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Abstract This paper describes a unified global constraint to model scheduling
problems with unary resources, i.e., that can only process a single activity
at a time. In addition, the constraint enforces sequence-dependent transition
times between the activities. It often happens that activities are grouped into
families with zero transition times within a family. Moreover, some of the
activities might be optional from the resource viewpoint (typically in the case
of alternative resources). The global constraint unifies reasoning with both
optional activities and families of activities. The scalable filtering algorithms
we discuss keep a low time complexity of O(n · log(n) · log(f)), where n is the
number of tasks on the resource and f is the number of families. This results
from the fact that we extend the Θ-tree data structure used for the Unary
Resource constraint without transition times. Our experiments demonstrate
that our global constraint strengthen the pruning of domains as compared
with existing approaches, leading to important speedups. Moreover, our low
time complexity allows maintaining a small overhead, even for large instances.
These conclusions are particularly true when optional activities are present in
the problem.
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1 Introduction

Over the last decades, constraint programming has been successfully applied
to solve scheduling problems [4,5], while substantial improvements are still
ongoing [21,23]. One reason for this success is the incorporation of operation
research techniques into global constraints. In addition to ease the modeling,
they improve the solving time by capturing and efficiently solving subproblems
of the main problem. This paper describes a unified global constraint to model
unary resources with transition times and optional activities.

Unary resources with sequence-dependent transition times (also called set-
up times) for non-preemptive activities are very frequent in real-life schedul-
ing problems. A first example is the quay crane scheduling in container ter-
minals [36], where the crane is modeled as a unary resource and transition
times represent the moves of the crane on the rail between positions where it
needs to load or unload containers. A second example is the continuous casting
scheduling problem [18], where a set-up time is required between production
programs. Figure 1 illustrates a minimalistic example of two activities running
on a unary resource with transition times.

t0 5

A1 A2

A2 A1

Fig. 1 Two possible schedule for two activities A1 and A2 running on the same unary
resource with transition times. They can never overlap in time so either activity A2 starts
after activity A1 has completed, or A1 starts after activity A2 has completed. Moreover a
minimum transition time (represented by the arrows) must occur between the end of an
activity and its successor. Notice the value of the transition depends on the processing order
of the activities.

Although efficient propagators have been designed for the standard unary
resource constraint (UR) [30], transition time constraints between activities
generally make the problem harder to solve because the existing propagators
do not take them into account. A propagator for the unary resource constraint
with transition times (URTT) was recently introduced [14] as an extension
to Viĺım’s algorithms, in order to strengthen the filtering in the presence of
transition times.

Unfortunately, the additional filtering quickly drops in the case of a sparse
transition time matrix, which typically occurs when activities are grouped
into families with zero transition times within a family. The reason for a weak
filtering with sparse matrices is that it is based on a shortest path problem
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with free starting and ending nodes and a fixed number of edges. The length
of this shortest path drops in the case of zero transition times. In addition,
while Viĺım algorithms allow to reason with optional activities, the approach
from [14] does not support them.

The main contribution of the present paper is to introduce a generalized
unary resource with transition times that unifies filtering rules and algorithms
such that they consider family-based transition times and optional activities.
The main asset of our approach is its scalability: we obtain a strong filtering
while keeping a low time complexity of O(n. log(n). log(f)), for n activities and
f families. In general f � n, hence the theoretical complexity is very close
to the one of the propagators in [30] and [14]. The filtering is experimentally
tested on instances of the Job-Shop Problem with Sequence Dependent Tran-
sition Times (JSPSDTT), although it can be used for any type of problems,
e.g., with other kinds of objective function than the makespan minimization.
We first consider the case where it is known prior to search on which machine
the activities must be executed, and then the more general case where activ-
ities must be executed by exactly one of a set of alternative machines. The
results show that our propagator improves the resolution time over existing
approaches and is more scalable.

Related Work As described in a recent survey [1], scheduling problems with
transition times can be classified in different categories. First the activities
can be grouped in batches (i.e., a machine allows several activities of the
same batch to be processed simultaneously) or not. Transition times may ex-
ist between successive batches. A Constraint Programming (CP) approach
for batch problems with transition times is described in [30]. Secondly the
transition times may be sequence-dependent or sequence-independent. Tran-
sition times are said to be sequence-dependent if their durations depend on
both activities between which they occur. On the other hand, transition times
are sequence-independent if their durations only depend on the activity af-
ter which they take place. The problem category we study in this paper is
non-batch sequence-dependent transition times problems.

Over the years, many CP approaches have been developed to solve such
problems [16,2,35,19,14]. For instance, in [2], a Traveling Salesman Prob-
lem with Time Window (TSPTW) relaxation is associated to each resource.
The activities used by a resource are represented as vertices in a graph, and
edges between vertices are weighted with the corresponding transition times.
The TSPTW obtained by adding time windows to vertices from bounds of
corresponding activities is then resolved. If one of the TSPTW is found unsat-
isfiable, then the corresponding node of the search tree is pruned. A similar
technique is used in [3] with additional propagators, which are, to the best of
our knowledge, the state of the art propagators when families of activities are
present. Grimes and Hebrard proposed an efficient solution to job shop with
transition times problems by using a simple lightweight CP model combined
with restarts and weighted degree search heuristics [19]. Recently, a bounded
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dynamic programming approach [26] has improved the state of the art of stan-
dard benchmarks of the job shop with transition times problem.

Paper Outline Section 2 provides the background required to read the paper.
The content is then described in a top-down fashion: Section 3 describes the
filtering rules for the unary resource with transition times and the different
algorithms to apply those rules. Then, we explain in Section 4 the data struc-
tures required by the filtering algorithms. They rely on lower bounds for the
minimum total transition time that must hold in a given set of activities. We
discuss those lower bounds in Section 5. Finally, Section 6 compares the re-
sults of the different existing approaches for the unary resource with transition
times on various applications.

2 Background

Non-preemptive scheduling problems are usually modeled in CP by associating
three variables to each activity i: si, ci, and pi

1 representing respectively the
starting time, completion time, and processing time of i. These variables are
linked together by the following relation: si + pi = ci. Depending on the
problem, the scheduling of the activities can be restricted by the availability
of different kinds of resources required by the activities. In this paper, we
are interested in the unary resource (sometimes referred to as machine or
disjunctive resource) and the propagators associated to a single unary resource.
Let T be the set of activities requiring the unary resource. The unary resource
constraint prevents any two activities in T to overlap in time:

∀i, j ∈ T : i 6= j =⇒ (ci ≤ sj) ∨ (cj ≤ si)

Transition Times The unary resource can be generalized by requiring transi-
tion times between activities. They are described by a square transition matrix
tt in which tt i,j , the entry at line i and column j, represents the minimum
amount of time between the activities i and j when i directly precedes j. We
assume that transition times respect the triangular inequality. That is, in-
serting any activity between two activities never decreases the transition time
between these two activities: ∀i, j, k ∈ T : tt i,j ≤ tt i,k + ttk,j .

The unary resource with transition times constraint imposes the following
relation:

∀i, j ∈ T : i 6= j =⇒ (ci + tt i,j ≤ sj) ∨ (cj + ttj,i ≤ si) (URTT)

An example of a transition matrix is given in Figure 2, where we can notice
that it is not symmetric (e.g., tt1,2 = a 6= c = tt2,1 in Figure 2). As exemplified,
it induces a transition graph, that will be used in the forthcoming sections.

1 In this paper we assume without loss of generatlity that pi is constant.
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Fig. 2 Example of a transition matrix tt and its induced Transition Graph.

Family-Based Transition Times When transition times are present, it is often
the case that activities are grouped into families on which the transition times
are expressed. Formally, we denote by Fi the family of activity i and by F
the set of all families. Moreover, for a given set of activities Ω, we write FΩ =
{Fi | i ∈ Ω}. In a family-based setting, the transition times are described as a
square family transition matrix ttF of size |F|. The transition time between
two activities i and j is the transition time between their respective families
Fi and Fj , and it is zero if Fi = Fj

2:

∀i, j ∈ T : tt i,j = ttFFi,Fj ∧
(
Fi = Fj =⇒ ttFFi,Fj = 0

)
(1)

Given a set of activities, their families and a transition matrix between
families, ttF one can expand ttF into a transition matrix between activities tt .
tt is then larger and sparser than ttF . An example of this expansion is given in
Figure 3, where the family transition graph induced by ttF is also illustrated.
Notice that tt = ttF is the special case occurring when each activity is in its
own family.

ttF =

(
0 a
b 0

)
1

2

ab tt =


0 0 a a a
0 0 a a a
b b 0 0 0
b b 0 0 0
b b 0 0 0



Fig. 3 Example of a family transition matrix ttF , its induced Family Transition Graph, and
the expanded transition matrix tt for 5 activities with F1 = F2 = 1 and F3 = F4 = F5 = 2.

2 A more general case is when a positive transition ttFf,f must occur between activities of

the same family f . In this case, one can fall back to zero transition times within a family,
assuming ttFf,f ≤ ttF

f ′,f∀f
′ ∈ ttF . One can artificially: (1) increase the duration of activities

of the family f with ttFf,f ; and (2) decrease the transition times from family f by ttFf,f . Yet,

one cannot always perform this trick, so we keep the hypothesis in the rest of the paper that
ttFf,f = 0.
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Optional Activities Some activities can optionally be used by the resource, i.e.,
it is unknown a priori if a given optional activity must be processed by the
resource in the final schedule. This case typically occurs when an activity must
run on one of several alternative resources [16], or when so-called conditional
time-intervals [22] are available in the solver. Following Viĺım’s notation, we
call R the set of regular activities (known to be running on the resource) and
O the set of optional activities, with R ∪O = T and R ∩O = ∅.

To model optional activities, an additional boolean variable vi is used to
represent the fact that the activity i is used by the machine. We define R =
{i ∈ T : vi}. The unary resource with transition times constraint involving
optional activities imposes the following relation:

∀i, j ∈ T : i 6= j ∧ vi ∧ vj =⇒ (ci + tt i,j ≤ sj) ∨ (cj + ttj,i ≤ si) (URTTO)

Precedence Graph The precedence graph G = 〈T,E〉 is a data structure [9,
16] used to maintain the precedences between activities of a given resource. In
this graph, each vertex represents a given activity, and there is a directed edge
from a vertex i to vertex j if and only if the activity i precedes the activity
j, i.e., ci + tt i,j ≤ sj . In [7], the authors describe propagation rules for the
precedence graph while taking optional activities into account.

One can use the precedence graph to make search decisions by adding
edges in order to impose precedences between activities. A recent CP approach
[19] demonstrated experimentally that branching on the precedences can be
effective3, using smart search techniques based on a domain/weighted-degree
heuristic, rather than sophisticated propagators.

Finally, from a filtering perspective, additional precedences can be detected
by computing the transitive closure of the graph.

Bounds of a set of activities Ω The earliest starting time of an activity i is
denoted est i and its latest starting time is denoted lst i. The domain of si
is thus the interval [est i..lst i]. Similarly the earliest completion time of i is
denoted ect i and its latest completion time is denoted lct i. The domain of ci
is hence the interval [ect i..lct i]. These definitions can be extended to a set of
activities Ω. For instance, estΩ is the earliest time when any activity in Ω can
start and ectΩ is the earliest time when all activities in Ω can be completed.
We also define pΩ =

∑
j∈Ω pj to be the sum of the processing times of the

activities in Ω. While one can directly compute estΩ = min {estj : j ∈ Ω}
and lctΩ = max {lctj |j ∈ Ω}, it is NP-hard [30] to compute the exact values
of ectΩ and lstΩ . Instead, one usually computes a lower bound for ectΩ and
an upper bound for lstΩ , as we will see in this paper.

3 The approach of [19] does not actually use a precedence graph structure explicitly, but
reify the precedence constraints and branch on the associated boolean variables.
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3 Global Filtering Rules and Propagation Algorithms

This section first describes the inference rules of the unary resource without
transition times. Those rules are then extended in order to handle transition
times. We also describe the different algorithms in order to compute them
efficiently. The data structures required by the algorithms are described in
Section 4.

3.1 Filtering Rules for the Unary Resource

The filtering rules presented in [30] for the UR constraint fall in several cate-
gories known as Overload Checking (OC), Detectable Precedences (DP), Not-
First/Not-Last (NF/NL), and Edge Finding (EF). They are valid for the gen-
eral definition of ectΩ of the earliest completion time of a set of activities
Ω ⊆ T . However, since the computation of its exact value is NP-hard, their
implementation relies on an efficient computation of a lower bound ectLB0

Ω ,
defined as:

ectLB0
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′} (2)

To define the different rules, we use the notation ectΩ although ectLB0
Ω is

used in practice, as we will use a stronger lower bound under the presence of
transition times later in this paper. Each rule has a symmetric counterpart for
lstΩ that can easily be retrieved from the given definitions4.

Overload Checking This rule tries to detect an inconsistency given the cur-
rent domains. Intuitively, for a set of regular activities Ω ⊆ R, if the earliest
completion time is found to be larger than the latest completion time, an in-
feasibility is detected. Additionally, if Ω is extended with an optional activity
i such that there would be an inconsistency, we know that the activity cannot
be executed by the machine. Formally, we have:

∀Ω ⊆ R,∀i ∈ (T \Ω) : ectΩ∪{i} > lctΩ∪{i} =⇒ ¬vi (OC)

Notice that if i ∈ R and vi = false, the constraint is infeasible.

Detectable Precedences This rule detects new precedences between pairs of
activities. The reasoning uses the set of activities DPrec(R, i) that can be
detected as preceding a given activity i based on the current domains. It is
defined as:

DPrec(R, i) = {j 6= i ∈ R : ect i > lstj} (DPrec)

4 Practical implementation apply the symmetric rules by applying the original rules on
mirrors of the original activities. The mirror activity m of an activity i is modeled with the
variables sm = −ci, cm = −si and pm = pi.
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The inference rule states that the earliest start time of an activity i must
at least be the earliest completion time of the set of activities that are detected
as preceding i, that is DPrec(R, i). Formally:

∀i ∈ T : vi =⇒ est i ← max(est i, ectDPrec(R,i)) (DP)

Notice that only the activities known to be running on the resource can
be used to update other activities, hence the use of DPrec(R, i) and not
DPrec(T, i). On the contrary, all activities (including optionals) can be up-
dated.

Precedences that do not belong to DPrec(R, i) but that must be respected
are called non-detectable precedences [30]. They originate from the problem
itself or branching decisions. Non-detectable precedences are not enforced by
the rule DP but with binary propagators or a propagator based on a precedence
graph.

Not-Last When a given activity i has a latest starting time that is strictly
smaller than the earliest completion time of a set of regular activities Ω, this
activity cannot be scheduled as the last one of the set Ω ∪ {i}. Its latest
completion time can therefore be reduced to the maximum latest start time
of the activities in Ω:

∀Ω ⊆ R,∀i ∈ (T \Ω) : vi ∧ ectΩ > lst i =⇒ lct i ← min(lct i,max
j∈Ω

lstj) (NL)

Edge Finding The rule detects new edges in the precedence graph: if adding
an activity i to a set of activities Ω leads to an earliest completion larger than
the latest completion of the set, then the activity i must succeed the activities
in Ω:

∀Ω ⊆ R,∀i ∈ (T \Ω) : vi ∧ ectΩ∪{i} > lctΩ =⇒ est i ← max(est i, ectΩ))
(EF)

Update of Domains of Optional Activities Except in the case of the Overload
Checking rule, the domain of an optional activity is updated only once it is
known to be running on the resource (i.e., vi = true). However, the inference
about the domain of this activity if it was running on the resource can be
useful to other inference rules. Therefore, the domain is not updated until
vi = true, but the inference on the domain if the activity runs on the resource
is saved internally and used by all inference rules. Example 1 illustrates an
example where this is beneficial.

Example 1 Let us consider 4 activities, as represented in Figure 4. Green
activities are regular activities, while A3 is optional. If the DP rule was applied
to the set {A1, A2, A3} and A3 was a regular activity, est3 would be updated to
9 (see the red bracket). A3 is optional, so we only save this update internally.
If the OC rule is applied to the set {A3, A4} with est3 = 9 instead of est3 = 6,
one can deduce that v3 = false.
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t0 5 10

A1

A2

A3

A4

Fig. 4 The inference that can be made on optional activities must be communicated to
other inference rules. The activity A3 is optional and the others are regular. The DP rule
applied to the set {A1, A2, A3} leads to est3 = 9. Applying the OC rule the set {A3, A4}
with that information allows inferring v3 = false.

Filtering Limitation due to Transition Times Under the presence of transition
times, the rules can be improved, as illustrated in Example 2. In the next
section, we strengthen the lower bound of ectΩ so that it takes the transition
times into account.

Example 2 Consider a set of 3 regular activities Ω = {1, 2, 3} as shown in
Figure 5. Consider also, for simplicity, that all pairs of activities from Ω have
the same transition time tt i,j = 3∀i, j ∈ {1, 2, 3}. The OC rule detects a failure
when ectLB0

Ω > lctΩ. The lower bound is:

ectLB0
Ω = estΩ +

∑
i∈Ω

pi = 0 + 5 + 5 + 3 = 13

As we have lctΩ = maxi∈Ω lct i = lct2 = 17, the OC rule from [30], combined
with the transition times binary decomposition (Equation (URTTO)), does not
detect a failure. However, as there are 3 activities in Ω, at least two transitions
occur between these activities and it is actually not possible to find a feasible
schedule. Indeed, taking these transition times into account, one could compute
ectΩ = 13 + 2 · tt i,j = 13 + 2 · 3 = 19 > 17 = lctΩ, and thus detect the failure.

3.2 Extending the Filtering Rules with Transition Times

Let ΠΩ be the set of all possible permutations of activities in Ω. For a given
permutation π ∈ ΠΩ , where π(i) is the activity taking place at position i, we
can define the total time spent by transition times, ttπ, as follows:

ttπ =

|Ω|−1∑
i=1

ttπ(i),π(i+1)
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t0 5 10 15

A1

A2

A3

Fig. 5 Example illustrating the missed failure detection of OC when not considering tran-
sition times.

A lower bound for ectΩ that considers transition times can then be defined as:

ectLB1
Ω = max

Ω′⊆Ω

{
estΩ′ + pΩ′ + min

π∈ΠΩ′
ttπ

}
(3)

Unfortunately, computing this value is NP-hard as computing the optimal
permutation π ∈ Π minimizing ttπ amounts to solving a Traveling Salesman
Problem. Since embedding an exponential algorithm in a propagator is gener-
ally impractical, a looser lower bound should be used instead.

For each possible subset of cardinality k ∈ [0..|T |], we compute the smallest
transition time permutation on the set T of all activities requiring the resource:

tt(k) = min
{Ω′⊆T : |Ω′|=k}

{
min
π∈ΠΩ′

ttπ

}
(4)

For each k, the lower bound computation thus requires one to find the shortest
node-distinct (k−1)-edge path between any two nodes of the transition graph
(see Section 2), which is also NP-hard as the Traveling Salesman Problem can
be reduced to this problem when k = |T |. Since one has to solve |T | NP-hard
problems in pre-computation (one for each cardinality k), we proposed in [14]
various lower bounds to achieve the computation in polynomial time. They
are described in Section 5. Notice that we have tt(0) = tt(1) = 0.

Our final lower bound formula for the earliest completion time of a set of
activities, making use of pre-computed lower-bounds on transition times, is:

ectLB2
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|Ω′|)} (5)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0
Ω ≤ ectLB2

Ω ≤ ectLB1
Ω ≤ ectΩ

Limitation An important limitation of this approach arises in the context of
sparse transition matrices, which typically occurs when activities are grouped
in families (see Section 2). Indeed, when there exists a node-distinct path
with K zero-transition edges, we have: tt(k) = 0 ∀k ∈ [0..K + 1]. The prun-
ing achieved by the propagator is then equivalent to the one of the original
algorithms from Viĺım [30], which has been shown to perform poorly when
transition times are involved (see [14]). This is illustrated in the next example.
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Example 3 Consider again the three activities Ω = {1, 2, 3} shown in Fig-
ure 5 with activity 1 belonging to family F1, activity 2 to family F2, and activity
3 to family F3. The transition times are equal to 3 between activities from dif-
ferent families and equal to 0 between activities of the same family. Assume
that 3 additional activities (not represented) also belong to family F1. Since
the transition times between any pair of activity from a same family is 0, we
have that tt(2) = tt(3) = 0 and ectLB2

Ω = 13 = ectLB0
Ω , hence the OC of [14]

is unable to detect the failure.

To cope with this limitation, we will use a stronger lower bound by counting
the number of different families present in a set Ω of activities instead of the
cardinality of Ω. This amounts to find the shortest node-distinct (k−1)-edge
path in the family transition graph (see Section 2) instead of the transition
graph. Counting the number of families results in non-zero lower bounds even
for small sets, assuming that there are no zero transition times between fami-
lies. Formally, Equation (5) is replaced by:

ectLB3
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|FΩ′ |)} (6)

where FΩ = {Fi | i ∈ Ω}. The term tt(|FΩ′ |) in Equation (6) is pre-computed
using the same lower bounds as before, but using ttF instead of tt . Notice that
if tt = ttF , we have ectLB2

Ω = ectLB3
Ω .

Lemma 1 In the presence of families, ectLB2
Ω ≤ ectLB3

Ω .

Proof The family transition graph induced by ttF is isomorphic to a subgraph
of the transition graph induced by tt and any (shortest) path induced by ttF

has a corresponding valid path induced by tt . Moreover, a shortest path of
exactly k edges induced by tt has a length that is at most equal to a shortest
path of exactly k edges induced by ttF .

ut

3.3 Adapting the Algorithms

We adapt the original algorithms of [30] in order to consider transition times.
Most of the modifications actually impact the underlying Θ-tree and Θ-Λ-
tree data structures (described in Section 4), hence the algorithms are similar
to the original ones. In our opinion, this is a strength of our approach. The
algorithms described in this section apply the rules given in Section 3.1. As
mentioned in Section 3.1, counterparts of those rules can be applied using the
same algorithms on mirror activities. Importantly, one must also transpose
the transition matrix.

Notation We denote by ect∗Θ a lower bound of ectLB3
Θ that will be used by

the different algorithms. We describe in Section 4.1 the Θ-tree data structure
that is used to compute this value. Moreover, following Viĺım’s notation, we
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will use a specific set of gray activities Λ ⊆ T such that Λ∩Θ = ∅. For a given
set Θ, this set is used to evaluate how ectΘ would evolve if one of the gray
activities of Λ were to be added to the set Θ. Formally, we are interested in
computing

ect (Θ,Λ) = max(ectΘ, ectΘ∪{i}, i ∈ Λ)

If ∃i ∈ Λ : ectΘ∪{i} > ectΘ, we say the gray activity i is responsible for
the value ectΘ∪{i}. Responsible activities are used in the Overload Checking
and the Edge-Finding algorithms, described in this section. We discuss how to
find the responsible activity in Section 4.2. Once more, we actually compute
a lower bound of ect (Θ,Λ), written ect

∗
(Θ,Λ). Section 4.2 describes the Θ-Λ-tree

data structure, used to compute this value efficiently.

Overload Checking The checker (see Algorithm 3.1) goes over each activity
in non-decreasing order of lct i. For each activity, if it is not yet known if it
will be executed by the resource (verified by checking the size of the domain
of the variable vi in line 3), it is added to the set Λ (line 4) and the next
activity is considered. If the activity has to run on the resource, it is added
to the set Θ. The OC rule is then applied: if the earliest completion time of
the current set Θ is larger than the latest completion time of the activity i we
just added to Θ, the activity i cannot be executed on the machine. Since i is
not optional, a feasible schedule cannot be found (see lines 7-9). The current
optional activities in Λ are then possibly updated in lines 10-14: as long as it
is possible to find an optional activity o such that adding it to Θ would lead
to an overload, it is inferred that o cannot be executed by the machine, and o
is removed from Λ.

Algorithm 3.1: Overload Checker

1 (Θ,Λ)← (∅, ∅)
2 for i ∈ T in non-decreasing order of lcti do
3 if |D(vi)| > 1 then
4 Λ← Λ ∪ {i} /* i is still optional. */

5 else if vi then
6 Θ ← Θ ∪ {i} /* i is known to be used by the machine. */

7 if ect∗Θ > lcti then
8 return ⊥ /* Infeasibility detected. */

9 end

10 end

11 while ect
∗
(Θ,Λ) > lcti do

12 o← optional (gray) activity responsible for ect
∗
(Θ,Λ)

13 vo ← false /* o cannot run on the machine. */

14 Λ← Λ \{o}
15 end

16 end
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Detectable Precedences Algorithm 3.2 describes how the DP inference rule can
be applied. It first sorts the regular activities by non-decreasing order of latest
start time and insert them into a queue Q (line 2)5. Then, it traverses all the
activities (including optional ones as they can be updated): for each activity
i, as long as its earliest completion time is strictly larger than the latest start
time of the first activity j in Q, j is removed from the queue and added to
the set Θ. Once this is done, Θ is the set DPrec(R, i) (see DPrec), and we
can apply the DP rule (line 9). Moreover, as transition times are involved, the
minimal transition from any family Fj ∈ FΘ to the family Fi can also be added
as it was not taken into account in the computation of ect∗Θ . This transition is
the minimal one from any family Fj ∈ FΘ to Fi, because we do not know which
activity will be just before i in the final schedule. The detectable precedence
update rule becomes:

est ′i ← max

{
est ′i, ect∗Θ + min

f∈FΘ
ttFf,Fi

}
(DPUR)

Notice that the value min
f∈FΘ

ttFf,Fi can only be available in O(1) if it was

precomputed for any subset of families, which is exponential in |F| and there-
fore problematic if there are many families. It can also be computed in linear
time, but it would increase the time complexity of the overall algorithm. In
practice, the implementation can make use of the minimum transition from
any family f ∈ F \ Fi if Fi /∈ FΘ, and 0 otherwise.

When no transition times are involved, detected precedences are all even-
tually propagated, i.e., i precedes j if and only if estj ≥ ect i and lct i ≤ lstj
(see [30]). In our case, this is not guaranteed: if a precedence is detected for a
given pair of activities i and j, it is not ensured that after propagation we will
have estj ≥ ect i + tt i,j and lct i ≤ estj − tt i,j . The reason is that ect∗Θ uses a
lower bound on the transition times in Θ. One must therefore rely on branch-
ing (e.g., on the precedence graph) to ensure a given detected precedence is
completely propagated.

Not Last The NL inference rule can be applied with Algorithm 3.3, similarly
to Algorithm 3.2: a queue Q is filled with regular activities6, and all activities
(regular and optional) are then traversed in non-decreasing order of latest
completion time. For each activity i, activities from Q having a larger latest
starting time than the latest completion time of i, are removed from the queue
and added to the set Θ (line 5-8). Θ is then the set of activities with a latest
starting time stricly smaller than the latest completion time of i. The NL rule
can then be applied (lines 9-11). An analogous reinforcement to the DP rule
due to transition times can be applied when updating lct i (see line 10).

5 Alternatively, as proposed in [32,31] in the case of the Edge-Finding algorithm, one
could consider all activities of T and pretend the latest start time of optional activities
amounts to +∞. All activities (including optionals) are then inserted in Q and the rest of
the algorithm remains unchanged.

6 Or as for the Detectable Precedence algorithm, one can pretend the latest start time of
optional activities amounts to +∞ and insert all of them in Q.
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Algorithm 3.2: Detectable Precedences

1 Θ ← ∅
2 Q← queue of all regular activities r ∈ R in non-decreasing order of lstr
3 j ← Q.peek()
4 for i ∈ T in non-decreasing order of ecti do
5 while ecti > lstj do
6 Θ ← Θ ∪ {j}
7 Q.pop()
8 j ← Q.peek()

9 end

10 est ′i ← max

{
esti, ect

∗
Θ \{i} + min

f∈FΘ
ttFf,Fi

}
11 end
12 for i ∈ T do
13 esti ← est ′i
14 end

Algorithm 3.3: Not-Last

1 lct ′i ← lcti, ∀i ∈ T
2 Θ ← ∅
3 Q← queue of all regular activities r ∈ R in non-decreasing order of lstr
4 j ← Q.peek()
5 for i ∈ T in non-decreasing order of lcti do
6 while lcti > lstj do
7 Θ ← Θ ∪ {j}
8 Q.pop()
9 j ← Q.peek()

10 end
11 if ect∗

Θ \{i} > lsti then

12 lct ′i ← min

{
lct ′i, lstj − min

f∈FΘ
ttFFi,f

}
13 end

14 end
15 for i ∈ T do
16 lcti ← lct ′i
17 end

Edge Finding Unlike the previous algorithms, Algorithm 3.4 starts with a set
Θ filled with all regular activities. We also directly fill the set Λ with the
optional activities7 so that their domain can be updated but they can never
be used to update other activities (since they will not be in the set Ω in the
EF rule). A queue Q of regular activities sorted in non-increasing order of
latest completion time is also initialized. The algorithm traverses this queue
and the activities in Θ will progressively be removed from Θ and added to
the set Λ of gray activities. For each activity j popped out the queue Q, the

7 Notice that this is equivalent to what is proposed in [32,31]. The author suggests to
handle optional activities by modifying the input data rather than the algorithm: lcto is
assumed to be +∞ for all optional activities o ∈ O.
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algorithm first checks for an overload, before j is removed from Θ (lines 5-7).
This is equivalent to what is done in Algorithm 3.1 for regular activities, so
it is actually facultative. The activity j is then grayed : it is transferred from
Θ to Λ. This means it is no more in the set Θ we consider, but it will be part
of the activities used to infer what would happen if one of them was added
to Θ. Lines 10-14 apply the EF rule to the current gray activities such that
ect
∗
(Θ,Λ) > lctj : as long as adding one of the gray activities would imply an

overload (i.e., condition in line 10 is verified), we identify which gray activity i
is responsible for this potential overload, we update its earliest start time, and
remove it from Λ. The EF rule is strengthened using transition times similarly
to the DP and NL rules.

Algorithm 3.4: Edge Finding

1 (Θ,Λ)← (R,O)
2 Q← queue of all regular activities r ∈ R in non-increasing order of lctr
3 j ← Q.peek()
4 while |Q| > 1 do
5 if ect∗Θ > lctj then
6 return ⊥
7 end
8 (Θ,Λ)← (Θ \ {j} , Λ ∪ {j})
9 Q.pop()

10 j ← Q.peek()

11 while ect
∗
(Θ,Λ) > lctj do

12 i← gray activity responsible for ect
∗
(Θ,Λ)

13 est ′i ← max

{
esti, ect

∗
Θ + min

f∈FΘ
ttFf,Fi

}
14 Λ← Λ \{i}
15 end

16 end
17 for i ∈ T do
18 esti ← est ′i
19 end

Precedence Graph Propagator Algorithm 3.5 uses the precedence graph data
structure (see Section 2). It relies on the topological order of all known prece-
dences (i.e., edges in the digraph) since if i precedes j in the topological order
of the precedence graph, the earliest start time of i cannot be influenced by
the domain of sj and cj . Algorithm 3.5 first builds a queue Q of activities in
topological order of the precedence graph. It then traverses Q and for each
activity i, it applies the pairwise rule URTTO for all its successors in the
precedence graph. In addition, if a successor j of an activity i is known to be
running on the resource (i.e., vj is true), then one can use j to update the
latest completion time of the activity i (see lines 6-8).

Important note. Notice that when transition times are involved, this
algorithm is mandatory in order to ensure the pruning is complete: because
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we use a lower bound of the earliest completion time of a set of activities Θ in
the other algorithms (ect∗Θ), they are are not sufficient to ensure correctness
of a given (partial) assignment of all si, ∀i ∈ T .

Algorithm 3.5: Precedence Graph Propagation

1 Q← queue of all regular activities r ∈ R in topological order in the precedence
graph G

2 while |Q| > 1 do
3 i← Q.pop()
4 foreach successor s of i in G do
5 ests ← max{ests, ecti + tti,s}
6 if vs then
7 lcti ← min{lcti, lsti − tti,s}
8 end

9 end

10 end

Complexities Section 4 describes data structures that allow to retrieve ect∗Θ
in O(1) while addition/removal of an activity to/from Θ are performed in
O(log(|T |)·log(|F|)). All algorithms but the Precedence Graph have therefore a
time complexity of O(|T |·log(|T |)·log(|F|)). The precedence graph propagator
runs in O(|T |2).

4 Extending the Θ-tree and Θ-Λ-tree Data Structures

To efficiently use the sets Θ and Λ, the algorithms described in Section 3.3
rely on the so-called Θ-tree and Θ-Λ-tree data structures, introduced by Viĺım.
Those structures are used to compute efficiently and incrementally ect∗Θ and
ect
∗
Θ for sets of activities Θ and Λ. This section describes how those can be

extended to handle (family-based) transition times.

4.1 Extended Θ-tree

A Θ-tree is a balanced complete binary tree in which each leaf represents an
activity from a set Θ and each internal node n gathers information about the
set of activities represented by the leaves under this node, denoted Leaves(n).
We write l(n) for the left child of n and r(n) for the right one. Leaves are
ordered in non-decreasing order of the earliest start time of the activities: for
two activities i and j, if est i < estj , then the leaf representing i is at the left
of the leaf representing j.

The main value stored in a node n is the lower bound of ectLeaves(n),
denoted ect∗n . To be able to compute this value incrementally upon insertion
or deletion of an activity in the Θ-tree, one needs to maintain additional values.
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Without any transition times involved, Viĺım has shown [30] that by defin-
ing ect∗n = ectLB0

Leaves(n), it suffices to store additionally pn = pLeaves(n). In a
leaf n representing an activity i, one can compute pn = pi and ect∗n = ect i. In
an internal node n, one can compute:

pn = pl(n) + pr(n)

ect∗n = max
{

ect∗r(n), ect∗l(n) + pr(n)

}
Hence, the values only depend on the values stored in the two children.

In our case, we would like instead to define ect∗n = ectLB3
Leaves(n) in order to

take (family-based) transition times into account. However, this value cannot
easily be computed incrementally, so we compute a lower bound, i.e., ect∗n ≤
ectLB3

Leaves(n). In addition to ect∗n , one needs to store not only pn, but also

Fn = FLeaves(n), the set of the families of the activities in Leaves(n). In a
leaf n representing an activity i, one can compute pn = pi, ect∗n = ect i, and
Fn = {Fi}. In an internal node n, one can compute:

pn = pl(n) + pr(n)

Fn = Fl(n) ∪ Fr(n)

ect∗n = max

{
ect∗r(n)

ect∗l(n) + pr(n) + tt
(∣∣Fr(n) \ Fl(n)

∣∣+ 1
)

Intuitively, ect∗n is maximized either by only considering activities in r(n),
or by adding to ect∗l(n) the processing times and (a lower bound of) the transi-

tion times due to activities in r(n). In the latter case, only additional families
are counted to compute the lower bound on transition times, that is, the fam-
ilies that are present in the right child but not in the left one. Hence, the
cardinality of the set Fr(n) \Fl(n) is considered. Notice we always add 1 family
to the count because of the definition of tt(k) (remember tt(0) = tt(1) = 0).

Before we prove this lower bound is correct, let us prove in Lemma 2 a
property of the function tt(k).

Lemma 2 ∀i ∈ [0..|T |], k ∈ [0..i] : tt(i) ≥ tt(k) + tt(i− k + 1)

Proof The optimal path popt in the transition graph leading to the value tt(i)
can be split in two subpaths:

– popt
[1..k] with k− 1 edges. Its total length is greater than or equal to tt(k) (as

tt(k) is the minimum), the length of the optimal path with k − 1 edges.
– popt

[k..i] with i− k edges. Its total length is greater than or equal to

tt(i− k + 1), the length of the optimal path with i− k edges.

Therefore tt(n) = popt
[1..k] + popt

[k..i] ≥ tt(k) + tt(i− k + 1).
ut

Lemma 3 ∀ node n in a Θ-tree: ect∗n ≤ ectLB3
Leaves(n)
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Proof By induction. If n is a leaf representing activity i, then ect∗n = ect i =
ectLB3
{i} . Otherwise, our induction hypothesis is that ect∗l(n) ≤ ectLB3

Leaves(l(n))

and ect∗r(n) ≤ ectLB3
Leaves(r(n)). Let us call ΩLB3 ⊆ Leaves(n) the optimal set to

compute ectLB3
Leaves(n). For space reasons, we write L(Ω) to denote Leaves(Ω).

One can consider two cases:

– ect∗n = ect∗r(n). We have ect∗r(n) ≤ ectLB3
L(r(n)) (by induction) and ectLB3

L(r(n)) ≤
ectLB3

L(n) (by definition). Therefore, ect∗n ≤ ectLB3
L(n).

– ect∗n = ect∗l(n) + pr(n) + tt
(
|Fr(n) \Fl(n)|+ 1

)
. Then, we have:

ect∗n ≤ ectLB3
L(l(n)) + pr(n) + tt

(
|Fr(n) \Fl(n)|+ 1

)
(by induction)

= max
Ωl⊆L(l(n))

{estΩl + pΩl + tt(|FΩl |)}+ pr(n) + tt
(
|Fr(n) \Fl(n)|+ 1

)
= max
Ωl⊆L(l(n))

{estΩl + pΩl∪L(r(n)) + tt(|FΩl |) + tt
(
|Fr(n) \Fl(n)|+ 1

)
}

= max
Ωl⊆L(l(n))

{estΩl∪L(r(n)) + pΩl∪L(r(n))

+ tt(|FΩl |) + tt
(
|Fr(n) \Fl(n)|+ 1

)
}

(since estΩl = estΩl∪L(r(n)))

≤ max
Ωl⊆L(l(n))

{estΩl∪L(r(n)) + pΩl∪L(r(n)) + tt
(
|FΩl∪L(r(n))|

)
}

(by Lemma 2)

≤ ectLB3
L(n)

(by definition)

ut

Complexity We use bit sets to represent the set of families in each node. The
space complexity of the Θ-tree is therefore O(|T | · |F|). The set operations
we use are union, intersection, difference and cardinality. Using bit sets and
assuming |F| ≤ 64,, the three former ones are O(1) and the latter one is
O(log(|F|)) with a binary population count8 [34]. The time complexity of inser-
tion and deletion of an activity in the Θ-tree is therefore O(log(|T |) · log(|F|)).

Example 4 Let us consider the activities presented in Figure 6 (left). The
family transition matrix ttF is given in Figure 6 (center). The pre-computed
values of tt(k) are reported in Figure 6 (right). Figure 7 illustrates the extended
Θ-tree when all activities are inserted. Note that the value at the root of the tree
is indeed a lower bound since we have ect∗Θ = 75 ≤ ectLB3

Θ = 80 ≤ ectΘ = 85.

8 Some processors also have a dedicated machine instruction.
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1 3 2 4
est 0 15 25 30
p 10 10 20 25
F 1 2 3 3

ttF =

 0 10 15
5 0 10
5 15 0


tt(k) k

0 0
1 0
2 5
3 15

Fig. 6 Four activities and their families (left), transition times for the families (center),
and pre-computed lower bounds for the transition times (right).

ect∗ = max{70, 25 + 45 + 5} = 75
p = 20 + 45 = 65
F = {1, 2, 3}

ect∗ = max{55, 45 + 25 + 0} = 70
p = 20 + 25 = 45
F = {3}

ect∗ = 55
p = 25
F = {3}
est4 = 30

ect∗ = 45
p = 20
F = {3}
est2 = 25

ect∗ = max{25, 10 + 10 + 5} = 25
p = 10 + 10 = 20
F = {1, 2}

ect∗ = 25
p = 10
F = {2}
est3 = 15

ect∗ = 10
p = 10
F = {1}
est1 = 0

Fig. 7 A Θ-tree when all activities of Figure 6 are inserted.

4.2 Extended Θ-Λ-tree

Algorithms 3.1 and 3.4 require an extension of the original Θ-tree, called Θ-
Λ-tree [30]. In this extension, leaves are marked as either white or gray. White
leaves represent activities in the set Θ and gray leaves represent activities that
are in a second set, Λ, with Λ ∩ Θ = ∅. In addition to ect∗n , a lower bound to
the ect of Θ, a Θ-Λ-tree also aims at computing ect

∗
n , which is a lower bound

to ect (Θ,Λ), the largest ect obtained by including one activity from Λ into Θ:

ect (Θ,Λ) = max
i∈Λ

ectΘ∪{i}

In addition to pn, ect∗n , Viĺım’s original Θ-Λ-tree also maintains pn and ect
∗
n ,

respectively corresponding to pn and ect∗n , if a single gray activity i ∈ Λ in
the sub-tree rooted at n maximizing ectLeaves(v)∪{i} was included.

Our extension to the Θ-Λ-tree is similar to the one outlined in Section 4.1
for the Θ-tree: in addition to the previous values, each node also stores pn and
Fn in order to compute the lower bound ect

∗
n .

Adapting the rules for the Θ-Λ-tree requires caution when families are
involved. In [30] and [14], the rules only use implicitly the information about
which gray activity is considered in the update. In our case, the rules must
consider explicitly where the responsible gray activity (i.e., the gray activity
maximizing ect

∗
at the root node) is located. Hence, when a node n is updated,

one first update ect
∗
n with the rule:
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ect
∗
n = max


ect
∗
l(n) + pr(n) + tt

(
|Fr(n) \F l(n)|+ 1

)
(Case A)

ect∗l(n) + pr(n) + tt
(
|F r(n) \Fl(n)|+ 1

)
(Case B)

ect
∗
r(n) (Case C)

Case A occurs when it is (locally) considered that the gray responsible
activity that maximizes ect

∗
n is among Leaves(l(n)). Cases B and C correspond

to the opposite case (i.e., the responsible activity is among Leaves(r(n))).
Depending on which value gets assigned to ect

∗
n , the values Fn and pn of the

node n are updated, as follows:

Fn =

{
F l(n) ∪ Fr(n) if (Case A)

Fl(n) ∪ F r(n) otherwise

pn =

{
pl(n) + pr(n) if (Case A)

pl(n) + pr(n) otherwise

If a leaf n represents an activity i, then we simply have ect
∗
n = ect i, pn = pi,

and Fn = {Fi}. The rules for pn, ectn, and Fn are as presented in Section 4.1,
but one must also define, for a gray leaf n, ect∗n = −∞, pn = 0, and Fn = ∅.

Example 5 Let us reconsider the activities from Figure 6. Figure 8 illustrates
a Θ-Λ-tree where all activities have been inserted, but where activities 3 and 4
have been grayed. Notice that the activity 4 is the gray responsible one (since
70 > 25 + 20 + 5) and therefore p = 55 and F = {F1, F3} in the root node.

As for the extended Θ-tree introduced in Section 4.1, the time complexity
for the insertion and the deletion of an activity is O(log(|T |)·log(|F|)). Table 1
summarizes the complexities of all operations on the Θ-Λ-tree.

Operation Time Complexity
(Θ,Λ)← (∅, ∅) O(1)
(Θ,Λ)← (R,O) O(|T | · log(|T |) · log(|F|))
(Θ,Λ)← (Θ \ {i} , Λ ∪ {i}) O(log(|T |) · log(|F|))
Θ ← Θ ∪ {i} O(log(|T |) · log(|F|))
Λ← Λ \{i} O(log(|T |) · log(|F|))
ect∗Θ > lcti O(1)
ect
∗
(Θ,Λ) > lcti O(1)

Table 1 Worst-case time complexities of operations on the Θ-Λ-tree.

4.3 Strengthening ect∗Θ and ect
∗
(Θ,Λ)

The value ect∗Θ is a lower bound for ectLB3
Θ . One can actually strengthen the

value computed with the Θ-tree to get a value closer to ectLB3
Θ . An idea from
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ect∗ = max{45, 10 + 20 + 5} = 45
p = 10 + 20 = 30
F = {1, 3}
ect

∗
= max{70, 10 + 45 + 5, 25 + 20 + 5} = 70

p = 10 + 45 = 55
F = {1, 3}

ect∗ = max{45 + 0 + 0,−∞} = 45
p = 20 + 0 = 20
F = {3}
ect

∗
= max{55, 45 + 25 + 0, 45 + 0 + 0} = 70

p = 20 + 25 = 45
F = {3}

ect∗ = −∞
p = 0
F = {}
ect

∗
= 55

p = 25
F = {3}
est4 = 30

ect∗ = 45
p = 20
F = {3}
ect

∗
= 45

p = 20
F = {3}
est2 = 25

ect∗ = max{10 + 0 + 0,−∞} = 10
p = 10 + 0 = 10
F = {1}
ect

∗
= max{25, 10 + 10 + 5, 10 + 0 + 0} = 25

p = 10 + 10 = 20
F = {1, 2}

ect∗ = −∞
p = 0
F = {}
ect

∗
= 25

p = 10
F = {2}
est3 = 15

ect∗ = 10
p = 10
F = {1}
ect

∗
= 10

p = 10
F = {1}
est1 = 0

Fig. 8 A Θ-Λ-tree when all activities of Figure 6 are inserted and activities 3 and 4 are
gray.

[10,33] that is also used in [3] is to pre-compute the exact minimum total
transition time for every subset of families9.

For a subset of families F ′ ⊆ F , let tt (F ′) denote the minimum total
transition time used for any activity set Θ such that FΘ = F ′. Assuming
tt (FΘ) is accessible in O(1), each time we access to the value ect∗Θ in the
algorithms of Section 3.3, we can also compute

ect tsp
Θ = estΘ + pΘ + tt (FΘ)

without changing the complexity of the algorithms. The value tt (FΘ) must
be precomputed for all subsets of families, so this is tractable only if there
are few families10 as it requires solving many Traveling Salesman Problems of
increasing sizes. Moreover, it is necessary to store 2|F| integers in an array.
One can then use the bit set representation of a given set F ′ ⊆ F as an index
in the array in order to access the value in O(1). The value estΘ can be easily
maintained in the Θ-tree, and the values pΘ and FΘ can be obtained in O(1)
in the root node of the Θ-tree.

The value ect tsp
Θ can be larger than ect∗Θ because it uses tt (FΘ) instead of

tt(|FΘ|). This typically occurs when ect tsp
Θ = ectLB3

Θ . On the contrary, ect tsp
Θ

might be smaller than ect∗Θ since ect tsp
Θ always considers all activities in Θ

but never a subset Θ′ ⊂ Θ. Yet, ect∗Θ can rely on a subset Θ′ ⊂ Θ such that
estΘ + pΘ < estΘ′ + pΘ′ . Hence, the algorithms in Section 3.3 should use

9 The approach can also be used for sets of activities. The description focuses here on
families since it was initially used in the context of family-based transition times.
10 Typically maximum 10.
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the maximum of those two values instead of ect∗Θ in order to strengthen the
filtering.

One can also consider the family of the updated activity: similarly to
tt (F ′), let us write tt (Fi → F ′) the minimum transition time when the pro-
cessing starts with some activity of the family Fi ∈ F ′, and tt (F ′ → Fi) when
it completes with an activity of the family Fi ∈ F ′. We can pre-compute these
values for every set of families F ′ ⊆ F and every family Fi ∈ F ′ with a dy-
namic program running in Θ(|F|2 ·2|F|) and requiring Θ(|F| ·2|F|) of memory.
For instance, for tt (Fi → F ′), one defines:{

tt (Fi → {Fi}) = 0 ∀Fi ∈ F
tt (Fi → {F ′ ∪ Fi}) = min

Fj∈F ′
{ttFFi,Fj + tt (Fj → F ′)} ∀F ′ ⊂ F ,∀Fi ∈ F \ F ′

In the case of Detectable Precedences, Equation DPUR finally becomes:

est ′i ← max

{
est ′i, ect∗Θ + min

f∈FΘ
ttFf,Fi , estΘ + pΘ + tt (FΘ → Fi)

}
The same idea can be used to strengthen ect

∗
(Θ,Λ):

ect
tsp
(Θ,Λ) = min{estΘ, estr}+ pΘ∪{r} + tt

(
FΘ∪{r}

)
where r is the gray responsible activity (see line 11 in Section 3.4). A subtle
point is that the responsible activity r is not accessible from the Θ-Λ-tree as
for ect

∗
(Θ,Λ), so we should iterate over all r′ ∈ Λ to maximize ect

tsp
(Θ,Λ). We

therefore use the responsible activity of ect
∗
(Θ,Λ) to compute ect

tsp
(Θ,Λ).

5 Lower Bounds on the Minimum Total Transition of a Set of
Activities

In this section, we describe different lower bounds [14] for Equation 4, recalled
hereafter:

tt(k) = min
{Ω′⊆T : |Ω′|=k}

{
min
π∈ΠΩ′

ttπ

}
For each k, one has to find the shortest node-distinct (k−1)-edge path

between any two nodes of the (family) transition graph (see Section 2), which
is NP-hard as the Traveling Salesman Problem can be reduced to this problem
when k = |T |. Even though tt(k) is to be precomputed, it is desirable to
have polynomial precomputation, which justifies the use of the lower bounds
explained in this section. A more detailed description can be found in [13],
we summarize them here so that the paper is self-contained. Notice that the
lower bounds do not dominate each other, so the final lower bound for a given
cardinality k will be the maximum between the different lower bounds for this
cardinality.
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Minimum Weight Forest This lower bound consists of finding the set of k −
1 edges with a minimum cost. Basically, we use Kruskal’s algorithm [20] to
prevent cycles in our selection. As soon as k− 1 edges have been selected, the
algorithm is stopped. The result being a minimum weight forest in the general
case, it is a lower bound of our original problem since it does not ensure to
obtain a simple path in the graph.

Shortest Walk A dynamic program can be used to compute a lower bound
on the minimum transition in a set of cardinality k. The idea is to compute
a shortest walk with k − 1 edges in the transition graph. Formally, we define
SW (k′, i) as the shortest walk with k′ edges from any node to node i. To
compute this value for all number of edges k′ and every node i, we rely on the
following O(k · T 2) dynamic program:

SW (0, i) = 0,∀i ∈ [1..T ]

SW (k + 1, i) = min
j

SW (k, j) + tt i,j ,∀i ∈ [1..T ]

The lower bound for a given cardinality k is finally:

min
i

SW (k, i)

Notice this lower bound ensures the solution to be a walk in the graph but
it does not prevent cycles. However, as suggested in [12], one can strengthen
the bound by avoiding 1-cycles, i.e., cycles of the form i→ j → i.

Minimum Assignment A lower bound based on a Minimum Assignment prob-
lem was proposed by Brucker and Thiele [10]: two sets containing all the nodes
of the transition graph are constructed and a minimum assignment of k edges
is searched for, that is, the edges always link an activity of one set with an
activity of the other set. One can model this problem as a Minimum-Cost
Maximum-Flow problem in a manner similar to the reduction of a minimum
weight bipartite matching.

Lagrangian Relaxation To find the shortest simple path with k edges in the
transition graph, one can add a source (node 0) and a sink node (node n + 1)
to the transition graph so that the edges from the source node to all nodes (but
the sink one) and the edges from the nodes (but the source one) to the sink
node have a transition of zero. Then, one can solve the problem by searching
for the shortest path from the source to the sink with k + 2 edges. This can
be solved with the following integer linear program:
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minimize
∑
i

∑
j

tt i,j · xi,j

such that
∑
j

x0,j −
∑
j

xj,0 = 1

∑
j

xn+1,j −
∑
j

xj,n+1 = −1

∑
j

xi,j −
∑
j

xj,i = 0

∑
i

∑
j

xi,j = k (CARD)

xi,j ∈ {0, 1}

This problem is NP-hard, therefore we solve a Lagrangian relaxation in-
stead: we remove the edge cardinality constraint (i.e., Equation CARD) and
penalize its violation in the objective function. Without the cardinality con-
straint, the shortest path can be computed with the Bellman-Ford algorithm
[8,24] that is also able to detect a negative cycle. If this occurs, we use a classic
linear relaxation instead of using the Bellman-Ford algorithm.

Exact Shortest Path for every Subset Using the definitions given in Section 4.3,
one can compute the best possible lower bound based on the cardinality of a
set of activities/families. We compute the value of the shortest path for every
subset, and for each cardinality k, we take the smallest shortest path of all
subsets of cardinality k:

tt(k) = min
|F ′|=k

tt (F ′)

The other lower bounds described before are upper bounded by this ap-
proach. However, it is not polynomial, so it can only be used for problems with
a few activities/families.

6 Experimentations

We split our evaluation in two parts: first, we consider the case where there
are no optional activities, which was more studied in the literature. The ex-
periments were conducted on Job-Shop Problem with Sequence Dependent
Transition Times (JSPSDTT) instances. In a second time, we consider the
same problem with alternative machines, that is modeled using optional ac-
tivities from the resource point of view.

Setting We used AMD Opteron processors (2.7 GHz), the Java Runtime En-
vironment 8 and the constraint solver OscaR [25]. The memory consumption
was limited to 4GB.
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Replay Evaluation In order to derive fair and representative conclusions about
the propagators only (i.e., by removing the effects of the search heuristic),
we used the Replay evaluation methodology [27,29]. First, for each instance,
a baseline model is used to generate a search tree. This baseline model is,
among the different compared approaches, the one that prunes the less the
domains. Once the search tree is generated, it is replayed separately with each
model. A replay basically consists in reapplying the exact same sequence of
modifications to the constraint store (e.g., the branching constraints) that were
used to generate the search tree with the baseline model.

The performance of those replays is then used to construct so-called perfor-
mance profiles [15], that we built with a public web tool [28] made available to
the community.11 Performance profiles are cumulative distribution functions
of a performance metric ratio τ . In our case, τ is a ratio of either time or
number of backtracks. In the case of time, the function is defined as:

Fm(τ) =
1

|I|

∣∣∣∣∣∣
i ∈ I :

timereplay(m, i)

min
m′∈M

timereplay(m′, i)
≤ τ


∣∣∣∣∣∣ (7)

where I is the set of considered instances, m is a model and M is the set of
all models. The function is similar for the number of backtracks.

A performance profile that is above the other ones in its graphical repre-
sentation shows a higher performance than the others. This specific represen-
tation allows to have a global understanding of the actual performances of a
propagator over a full set of instances at a glance.

Let us for example, consider a performance profile with a performance
metric ratio τ representing the time needed to replay instances using a given
propagator. If this performance profile has a point in (30% of instances, 2.5),
it means that for 30% of the considered instances, the propagator takes at
most 2.5 times as much time as the baseline model.

6.1 Experimentations without Optional Activities

6.1.1 Problem instances

We have used two sets of instances. First, we used the standard t2ps in-
stances from Brucker and Thiele [10]. However, there are only 15 of them,
and we wanted to evaluate instances with more families, jobs, and machines in
order to challenge the scalability of the different approaches. We therefore gen-
erated a new set of 315 instances, here referred to as uttf, with up to 50 jobs,
15 machines and 30 families. The transition times between two families was
randomly picked between 5 and 50, and duration of activities were randomly
taken between 10 and 100.12

11 Accessible at http://sites.uclouvain.be/performance-profile/.
12 The instances are available at
http://becool.info.ucl.ac.be/resources/uttf-instances.
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State-of-the-art filtering with Families

Based on the definition of tt (Fi → {F ′}), two propagators are introduced in
[3]:

– A DP-like propagator called UpdateEarliestStart running in
O(n2 · log(n)).

– An EF-like propagator called PrimalEdgeFinding running in O(|F|·n2).

Although the filtering obtained with these propagators can be stronger than
their counterpart from [30] and our extensions, the time complexity of the
propagators is quite high as compared to O(n · log(n) · log(|F|)). In addition,
they do not make use of a Not-First/Not-Last rule and the pre-computation of
the minimum exact transition times for every subset of family is only tractable
for small (typically less than 10) values of |F|.

6.1.2 Compared Propagators

We compare models with the following propagators for Equation (URTTO):

– decomp: binary decomposition of Equation (URTTO) only.
– urtt : propagators for URTT from [14].
– artex : propagators of [3] using exact values for tt (F), tt (F → F) and

tt (F → F).
– art lb : propagators of [3] adapted to make use of cardinality-based lower

bounds from Section 5 for tt (F), tt (F → F) and tt (F → F).
– urttf ex : propagators introduced in this paper making use of the exact values

for tt(|F|) computed with minF ′:|F ′|=|F| tt (F ′).
– urttf lb : propagators introduced in this paper making use of lower bounds

of Section 5 for tt(|F|).

6.1.3 Replay Evaluation

To generate the search trees, the Conflict Ordering Search [17] was used, as it
was shown to be a good search strategy for scheduling problems. The baseline
model is decomp. The generation lasted for 300 seconds, and we enforced a
timeout of 1,800 seconds for the replay. The running times reported here do not
take into account the pre-computation step since they are negligible (generally
less than 2 sec. and max 10 sec.).

6.1.4 Results on the t2ps Instances

Figures 9 and 10 provide the performance profiles for the time and number
of backtracks, respectively. Figure 10 shows that, interestingly, urttf lb prunes
exactly as much as urttf ex . This is due to the fact that our lower bounds are
here able to compute the same values than minF ′:|F ′|=|F| tt (F ′). This sug-
gests that we often do not have to compute the exact values for tt (F) with
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Fig. 9 Performance profiles on t2ps instances for the time metric.
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Fig. 10 Performance profiles on t2ps instances for the number of backtracks metric.

the resource-consuming dynamic program, which is interesting since it is not
tractable when there are many families. We can see that from a time perspec-
tive (Figure 9), our approach is the fastest for ∼ 80% of the instances (urttf ex

being here equivalent to urttf lb , see the function in τ = 1 in Figure 9). But
our approach is also robust, as the other instances (i.e., the remaining 20%)
are solved within a factor τ < 2 compared to the best model for those remain-
ing instances. Considering the number of backtracks, our approach generally
achieves less pruning than artex (not more than three times), but substantially
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more than urtt . This lack of pruning as compared to artex is compensated in
practice by the low time complexity. Although not reported, we tried to com-
bine urttf ex and artex and the performances were close to the ones of artex

alone, thus only inducing a small overhead when urttf ex does not provide
additional pruning.
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Fig. 11 Performance profiles on uttf instances with strictly less than 20 families for the
time metric.

6.1.5 Results on the uttf Instances

First of all, we consider the approaches artex and urttf ex unable to solve
(i.e., times out by default) the 120 instances (out of 315) with 20 families or
more, since the pre-computation becomes too expensive in terms of CPU and
memory usage according to our 4Gb limitation.

Figures 11 and 12 provide the time performance profiles for the instances
with strictly less than and with more than 20 families, respectively. Figure 11
shows that our approach still outperforms the other ones, although it is the
fastest on a smaller percentage of instances than for the t2ps instances. The
instances being less structured, the gain in pruning is weaker as compared to
the decomposition. However, our method catches up very quickly; for exam-
ple, it is at most ∼ 1.3 and 2 times slower than the best approach for almost
60% and 80% of the instances, respectively. Another interesting point is that
urttf ex and urttf lb have very similar time performances, while the values for
tt(k) were here generally different (not reported here). This means that com-
puting the exact values for tt (F) is not mandatory13 when used with our

13 Still, if it is available at a low cost, it can be beneficial to use it.
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Fig. 12 Performance profiles on uttf instances with more than 20 families for the time
metric.

propagators, which is profitable since we also target scalability in terms of
number of families.

Regarding the instances with more than 20 families (Figure 12), our ap-
proach is significantly better than the other ones, as we are the fastest on
almost 70% of the instances and it is at most 4 times slower than the best
approach on the remaining instances. This teaches us that when more families
are involved, our approach is both efficient and robust.

6.2 Experimentations with Optional Activities

Optional activities are typically used when modeling problems where activi-
ties can be processed on a set of a alternative resources. Hence, in order to
experiment with our approach when optional activities are involved, we ex-
perimented on JSPSDTT with alternative resources. In particular, we used an
approach that consists in duplicating a times the activities and the resources
of an original Job Shop problem [16]. For each of the original activities, exactly
one of its duplicates must then be executed on its corresponding duplicated
machine. This amounts to solving the same problem as the original one, but
with the additional liberty of choosing on which one of the a alternative ma-
chines an activity will be executed.

Formally, for a given activity i and a duplications, we write ik the kth

duplicate of activity i. To ensure that one and only one of the alternative
machines is used by the activity i, we force one and only one of the a duplicates
ik to be used by its corresponding duplicated machine:

∃ ! k ∈ [1, a] : vik
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Moreover, the job precedences between activities must be respected by all
duplicates, i.e., if there is a precedence between two activities i and j in the
original problem, then we must have:

∀k ∈ [1, a] ∀k′ ∈ [1, a] : k 6= k′ =⇒ cik ≤ sjk′

Search Heuristic To our knowledge, few search heuristics are actually devoted
to the presence of optional activities. For our evaluation, we used a strategy
from Barták that avoids taking decisions about optional activities that will
actually not be executed in the final schedule [6,11]. This is important, as it
prevents the search to explore several times the exact same schedule.

The heuristic has two levels: on the first level, it decides wether an activity
i is valid or not, i.e., it branches on vi. On the left branch, it imposes vi = true,
and will then branch using the second level, as explained hereafter. On the right
branch, vi = false is posted and the activity i will not be considered deeper
in the tree. An other activity j 6= i will then be considered to be branched
on using the first level. In the second level, precedences between i and all
activities j : ¬(vj = false) (i.e., still possibly running on the same resource)
will be imposed, until no more precedences involving i can be decided. The
first level of branching is then used with a different activity j.

To decide which activity should be branch on first, the activity with the
smallest est is chosen (ties are breaked by smallest duration and ect ). Finally,
once all decisions have been made, one can assign all activities to their est
since the objective is here to minimize the makespan.

Settings We generated 100 instances similar to the five small t2ps instances,
i.e., with 10 jobs, 5 machines and 5 families. The instances are kept small
because duplicating the alternatives already increase substantially the search
space. The models we compared are the same ones as before, but the approach
from Artigues et al., as they do not deal with optional activities. Our approach
use lower bounds for tt(|F|). We also consider an additional model, called urV ,
that uses the filtering from Viĺım.

We also used the Replay evaluation: the generation lasted at most 300 sec-
onds and we filtered out instances that were solved within less than a second.

Results First, we consider the problem with two alternative resources. The
results are given in Figure 13. A first observation if that urttf lb is almost
always the fastest and it solves all instances in τ < 2, which makes our ap-
proach appealing. Interestingly, one can also see that the profiles of the other
approaches are in this case quite similar. Finally, for ∼ 10% of the instances,
urttf lb provides a speed-up of ∼ 32 as compared to the other approaches (see
the profiles in τ = 32 in Figure 13).

Let us now consider the results (given in Figure 14) when we have three
alternative resources. While our approach is still clearly the best one for similar
reasons, one can now better separate decomp, urV , and urtt : urV is better
than decomp and urtt is better than urV . Still, urtt and urV are close to each
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Fig. 13 Performance profiles on generated instances of the Job Shop problem with two
alternative resources.

other, and tends to converge. This shows again the benefits of reasoning with
families of activities.
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Fig. 14 Performance profiles on generated instances of the Job Shop problem with three
alternative resources.
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7 Conclusion

This paper has extended the algorithms and data structures for the unary re-
source, taking into account family-based transition times in order to perform
additional propagation. The method also handles optional activities so that
one can model more general problems (e.g., involving alternative resources).
The original data structures and algorithms have been adapted accordingly.
The approach is lightweight from both the time and space perspectives. Exper-
iments conducted on the Job-Shop Problem with Sequence Dependent Transi-
tion Times have demonstrated that our work provides a substantial gain and
is quite robust to changes in instance characteristics (e.g., number of activities
and families).

We would like to consider other types of problems (e.g., the Traveling
Salesman Problem with Time Windows) and combine this work with the use
of good lower bounds in a branch-and-bound setting. More importantly, when
there are no families defined a priori in an instance, we want to study the
benefit of first creating them by means of clustering algorithms and then using
the filtering introduced in this paper. This approach might prove to be helpful
when the intra-cluster transition times are significantly smaller than the inter-
cluster ones.
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