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Abstract

Nonparametric data envelopment analysis and free-disposal hull estimators are frequently
used to estimate cost, revenue and profit efficiency as well as the corresponding allocative ef-
ficiencies. Papers in the literature often report sample means of such estimates along with
sample standard deviations, inviting readers to make inference about means of these efficiencies
using classical methods based on the standard Lindeberg-Feller central limit theorem (CLT). A
number of papers explicitly make inference using the classical methods. However, the statistical
properties of these estimators are (until now) unknown. This paper establishes rates of conver-
gence and existence of limiting distributions for the various estimators. These properties are
needed in order to make inference about individual producers using subsampling methods. In
addition, properties of the first two moments of the estimators are derived, and these results are
subsequently used to establish new CLTs for the estimators, providing formal justification for
inference-making. The results reveal that the classical CLTs and methods do not provide valid
inference when FDH estimators are used, and provide valid inference when DEA estimators only
in a few restrictive, special cases.
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1 Introduction

Nonparametric envelopment estimators such as the data envelopment analysis (DEA) estimators

due to Farrell (1957) and Charnes et al. (1978) as well as the free-disposal hull (FDH) estimator

introduced by Deprins et al. (1984) are widely used to estimate technical efficiency of firms and

other organizations. The statistical properties of these estimators of technical efficiency are by now

well-developed (see Simar and Wilson, 2013 and 2015 for recent surveys), and methods exist for

making inference about the technical efficiency of a single firm as well as mean technical efficiency

for a group (or population) of firms (e.g., see Kneip et al., 2015). In addition, results enabling tests

of convexity versus non-convexity of the production set or constant versus variable returns to scale

have been developed (see Kneip et al., 2016 for details).

When data on prices of inputs are available, one can estimate cost efficiency (also called input

overall efficiency) or input allocative efficiency as proposed by Färe et al. (1985). Alternatively,

when data on prices of outputs are available, one can estimate revenue efficiency (also called output

overall efficiency) or output allocative efficiency as also proposed by Färe et al. (1985). When

both input and output prices are available, one can estimate profit efficiency or profit allocative

efficiency as discussed by Chambers et al. (1998), Färe and Grosskopf (2006) and Färe et al. (2008).

Unfortunately, no statistical results exist for these estimators; to date, neither convergence rates

nor existence of limiting distributions have been derived, nor has consistency been proved for any

of these estimators. Consequently, inference—either for individual firms or for mean, expected

values—has until now been impossible. Many empirical papers have estimated cost, revenue, or

profit efficiency or the corresponding allocative efficiencies using either FDH or DEA estimators.1

All of these papers have either ignored statistical inference, or have used classical methods that

fail to provide valid inference except in a few vary specific, restrictive settings due to the results

presented below.

The results obtained in this paper address this deficiency. DEA and FDH estimators of cost

efficiency are examined and shown to have a non-degenerate limiting distribution, as well as a

convergence rate that is faster than the rate of the corresponding technical efficiency estimator

1A Google Scholar search on 22 February 2015 finds approximately 17,500 papers using the keywords “DEA” and
“cost efficiency”. Replacing “cost” by “allocative,” “revenue” or “profit” results in approximately 28,200, 1,440, or
5,130 papers, respectively. Repeating these four searches substituting “FDH” for “DEA” results in 2,160, 1,290, 246
and 702 papers, respectively.
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when there is more than one input.2 Similar to Kneip et al. (2015), it is shown that standard

central limit theorem (CLT) results (e.g., the Lindeberg-Feller CLT) do not provide valid inference

if there is more than one output when the DEA estimator is used, and never hold when the FDH is

used. New CLT results are provided, enabling inference about mean cost efficiency. Similar results

are developed for an estimator of input allocative efficiency. This estimator does not achieve the

faster convergence rate of the cost efficiency estimator, and instead has the same convergence rate

as the corresponding technical efficiency estimator. Standard CLT results are shown to provide

invalid inference about input allocative efficiency whenever there is more than one input and one

output, and new CLT results are provided to enable inference in settings with arbitrary numbers

of inputs and outputs.

These results are next extended to estimators of revenue efficiency and output allocative ef-

ficiency. Similar to the estimator of cost efficiency, the estimator of revenue efficiency is shown

to converge at a faster rate than the corresponding technical efficiency estimator. Standard CLT

results are shown not to hold for mean revenue efficiency whenever there is more than one input,

nor for mean output allocative efficiency whenever there is more than one input or one output.

New CLT results are provided to enable inference in general settings.

Similar results are developed for an estimator of profit efficiency and of profit allocative effi-

ciency. For sample size n, it is shown that profit efficiency can be estimated with rate n as n→∞

regardless of the number of inputs and outputs. Consequently, existing methods can be used for in-

ference about mean profit efficiency. However, the estimator of profit allocative efficiency converges

at the same rate as the corresponding estimator of technical efficiency. Consequently, standard

CLT results cannot be used if there is more than one input or one output. Again, a new CLT is

provided to enable inference in general settings.

The next section establishes notation and provides a statistical model. Precise definitions of the

various measures discussed above are also given. Section 3.1 briefly reviews estimation of technical

efficiency and mentions the results available for inference about technical efficiency. Sections 3.3–3.4

develop results for cost efficiency and input allocative efficiency, and these results are extended to

revenue efficiency and output overall efficiency in Appendices B–C after a brief mention in Section

2We consider only the variable returns to scale (VRS) version of the DEA estimator, as the constant return to scale
(CRS) version is seldom used. In addition, the VRS version of the DEA estimator remains consistent and attains the
faster rate of the (CRS) DEA estimator under CRS (see Kneip et al., 2016 for details and a proof). Moreover, with
globally constant returns to scale, profit is maximized at infinity.
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3.5.3 Sections 3.6–3.7 deal with profit efficiency and profit allocative efficiency. An empirical

illustration using data from Aly et al. (1990) is presented in Section 4. Section 5 concludes. Proofs

are given in Appendix A.

2 The Statistical Model

Let X ∈ Rp+ and Y ∈ Rq+ denote (random) vectors of input and output quantities, respectively.

Similarly, let x ∈ Rp+ and y ∈ Rq+ denote fixed, nonstochastic vectors of input and output quantities.

The production set

Ψ := {(x, y) | x can produce y} (2.1)

gives the set of feasible combinations of inputs and outputs. Several assumptions on Ψ are common

in the literature. The assumptions of Shephard (1970) and Färe (1988) are typical and are used

here.

Assumption 2.1. Ψ is closed.

Assumption 2.2. (x, y) 6∈ Ψ if x = 0, y ≥ 0, y 6= 0; i.e., all production requires use of some

inputs.

Assumption 2.3. Both inputs and outputs are strongly disposable, i.e., ∀ (x, y) ∈ Ψ, (i) x̃ ≥ x⇒

(x̃, y) ∈ Ψ and (ii) ỹ ≤ y ⇒ (x, ỹ) ∈ Ψ.

Here and throughout, inequalities involving vectors are defined on an element-by-element basis, as

is standard. Assumption 2.1 permits definition of the the technology or efficient frontier Ψ∂ of Ψ

as the set of extreme points of Ψ, i.e.,

Ψ∂ :=
{

(x, y) | (x, y) ∈ Ψ, (γ−1x, γy) /∈ Ψ for any γ ∈ (1,∞)
}
. (2.2)

Assumption 2.2 rules out free lunches; i.e., production of any output quantities greater than 0

requires use of some inputs. Assumption 2.3 imposes weak monotonicity on the frontier, and is

standard in microeconomic theory of the firm.

The Farrell (1957) input efficiency measure

θ(x, y | Ψ) := inf {θ | (θx, y) ∈ Ψ} (2.3)

3Appendices B–C are available separately as supplementary online material. Alternatively, Appendices B–C are
available from the authors on request.
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indicates the amount by which input levels can be proportionately scaled downward by the same

factor without reducing output levels. The Farrell (1957) output efficiency measure gives the

feasible, proportionate expansion of output quantities and is defined by

λ(x, y | Ψ) := sup {λ | (x, λy) ∈ Ψ} . (2.4)

This gives a radial measure of efficiency since all output quantities are scaled by the same factor

λ. Clearly, λ(x, y | Ψ) ≥ 1 and θ(x, y | Ψ) ≤ 1 for all (x, y) ∈ Ψ.

Chambers et al. (1998) proposed the directional measure

δ(x, y | dx, dy,Ψ) = sup {δ | (x− δdx, y + δdy) ∈ Ψ} , (2.5)

which measures the distance from a point (x, y) to the frontier in the given direction d = (−dx, dy),

where dx ∈ Rp+ and dy ∈ Rq+. This measure is flexible in the sense that some values of the

direction vector can be set to zero. A value δ(x, y | dx, dy,Ψ) = 0 indicates an efficient point

lying on the boundary of Ψ. Note that as a special case, the Farrell-Debreu radial distances can

be recovered; e.g. if d = (−x, 0) then δ(x, y | dx, dy,Ψ) = 1 − θ(x, y | Ψ)−1 or if d = (0, y) then

δ(x, y | dx, dy,Ψ) = λ(x, y | Ψ) − 1. Another interesting feature is that directional distances are

additive measures, hence they permit negative values of x and y (e.g., in finance, an output y may

be the return of a fund, which can be, and often is, negative).4 Many choices of the direction

vector are possible (e.g., a common one for all firms, or a specific direction for each firm; see Färe

et al., 2008 for discussion), although care should be taken to ensure that the chosen direction vector

maintains invariance with respect to units of measurement for input and output quantities.

Given a vector wx ∈ Rp+ of input prices, the minimum cost of producing a specific vector y0 of

output quantities from a given vector x0 of input quantities is

Cmin(x0, y0 | Ψ, wx) = min
x
{w′xx | (x, y0) ∈ Ψ, x ∈ Rp+, wx ∈ Rp++}. (2.6)

Cost efficiency (sometimes called input overall efficiency) for the firm operating at (x0, y0) ∈ Ψ and

facing input prices wx is then defined by

C(x0, y0 | Ψ, wx) :=
Cmin(x0, y0 | Ψ, wx)

w′xx0
=
w′xx∗
w′xx0

(2.7)

4The measure in (2.5) differs from the “additive” measure η(x, y | Ψ) = sup{η | η = i′psx+i′qsy, (x−sx, y+sy) ∈ Ψ}
estimated by Charnes et al. (1985), where ip, iq denote (p× 1) and (q × 1) vectors of ones and sx, sy denote (p× 1)
and (q × 1) vectors of weights to be optimized. Charnes et al. (1985) present only an estimator, and do not define
the object that is estimated. Moreover, the additive measure is not in general invariant to units of measurement.
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where x∗ is the argmin of the expression on the right-hand side (RHS) of (2.6). The cost efficiency

measure in (2.7) gives the fraction by which cost of producing output quantities y0 could be reduced

when facing input prices wx; achieving this reduction might require altering the mix of inputs used

to produce y0.

Färe et al. (1985) define input allocative efficiency as

Ax(x0, y0 | Ψ, wx) :=
C(x0, y0 | Ψ, wx)

θ(x0, y0 | Ψ)
. (2.8)

Clearly, for any (x0, y0) ∈ Ψ we have Ax(x0, y0 | Ψ, wx) ≤ 1. The input allocative efficiency

measure gives the part of cost inefficiency that would remain if input quantities x0 were reduced

to the technically-efficient level θ(x0, y0 | Ψ)x0.

Alternatively, given a vector wy ∈ Rq+ of output prices, the maximum revenue from producing

a specific vector y0 of output quantities using a given vector x0 of input quantities is

Rmax(x0, y0 | Ψ, wy) = max
y
{w′yy | (x0, y) ∈ Ψ, y ∈ Rq+, wy ∈ Rq++}. (2.9)

Revenue efficiency (sometimes called overall output efficiency) for the firm operating at (x0, y0) ∈ Ψ

and facing output prices wy then

R(x0, y0 | Ψ, wy) :=
Rmax(x0, y0 | Ψ, wy)

w′yy0
=
w′yy∗

w′yy0
(2.10)

where y∗ is the argmin of the expression on the RHS of (2.9).

Analogous to the input allocative efficiency measure, Färe et al. (1985) define output allocative

efficiency as

Ay(x0, y0 | Ψ, wy) :=
R(x0, y0 | Ψ, wy)
λ(x0, y0 | Ψ)

. (2.11)

By construction, Ay(x0, y0 | Ψ, wy) ≥ 1 for (x0, y0) ∈ Ψ. Output allocative efficiency corresponds

to the amount of revenue inefficiency that would remain after increasing output levels y0 to the

technically efficient levels λ(x0, y0 | Ψ)y0.

Maximum profit for a firm operating at (x0, y0) ∈ Ψ and facing prices wx, wy is given by

Pmax(x0, y0 | Ψ, wx, wy) = max
x,y

{
w′yy − w′xx |(x, y) ∈ Ψ, x ∈ Rp+, y ∈ Rq+,

wx ∈ Rp++, wy ∈ Rq++

}
. (2.12)

However, defining profit efficiency as the ratio of maximum to observed profit, analogous to cost

or revenue efficiency, is problematic because profit can be negative, particularly during periods of
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economic distress. Chambers et al. (1998) propose a Nerlovian profit efficiency measure for the

firm operating at (x0, y0) ∈ Ψ given by

P(x0, y0 | Ψ, dx, dy, wx, wy) :=
Pmax(x0, y0 | Ψ, wx, wy)− (wyy0 − wxx0)

wydy + wxdx
(2.13)

where dx, dy are the direction vectors used in (2.5) to measure technical efficiency. Profit efficiency

amounts to the difference between maximum and observed profit (thereby accommodating negative

observed profits), normalized by the “value” of the direction (dx, dy). Because the directional mea-

sure is additive, the corresponding measure of profit allocative efficiency is given by the difference

Aπ(x0, y0 | Ψ, dx, dy, wx, wy) := P(x0, y0 | Ψ, dx, dy, wx, wy)− δ(x, y | dx, dy,Ψ). (2.14)

All of the quantities and model features defined so far are unobservable, and hence must be

estimated. In addition, inference is needed in order to know what might be learned from data. Some

additional assumptions are needed to complete the statistical model. The following assumptions

are analogous to Assumptions 3.1–3.4 of Kneip et al. (2015). In order to draw upon previous

results, we state the assumptions below in terms of the input-oriented measure of efficiency. The

assumptions can also be stated in terms of the output and directional measures of efficiency, and

the results of Kneip et al. (2015) extend to those measures after trivial (but tedious) changes in

notation in Kneip et al. (2015). The first two assumptions that follow are needed for both DEA

and FDH estimators.

Assumption 2.4. (i) The random variables (X,Y ) possess a joint density f with support D ⊂ Ψ;

and (ii) f is continuously differentiable on D.

Assumption 2.5. (i) D∗ := {θ(x, y | Ψ)x, y) | (x, y) ∈ D} ⊂ D; (ii) D∗ is compact; and (iii)

f(θ(x, y)x, y) > 0 for all (x, y) ∈ D.

The next two assumptions are needed when DEA estimators are used. Assumption 2.6 imposes

some smoothness on the frontier. Kneip et al. (2008) required only two-times differentiability to

establish the existence of a limiting distribution for DEA estimators, by the stronger assumption

that follows is needed to establish results on moments of the DEA estimators.

Assumption 2.6. θ(x, y | Ψ) is three times continuously differentiable on D.
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Recalling that the strong (i.e., free) disposability assumed in Assumption 2.3 implies that the

frontier is weakly monotone, the next assumption strengthens this by requiring the frontier to be

strictly monotone with no constant segments. This is also needed to establish properties of moments

of the DEA estimators.

Assumption 2.7. D is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈ D with ( x
‖x‖ , y) 6=

( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((x̃, ỹ) − (x, y)) for some 0 < α < 1} is a subset of

the interior of D.

Assumptions 2.1–2.7 comprise a statistical model similar to the one defined in Kneip et al.

(2015) and where DEA estimators have desirable properties. Alternatively, when FDH estimators

are used, Assumptions 2.6 and 2.7 can be replaced by the following assumption.

Assumption 2.8. (i) θ(x, y) is twice continuously differentiable on D; and (ii) all the first-order

partial derivatives of θ(x, y) with respect to x and y are nonzero at any point (x, y) ∈ D.

Assumption 2.8 strengthens the assumption of strong disposability in 2.3 by requiring that the

frontier is strictly monotone and does not possess constant segments (which would be the case,

for example, if outputs are discrete as opposed to continuous, as in the case of ships produced by

shipyards). Finally, part (i) of Assumption 2.8 is weaker than Assumption 2.6; here the frontier

is required to be smooth, but not as smooth as required by Assumption 2.6.5 Assumptions 2.1–

2.5 and Assumption 2.8 comprise a statistical model appropriate for use of FDH estimators of

technical efficiency, while Assumption 2.1–2.7 comprise a statistical model appropriate for use of

DEA estimators of technical efficiency.

In applications where cost, revenue or profit efficiency are estimated, firms are often observed

to face different prices. In order to consider properties of moments of estimators of cost, revenue

or profit efficiency, an additional assumption is needed.

Assumption 2.9. (i) The random variables (Wx,Wy) possess a joint density fWx,Wy with compact

support DW ⊂ Rp++×Rq++, and (ii) The random variables (X,Y,Wx,Wy) are defined on an appro-

priate probability space such that the joint density fX,Y,Wx,Wy(x, y, wx, wy) exists and is well-defined

with support D ×DW .

Of course, prices of inputs and outputs are determined in markets. One might expect that

the price of financial capital, which is mobile, might be constant, but this requires that markets

5Assumption 2.8 is slightly stronger, but much simpler than assumptions AII–AIII in Park et al. (2000).

7



reach a spatial equilibrium. Moreover, the price of physical capital, which is immobile, should be

expected to vary across space. In addition, the prices of labor as well as banks’ outputs may vary

due to differences in local market conditions. Treating prices of both inputs and outputs as random

variables in Assumption 2.9 provides some mathematical structure needed to define a statistical

model. As will be seen below, estimates of cost, revenue and profit efficiency are in each case

conditioned on observed prices. When considering mean efficiencies, expectations are over inputs

and outputs as well as prices. Assumption 2.9 provides the mathematical structure needed to make

inference about mean cost, revenue and profit efficiencies as well as the corresponding measures of

allocative efficiencies.

Assumption 2.9 ensures that all prices are strictly positive and have finite upper bounds. Of

course, in some situations firms may face the same prices, in which case fWx,Wy is degenerate with

mass at a single point. In other situations, it may be the case that only input prices or output prices

are observed. In such cases, the input or output prices can be viewed as being drawn from marginal

distributions fWx or fWy corresponding to fWx,Wy . The joint density fX,Y,Wx,Wy(x, y, wx, wy) implies

existence of the corresponding marginal distributions fX,Y,Wx of inputs, outputs and input prices

and fX,Y,Wy of inputs, outputs and output prices.

3 Estimation and Inference

3.1 Technical Efficiency

Given a random sample Sn = {(Xi, Yi)}, the production set Ψ can by estimated by the free disposal

hull of the sample observations in S,

Ψ̂FDH,n :=
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ Rp+q+ | x ≥ Xi, y ≤ Yi

}
, (3.1)

proposed by Deprins et al. (1984). Alternatively, Ψ can be estimated by the convex hull of Ψ̂FDH,n

of the free-disposal hull of the sample observations in S, i.e., by

Ψ̂DEA,n :=
{

(x, y) ∈ Rp+q | y ≤ Y υ, x ≥Xυ, i′nυ = 1, υ ∈ Rn+
}
, (3.2)

where X =
(
X1, . . . , Xn

)
and Y =

(
Y1, . . . , Yn

)
are (p × n) and (q × n) matrices of input and

output vectors, respectively; in is an (n×1) vector of ones, and υ is a (n×1) vector of weights. This

is the (VRS) DEA estimator of Ψ, proposed by Farrell (1957) and Banker et al. (1984). FDH or

DEA estimators of θ(x, y | Ψ), λ(x, y | Ψ) and δ(x, y | dx, dy,Ψ) defined in Section 2 are obtained by
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substituting Ψ̂FDH,n or Ψ̂DEA,n for Ψ in (2.3)–(2.5) (respectively). In the case of DEA estimators,

this results in

θ(x, y | Ψ̂DEA,n) = min
θ,υ

{
θ | y ≤ Y υ, θx ≥Xυ, i′nυ = 1, υ ∈ Rn+

}
, (3.3)

λ(x, y | Ψ̂DEA,n) = max
λ,υ

{
λ | λy ≤ Y υ, x ≥Xυ, i′nυ = 1, υ ∈ Rn+

}
(3.4)

and

δ(x, y | dx, dy, Ψ̂DEA,n) = max
δ,υ

{
δ | (y + δdy) ≤ Y υ, (x− δdx) ≥Xυ, i′nυ = 1, υ ∈ Rn+

}
. (3.5)

Substituting Ψ̂FDH,n leads to integer programming problems, but the estimators can be computed

using simple numerical methods (e.g., see Simar and Wilson, 2013 and 2015 for details).

The statistical properties of these estimators are well-developed. Kneip et al. (1998) derive

the rate of convergence of the input-oriented DEA estimator, while Kneip et al. (2008) derive its

limiting distribution. Park et al. (2000) and Daouia et al. (2017) derive both the rate of convergence

and limiting distribution of the input-oriented FDH estimator. Kneip et al. (2015) derive moment

properties of both the input-oriented FDH and DEA estimators and establish central limit theorem

(CLT) results for mean input-oriented efficiency after showing that the usual CLT results (e.g.,

the Lindeberg-Feller CLT) do not hold unless (p + q) < 3. All of these results extend trivially to

the output-oriented estimator λ(x, y | Ψ̂n) after straightforward (but tedious) changes in notation.

Simar et al. (2012) extend the results of Kneip et al. (1998) and Kneip et al. (2008) to the DEA

directional efficiency estimator using the results of Wilson (2011), while Simar and Vanhems (2012)

extend the results of Park et al. (2000) to the FDH directional efficiency estimator. Using similar

ideas it can be shown that the moment results of Kneip et al. (2015) also extend to the directional

case.

In all cases, the estimators are consistent, converge at rate nκ (where κ = 2/(p+ q + 1) for the

DEA estimators and κ = 1/(p + q) for the FDH estimators) and possess non-degenerate limiting

distributions under the appropriate set of assumptions. In addition, the bias of each of the three

estimators is of order O (n−κ). Bootstrap methods proposed by Kneip et al. (2008, 2011) and Simar

and Wilson (2011a) provide consistent inference about θ(x, y | Ψ), λ(x, y | Ψ) and δ(x, y | dx, dy,Ψ)

for a fixed point (x, y) ∈ Ψ, and Kneip et al. (2015) provide CLT results enabling inference about

the expected values of these measures over the random variables (X,Y ).
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3.2 Some Preliminary Results

The preliminary results developed here are used below in the discussion of estimation of cost,

revenue and profit efficiency as well as input, output and profit allocative efficiency. First, consider

the function hwx : Rp+q+ 7→ R1+q
+ such that hwx(x, y) = Awx

[
x′ y′

]′
where

Awx =

[
w′x 0′q

0′p×q Iq

]
, (3.6)

0q is a (q×1) vector of zeros, 0p×q is a (p×q) matrix of zeros, and Iq is a (q×q) identity matrix. Then

hwx is an affine function in the sense of Williamson and Trotter (1974) and Boyd and Vandenberghe

(2004), and the image of Ψ under hwx is

Ψwx := hwx(Ψ) = {(c, y) | (c, y) = hwx(x, y) ∀ (x, y) ∈ Ψ} . (3.7)

Clearly, Ψwx ⊂ R1+q
+ . It is well-known (e.g., see Boyd and Vandenberghe, 2004, pp. 36–38) that

since hwx is affine, Ψwx is convex if and only if Ψ is convex.

Next, consider the function hwy : Rp+q+ 7→ Rp+1
+ such that hwy(x, y) = Awy

[
x′ y′

]′
where

Awy =

[
Ip 0p×q
0′p w′y

]
(3.8)

is a (p+ 1)× (p+ q) matrix. Similar to hwx defined above, hwy is an affine function, and the image

of Ψ under hwy is

Ψwy := hwy(Ψ) =
{

(x, r) | (x, r) = hwy(x, y) ∀ (x, y) ∈ Ψ
}
. (3.9)

Clearly Ψwy ⊂ Rp+1
+ . Again, due to the properties of affine functions, Ψwy is convex if and only if

Ψ is convex.

Finally, define the function hwx,wy : Rp+q+ 7→ R such that hwx,wy(x, y) = Awx,wy
[
x′ y′

]′
where

Awx,wy =
[
−w′x w′y

]
(3.10)

is a 1× (p+ q) matrix. Similar to hwx and hwy defined above, hwx,wy is an affine function, and the

image of Ψ under hwx,wy is

Ψwx,wy := hwx,wy(Ψ) =
{
π | π := hwx,wy(x, y) ∀ (x, y) ∈ Ψ

}
. (3.11)

Clearly, Ψwx,wy ⊂ R, and Ψwx,wy is trivially convex. In addition, the affine transformations of Ψ

described above also preserve strong disposability as confirmed by the following result.
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Lemma 3.1. Assume Ψ is closed but not necessarily convex, and Assumption 2.3 holds. Then (i)

Ψwx satisfies strong disposability of cost and outputs, i.e., ∀ (c, y) ∈ Ψwx, c̃ ≥ c ⇒ (c̃, y) ∈ Ψwx

and ỹ ≤ y ⇒ (c, ỹ) ∈ Ψwx; (ii) Ψwy satisfies strong disposability of inputs and revenue, i.e.,

∀ (x, r) ∈ Ψwy , x̃ ≥ x ⇒ (x̃, r) ∈ Ψwy and r̃ ≤ r ⇒ (x, r̃) ∈ Ψwy ; and (iii) Ψwx,wy satisfies strong

disposability of profit, i.e., ∀ (π) ∈ Ψwx,wy , π̃ ≤ π ⇒ (π̃) ∈ Ψwx,wy .

It is obvious that Assumption 2.1 ensures that Ψwx is closed. Hence, since strong disposability

is preserved, under Assumptions 2.2–2.5 and Assumption 2.8, Ψwx can be estimated by

Ψ̂FDH,wx,n :=
⋃

(Ci,Yi)∈Swx,n

{(c, y) | c ≥ Ci, y ≤ Yi} (3.12)

where Swx,n = {(Ci, Yi)}ni=1 results from applying the transformation hwx to each (Xi, Yi) ∈ Sn.

Similar reasoning leads to the conclusion that Ψwy and Ψwx,wy can be estimated by the FDH

estimators Ψ̂FDH,wy ,n and Ψ̂FDH,wx,wy ,n, respectively, after applying the transformations hwy and

hwx,wy to the observations in Sn.

The fact that the affine transformations of Ψ described above preserve convexity (when it exists)

as well as strong disposability means that under Assumptions 2.1–2.7, DEA estimators can be used

to estimate the transformed sets Ψwx , Ψwy and Ψwx,wy . In particular, let Ψ̂DEA,wx,n = hwx(Ψ̂DEA,n);

i.e, Ψ̂DEA,wx,n is the image of Ψ̂DEA,n under hwx . This leads to the DEA estimator of Ψwx in cost-

output space, i.e., the convex hull of the free disposal hull of the observations in Swx,n given by

Ψ̂DEA,wx,n =
{

(c, y) ∈ R1+q | y ≤ Y υ, c ≥ Cυ, i′nυ = 1, υ ∈ Rn+
}
, (3.13)

where C is the (1× n) vector of costs with (1, i)-th element Ci = w′xXi. Similar reasoning leads to

DEA estimators Ψ̂DEA,wy ,n and Ψ̂DEA,wx,wy ,n of Ψwy and Ψwx,wy .

3.3 Cost Efficiency

The usual approach to estimating cost efficiency given by (2.7) is to first estimate the vector of

input levels that minimize cost by employing an empirical analog of (2.6). DEA estimators are

typically used. In practice, given the vector wx of input prices, this amounts to replacing Ψ in (2.6)

with Ψ̂DEA,n to obtain

Cmin(x0, y0 | Ψ̂DEA,n, wx) = min
x,υ

{
w′xx | Y υ ≥ y0, Xυ ≤ x, 1′nυ = 1, υ ∈ Rn+

}
= w′xx̂min (3.14)
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where x̂min is the solution to the optimization problem in the first line of (3.14). Then cost efficiency

is estimated by

C(x0, y0 | Ψ̂DEA,n, wx) :=
Cmin(x0, y0 | Ψ̂n, wx)

w′xx0
=
w′xx̂min

w′xx0
. (3.15)

This is the suggested approach of Farrell (1957), Färe et al. (1985), Färe and Grosskopf (1995),

Coelli et al. (1997) and Ray (2004), and has been used in empirical settings by Aly et al. (1990),

Byrnes and Valdmanis (1994), Cummins et al. (1999), Sharmaa et al. (1999), Kohersa et al. (2000),

Worthington (2000), Björkgren et al. (2001), Hartman et al. (2001), Coelli et al. (2002) Isik and

Hassan (2002), Wadud (2003), Barros and Sampaio (2004), Barros and Mascarenhas (2005), Ca-

manho and Dyson (2005, 2008), Chen et al. (2005), Cinemre et al. (2006) Havrylchyk (2006),

Asmild et al. (2007), Ariff and Can (2008), Hansson and Öhlmér (2008) Hu et al. (2009), Cum-

mins et al. (2010), Hsu and Petchsakulwong (2010), Kader et al. (2010), Kaur and Kaur (2010),

Kwadjo Ansah-Adu (2011) Lozano (2011), Al-Khasawneh et al. (2012), Haelermans and Ruggiero

(2013), Nedelea and Fannin (2013) Kočǐsová (2014), Nguyen et al. (2016), Ghiyasi (2017) and many

others. Unfortunately, the statistical properties of both the estimator of minimum cost given in

(3.14) as well as the estimator of cost efficiency given in (3.15) are unknown. Consequently, re-

searchers often either (i) report only point estimates and perhaps sample means of the estimates

in applications without making inference, or (ii) report sample means of estimate as well as sample

standard deviations of cost efficiency estimates, implicitly inviting readers to use standard CLT

results to assess statistical significance. Some (e.g., Kohersa et al., 2000) explicitly use standard

CLT results to test whether means are different across groups of producers. Hartman et al. (2001)

use the Kruskal-Wallis test to test for whether cost efficiency has the same distribution across

groups, but the true cost efficiencies, as well as their ranks, are unobserved, casting doubt on the

properties of their test. Several papers, including Cummins et al. (2010), Coelli et al. (2002) and

Nedelea and Fannin (2013), make conventional inference in second-stage Tobit regressions where

cost efficiency estimates are regressed on some explanatory variables. As will be seen shortly, this

results in invalid inference. Moreover, these papers do not specify a coherent model where Tobit

regression in a second-stage regression would be sensible.6

The next result establishes a distance-function characterization of the cost efficiency measure

introduced in (2.7).

6See Simar and Wilson (2007) for further discussion on this point.
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Lemma 3.2. Let c0 = w′xx0. Then for (x0, y0) ∈ Ψ,

C(x0, y0 | Ψ, wx) = θ(c0, y0 | Ψwx). (3.16)

Since it is apparent from (3.14) that Ψ is estimated by the convex hull of the sample observations

in Sn, one might imagine that the convergence rate of the estimator of cost efficiency is n2/(p+q+1)

as established by Kneip et al. (1998) for the DEA estimator of θ(x, y | Ψ), or n1/(p+q) as established

by Park et al. (2000) for the FDH estimator. But in fact, due to Lemma 3.2, cost efficiency can

be estimated at the rate n2/(q+2) using the DEA estimator, or n1/(q+1) using the FDH estimator.

The result in Lemma 3.2 is not new—it is suggested by duality theory in the microeconomics

literature—but it is important for purposes of statistical inference.

To simplify notation, from this point the “FDH” or “DEA” is omitted from subscripts, noting

that Ψ̂n and Ψ̂wx,n may refer to either the FDH or DEA estimators of Ψ and Ψwx (respectively).

Then consider the estimator θ(c0, y0 | Ψ̂wx,n) of cost efficiency where Ψ̂wx,n denotes either the FDH

or DEA estimator of Ψwx defined in (3.12) or (3.13) and where c0 and Ψ̂wx,n replace x0 and Ψ̂

(respectively) in (3.3) as discussed in Section 3.2.

The result in Lemma 3.2 may seem obvious to some. Färe and Grosskopf (1985), Färe et al.

(1988) and Staub et al. (2010) estimate cost efficiency using θ(c0, y0 | Ψ̂wx,n) where Ψ̂wx,n denotes

the DEA estimator in (3.13), while De Borger and Kerstens (1996) estimate cost efficiency using

θ(c0, y0 | Ψ̂wx,n) where Ψ̂wx,n denotes the FDH estimator in (3.12). Staub et al. (2010) estimate

cost efficiency in (q + 1) dimensions with p = q = 3, but then regress their (DEA) cost efficiency

estimates on some explanatory variables in a second-stage panel regression after citing (and then

ignoring) Simar and Wilson (2007) which cautions against their approach. In their panel regression,

Staub et al. rely upon conventional inference, which is invalid due to reasons given below. None

of these authors specify a statistical model, nor do they mention the statistical properties of their

estimators. Moreover, the far more typical approach in the literature is to estimate cost efficiency

using (3.14) and (3.15) as described above.

Lemma 3.2 establishes that estimation of cost efficiency is a (q + 1)-dimensional problem, and

that the usual FDH and DEA input-oriented efficiency estimators can be used to estimate cost

efficiency, where univariate cost replaces p input variables.7 Consequently, cost efficiency is con-

sistently estimated with rates nκx , where κx = 2/(q + 2) when the DEA estimator is used and

7Tone (2002) makes the obvious note that in the case of p = 1, technical and cost efficiencies are identical.
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κx = 1/(q + 1) when the FDH estimator is used due to the results of Kneip et al. (1998) (for the

DEA case) and Park et al. (2000) and Daouia et al. (2017) (for the FDH case). Moreover, a limiting

distribution exists in both cases, and hence the sub-sampling ideas of Simar and Wilson (2011a) can

be used to make asymptotically valid inference about the cost efficiency of individual producers.

Simar and Wilson (2011a) also discuss a method for choosing the sub-sample size, which is critical

to the finite-sample performance of the sub-sampling method. Implementation of the sub-sampling

method also depends critically on knowledge of the convergence rate with which cost efficiency is

estimated, which is established above due to Lemma 3.2.

To be clear, different firms may face different input prices as noted earlier in Section 2. Suppose

a random sample {(Xi, Yi,Wx,i}ni=1 of input, output and input-price triplets is observed. When

estimating cost efficiency for each firm, each firm’s observed input-price vector is used to construct

a transformed attainable cost-output set. Firm i has observed cost Ci = W ′x,iXi while firm j has

observed cost Cj = W ′x,jXj , but to estimate the cost efficiency of firm i, its cost Ci is compared

not to Cj but instead to Cij = W ′x,iXj for j = 1 . . . , n, thereby conditioning on the observed prices

Wx,i of firm i. Of course, this similar to the case in regression settings where cost is regressed

on output quantities and input prices, and cost efficiency for firm i is estimated conditionally

on firm i’s observed input prices. Formally, the sample {(Xi, Yi,Wx,i}ni=1 is used to construct

n samples SWx,i,n =
{
Ci`, Y`

}n
`=1

obtained by applying the function hWx,i to the observations in

{(Xi, Yi,Wx,i}ni=1 for each i = 1, . . . , n. In other words, for firm i, Wx,i replaces wx in (3.6)

leading to the image ΨWx,i of Ψ under hWx,i , analogous to (3.7) where hWx,i is defined by replacing

wx in (3.6) with Wx,i. Similarly, for firm j, Wx,j replaces wx in (3.6) leading to the image ΨWx,j

of Ψ under hWx,j , again analogous to (3.7). Finally, for i = 1, . . . , n, estimators (either FDH or

DEA) of ΨWx,i are constructed from the samples SWx,i,n and these are used to obtain cost efficiency

estimates θ(Ci, Yi | Ψ̂Wx,i).
8

The result in Lemma 3.2 also means that properties of the first two moments of either FDH or

DEA estimators of cost efficiency are established by Kneip et al. (2015), where in the notation of

Kneip et al. (2015), p = 1. This means that standard CLTs (e.g., the Lindeberg-Feller CLT) can be

8Linna et al. (2006) use cost data state in their Section 4.6 that they use year-end accounting data on costs, and
thus apparently do not account for different input prices faced by different producers, thereby failing to condition their
estimates on input prices of each unit. Banker and Natarajan (2011, pp. 279–281) propose estimation of technical,
cost, and input allocative efficiencies when only the costs of inputs, but neither their prices nor their quantities are
observed. If input prices vary across firms, as is likely due to differing local market conditions, then their approach
will result in failure to condition on input prices.
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used for inference about mean cost efficiency if and only if q = 1 when DEA estimators are used.9

When FDH estimators are used, standard CLTs never hold. Unless q = 1 and DEA estimators are

used, the bias of the cost efficiency estimates becomes critical and must be dealt with as described

by Kneip et al. (2015).

In order see how to make valid inference about mean cost efficiency, let µWx = E [θ(C, Y | ΨWx)]

and σ2Wx
= VAR [θ(C, Y | ΨWx)] < ∞ denote the mean and variance of cost efficiency, where

expectations are with respect to (C, Y,Wx). Let

µ̂Wx,n := n−1
n∑
i=1

θ
(
Ci, Yi | Ψ̂Wx,i,n

)
. (3.17)

Let κx = 1/(q + 1) for the FDH case or κx = 2/(q + 2) for the DEA case, and define nκx :=

min(bn2κxc, n) ≤ n where bac denotes the largest integer less than or equal to a ∈ R. Assume the

observations in Sn and the corresponding samples SWx,i,n are randomly sorted. Define

µ̂Wx,nκx := n−1κx

nκx∑
i=1

θ
(
Ci, Yi | Ψ̂Wx,i,n

)
. (3.18)

Note that the efficiency estimates under the summation sign are computed using the full sample of

n observations, but the summation is over only the first nκx estimates.

Next, let B̃Wx,n,κx denote the generalized jackknife estimate of the O (n−κx) bias of

θ
(
Ci, Yi | Ψ̂Wx,i,n

)
, with B̃Wx,n,κx computed from using SWx,i,n as described by Kneip et al. (2015,

Section 4). Computation of this bias estimate requires splitting the sample, and as noted by Kneip

et al. (2016), there are
(
n
n/2

)
possible splits. To reduce the bias estimate, randomly split the sample

K <<
(
n
n/2

)
times and compute a bias estimate B̃Wx,n,κx,k after each split. Then compute the

average

B̂Wx,n,κx = K−1
K∑
k=1

B̃Wx,n,κx,k. (3.19)

The next result permits inference about mean cost efficiency for any number q of outputs.

Theorem 4.1 of Kneip et al. (2015) establishes that σ2Wx
is estimated consistently by the sample

variance

σ̂2Wx
:= n−1

n∑
i=1

(
θ(Ci, Yi | Ψ̂Wx,i,n)− µ̂Wx,n

)2
(3.20)

9Kohersa et al. (2000), cited above, specify q = 5 outputs, and hence their reliance on the Lindeberg-Feller CLT
for inference means that their inference is invalid. Similarly, for reasons given by Kneip et al. (2015, Section 5),
inference in the second-stage regression of Staub et al. (2010) is also invalid.
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of the cost efficiency estimates. Then Theorem 4.3 of Kneip et al. (2015) ensures that the confidence

interval [
µ̂Wx,n − B̂Wx,n,κx ±

σ̂Wx√
n
z(1−α

2
)

]
, (3.21)

where z(1−α
2
) is the (1− α

2 ) quantile of the standard normal distribution function, has asymptotic

coverage of (1 − α) × 100-percent whenever q ≤ 2 in the FDH case or q ≤ 3 in the DEA case.

Alternatively, for q ≥ 3 in the FDH case or q ≥ 4 in the DEA case, the asymptotically valid (1−α)

confidence interval [
µ̂Wx,nκx − B̂Wx,n,κx ±

σ̂Wx

nκx
z(1−α

2
)

]
(3.22)

can be used.

As discussed by Kneip et al. (2015), when κx < 1/2 the randomness due to the subsample mean

µ̂Wx,nκx appearing in (3.22) can be eliminated by replacing µ̂Wx,nκx with the full mean µ̂Wx,n, which

has the effect of averaging over all the possible subsamples of size nκx . The resulting interval has

the same width as the one in (3.22), but has coverage tending to 1 as n → ∞ due to the results

obtained above.10

3.4 Input Allocative Efficiency

Estimators of input allocative efficiency defined in (2.8) can be obtained by substituting either FDH

or DEA estimators of cost and technical efficiency for the true values appearing on the right-hand

side of (2.8).11 This is the approach of Cummins et al. (1999), Sharmaa et al. (1999), Hartman et al.

(2001), Coelli et al. (2002) Isik and Hassan (2002), Wadud (2003), Barros and Sampaio (2004),

Barros and Mascarenhas (2005), Chen et al. (2005), Havrylchyk (2006), Hsu and Petchsakulwong

(2010) and Merkert and Hensher (2011), all of whom estimate cost efficiency in (p+ q) dimensions.

Staub et al. (2010) similarly estimate input allocative efficiency, but estimate cost efficiency in

only (q + 1) dimensions. However, the properties of these estimators are unknown until now.

10Simar and Zelenyuk (2018) develop CLTs for estimates of aggregate efficiencies consisting of ratios of weighted
sample means. Their main focus is on output-oriented technical efficiency, but they remark (p. 140) that their
results can be adapted to aggregate revenue efficiency, aggregate output allocative efficiency, aggregate cost efficiency,
aggregate input-oriented technical efficiency and aggregate input allocative efficiency. However, they do not provide
the peculiarities of the asymptotic theory. Clearly, by using our results in Theorem 3.2 for the cost efficiencies and in
Theorem B.2 for revenue efficiencies, the asymptotic theory in Simar and Zelenyuk for aggregate technical efficiency
could be adapted to aggregate revenue efficiency and aggregate cost efficiency, but the rates will be governed by κy
and κx respectively, and not by κ as given in Theorems 1, 2 and 3 of Simar and Zelenyuk.

11Of course, due to the result in Lemma 3.1 showing that free disposability of Ψ is preserved in Ψwx , and that also
convexity of Ψ (when it exists) is preserved in Ψwx means that estimators of the same type should be used, rather
than mixing FDH and DEA estimators.
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Nonetheless, a number of papers use estimates of input allocative efficiency in statistical exercises.

Among these, Cummins et al. (1999), Sharmaa et al. (1999), Isik and Hassan (2002), Wadud (2003)

and Hsu and Petchsakulwong (2010) report both sample means and sample standard deviations.

Sharmaa et al. (1999) and Wadud (2003) report t-tests of significance, and Wadud also employs

F tests. Isik and Hassan (2002) use their input allocative efficiency estimates in a Kolmogorov-

Smirnov test, and Cummins et al. (1999), Isik and Hassan (2002) and Wadud (2003) report results

based on conventional inference from second-stage regressions of input allocative efficiency estimates

on some explanatory variables. Banker and Natarajan (2011, Section 11.2.4) propose two tests of

whether allocative efficiency is present (which amounts to testing whether technical efficiency and

cost efficiency are equivalent) based on restrictive distributional assumptions regarding technical

and cost efficiency, as well as a Kolmogorov-Smirnov test to compare the distributions of technical

and cost efficiencies. No statistical results exist that would justify these exercises, and none of these

statistical procedures or results are valid due to fact that (i) the true efficiencies are unobserved,

and (ii) the observed estimates are biased, which prevents use of standard CLT results on which

the aforementioned papers rely. This will become clear below.

In order to develop properties of estimators of input allocative efficiency, an additional assump-

tion is needed.

Assumption 3.1. There exists a constant 0 < Mx <∞ such that ‖x‖ ≤Mx for all (x, y) ∈ D.

Assumption 3.1 is necessary to guarantee existence of moments of log(θ(X,Y | Ψ̂n). Although

moments necessarily exist for θ(Xi, Yi) ∈ (0, 1], | log θ(Xi, Yi)| is potentially unbounded. Moreover,

up to this point we have only assumed compactness of D∗ and not necessarily of D. As noted by

Kneip et al. (2018), Assumption 3.1 could in principle be replaced by a weaker version requiring only

existence of all relevant moments, but boundedness of ‖x‖ greatly simplifies asymptotic arguments

used below.

The next result establishes the existence of a limiting distribution, the rate of convergence, and

the properties of the first two moments for FDH and DEA estimators of input allocative efficiency.

Theorem 3.1. Let κ = 1/(p+ q) for the FDH case and κ = 2/(p+ q+ 1) for the DEA case. Then

under Assumptions 2.1–2.5, 2.8–2.9 and 3.1 for the FDH case, and under Assumptions 2.1–2.7,

2.9 and 3.1 for the DEA case, for each (x, y) ∈ D,

nκ
(
Ax(x, y | Ψ̂n, wx)−Ax(x, y | Ψ, wx)

)
L−→ QAx,x,y (3.23)
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where QAx,x,y is a non-degenerate distribution with finite variance. In addition, let (ζ1, ζ2, ζ3) =

( 2
p+q ,

p+q+2
p+q , p+q+1

p+q ) for the FDH case, and (ζ1, ζ2, ζ3) = ( 3
p+q+1 ,

p+q+4
p+q+1 ,

p+q+2
p+q+1) for the DEA

case. Then ∃ a constant D1 ∈ (0,∞) such that for all i, j ∈ {1, . . . , n}, i 6= j,

E
[
Ax(Xi, Yi | Ψ̂n,Wx,i)−Ax(Xi, Yi | Ψ,Wx,i)

]
=D1n

−κ

+O
(
n−ζ1(log n)ζ2

)
, (3.24)

VAR
[
Ax(Xi, Yi | Ψ̂n,Wx,i)−Ax(Xi, Yi | Ψ,Wx,i)

]
= O

(
n−ζ1(log n)ζ1

)
(3.25)

and ∣∣∣COV
[
Ax(Xi, Yi | Ψ̂n,Wx,i)−Ax(Xi, Yi | Ψ,Wx,i),

Ax(Xj , Yj | Ψ̂n,Wx,j)−Ax(Xj , Yj | Ψ,Wx,j)
]∣∣∣ = O

(
n−ζ3(log n)ζ3

)
= o

(
n−1

)
. (3.26)

where expectations are with respect to (X,Y,Wx) and the constant D1 depends on the particular

estimator (FDH or DEA), the density fX,Y,Wx and the sets D ∈ Ψ and DW ⊂ Rp++ × Rq++.

For purposes of making inference about mean input allocative efficiency, more work is needed

due to the bias term D1n
−κ in (3.24). Let µAx = E[Ax(X,Y | Ψ,Wx)] and σ2Ax = VAR[Ax(X,Y |

Ψ,Wx)] <∞ denote the mean and variance of input allocative efficiency, where again expectations

are with respect to (X,Y,Wx). Let

µ̂Ax,n := n−1
n∑
i=1

Ax(Xi, Yi | Ψ̂n,Wx,i). (3.27)

Let κ = 1/(p + q) for the FDH case and κ = 2/(p + q + 1) for the DEA case, and define nκ :=

min
(
bn2κc, n

)
≤ n. Assume the observations in Sn are randomly sorted. Define

µ̂Ax,nκ := n−1κ

nκ∑
i=1

Ax(Xi, Yi | Ψ̂n,Wx,i). (3.28)

Analogous to (3.18), the estimates of input allocative efficiency under the summation sign in (3.28)

are computed using the full sample of n observations, but the summation is over only the first nκ

estimates.

Finally, let B̃Ax,n,κ denote the generalized jackknife estimate of the bias term D1n
−κ in (3.24)

computed as described by Kneip et al. (2015, Section 4). Analogous to (3.19), compute the average

B̂Ax,n,κ = K−1
K∑
k=1

B̃Ax,n,κ,k (3.29)
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over K <<
(
n
n/2

)
random splits of the sample to reduce the variance of the bias estimate. The next

result gives a CLT for mean input allocative efficiency.

Theorem 3.2. Let κ, ζ1 and ζ2 be defined for the FDH and DEA cases as in Theorem 3.1. Then

under Assumptions 2.1–2.5, 2.8–2.9 and 3.1 for the FDH case, and under Assumptions 2.1–2.7,

2.9 and 3.1 for the DEA case, for (p+ q) ≤ 3 in the FDH case or (p+ q) ≤ 4 in the DEA case,

√
n
(
µ̂Ax,n − B̂Ax,n,κ − µAx + ξAx,n,κ

)
L−→ N

(
0, σ2Ax

)
(3.30)

where ξAx,n,κ = O
(
n−ζ1(log n)ζ2

)
= o (n−κ). In addition, for (p + q) > 2 in the FDH case or

(p+ q) > 3 in the DEA case, as n→∞

nκ
(
µ̂Ax,nκ − B̂Ax,n,κ − µAx + ξAx,n,κ

)
L−→ N

(
0, σ2Ax

)
(3.31)

as n→∞. In addition, as n→∞,

σ̂2Ax :=
n∑
i=1

[
Ax(Xi, Yi | Ψ̂n, wx,i)− µ̂Ax,n

]2 p−→ σ2Ax . (3.32)

The CLT results in Theorem 3.2 can be used to construct confidence intervals for mean input

allocative efficiency or to test hypotheses about mean input allocative efficiency. Note that either

(3.30) or (3.31) can be used when (p + q) = 3 in the FDH case or (p + q) = 4 in the DEA case.

In the DEA case, intervals based on (3.30) neglect
√
nξAx,nκ = O

(
n−1/10

)
, while those based on

(3.31) neglect nκξAx,nκ = O
(
n−1/5

)
. Hence (3.31) is expected to provide more accurate intervals

than (3.30) when (p + q) = 4 in the DEA case. Similar reasoning applies in the FDH case when

(p+ q) = 3.

3.5 Revenue Efficiency and Output Allocative Efficiency

Extending the results from Sections 3.3–3.4 to revenue efficiency and output allocative efficiency is

straightforward, but there are some subtleties. Explicit details are given in the separate Appendices

B–C. One should carefully note that revenue efficiency can be estimated with convergence rates

n1/(p+1) and n2/(p+2) for the FDH and DEA cases, respectively. Output allocative efficiency is esti-

mated with rates n1/(p+q) and n2/(p+q+1) for the FDH and DEA cases. Consequently, conventional

CLTs do not hold for mean revenue efficiency nor for mean output allocative efficiency when FDH

estimators are used, and in the DEA case hold for revenue efficiency only when p = 1 and for

output allocative efficiency only when p = 1 = q.
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Examples of applications where revenue efficiency is estimated include Sharma et al. (1999),

Bojnec and Latruffe (2008), Cummins et al. (2010), Hsu and Petchsakulwong (2010), Eller et al.

(2011) and Al-Khasawneh et al. (2012). Sharma et al. (1999, Table 2) report sample means

of revenue and output allocative efficiencies for groups of producers, and rely on conventional

CLTs to determine significance of differences from 1 and to test whether means are the same

across groups. Cummins et al. (2010) and Eller et al. (2011) regress their estimates of revenue

efficiency on some explanatory variables in second-stage regressions, and use conventional inference

to determine significance or non-significance of their results. Due to the results obtained in the

separate Appendices B–C, none of these inferences are valid.

3.6 Profit Efficiency

The usual approach to estimating profit efficiency defined by (2.13) involves first estimating maxi-

mum profit Pmax(x0, y0 | Ψ, wx, wy) by replacing the unknown Ψ with Ψ̂n in (2.12) to obtain

Pmax(x0, y0 | Ψ̂n, wx, wy) = max
x,y,υ

{
w′yy − w′xx | Y υ ≥ y, Xυ ≤ x, 1′nυ = 1, υ ∈ Rn+

}
= w′yŷwx,wy − w′xx̂wx,wy (3.33)

where ŷwx,wy and x̂wx,wy are solutions to the optimization problem in the first line of (3.33). Then

profit efficiency is estimated by

P(x0, y0 | Ψ̂n, dx, dy, wx, wy) :=
Pmax(x0, y0 | Ψ̂n, wx, wy)− (w′yy0 − w′xx0)

w′ydy + w′xdx

=
(w′yŷwx,wy − w′xx̂wx,wy)− (w′yy0 − w′xx0)

w′ydy + w′xdx
(3.34)

This is the approach of Chambers et al. (1998), Färe and Grosskopf (2006), Färe et al. (2008) and

others. Unfortunately, as with the estimators of cost and revenue efficiency, the properties of the

estimators of maximum profit in (3.33) and profit efficiency in (3.34) are unknown.

The next result establishes that the profit maximization problem in (2.12) can be characterized

as a one-dimensional problem.

Lemma 3.3. Under Assumption 2.1,

Pmax(x0, y0 | Ψ, wx, wy) = max
{
π | π ∈ Ψwx,wy

}
. (3.35)

The proof is obvious and is left to the reader.
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Now apply the function hwx,wy to each observation (Xi, Yi) ∈ Sn to transform Sn to a set of iid

observations Swx,wy ,n = {πi}ni=1. Due to Lemma 3.3 it is obvious that Pmax(x0, y0 | Ψ, wx, wy) can

be estimated by

Pmax(x0, y0 | Swx,wy ,n, wx, wy) := max
{
π | π ∈ Swx,wy ,n

}
. (3.36)

This amounts to a one-dimensional version of an FDH or DEA estimator, and the two are equiva-

lent in one dimension. From the properties of both FDH and DEA estimators, it is clear that this

estimator is consistent, converges at rate n1 and has a non-degenerate limiting distribution. Conse-

quently, substituting Pmax(x0, y0 | Swx,wy ,n, wx, wy) for Pmax(x0, y0 | Ψ, wx, wy) for in (2.13) yields

a consistent estimator P(x0, y0 | Swx,wy ,n, dx, dy, wx, wy) of the Nerlovian profit efficiency measure

P(x0, y0 | Ψ, dx, dy, wx, wy) for given direction vectors dx and dy and given price vectors wx and wy.

Moreover, the resulting estimator converges at rate n1 and has a non-degenerate limiting distribu-

tion due to the properties of Pmax(x0, y0 | Swx,wy ,n, wx, wy). Knowledge of the convergence rate and

existence of a non-degenerate limiting distribution permit use of the subsampling methods described

by Simar and Wilson (2011a) for inference about the profit efficiency P(x0, y0 | Ψ, dx, dy, wx, wy)

of a particular firm operating at (x0, y0) ∈ Ψ. In addition, the classical Lindeberg-Feller CLT can

be used to make inference about mean profit efficiency due to the n1 convergence rate.

3.7 Profit Allocative Efficiency

As noted in Section 2, the results of Kneip et al. (2015) for the input-oriented efficiency estimator

θ(x, y | Ψ̂n) in (3.3) extend to the directional efficiency estimator δ(x, y | dx, dy, Ψ̂n) in (3.5) using

arguments similar to those of Simar and Vanhems (2012) and Simar et al. (2012). Substituting

P(x0, y0 | Swx,wy ,n, wx, wy) and δ(x, y | dx, dy, Ψ̂n) for P(x0, y0 | Ψ, dx, dy, wx, wy) and δ(x, y |

dx, dy,Ψ) in (2.14) leads to the estimator

Aπ(x0, y0 | Sn, dx, dy, wx, wy) := P(x0, y0 | Swx,wy ,n, dx, dy, wx, wy)− δ(x, y | dx, dy, Ψ̂n). (3.37)

The following pair of results are straightforward extensions of Simar and Vanhems (2012, The-

orem 4.1), Simar et al. (2012, Theorem 3.1) and Kneip et al. (2015, Theorems 3.1 and 3.3).

Consequently, proofs are left to the reader. Assumption C.1 required by both Theorems 3.3 and

3.4 appears in Appendix C.

21



Theorem 3.3. Let κ = 1/(p+ q) and for the FDH case and κ = 2/(p+ q + 1) for the DEA case.

Under Assumptions 2.1–2.5, 2.8, 3.1 and C.1 for the FDH case and under Assumptions 2.1–2.7,

3.1 and C.1 for the DEA case, for each (x, y) ∈ D,

nκ (Aπ(x, y | Sn, dx, dy, wx, wy)−Aπ(x, y | Ψ, dx, dy, wx, wy))
L−→ QAπ ,x,y (3.38)

where QAπ ,x,y is a non-degenerate distribution with finite variance depending on the particular

estimator (i.e., FDH or DEA).

Theorem 3.3 confirms that Aπ(x, y | Sn, dx, dy, wx) is a consistent estimator of Aπ(x, y |

Ψ, dx, dy, wx) with estimation error of order Op (n−κ). The n1 convergence rate of P(x0, y0 |

Swx,wy ,n, dx, dy, wx, wy) is dominated by the nκ rate of δ(x, y | dx, dy, Ψ̂n), and hence Aπ(x0, y0 |

Sn, dx, dy, wx, wy) inherits the slower convergence rate. The existence of a limiting distribution and

knowledge of the convergence rate permits use of the subsampling methods of Simar and Wilson

(2011a) for making inference about profit allocative efficiency.

The next result establishes properties of moments of the profit allocative efficiency estimator.

Theorem 3.4. Let κ, ζ1, ζ2 and ζ3 be defined as in Theorem 3.1 for the FDH and DEA cases.

Under Assumptions 2.1–2.5, 2.8, 2.9, 3.1 and C.1 for the FDH case and under Assumptions 2.1–

2.7, 2.9, 3.1 and C.1 for the DEA case, ∃ a constant D2 ∈ (0,∞) such that for all i, j ∈ {1, . . . , n},

i 6= j,

E
[
Aπ(Xi, Yi | Sn, dx, dy,Wx,i,Wy,i)−Aπ(Xi, Yi | Ψ, dx, dy,Wx,i,Wyi)

]
= D2n

−κ +O
(
n−ζ1(log n)ζ2

)
, (3.39)

VAR
[
Aπ(Xi, Yi | Sn, dx, dy,Wx,i,Wy,i)−Aπ(Xi, Yi | Ψ, dx, dy,Wx,i,Wy,i)

]
= O

(
n−ζ1(log n)ζ1

)
(3.40)

and ∣∣∣COV
[
Aπ(Xi, Yi | Sn, dx, dy,Wx,i,Wy,i)−Aπ(Xi, Yi | Ψ, dx, dy,Wx,i,Wy,i),

Aπ(Xj , Yj | Sn, dx, dy,Wx,j ,Wy,j)−Aπ(Xj , Yj | Ψ, dx, dy,Wx,j ,Wy,j)
]∣∣∣

= O
(
n−ζ3(log n)ζ3

)
= o

(
n−1

)
. (3.41)
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The constant D2 depends on the density fX,Y,Wx,Wy , the particular estimator (FDH or DEA) and

the structure of the sets D ⊂ Ψ and DW ⊂ Rp++ × Rq++.

In order to make inference about mean profit allocative efficiency, let µAπ = E[Aπ(X,Y |

Ψ, dx, dy,Wx,Wy)] and σ2Aπ = VAR[Aπ(X,Y | Ψ, dx, dy,Wx,Wy)] < ∞ denote the mean and

variance of profit allocative efficiency, where again expectations are with respect to (X,Y,Wx,Wy).

In studies where profit overall (i.e., cost) efficiency and profit allocative efficiency are estimated,

both input and output prices typically vary across firms. Let

µ̂Aπ ,n := n−1
n∑
i=1

Aπ(Xi, Yi | Sn, dx, dy,Wx,i,Wyi). (3.42)

Let κ = 1/(p + q) for the FDH case and κ = 2/(p + q + 1) for the DEA case, and define nκ :=

min
(
bn2κc, n

)
≤ n. Assume the observations in Sn are randomly sorted. Define

µ̂Aπ ,nκ := n−1κ

nκ∑
i=1

Aπ(Xi, Yi | Sn, dx, dy,Wx,i,Wy,i). (3.43)

Analogous to (3.18), the estimates of profit allocative efficiency under the summation sign in (3.43)

are computed using the full sample of n observations, but the summation is over only the first nκ

estimates.

Finally, let B̃Aπ ,n,κ denote the generalized jackknife estimate of the bias term D2n
−κ in (3.39)

computed as described by Kneip et al. (2015, Section 4). Analogous to (3.19), compute the average

B̂Aπ ,n,κ = K−1
K∑
k=1

B̃Aπ ,n,κ,k (3.44)

over K <<
(
n
n/2

)
random splits of the sample to reduce the variance of the bias estimate. The next

result gives a CLT for mean profit allocative efficiency.

Theorem 3.5. Assume the conditions of Theorem 3.4 hold for either the FDH or DEA case. For

(p+ q) ≤ 3 in the FDH case or (p+ q) ≤ 4 in the DEA case, as n→∞,

√
n
(
µ̂Aπ ,n − B̂Aπ ,n,κ − µAπ + ξAπ ,n,κ

)
L−→ N

(
0, σ2Aπ

)
(3.45)

where ξAπ ,n,κ = O
(
n
− 3
p+q+1 (log n)

p+q+4
p+q+1

)
= o (n−κ). In addition, for (p+ q) ≥ 2 in the FDH case

or (p+ q) > 3 in the DEA case, as n→∞

nκ
(
µ̂Aπ ,nκ − B̂Aπ ,n,κ − µAπ + ξAπ ,n,κ

)
L−→ N

(
0, σ2Aπ

)
. (3.46)
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Moreover, as n→∞,

σ̂2Aπ :=
n∑
i=1

[
Aπ(Xi, Yi | Ŝn, dx, dy, wx,i, wy,i)− µ̂Aπ ,n

]2 p−→ σ2Aπ . (3.47)

The CLT results in Theorem 3.5 can be used to construct confidence intervals for mean input

allocative efficiency or to test hypotheses about mean input allocative efficiency. Similar to Theorem

3.2, either (3.45) or (3.46) can be used when (p + q) = 4. Intervals based on (3.45) neglect
√
nξAπ ,nκ = O

(
n−1/10

)
, while those based on (3.46) neglect nκξAπ ,nκ = O

(
n−1/5

)
. Hence (3.46) is

expected to provide more accurate intervals than (3.45) when (p+ q) = 4 and DEA estimators are

used. Similar reasoning applies when (p+ q) = 3 and FDH estimators are used.

4 Empirical Illustration

To illustrate the methods developed above, we revisit Aly et al. (1990) who examine 322 U.S.

Banks operating in 1986. The authors specify p = 3 inputs and q = 5 outputs and report means of

input-oriented DEA estimates of technical efficiency, cost efficiency and input allocative efficiency.

Means are reported for estimates from the full sample, as well as estimates from the subsample of

212 banks allowed to operate branches and corresponding subsample of 110 banks prohibited from

operating branches. In addition to means, Aly et al. also report standard deviations of the various

efficiency estimates obtained with the full sample (but not for the efficiency estimates obtained from

the two subsamples). The authors also report results of five tests—analysis of variance, median test,

Wilcoxon test, Van der Waerden test, and Savage scores test—to examine whether the distributions

of efficiency distributions differ across the two subsamples. They state (p. 216) that, “As can be

seen from Table 4, for all of the efficiency measures, except allocative, the test statistics indicate

that the null hypothesis cannot be rejected. As a result, it may be concluded that the differences

in the distributions of the efficiency measures between the two separate samples are not significant

and that they are drawn from the same population, i.e., face similar environments.”

Of course, it is now known, due to the results obtained in Section 3.3 and 3.4 as well as the

results of Kneip et al. (2015) that the tests used by Aly et al. (1990) are invalid due to the tests’

failure to properly account for the bias of the efficiency estimators. Using the Aly et al. data,

we estimate technical efficiency using θ(x, y | Ψ̂n), cost efficiency using θ(c, y | Ψ̂C,n) and input

allocative efficiency using Ax(x, y, Ψ̂n, wx).12 Estimates of technical efficiency are computed by

12We are grateful to Richard Grabowski for making the data available.
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solving the linear program in (3.3) n times for each observed input-output pair in the sample. Cost

efficiency for the ith observation is computed by first computing costs W ′xiXj for j = 1, . . . , n and

then computing θ(W ′xiXi, Yi | ΨDEA,Wxi,n) as described in Sections 3.2 and 3.3, noting that the set

of reference costs must be computed separately for each observation. Input allocative efficiency is

then estimated by dividing the input cost estimate by the input technical efficiency estimate for

observation i.

Table 1 gives sample means µ̂•,n and µ̂•,nκ for each of the three types of efficiencies, where

“•” represents either θ, C or Ax. Estimated 95-percent confidence intervals for the true means are

also reported, as well as sample standard deviations and the corresponding bias estimates. The

confidence interval estimates are based on the re-centering idea discussed at the end of Section 3.3.

All estimates in Table 1 are computed using R and the Wilson (2008) FEAR library. Computational

details are given in the separate Appendix D.

Table 1: Efficiency Estimates for Aly et al. (1990) Data

µ̂•,n µ̂•,nκ — 95% CI — σ̂• B̂•,n,κ

Full Sample, n = 322

Tech. Eff. 0.8021 0.7760 0.4573 0.6514 0.1785 0.2477
Cost Eff. 0.7078 0.6790 0.4542 0.5980 0.1906 0.1816
Alloc. Eff. 0.8819 0.8979 0.7995 0.9294 0.1195 0.0175

Subsample with no branches, n = 110

Tech. Eff. 0.8690 0.8866 0.5122 0.7237 0.1526 0.2511
Cost Eff. 0.7802 0.7465 0.5094 0.7124 0.1938 0.1693
Alloc. Eff. 0.8928 0.7891 0.8031 0.9795 0.1273 0.0015

Subsample with branches, n = 212

Tech. Eff. 0.8462 0.8858 0.5326 0.7450 0.1714 0.2074
Cost Eff. 0.7726 0.8135 0.5509 0.7057 0.1809 0.1443
Alloc. Eff. 0.9133 0.9564 0.8617 0.9831 0.0979 −0.0091

Note that the estimated confidence intervals for mean technical efficiency and mean cost effi-

ciency in Table 1 lie to the left of and do not cover either of the point estimates of the means.

This is due to the biases—note also that the estimated biases for technical and cost efficiency are

large, ranging from about 0.14 to about 0.25. The bias estimates for cost efficiency are smaller than
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the bias estimates for technical efficiency, reflecting the fact that cost efficiency is estimated in a

6-dimensional space whereas technical efficiency is estimated in an 8-dimensional space. By con-

trast, the estimated confidence intervals for mean input allocative efficiency cover the corresponding

sample means. In all three cases, the corresponding bias estimates are close to 0. The bias estimate

corresponding to mean input allocative efficiency in the sample of banks with branches is negative,

but close to 0. Apparently, the biases in technical and cost efficiency tend to cancel each other

when allocative efficiency is computed.13

Aly et al. (1990) did not report estimated confidence intervals, but implicitly invite the reader to

do so using the classical, Lindeberg-Feller CLT since they report both sample means and standard

deviations. The classical confidence interval estimates can be obtained by adding the bias estimates

reported in Table 1 to the corresponding estimated confidence bounds. For the full sample, doing so

yields estimated bounds (0.7051, 0.8991) for technical efficiency, (0.6358, 0.7797) for cost efficiency

and (0.8170, 0.9469) for input allocative efficiency. The classically-estimated bounds for technical

and cost efficiency are quite different from the ones reported in Table 1 due to the large biases

associated with the estimates of mean technical and cost efficiency. Moreover, due to the results

obtained in Sections 3.3 and 3.4, it is clear that the classical confidence intervals have (even for

input allocative efficiency) coverage tending to 0 as n→∞.

5 Conclusions

This paper provides results on rates of convergence and existence of limiting distributions for

nonparametric FDH and DEA estimators of cost, revenue and profit efficiency as well as the corre-

sponding allocative efficiencies. The nonparametric estimators of cost, revenue and profit efficiency

are shown to have faster rates of convergence than their corresponding estimators of technical or

allocative efficiency. Combined with the subsampling methods of Simar and Wilson (2011b), these

results enable researchers to make inference about these efficiencies for individual firms or produc-

ers. In addition, results on moments of the various estimators are provided. These results indicate

that standard CLT results (e.g., the Lindeberg-Feller CLT) cannot be used to make inference about

13Aly et al. (1990) assume constant returns to scale (CRS) when estimating cost efficiency and input allocative
efficiency, and report separate estimates of technical efficiency assuming either constant or variable returns to scale.
Using the FEAR software library (Wilson, 2008) we obtain a mean of 0.7489 for the CRS-DEA estimates on the full
sample, with a variance of standard deviation of 0.1801, consistent with what Aly et al. report in the third row of
their Table 2. But when using the VRS version of the DEA estimators, we obtain a mean of 0.8021 with standard
deviation 0.1785, whereas Aly et al. report 0.77 and 0.19 (respectively).
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mean the mean efficiencies except in very limited cases. New CLTs are developed, enabling inference

about mean cost, revenue and profit efficiency as well as the corresponding allocative efficiencies

for all dimensions (p + q). These results enable applied researchers for the first time to estimate

confidence intervals and to test hypotheses about model features in general settings.

A Technical Details

A.1 Proof of Lemma 3.1

To prove (i), recall that (c, y) = hwx(x, y) = (w′xx, y) and (c̃, y) = hwx(x̃, y) = (w′xx̃, y). Now

consider (x, y) ∈ Ψ. Given y, we have

c̃ ≥ c⇒ w′xx̃ ≥ w′xx

⇒ x̃ ≥ x since wx > 0

⇒ (x̃, y) ∈ Ψ by Assumption 2.3

⇒ hwx(x̃, y) ∈ hwx(Ψ) by (3.7)

⇒ (c̃, y) ∈ Ψwx . (A.1)

Alternatively, given x we have c = w′xx and

ỹ ≤ y ⇒ (x, ỹ) ∈ Ψ by Assumption 2.3

⇒ hwx(x, ỹ) ∈ hwx(Ψ)

⇒ (w′xx, ỹ) ∈ Ψwx

⇒ (c, ỹ) ∈ Ψwx , (A.2)

establishing (i). Results (ii) and (iii) follow from similar reasoning.

A.2 Proof of Lemma 3.2

Define the level set

X (y) := {x | (x, y) ∈ Ψ} . (A.3)

Let x∗ = argmin
x
{w′xx | (x, y) ∈ Ψ, wx, x ∈ Rp+} = argmin

x
{w′xx | x ∈ X (y0), wx, x ∈ Rp+}. The

point x∗ ∈ X (y0) is minimal in the sense that it results in cost lower than any other point in X (y0).

By the Supporting Hyperplane Theorem there exists x∗∗ such that w′xx∗∗ = w′xx∗ = Cmin(x0, y0 |

Ψ, wx) and

x0 = kx∗∗ (A.4)
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for some k ∈ [1,∞).

By definition in (2.7), C(x0, y0 | Ψ, wx) = w′xx∗
w′xx0

, and by (A.4) w′xx∗
w′xx0

= w′xx∗∗
w′xx0

= w′x(k
−1x0)

w′xx0
=

k−1. Moreover, from (A.4) it is clear that ||x∗∗||2 = ||k−1x0||2 = k−1||x0||2 and hence k−1 =

||x∗∗||2
||x0||2 . Therefore cost efficiency is given by the ratio of lengths between three collinear points

(i.e., the origin, x∗∗ and x0). It is well-known (e.g., see Byer et al., 2010, Theorem 12.7) that

affine transformations such as hwx that maps Ψ to Ψwx preserve such ratios. Moreover, the affine

transformation hwx maps extreme points of Ψ to extreme points of Ψwx . In addition, the half-space

H+ := {x | w′xx ≥ w′xx∗} ⊂ Rp+ is mapped by hwx to the half-space H++ := {c | c ≥ c∗} ⊂ R1
+

where c∗ = w′xx∗. Hence hwx maps both x∗∗ and the minimal point x∗ ∈ X (y0) to the minimal

point (c∗, y0) ∈ Ψwx , establishing the result.

A.3 Proof of Theorem 3.1

Before beginning the proof of Theorem 3.1, some additional, intermediate results are needed.

Lemma A.1. Let κ, ζ1, ζ2 and ζ3 be defined as in Theorem 3.1 for the FDH and DEA cases.

Under Assumptions 2.1–2.5, 2.8 and 3.1 for the FDH case and under Assumptions 2.1–2.7 and 3.1

for the DEA case, for each (x, y) ∈ D,

nκ
(

log
(
θ(x, y | Ψ̂n)

)
− log (θ(x, y | Ψ))

)
L−→ Qlog

θ,x,y (A.5)

where Qlog
θ,x,y is a non-degenerate distribution with finite variance. In addition, ∃ a constant D3 ∈

(0,∞) such that for all i, j ∈ {1, . . . , n}, i 6= j,

E
[
log
(
θ(Xi, Yi | Ψ̂n

)
− log (θ(Xi, Yi | Ψ)

]
= D3n

−κ +O
(
n−ζ1(log n)ζ2

)
, (A.6)

VAR
[
log
(
θ(Xi, Yi | Ψ̂n)

)
− log (θ(Xi, Yi | Ψ))

]
= O

(
n−ζ1(log n)ζ1

)
, (A.7)

and ∣∣∣COV
[

log
(
θ(Xi, Yi | Ψ̂n)

)
− log (θ(Xi, Yi | Ψ)) ,

log
(
θ(Xj , Yj | Ψ̂n)

)
− log (θ(Xj , Yj | Ψ))

]∣∣∣ = O
(
n−ζ3(log n)ζ3

)
= o

(
n−1

)
. (A.8)

The value of the constant D3 depends on the particular estimator, the density f and the structure

of the set D ⊂ Ψ.
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Proof. From Kneip et al. (2008, Theorem 2) we have

n
2

p+q+1

(
θ(x, y | Ψ̂n)− θ(x, y | Ψ)

)
L−→ Qθ,x,y (A.9)

for the DEA case, and a similar result (with scaling factor n1/(p+q)) for the FDH case from Daouia

et al. (2017, Proposition 2) after transforming to the input-oriented case. In addition, the log

function is monotonic and differentiable with nonzero derivatives on R+. Hence (A.5) follows by

the delta method for both the FDH and DEA cases.

The results in (A.6)–(A.8) follow from arguments similar to those in the proof of Theorem 3.2 in

Kneip et al. (2018) and the proof of Theorems 3.1 and 3.3 in Kneip et al. (2015). In particular, the

convergence rate here is n2/(p+q+1) for the DEA case (and n1/(p+q) for the FDH case) as is the case

in Theorem 3.2 of Kneip et al. (2018) where distance is measured to boundary of the conical hull

of P̂. The arguments rely again on the fact that the log function is monotonic and differentiable,

permitting Taylor expansions and the delta method.

Now recall the definition of input-allocative efficiency in (2.8). Substituting θ(c0, y0 | Ψwx) for

C(x0, y0 | Ψ, wx) in (2.8) and then taking logs yields

log (Ax(x0, y0 | Ψ, wx)) = log (θ(c0, y0 | Ψwx))− log (θ(x0, y0 | Ψ)) . (A.10)

A natural estimator of log (Ax(x0, y0 | Ψ, wx)) is obtained by replacing θ(c0, y0 | Ψwx) and θ(x0, y0 |

Ψ) on the right-hand side of (A.10) with the corresponding estimators θ(c0, y0 | Ψ̂wx,n) discussed

in Section 3.3 and θ(x0, y0 | Ψ̂n) given by (3.3). The next result establishes the properties of the

resulting estimator

log
(
Ax(x0, y0 | Ψ̂n, wx)

)
= log

(
θ(c0, y0 | Ψ̂wx,n)

)
− log

(
θ(x0, y0 | Ψ̂n)

)
. (A.11)

Theorem A.1. Let κ be defined for the FDH and DEA cases as in Lemma A.1. Under Assumptions

2.1–2.5, 2.8 and 3.1 for the FDH case and under Assumptions 2.1–2.7 and 3.1 for the DEA case,

for each (x, y) ∈ D,

nκ
(

log
(
Ax(x, y | Ψ̂n, wx)

)
− log (Ax(x, y | Ψ, wx))

)
L−→ Qlog

Ax,x,y (A.12)

as n→∞ where Qlog
Ax,x,y is a non-degenerate distribution with finite variance.

Proof. Recall that C(x0, y0 | Ψ̂n, wx) = θ(c0, y0 | Ψ̂wx,n) where Ψ̂wx,n is the DEA es-

timator of the image of Ψ under the affine transformation hwx . Then the properties of
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log
(
C(x0, y0 | Ψ̂n, wx)

)
= log

(
θ(c0, y0 | Ψ̂wx,n)

)
are given by Lemma A.1 where the number of

“inputs” p is 1. The results (A.12)–(A.15) for the DEA case follow trivially after recognizing that

the rate of log
(
θ(c0, y0 | Ψ̂wx,n)

)
is dominated by the slower rate of log

(
θ(c0, y0 | Ψ̂n)

)
.

Similar reasoning establishes the result for the FDH case.

Theorem A.1 establishes the existence of a non-degenerate limiting distribution and the rate of

convergence for FDH and DEA estimators of the log of input allocative efficiency. Consequently,

confidence intervals with asymptotically correct coverage for the log of input allocative efficiency of

individual firms can be estimated using the sub-sampling methods described by Simar and Wilson

(2011a) while noting that the rate of convergence is n1/(p+q) for the FDH case or n2/(p+q+1) for

the DEA case as established by Theorem A.1. Since the resulting intervals are transformation-

respecting, one can take exponentials of the endpoints to obtain an asymptotically valid confidence

interval for Ax(x0, y0 | Ψ, wx).

The next result establishes moment properties for FDH and DEA estimators of log input al-

locative efficiency.

Theorem A.2. Let κ, ζ1, ζ2 and ζ3 be defined for the FDH and DEA cases as in Theorem 3.1.

Under Assumptions 2.1–2.5, 2.8 and 3.1 for the FDH case and under Assumptions 2.1–2.7 and 3.1

for the DEA case, ∃ a constant D4 ∈ (0,∞) such that for all i, j ∈ {1, . . . , n}, i 6= j,

E
[
log
(
Ax(Xi, Yi | Ψ̂n,Wx,i)

)
− log (Ax(Xi, Yi | Ψ,Wx,i))

]
= D4n

−κ +O
(
n−ζ1(log n)ζ2

)
, (A.13)

VAR
[
log
(
Ax(Xi, Yi | Ψ̂n,Wx,i)

)
− log (Ax(Xi, Yi | Ψ,Wx,i))

]
= O

(
n−ζ1(log n)ζ1

)
(A.14)

and ∣∣∣COV
[

log
(
Ax(Xi, Yi | Ψ̂n,Wx,i)

)
− log (Ax(Xi, Yi | Ψ,Wx,i)) ,

log
(
Ax(Xj , Yj | Ψ̂n,Wx,j)

)
− log (Ax(Xj , Yj | Ψ,Wx,j))

]∣∣∣ = O
(
n−ζ3(log n)ζ3

)
= o

(
n−1

)
(A.15)

as n → ∞. The constant D4 depends on the particular estimator (FDH or DEA), the density

fX,Y,Wx and the structure of the sets D ⊂ Ψ and DW ⊂ Rp++ × Rq++.

Proof. The results follow due to (A.6)–(A.8), noting that the slower convergence rate in the

denominator of log(Ax(Xi, Yi) | Ψ̂n,Wx,i) dominates the faster rate of the cost efficiency estimator

in the numerator.
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Due to Theorem A.1, log
(
Ax(x, y | Ψ̂n, wx)

)
is a consistent estimator of log (Ax(x, y | Ψ, wx))

with estimation error of order O (n−κ). In addition, Theorem A.2 makes clear that standard CLT

results can be used to make inference about mean input allocative efficiency only if (p+ q) < 3 in

the DEA case and not at all in the FDH case.

Theorem 3.1 can now be proved. The exponential function is monotonic and differentiable with

nonzero derivatives on R+. Hence the result in (3.23) follows from Theorem A.1 via the delta

method. Now let Γ(·) denote the log function. Due to Assumption 3.1, Γ(θ(Xi, Yi | Ψ̂n)) as well as

its derivatives Γ′(θ(Xi, Yi | Ψ̂n)) and Γ′′(θ(Xi, Yi | Ψ̂n)) are uniformly bounded for all (Xi, Yi) ∈ D.

Then the results in (3.24), (3.25) and (3.26) follow after applying Taylor expansions and arguments

analogous to those used to prove results (3.17)–(3.19) in Theorem 3.2 of Kneip et al. (2018).

A.4 Proof of Theorem 3.2

The results in (3.30) and (3.31) follow immediately using arguments analogous to those of Kneip

et al. (2015) leading to their Theorems 4.3 and 4.4. The result in (3.32) follows from (3.23) in

Theorem 3.1 using arguments analogous to those used to prove (4.5) appearing in Theorem 4.2 of

Simar and Wilson (2019).
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