evidence that NADH status and photorespiration process were closely related. Schneidereit et

al. (2006)   reported that, after the antisense-repression of plastidic dicarboxylate translocator 1-[2-OG/malate

translocator]  in  tobacco,  leaf  NO3
- was  dramatically  accumulated  with  the  inhibited  Nr  activity  when

compared with their wild types. Therefore, leaf photorespiration is tightly linked to NO3
- reduction through

the metabolisms of organic acids and the change in leaf  NO3
- status is an important factor affecting the

photorespiration rate.
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Conclusions

Our results suggested that the high-N or NO3
- nutrition induced increase in photorespiration is related to the

accumulated leaf NO3
- content. Furthermore, the causal-relationship between leaf NO3

- and photorespiration

rate was demonstrated both physiologically and biochemically. We suggest that this may be caused by an

association of NO3
- assimilation, malate transportation and photorespiration.
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Supplementary Table 1 Effect of different nitrogen (N) levels and forms on the height (cm), root length

(cm), root and shoot biomass (g plant-1) and root/shoot ratio of rice seedlings (‘Shanyou 63’ and ‘Zhendao

11’).

Supplementary Fig. 1 The measurement of apparent CO2 compensation point in the absence of respiration

(Ci*)  and  day  respiration  rate  (Rd)  in  rice  plants  (‘Shanyou  63’ and  ‘Zhendao  11’)  under  medium-N

conditions (40 mg N L-1) in the form of ammonium (NH4
+, A), the mixture of equal mol of NH4

+ and NO3
-

(NH4
+/  NO3

-, B) or nitrate (NO3
-, C). Squares, circles and triangles represent different light intensity (150,

300, 600 μmol m-2s-1,  respectively).  Lines were fitted  by linear  regression and the co-ordinates of their

intersection were taken as estimates of Ci* and Rd. 
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Tables

Cultivars Treatments A gs gm Ci JT Ci* Rd Γ*

NH4
+

Low-N 16.4±1.8d 0.19±0.04d 0.13±0.03b 256±14c 155.01±8.51d 30.22±0.99f 0.72±0.18a 35.97±0.87ef

‘Shanyou 63’

Medium-N 22.3±1.5b 0.29±0.06bc 0.21±0.06ab 260±4bc 175.15±10.54bc 34.74±1.14e 0.53±0.05abc
37.40±1.35cd

e

High-N 21.9±1.9b 0.35±0.06ab 0.24±0.09ab 269±6abc 169.77±1.88c 37.10±1.36d 0.40±0.19bcd 38.76±1.45cd

NH4
+

/

NO3
-

Low-N 18.3±1.4cd 0.29±0.03bc 0.14±0.04b 279±6ab 149.28±8.11d 32.19±1.01f 0.57±0.11ab 36.69±2.89de

Medium-N 25.0±0.7a 0.39±0.01a 0.25±0.08ab 281±4a 185.74±7.26ab 38.16±1.61cd 0.34±0.10cd 39.63±1.38bc

High-N 25.9±1.1a 0.40±0.01a 0.30±0.11a 287±11a 189.55±6.87a 40.79±2.59ab 0.22±0.09d 41.58±2.24ab

NO3
-

Low-N 16.9±2.1d 0.23±0.02cd 0.21±0.09ab 277±13ab 129.28±10.63e 30.69±1.09f 0.57±0.09ab 33.81±0.94f

Medium-N 20.3±1.0bc 0.35±0.04ab 0.22±0.07ab 280±5ab 157.79±2.60d 39.68±0.96bc 0.47±0.07bc 41.93±0.79ab

High-N 24.5±0.5a 0.40±0.01a 0.27±0.07a 284±5a 182.73±0.80ab 42.63±1.13a 0.34±0.16cd 43.93±0.69a

NH4
+

Low-N 13.3±0.5d 0.17±0.01d 0.09±0.01ab 246±14c 153.58±16.59abc 27.17±0.64f 0.72±0.0ab 34.94±0.50e

‘Zhendao 11’

Medium-N 15.6±0.7bc 0.21±0.01bcd 0.09±0.01ab 257±6bc 179.42±3.32ab 31.52±1.23cd 0.40±0.09cd 35.86±0.62de

High-N 16.7±1.4b 0.23±0.01ab 0.10±0.01a 263±6abc 188.97±8.55a 34.39±0.75b 0.29±0.03d 37.34±0.76cd

NH4
+

/

NO3
-

Low-N 14.2±0.8cd
0.21±0.02abc

d

0.09±0.03abc

d
264±6abc 145.37±8.75bc 28.02±1.49f 0.76±0.09a 37.27±1.11cd

Medium-N 15.6±1.3bc 0.24±0.03ab 0.07±0.01bcd 265±7ab 168.22±21.53abc 30.06±1.38de 0.61±0.10b 38.39±1.61bc

High-N 19.1±2.2a 0.26±0.03a 0.09±0.02abc 266±4ab 187.89±20.52a 34.76±1.26b 0.40±0.11cd 39.24±0.53b

NO3
-

Low-N 14.3±0.4cd 0.18±0.02cd 0.07±0.01cd 267±4ab 134.52±23.70c 28.94±0.85ef 0.66±0.07ab 38.22±1.04bc

Medium-N 14.7±1.3cd 0.20±0.01bcd 0.07±0.01d 272±4ab 163.91±24.72abc 32.04±1.21c 0.49±0.08c 39.56±0.28b

High-N 15.8±0.5bc 0.22±0.03abc 0.07±0.01cd 279±11a 174.65±13.11abc 37.46±1.93a 0.31±0.10d 41.96±1.69a

Cultivars ** ** ** ** ns ** ns *

N levels ** ** ** ** ** ** ** **

N forms ** ** ns ** ** ** ns **

 Table 1 Effect of different nitrogen (N) levels and forms on the net photosynthetic rate (A,  μmol CO2 m-2 s-1) , stomatal conductance (gs, mol H2O m-2 s-1),  mesophyll

conductance (gm, mol m-2 s-1), intercellular CO2 concentration (Ci, μmol CO2 mol-1), electron transport rate (JT, μmol photons m-2 s-1), apparent CO2 compensation point in the

absence of respiration (Ci*,μmol CO2 mol-1), day respiration rate (Rd, μmol CO2 m
-2 s-1) and CO2 compensation point in the absence of daytime respiration (Γ*, μmol CO2 mol-

1) of rice seedlings (‘Shanyou 63’ and ‘Zhendao 11’).
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Rice plants (‘Shanyou 63’ and ‘Zhendao 11’) were supplied with three N levels (10 mg L-1 N as low-N, 40 mg L-1 N as medium-N and 100 mg L-1 N as high-N) in the form of

ammonium (NH4
+), nitrate (NO3

-) or the mixture of equal mol of NH4
+ and NO3

- (NH4
+/ NO3

-). The data are from Experiment 1 and the values represent the means ± SD of 4

biological replicates. ANOVA results are indicated; different letters indicate significant differences in the same genotype, P < 0.05. * and ** indicate significant difference at

0.05 and 0.01 probability levels, respectively; ns indicates a non-significant difference.
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Figure Legends

Fig. 1 Effect of different N levels and forms on the concentrations of leaf total-N (A, B), ammonium (NH4
+, C,

D) and nitrate (NO3
-, E, F) in ‘Shanyou 63’ (A, C, E) and Zhandao 11 (B, D, F).

The  data  are  from Experiment  1  and  the  values represent  the  means  ± SD of  four  replicates.  Significant

differences  between  treatments  are  indicated  by  different  letters  (P <  0.05).  *  and  **  indicate  significant

differences at P < 0.05 and P < 0.01, respectively; ns indicates a non-significant difference at P < 0.05 level. 

DW: dry weight, FW: fresh weight. LN: Low-N level, 10 mg L-1 N; MN: Medium-N level,  40 mg L-1 N; HN:

High-N level,  100 mg L-1 N. NH4
+:  ammonium nutrient  solution;  NO3

-:  NO3
- nutrient  solution;  NH4

+/ NO3
-:

mixture nutrient solution with equal amount of NH4
+ and NO3

-.

Fig. 2 The linear relationships of Γ* with leaf total N and available N (ammonium and nitrate) contents under

different N levels and forms in both  ‘Shanyou 63’ (red circle) and ‘Zhendao 11’ (blue diamond).  The data are

from Experiment 1 and the values represent the means ± SD of four replicates.

DW: dry weight; FW: fresh weight; Γ*: CO2 compensation point in the absence of respiration.

Fig. 3 Effect of exogenous supply of NO3
- on the leaf NO3

- concentrations (A), Γ* values (B), the relative leaf

concentrations of glycolic acid and glyoxylic acid (C), and the correlation between leaf NO3
- concentrations and

Γ* values (D) in newly expended leaves of ‘Shanyou 63’ and ‘Zhendao 11’. 

The lines in panel D represent linear regressions, and the regression equation are y = 202.920x + 12.277, R2 =

0.6945, P < 0.01 for ‘Shanyou 63’ and y = 77.203x + 29.793, R2 = 0.9844, P < 0.05 for ‘Zhendao 11’.

FW: fresh weight; Γ*: CO2 compensation point in the absence of respiration.

The exogenous NO3
- were supplied after 3 days of N depletion, and the levels of the exogenous NO3

- were 20, 40

and 60 mg L-1, respectively. The data  are from Experiment 2 and the values represent the means ± SD of four

replicates, and the bars indicate the SD. Significant differences between treatments are indicated by different

letters (P < 0.05).

Fig. 4 The leaf NO3
- content (A), Γ* values (B), the relative leaf concentrations of glycolic acid and glyoxylic

acid (C) and the linear relationship  between leaf  NO3
- concentrations and Γ* values (D) in newly expended

leaves of WT and transgenic lines of Nipponbare.

The lines represent linear regressions and the regression equation is y = 60.955 x + 27.223, R2 = 0.998, P < 0.01.
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The transgenic lines of Nipponbare enhanced the expression of the OsNRT2.1 gene that encodes a high-affinity

NO3
- transporter,  using  a  ubiquitin  (Ubi)  promoter  (pUbi:OsNRT2.1)  or  the  NO3

- inducible  promoter

(pOsNAR2.1-NRT2.1) of the OsNAR2.1 to drive OsNRT2.1 expression in transgenic rice plants.

Nipponbare plants were supplied with  full-strength nutrient under medium-N level (40 mg L-1).  The data  are

from Experiment 3 and the values represent means of four replicates; bars indicate SD. Significant differences

between treatments are indicated by different letters (P < 0.05).

Fig. 5 (A) Effect of exogenous NO3
- supply on the leaf nitrate reductase (Nr) activities in newly expended leaves

of  ‘Shanyou 63’ and  ‘Zhendao  11’ after  N depletion;  (B) Leaf  Nr activities  in WT and  transgenic  lines  of

Nipponbare. 

The in vitro NO3
- supply was conducted after 3 days of N depletion, and the levels of NO3

- supply were 20, 40

and 60 mg L-1, respectively. While different lines of Nipponbare plants were supplied with full-strength nutrient

under medium-N level (40 mg L-1). The data of (A) and (B) are from Experiment 2 and 3 respectively and the

values represent the means ± SD of four replicates. Significant differences between treatments are indicated by

different letters (P < 0.05). Statistical differences are compared only in a single cultivar.

FW: fresh weight

Fig.  6 The  relative  leaf  contents  of  oxalic  acid  (A,  B),  malic  acid  (C,  D),  oxaloacetic  acid  (E,  F)  and  2-

Ketoglutarate acid (G,H) in ‘Shanyou 63’ and ‘Zhendao 11’ plants (A, C, E, G) of exogenous NO3
- supply after

N depletion and in WT and transgenic lines of Nipponbare (B, D, F, H). The data of (A) and (B) are from

Experiment  2  and  3  respectively  and the  values represent  the  means  ±  SD of  four  replicates.  Significant

differences between treatments are indicated by different letters (P < 0.05). Statistical differences are compared

only in a single cultivar. 
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