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A B S T R A C T

There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure
optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. This
paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has extremely low sample
requirement. The novelty behind the algorithm’s performance involves an iterative scenario design approach
that merges information regarding constraint violations in the system with data-driven sparse regression.
Compared to conventional methods with random scenario sampling, our approach is able to provide feasible
operating points for realistic systems with much lower sample requirements. Furthermore, multiple sub-tasks in
our approach can be easily paralleled and based on historical data to enhance its performance and application.
We demonstrate the computational improvements of our approach through simulations on different test cases in
the IEEE PES PGLib-OPF benchmark library.

1. Introduction

Modern power systems are faced with significant uncertainty in
power generation and demand. This is due to increasing integration of
renewable energy resources like wind and solar, and growth of demand
side participation and distributed energy resources at the sub-trans-
mission and distribution levels. As a result, uncertainty management
has become a critical component in the operational planning stage,
where generators and controllable elements must be dispatched in a
way that the system remains within its safety limits despite uncertain
fluctuations. In the literature, the issue is addressed by considering
variants of the optimal power flow (OPF) problem that incorporate the
effect of uncertainty. These formulations take the form of either a sto-
chastic or robust optimization problem, where a limit on some chosen
measure of risk is explicitly enforced.

All uncertainty-aware OPF formulations pose significant computa-
tional challenges, most of which can be traced back to the non-linear
implicit nature of the AC power flow equations. The two primary
challenges are (i) quantifying the effect of uncertainty on the system – it
is difficult to precisely express the variation of the dependent physical
quantities in the system such as voltage magnitudes and line currents as
a function of the uncertainty, and (ii) formulating a sufficiently com-
pact optimization that integrates the uncertainty quantification while
still being tractable. These challenges have been echoed in several re-
cent publications on the topic [1,2], and several solution approaches

have been proposed. Broadly, we can classify these approaches into two
types (i) approximations to the AC power flow equations, and (ii) Monte
Carlo methods.

1.1. Power flow approximations

These class of approaches aim at simplifying the task of uncertainty
quantification by full or partial approximations to the power flow
equations. These include linear approximations of the power flow such
as the DC approximation [3] and a first order Taylor expansion [4].
Using these approximations greatly improves tractability, in particular
for risk metrics that can be expressed as a convex program. Many
publications [1,2,5–8] have attempted to incorporate the AC power
flow equations. In [1], only a partial linearization is considered, where
all nominal quantities follow the full non-linear AC-PF while the effect
of uncertainty is expressed via linearization. The resulting method is
much more accurate than full linearization, but can lose fidelity when
the magnitude of the uncertainty is large. More recently, an approach
based on polynomial chaos expansion [2] has been proposed that is
highly accurate but computationally challenging. In summary, ap-
proaches based on power flow approximation trade-off accuracy for
scalability – the brief review mentioned above cites methods with high
scalability - low accuracy to low scalability - high accuracy.
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1.2. Monte Carlo methods

These methods quantify the effect of uncertainty on the system by
solving the power flow equations for a large number of realizations
drawn from the uncertainty distribution. When the number of samples
used is sufficiently large, Monte Carlo provides excellent accuracy. The
primary challenge however lies in integrating Monte Carlo into an
optimization formulation without exploding the size of the problem and
the associated computational time. In this context, the most widely used
approach is the so-called scenario approach where an extended OPF
problem is formulated by incorporating a specified number of scenarios
from the distribution, and robustness to each scenario is enforced via
constraints. Several theoretical results [9,10] (primarily for convex
formulations with chance constraints) provide guidelines on how many
random samples should be used to achieve the desired probability of
constraint violation. The main drawback of the approach is that random
sampling based approaches, specifically for non-linear and non-convex
optimal power flow problems, quickly result in the optimization pro-
blem becoming computationally intractable for practical cases.

1.3. Contribution

In this paper, we adopt the scenario-based approach described
above. However instead of including scenarios collected randomly, we
use system knowledge and data-driven tools to drastically reduce the
number of scenarios required to solve the problem. This keeps the
primary benefits of the scenario approach – accurate uncertainty
quantification, agnosticism to uncertainty distribution, etc., while sig-
nificantly boosting its scalability. Our approach is an advanced iterative
procedure similar to scenario generation algorithms common in pro-
blems such as power systems expansion planning [11]. The algorithm
iteratively adds more scenarios to the scenario-based OPF until a se-
curity criterion, assessed by a sufficient number of Monte Carlo sam-
ples, is satisfied. Note that since the assessment of scenarios does not
involve solving the OPF, scalability is not compromised and the pro-
cedure can heavily exploit availability of parallel computing cap-
abilities. Following the scenario assessment, what is added back to the
OPF, in each iteration, is a well-chosen subset of ‘modified’ scenarios.
To determine the ‘modified’ scenarios, we first develop metrics for sub-
selecting a very small portion of critical scenarios based on constraint
violation. Second, we use regularized linear regression to identify the
directions of uncertainty that are the most adversarial for each violated
constraint. We then boost the chosen critical scenarios along the di-
rections identified and add them back to the OPF formulation for the
next iteration. We show through several case studies that this data-
driven program significantly reduces the scenario size requirements
over vanilla random sampling - with ~ 30 scenarios we are able to find
a secure solution to the stochastic OPF for the large 1354 bus system. In
summary, our contribution in this paper is a suite of data-driven tools to
efficiently solve the stochastic OPF problem with a scenario-based ap-
proach. The features used in our scenario selection procedure can be
tuned based on historical knowledge/expertise available with an op-
erator. The code-base used for our implementation is being released
with this paper for testing/validation by the research community.

Notation

Sets

• ,� set of buses. ,� set of lines. ,� set of generators.

• �� / ,�� set of PV / PQ buses. ,sl� slack bus.

• Ω, uncertainty set. ΩN, finite set of N scenarios ω ∈ Ω.

Parameters

• Pi / Qi, real / reactive demand at bus i.

• Gi / Bi, shunt conductance/ susceptance at bus i.

• Gij / Bij, conductance / susceptance on line (i, j).

• x / x , lower / upper capacity limit on variable x.

• Sij, flow limit on line (i, j).

• μ ω( )i
p μ ω( ),i

q real / reactive demand fluctuation at bus i under
scenario ω.

• cg(.), cost of generator ∈g ,� assumed to be convex quadratic.

Variables

• pi / qi, real / reactive injection at node i.

• fij
p / f ,ij

q real / reactive power flow on line (i, j).

• vi / θi, voltage magnitude / angle at node i.

• pg
0 / v ,g

0 generation / voltage set point at PV bus g.

2. Problem formulation

In this section, we provide details of modeling a power system
subject to uncertain power injections, the corresponding generation
recourse policy and details of the stochastic OPF formulation.

2.1. Power system under uncertainty

We consider a power network and denote the set of buses by � and
the transmission lines by � . Without loss of generality, in the pre-
sentation that follows we assume at most one generator and one load
per bus, and that the net power injection at each bus is subject to un-
certainty. Consider an uncertainty realization ω in possibly unknown/
non-parametric set Ω. The set of power flow equations under un-
certainty ω are given by

∑ = − + − ∀ ∈
∈

f ω p ω P μ ω G v ω i( ) ( ) ( ( )) ( )
i j

ij
p

i i i
p

i
s

i
( , )

2 �

� (1a)

∑ = − + + ∀ ∈
∈

f ω q ω Q μ ω B v ω i( ) ( ) ( ( )) ( )
i j
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q

i i i
q

i
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i
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2 �
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( ) ( ) ( ) ( )cos( ( ) ( ))

( ) ( )sin( ( ) ( )) ( , )
ij
q

i i ij i j i j

ij i j i j

2
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In (1), μ ω μ ω( ), ( )i
p

i
q denotes the active and reactive power fluc-

tuations at bus i, under uncertainty ω. All other variables in the system
are explicitly expressed as a function of the uncertainty realization.

Recourse Model: For a non-zero realization of uncertainty, the gen-
erators in the system must adjust their generation to maintain total
power balance and feasibility. We use an affine policy representing the
automatic generation control (AGC) that is representative of current
power system operation [12].

∑= + ⎛

⎝
⎜

⎞

⎠
⎟ ∀ ∈ ∀ ∈

∈

p ω p μ ω α g ω( ) ( ) , , Ωg g
i

i
p

g
0 ��

� (2a)

= ∀ ∈ ∀ ∈v ω v i ω( ) , , Ωg g
0 �� (2b)

Eq. (2a) shows the linear adjustment in the active power generation
of generator g from its nominal value of pg

0 as a fraction of the total
power mismatch ∑ ∈ μ ω( )i i

p
�

caused by the uncertainty, according to its
participation factor αg. In this paper, we consider the participation
factors to be given and fixed. For simplicity, we assume =α ,g

1
| |�

al-
though this specific choice is not relevant for our method. Eq. (2b) says
that the voltage magnitudes at PV buses are kept constant during op-
eration, and is in accordance with current practice.
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2.2. Stochastic optimal power flow formulations

In this section, we present the stochastic optimal power flow pro-
blem in a generic form. Since our solution approach involves a Monte
Carlo in-the-loop validation step, we have the flexibility to handle a
variety of such formulations. We state the set of inequality constraints
in the OPF representing the standard safety limits on line flows, phase
angle difference at neighboring buses, and bus injections and voltages
that need to be enforced.

= ∣
+ ≤ ∀ ∈

p q f f v θ
f f S i j

Γ { ( , , , , , )
( ) ( ) ( , )

p q

ij
p

ij
q

ij

OPF
2 2 2 � (3a)

≤ − ≤ ∀ ∈θ θ θ θ i j( , )ij i j ij � (3b)

≤ ≤ ≤ ≤ ≤ ≤p p p q q q v v v, , } (3c)

In the above definition, ΓOPF denotes the set of all power flow so-
lutions that satisfy the safety limits given in (3).

Dependent and independent variables: For clarity of exposition, we
first specify which variables in the stochastic OPF are controllable/in-
dependent and which variables are dependent. Suppose that the nom-
inal values of generation p0 and voltages v0 at the PV buses have been
determined. Assume that for each realization of the uncertainty ω, the
generators react according to the recourse policy in (2). Then given ω,
Eq. (2), fully determine the active power generation and voltage mag-
nitude pi(ω), vi(ω) at all PV buses. The (known) functions μ ω μ ω( ), ( )i

p
i
q

fully determine all real and reactive power injections p(ω), qi(ω) at the
PQ buses. Once these variables are specified, we are in the standard
Power Flow setting, and the set of equations in (1) fully specify the
value of the rest of the variables – qi(ω), θi(ω) at the PV buses, and vi(ω),
θi(ω) at the PQ buses, and all line flows f ω f ω( ), ( )ij

p
ij
p . We summarize

this functional dependence using the following notation:

=p ω q ω f ω v ω θ ω p v ω α( ( ), ( ), ( ), ( ), ( )) PF( , , ; ).0 0 (4)

A stochastic optimal power flow problem in generic form corresponds
to finding a set of nominal set point values for the active power gen-
eration pg

0 and voltage magnitude v0 such that the total generation cost
is minimized, and some stochastic measure of power flow violation for a
given uncertainty distribution is below a required limit ϵ. This is made
precise in the formulation below:

∑
∈

c pmin ( )
p v g

g g,
0

0 0
� (5a)

⎜ ⎟= ⎡

⎣
⎢

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

⎤

⎦
⎥ ≤p v ω αEs.t. PF , , ; , Γ ϵ.g

0 0
OPFω�� �

(5b)

Eq. (5a) specifies the objective that minimizes the total nominal
generation cost. This is for simplicity. It is possible to incorporate the
cost of reserves in a straightforward way. Eq. (5b) enforces that some
stochastic violation measure is bounded. The stochastic violation measure
�� is the expectation of some violation measure ()� with respect to ω

which denotes the probability distribution of the uncertainty ω. The
violation measure ()� is a function of the uncertainty dependent power
flow variables (first argument) and the feasibility/safety region (second
argument), and is used to quantify how far the uncertain power flow
variables are from the feasible region. Note that the generic formulation
in (5) includes common cases, such as,

Chance constrained OPF (CCOPF) [13]: This formulation enforces
that the probability of constraint violation is smaller than a specified
value and corresponds to

⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

= ∉

p v ω α

p ω q ω f ω v ω θ ω

PF , , ; , Γ

( ( ), ( ), ( ), ( ), ( ) Γ ),

g
0 0

OPF

OPF

�

(6)

= ∉p ω q ω f ω v ω θ ω( ( ), ( ), ( ), ( ), ( ) Γ ),ω OPF�� (7)

where () denotes the indicator function. By a linear combination of the
different constraints in (3), Eq. (6) can be converted to individual, and
weighted Chance Constrained OPF [14]

Closed-form analytic expressions for the stochastic constraint in
Eq. (5b) are not easy to derive for the AC-PF model under general un-
certainty distributions. To overcome intractability, data driven scenario
OPF can be formulated.

2.3. Scenario OPF (S-OPF)

Scenario approach [9,10] collects a set ΩN of N random samples for
the uncertainty ω ∈ Ω. By definition, the base case =ω 0 is included in
set ΩN, and the user is assumed to have access to a scenario generation/
sampling process (from historical data or otherwise). We then solve an
OPF problem with hard feasibility constraints for each selected scenario
as denoted below.

∑
∈

c pmin ( )
p v g

g g,
0

0 0
� (8a)

⎜ ⎟∀ ∈ ⎛
⎝

⎞
⎠

∈ω p v ω αs.t. Ω , PF , , ; Γi N g i
0 0

OPF
(8b)

By ensuring feasibility for a large-enough and representative sample
set ΩN, S-OPF can indirectly guarantee the stochastic violation con-
straint Eq. (5b) Theoretical bounds on the size of the sample set ne-
cessary to ensure ≤() ϵ�� and related design of box constraints exist
for convex optimization problems [9,15], but are not generalizable to
AC-OPF. As demonstrated later, the number of samples to ensure low
stochastic violation quickly grows. This makes the standard S-OPF in
(8) computationally intractable for realistically sized test cases. Existing
scenario selection methods pick a sub-set of scenarios from the ones
available, randomly [16] or by minimizing a inter-distribution distance
such as Wasserstein metric [17]. Similarly, mixed-integer programs
have been proposed to pick a sub-set of scenarios inside chance-con-
strained optimization [18]. However the number of selected scenarios
necessary, or the mixed-integer programs themselves, still involve a
large computational requirement for AC- OPF. In this paper, we take a
different approach where system knowledge and data-driven techni-
ques are combined to design (not just select) strategic scenarios that
lead to a drastically more efficient scenario OPF.

3. Data-driven scenario OPF

The overarching goal of our approach is to determine an optimized
scenario set ΩN of far lesser cardinality, compared to random sampling,
so that a tractable scenario OPF solution with stochastic violations
below prescribed threshold can be be determined. We propose an al-
gorithm called DDS-OPF:

The threshold τ used in DDS-OPF is selected based on the properties of
the stochastic violation measure (),�� pre-fixed ϵ bound (see (5b)),
and the confidence requirement. Theoretical confidence bound on the
solution for selected τ is given in Section 3.3. All numerical experiments
considered in this paper focus on the case when ()�� corresponds to
the probability of constraint violation. For that, the estimated stochastic
violation measure ˜�� simply corresponds to the fraction of samples in

,� for which the constraints are violated.
The rest of the section is focused on describing the critical Step 4 in

DDS-OPF. To guide intuition, we use computations on the pgli-
b_opf_case73_ieee_rts test-case in the OPF Power Grid Library
[19]. This case has 73 buses, 120 lines and 51 loads. We assume that ω

is a uniform distribution within a box, i.e., for each load ∈i � we have
∼ −μ ω P P( ) [ 0.03 , 0.03 ]i

p
i i	 and ∼ −μ ω Q Q( ) [ 0.03 , 0.03 ],i

q
i i	 where 	

denotes the uniform distribution, and Pi, Qi are the rated active and
reactive demands.
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Table 1 shows the performance of the vanilla scenario approach
where randomly drawn samples are included in the set ΩN. Note that
non-trivial number of violations are still obtained despite 50 scenarios.
This high sample requirement prevents tractability for realistic test-
cases. To improve over random sampling, our proposed scenario con-
struction in Step 4 includes 2 key sub-steps:

(a) PF-aware scenario selection: We use prioritization metrics to down-
select dominant scenarios.

(b) Data-driven scenario enhancement: For scenarios selected in (a), we
identify critical directions that maximize their effect on S-OPF, and
modify them (stretch or squeeze) along these directions before
adding to ΩN.

A schematic representation of our overall approach is shown in
Fig. 1. In what follows, we describe in detail, the motivation and im-
portant features of scenario construction sub-steps and use the 73-bus
test system to demonstrate improvements.

3.1. PF-aware scenario selection

A random scenario, that is already feasible for the current solution
(p0, v0), is less likely to be effective for feasibility improvement than a
scenario that has multiple constraint violations during recourse. We use
information about constraint violations to sub-select a small number of
dominant scenarios from set � in Step 2 to add to the scenario set ΩN.
Fortunately, the infeasible scenarios and their corresponding constraint
violations are already acquired while validating the performance of (p0,
v0) in Step 3.

3.1.1. Dominant scenario selection
We consider three different prioritization criteria:

• Maximum violation (MV). Scenarios having the largest constraint
violation, measured relative to bound value.

• Number of constraints (NC). Scenarios violating the maximum
number of constraints.

• Hybrid. Scenarios that have the highest = +
′∈

′
′∈

′
weight ,s

MV
MV

NC
NCmax max

s

s
s

s

s
s

� �

where MVs is the largest violation of a constraint, and NCs is the
number of constraints violated, by scenario s.

We avoid selecting a new scenario that violates the same set of
constraints as a previously selected (dominating) scenario. Such
avoidance ensures that a greater proportion of constraint violations are
represented in ΩN.

3.1.2. Batch size selection
While the prioritization criteria rank the scenarios according to

their dominance, the number of samples K that are added back to ΩN

still needs to be decided and can have a significant impact on overall
efficiency. When K is too small the total number of iterations can be
large since we are adding very little information to the problem in each
iteration. On the other hand, when K is too large, the size of the re-
sulting S-OPF can quickly make it intractable. Through multiple nu-
merical experiments, we confirm that a batch size of 5 provides the
right trade-off across a variety of test cases.

3.1.3. Results for 73-bus case
We use dominant scenario selection in DDS-OPF with =S 1000, =K 5

and =τ 0 and show the results in Table 2. Compared to the results for
the random sampling in Table 1, we have significantly improved per-
formance for each of the three proposed criteria. Indeed, at most 29
scenarios are able to reduce the number of infeasible scenarios to al-
most zero on out-of-sample testing. Fig. 2 shows how the number of
iterations and total scenario size ΩN changes for various choices of K,
justifying our choice of =K 5. Note that the number of final scenarios is
often less than +iterations K# * 1, since in each iteration, only one of
multiple scenarios that violate the same set of constraints, is added to
ΩN. In other words, some iterations observe less than K distinct sets of
violated constraints. This feature is analogous to observations in Ng
et al. [20], Deka and Misra [21] on sparse set of active constraints in
OPF.

3.2. Data-driven scenario enhancement

Note that while Section 3.1 allows us to select scenarios through
prioritization metrics, we do not modify the generated scenarios. In this
section, we present data-driven enhancements to selected scenarios
before adding them to ΩN, that make our approach more efficient and
amenable for large test-cases. Based on preliminary tests on multiple
cases, we observe that violations of a given constraint are primarily
caused by a small subset of load fluctuations. Further, there are certain
critical directions for these load fluctuations that maximize violation. We
now describe our method to identify these subset of loads and the cri-
tical directions, and a procedure to enhance the selected scenarios
along these critical directions to make them more effective in enforcing
feasibility.

Table 1
Feasibility on 1000 out-of-sample scenarios for DDS-OPF with randomly sam-
pled ΩN with =K 10, for 73-bus test system.

−|Ω | 1N 1 10 20 30 50

Pvio
1000 100% 59.5% 25.0% 32.3% 12.2%

Cost 1.904e5 1.948e5 1.948e5 1.948e5 1.948e5

Fig. 1. Schematic of DDS-OPF. The scenario construction sub-steps are high-
lighted within the dotted box. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 2
Feasibility on 1,000 out-of-sample scenarios for DDS-OPF with scenario selec-
tion with =K 5, for 73-bus test system.

Policy # Iterations |ΩN| Pvio
1000

MV 5 20 0.1%
NC 7 28 0%
Hybrid 8 29 0%
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3.2.1. Identifying critical components and directions
Our approach to critical component identification relies on reg-

ularized linear regression [22], as described next. Consider selected
scenario =t μ t μ t( ( ), ( ))p q that we intend to enhance. Let t
 be the set of
constraints violated by t during recourse. For each ∈c ,t
 let c� be the
set of random samples that violate it, with relative violation uc

s for
sample =s μ s μ s( ( ), ( ))p q . We approximate a sparse linear map between
the active and reactive loads fluctuations in buses ,� and violation for
constraint ∈c t
 . The critical components and directions are identified
via the vector dc, computed as follows:

∑ ∑=
⎛

⎝

⎜
⎜⎜

−
⎛

⎝

⎜
⎜⎜

+
⎞

⎠

⎟
⎟⎟

⎞

⎠

⎟
⎟⎟

+ ∥ ∥
∈ ∈

=

d u d d μ s λ darg min ( ) .c
d s

c
s

i
r p q

i
r

i
r

0

( , )

2
1

c� �

Here λ > 0 is a regularization coefficient used with the ℓ1 norm to
promote sparse solutions. This is an unconstrained convex optimization
problem that can be easily solved, including in parallel for each selected
scenario t and constraint c.

3.2.2. Scenario enhancement
Using the critical directions identified, we describe the scenario

enhancement procedure for the special case when the uncertainty is a
uniform distribution over a box. There are variations possible for other
distributions, which we do not pursue in the paper. The enhancement
operation for scenario t is given below:

∀ ∈ =
< ←
i r p q

if d τ then μ t μ t
, ( , ),

| | ( ) ( )i
r

i
r

i
r

2

�

← ⎧
⎨
⎩

>
< −

else μ t
μ if d τ
μ if d τ

( )
.

i
r i

r
i
r

i
r

i
r

2

2

where τ2 > 0 is a positive threshold.
Note that the enhancement step changes entries in scenario t to their

maximum or minimum values, based on the sign of non-trivial entries
in dc. This is done as the signs in dc reflect positive or negative direc-
tions to maximize violation. In settings where the maximum values of
μ μ,i

p
i
q are not known, one can change it by a factor of the current

entries (akin to a gradient based change). In this paper, we use
= −τ e1 42 for our simulations. By increasing the threshold τ2, the

changes in t can be made more sparse.

3.2.3. Results for 73-bus case
In addition to scenario selection of Section 3.1, we now use the

scenario enhancement technique on the 73-bus test case. The results are
presented in Table 3. We observe that addition of scenario

enhancement significantly reduces (more than 60%) the number of
samples necessary for convergence of DDS-OPF. The combined impact
of scenario selection and scenario enhancement steps over random
sampling is evident from comparisons with Table 1. Using at most 11
optimized scenarios, our proposed method is able to bring down in-
feasibility in out-of sample testing from 50% to 0.

3.3. Monte-Carlo step, confidence bounds, and scaling

In this section, we provide a theoretical confidence bound on the
quality of the solution obtained from DDS-OPF based on the stopping
criterion τ employed in step 3. The proof relies on an application of the
Hoeffding inequality [22] and is omitted due to space considerations.

Theorem 1. Suppose that for all nominal power flow solutions in ΓOPF and
for all ω ∈ Ω, the violation measure satisfies ≤ M| ()|� . Then the solution
(p0, v0) obtained from DDS-OPF with stopping criterion τ and sample size S
satisfies

< +

> − =

−τ αS

δ α M δ

( )

1 , where 2 log(1/ ) .
ω

1/2

2

 ��

Proof. Since ω(*, )� is a random variable as a function of uncertainty
realization ω bounded by M (the dependence on other non-random
quantities has been suppressed for clarity). By using the Hoeffding
inequality [22] for (5b), we get for any t > 0,

∑⎛

⎝
⎜ > + ⎞

⎠
⎟ ≤ −

=S
ω t St M1 (*, ) exp( /2 ).ω

i

S

i
1

2 2 �� �

The proof follows by using = −t αS 1/2. □

Theorem 1 shows how the stopping criterion translates to the
quality of solution. A critical advantage of DDS-OPF is the Monte-Carlo-in-
the-loop step 2. This is different from the vanilla scenario approach,
where the random samples drawn from ω are incorporated into S-OPF.
In contrast, in DDS-OPF the samples used in step 2 to evaluate the current
solution p0, v0 are independent from the samples used in the prior
iteration to obtain p0, v0 (step 5 or step 1 if first iteration). This results
in fast convergence rates obtained via Theorem 1.

In all our experiments in Section 4, we choose =S 1000 and =τ 0
with =�� probability of violation. Since the probability is always
smaller than 1, we have =M 1. By applying Theorem 1, we can guar-
antee with confidence 95%, that all solutions obtained in this paper
satisfy the joint chance constraints with probability 99%.

The Monte-Carlo step involves solving a series of power flows. Since
the loading conditions resulting from uncertainty are still in the vicinity
of the nominal load, warm-start methods can be used to solve a large
number of power flows quickly. Further, this easily lends itself to par-
allelization, resulting in even further reduction in computation time. As
a result, most of the computational complexity of DDS-OPF lies in solving
the resulting S-OPF in step 5.

4. Numerical experiments

In this section, we benchmark the DDS-OPF by detailed numerical
experiments on a number of test cases in the IEEE PES PGLib-OPF
benchmark library. The code is accessible from the following link :

Fig. 2. Number of iterations and final size of ΩN when the algorithm has con-
verged for different choices for K, number of selected scenarios per iteration, for
the 73 bus system. These are average numbers out of 10 runs of DDS-OPF.

Table 3
Feasibility on 1000 out-of-sample scenarios for DDS-OPF with scenario selec-
tion & scenario enhancement with =K 5, for 73-bus test system.

Policy # Iterations |ΩN| Pvio
1000

MV 1 6 0%
NC 2 11 0%
Hybrid 2 11 0%

I. Mezghani, et al. Electric Power Systems Research 189 (2020) 106567

5



https://github.com/imezghani/StochasticACOPF.

4.1. Test cases and experiment set up

We consider four different test cases, 24_ieee, 73_ieee,
118_ieee and 1354_pegase. The details of the test cases are shown
in Table 4. For the first three (smaller) test cases, we assume that all
active and reactive loads have a uniform 3% fluctuation around their
nominal value. For the 1354_pegase test case, we assume that the real
and reactive powers of the 211 out of the 673 loads that are situated at
end-buses fluctuate uniformly by 2% of their nominal value. These
buses often correspond to connections to distribution/sub-transmission,
where the consumers and distributed energy resources responsible for
the uncertainty are situated. The network is illustrated in Fig. 3. From
Table 4, it is clear that the recourse with the base-case solution can lead
to infeasibility for an extremely high number of load fluctuations
( > 85%).

We remark here that the level of uncertainty chosen is quite large;
increasing the uncertainty further from the given values makes a large
percentage of loading conditions infeasible for the basic OPF, let alone
the stochastic OPF. For DDS-OPF, we choose =S 1000, =K 5 and =τ 0
with empirical probability of violation ˜�� .

4.2. Performance trends

Table 5 shows the results of applying DDS-OPF on the different test
cases.

4.2.1. Scenario size
We see that DDS-OPF has excellent performance for all test cases in

terms of number of iterations ( It# ) and final number of samples (|ΩN|).
|ΩN| grows very slowly with network size, from 7 on the 24 bus system
to only 31 on the 1354 bus system. This demonstrates that DDS-OPF has
very favorable scaling properties, and can be scaled to even larger
systems.

4.2.2. Cost
While the scenario enhancement procedure introduced in

Section 3.2 helps quickly obtain a secure solution, worsening the sce-
narios can potentially increase the cost. However, we see by comparing
the cost between Tables 4 and 5 that in all the cases the increase in cost
from the deterministic (and unsafe) solution is small with ~ 2% for the
24 bus system to ~ 0.2% for the 1354 bus system. The larger, more
realistic system, possesses more flexibility to handle uncertainty in a
more economic way, as expected.

Furthermore, by comparing the costs for the 73-bus system in
Tables 1 and 5, it is clear that our algorithm achieves the same cost as
the vanilla scenario selection scheme, while significantly improving the
feasibility of the solution.

4.2.3. Distance to the deterministic solution
The last two columns of Table 5 report the −2 norm difference be-

tween the deterministic solution set-points and the DDS-OPF solution set-
points, first in terms of real power injections and then voltage magni-
tudes. The quantities suggest that the solution to the stochastic OPF lies
in the vicinity of the solution of the deterministic OPF. Nevertheless,
this adjustment to the deterministic solution is critical and can sig-
nificantly improve the robustness of the solutions. Using the 1354 bus
system as an example, the reduction in maximum violation can be as
much as 17% (see Table 6).

4.3. A detailed study on the 1354_pegase test case

We present detailed numerical experiments for different variants of
DDS-OPF on the 1354 bus system. Table 6 shows the results for different
choices of prioritization rule.

4.3.1. Effect of prioritization rule
With any prioritization rule, DDS-OPF finds an excellent solution with

a maximum of 31 scenarios in the final S-OPF. All resulting costs are
similar, and within 0.2% of the base case cost.

4.3.2. Different stochastic violation measures
The Monte Carlo in-the-loop method employed by DDS-OPF grants it

the flexibility to handle a variety of stochastic violation measures.
Table 6 shows two such violation measure, the probability of violation
and maximum magnitude of violation in an out of sample testing with
1000 samples. This translates into confidence guarantees in the sense of
Theorem 1. As an example by using Theorem 1, we can guarantee that
the solution obtained using MV for constraint selection, satisfies a
chance constraint with probability of violation < 1.1%. Similarly, we
can guarantee that in the face of uncertainty, the solution has a max-
imum constraint violation of 3.26%. The second guarantee uses a very
conservative maximum violation bound of =M 10. Both the above
statements carry a confidence of 95%.

5. Conclusion and future directions

This paper describes a principled iterative data-driven approach for
stochastic AC-OPF under general probabilistic constraints. The non-
linear and non-convex equations in AC-OPF make random sampling or
scenario reduction approaches impractical for large test cases, due to
their large sample requirement. Our data-driven algorithm is able to
overcome that by a novel 2-step process for ‘dominant’ scenario design/
construction that involves: (a) scenario selection based on constraint
violations, and (b) scenario enhancement by regularized linear regres-
sion. Through system-level intuition, theoretical bounds, and finally
numerical verification on multiple test cases, we demonstrate that our
data-driven algorithm is able to provide feasible solutions to stochastic
AC-OPF using far lower scenarios than conventional schemes. For ex-
ample, our method uses only 31 constructed samples to provide a fea-
sible solution for the 1354_pegase test case, that satisfies chance
constraints with < 1.1% violation probability.

This work naturally leads to multiple extensions. First, we want to

Table 4
Test case details.

Test case 24_ieee 73_ieee 118_ieee 1354_pegase

# Buses 24 73 118 1354
# Generators 33 99 54 260
# Lines 38 120 186 1,991
# Loads 17 51 99 673
# Fluctuations 17 51 99 211
Base cost 6.34e4 1.90e5 9.72e4 1.26e6

Base Pvio
1000 87.5% 100% 100% 100%

Fig. 3. Topology of test case 1354_pegase.
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parallelize the steps (scenario enhancement, Monte Carlo checks) and
include warm-starts in our algorithm to achieve its true computational
benchmark. While the current work operates on box-uncertainty sets
for sampling and scenario enhancement, efficient data-driven efforts for
general (non-parametric) uncertainty sets is another direction for ex-
ploration. Finally we plan to analyze extensions of our approach to
related and computationally challenging problems on resilient network
design and stochastic unit commitment.
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Algorithm 1. DDS-OPF.

Table 5
Overall performance trends of DDS-OPF.

Test case Policy # It |ΩN| Pvio
1000 Cost Dist P Dist V

24_ieee MV 3 7 0% 6.502e4 −e2.5 1 −e4.4 3
73_ieee MV 1 6 0% 1.948e5 −e5.4 1 −e9.9 3
118_ieee Hybrid 3 14 0% 9.802e4 −e9.0 1 −e3.7 2
1354_pegase MV 6 31 0.1% 1.263e6 1.4 −e5.1 2

Table 6
Results of the iterative approach on 1354_pegase.

Policy # It |ΩN| Pvio
1000 Max. Viol. Cost ( × 1e6)

Base – 1 100% 17.3% 1.2620
MV 6 31 0.1% 0.06% 1.2633
NC 6 31 2.3% 0.34% 1.2633
Hybrid 8 31 0.1% 0.04% 1.2634
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