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Abstract 

A chemometric challenge was posed at the annual ‘Chimiométrie’ congress organized by the 

French Chemometrics Society in February 2019. The congress was held in Montpellier and the 

data relating to the challenge are available on the congress website 

(https://chemom2019.sciencesconf.org/). The aim of the challenge was to test the ability of 

congress participants for the characterization of animal feed by NIR when the reference values 

do not follow a normal distribution for three different ingredients.  This paper summarizes the 

five best approaches put forward by participants. 

 

 

1 Introduction 

As in previous years [1-5], a challenge was posed at the ‘Chimiometrie’ congress held 

in Montpellier in February 2019, concerning the applicability of spectroscopy and multivariate 

analysis for the characterization of animal feed where the reference values do not follow a 



normal distribution. In particular, part of a dataset provided by the University of Córdoba 

(UCO), Spain, has been proposed as a challenge for the Chimiométrie 2019 conference 

participants [6].  

When dealing with multivariate analysis, it is quite often the case that the distribution 

of reference values does not follow a standard distribution and then a classical regression model 

fails. For those situations, Fearn et al. proposed a Bayesian approach where the aim was to solve 

such situations [7]. For this, a model explaining the dependence of spectral data on reference 

values is combined with a prior distribution representing beliefs about the composition of the 

sample to be predicted. In their work, and using the same data as [6], they have proved that a 

Bayesian approach could be a relevant technique to predict the percentage of ingredients in a 

complete feed. 

The aim of the challenge at the ‘Chimiometrie’ congress was to predict three different 

ingredients used for the production of animal feed through multivariate analysis; and then to 

predict the blind spectra of an independent test set.  

This article presents the five best approaches among the seven solutions received.   

             

2 Dataset and Challenge 

The spectra are from feed (farm animal feed) samples with known composition and 

measured in reflection mode. No chemical composition is given, but the percentages of the 

different ingredients are given. As the choice of ingredients is very large in feed plants, only 

three products were used: soya oil (y1), lucern (y2) and barley (y3) contents.  The participants 

obtained the NIR spectra and the reference values for the calibration set and only the NIR 

spectra for the test set. They were not informed about the products nor the wavelength range.  

The spectra had been reduced to 550 data points (1300-2398, /2nm). To make data more 



challenging, the spectra of the test set were modified by shifting the wavelength axis by half a 

nanometer.  

 

The test set used in the Fearn’s paper [7] was only 100 spectra with a calibration set of 

7523 spectra.  In this challenge, the test set was included in the calibration set and a new test 

set of 600 spectra was randomly selected. Eight spectra with high Mahalanobis distances were 

removed before selecting the test set. Then, the remaining 6915 spectra constituted the final 

calibration set.   

The final criterion to order the response was the average of the relative errors (equation 

1): 
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      (Equation 1) 

where C1, C2 and C3 correspond to the percentage of Ingredient y1, y2 and y3 

respectively and RMSEP is the Root Mean Squared Error of Prediction. 
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 where 𝒚𝒊 refers to the reference values,  𝒚&𝒊 refers to the NIR estimated values and n 

the number of validation spectra.  

 

3 Results 

3.1        Participant  1 

First of all, a series of preprocessing techniques have been applied to the dataset that 

was then randomly split into training (95%) and test set (5%). The predictive ability was 

evaluated based on the RMSEP of the test set, after a 10-fold Cross-Validation (CV) training 



of PLS-regressions applied to each response. The best strategy, having the minimum sum of 

RMSEP across all the responses, was to apply the standard normal variate (SNV) followed by 

linear detrend and standardization (autoscale). 

After pre-processing, the calibration set was randomly split into two equal datasets: 

subset1 and subset2 to independently train the two following steps of the predictive analysis. 

Within each subset, 95% of the data were used for training and the remaining 5% were used as 

a test set. For the two steps, several classification and regression methods were trained and their 

predictive ability compared. 

Given the high frequency of 0 values in the responses, the first step was to apply a binary 

classification over the categorized responses [0, >0]. For each response, the candidate models 

were trained with the training set of subset1: Partial Least Squares regression (PLS-R – 10-fold 

CV; Latent Variables = 12(y1), 5(y2), 6(y3)), Support Vector Machines for classification 

(SVM-C – 10-fold CV; radial kernel, cost = 10), Random Forest for classification (RF-C - mtry 

= 23, ntree = 500), and k-Nearest Neighbors (k-NN - leave-one-out CV, k = 3). As the objective 

was to correctly identify the 0-valued responses, based on the test set, the criterion to select the 

best classifier was the one maximizing the sensitivity (TP/(TP+FN)) and the Positive Predictive 

Value (PPV = TP/(TP+FP)):  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑉𝑎𝑙𝑢𝑒 = /%
(/%123)

+ /%
(/%12%)

    (Equation 3) 

Where TP, FN and FP represent the True Positive rate, the False Negative rate and the False 

Positive rate respectively.  

The random forest classification performed best for y1 and y2, whereas SVM had the 

highest classification criterion value for y3. These selected methods were then applied to 

subset2 to extract the predicted 0 response values. 



During the second step of the analysis, the remaining non-0 observations from subset2 

were split into training and test sets. Since the responses also had the particularity of having a 

low number of unique value levels, regression and classification algorithms were both 

considered as candidate methods and trained in the same way as during the first step: PLS-R (# 

Latent Variables = 9(y1), 4(y2), 3(y3)), SVM-R (radial kernel, cost=10), SVM-C (radial kernel, 

cost=10), Random Forest for regression (RF-R - mtry = 366(y1), 23(y2), 92(y3)), ntree = 500), 

and RF-C (mtry = 23, ntree = 500). The overall method minimizing the RMSEP over the test 

sets and for all the responses was the SVM-R. 

The best strategies were finally applied to the validation set and the remaining negative 

predicted values were set to 0, as only positive or null values were allowed. 

All the analyses have been conducted in R and the applied R functions are here given explicitly 

for each method: pracma::detrend() for linear detrend, pls::mvr() for PLS, e1071::svm() for 

SVM and randomForest::randomForest() for RF. 

 

3.2       Participant 2  

The data analysis was performed in two steps. The first part was exploratory: the spectra 

data were visualized, the cluster in the spectral data set was evaluated as well as the distribution 

of the reference values in order to have an overview of the data quality. The second step was 

the selection of the regression method. Several methods have been evaluated: PLS regression, 

Neural Network and Extreme Gradient Boosting (XGBboost), which is an efficient 

implementation of the gradient boosting framework from Chen & Guestrin [8]. The best method 

has been selected according to the RMSEP calculated in a reduced test set selected using the 

Kennard and Stone algorithm from the calibration set[9]. The method giving the best results 

was the Xgboost. The procedure performed using the R software included spectral binning in 



order to reduce the number of wavelengths. This has been applied during the screening of 

methods in order to improve the computation speed. Then, classical preprocessing methods 

were tested and SNV and first derivative Savitzky Golay (p = 3, w = 11, m = 1) was selected. 

After data visualization using spectra plot, principal component analysis and kmeans, a 

quantitative prediction was performed. Screening of the PLS, Neural Network and Decision 

Trees methods were evaluated. The best method was regression tree with gradient boosting 

using the constraint of non-negativity of Y.  

Table 1 shows the different parameters that have been evaluated during the optimization 

process. The optimization has been performed one parameter at a time. There are in general two 

ways to control overfitting in XGBoost: 1) by directly controlling model complexity 

(optimization of  max_depth, min_child_weight and gamma.) and 2) by adding randomness to 

make training robust to noise (optimization of subsample by row and columns and learning rate 

eta).  

Table 1 

 

3.3        Participant 3  

Since a main characteristic of the data was the presence (in large numbers) of 0s in the 

three response variables (y1, y2, y3), a specific two-step sequential modelling (similar to the 

“hurdle models” approach proposed in econometric studies [10] and subsequently used in many 

other fields) was applied to each variable y. In the first step (say Step1), the presence (i.e. y > 

0) vs. absence (i.e. y = 0) of the ingredient was predicted with a qualitative binary discriminant 

model. For predictions returning “y > 0” in the Step1, the second step (say Step2) was to predict 

the positive responses with a quantitative model.  



A preliminary data exploration showed some heterogeneity in the spectra, suspected to 

generate nonlinearity between responses y and the spectra and suggesting using local prediction 

approaches. K-nearest neighbors locally weighted PLS-DA (KNN-LWPLS-DA) and PLS-R 

(KNN-LWPLS-R) models were used for Step1 and Step2, respectively. LWPLS-R [11, 12] is 

a particular case of weighted PLSR (WPLS-R). WPLS-R is a generalization of PLS-R where a 

statistical weight, different from the standard 1/n, is given to each of the n calibration 

observations for calculating the PLS scores and loadings, and the predictions. In LWPLS-R, 

the weights depend on the dissimilarity (defined in the present study by Mahalanobis distances) 

with the new observation to predict [13]. A simple approach of LWPLS-DA is to implement a 

LWPLS2-R on the dummy variables matrix created from the discrete variable y and then to 

select, for each observation to predict, the column of the LWPLS2-R prediction having the 

highest value.  

In the literature, the usual LWPLS strategies often consist of fitting, for each new 

observation, a LWPLS using the entire set of the n calibration observations. An alternative and 

faster strategy [13], used in this challenge, is to do a pre-selection of k nearest neighbors of the 

observation to predict (KNN selection) and then only apply LWPLS to the k neighbors. In 

addition, a dimension-reduction of the original X-data was performed by a global PLS (before 

running the KNN-LWPLS described above), as suggested in Shen et al. [14]. The idea is to run 

the models on these pre-(global)-scores instead of on the original X. This again decreases the 

calculation time and, in some cases, removes uninformative noise and increases the stability of 

the results. 

Before running the models, the X-data were pre-processed by a SNV transformation 

followed by a second derivative with a Savistky-Golay filter (polynomial = 3 and window = 

21). The model parameters (number of neighbors, number of PLS components, sharpness of 

the weight function for WPLS) were optimized using an “oriented” validation strategy: a 



pseudo-test set (m = 591 observations) was built by selecting in the calibration set CAL the first 

nearest neighbor of each observation of the validation set VAL (using Mahalanobis distances 

calculated on 15 PCA scores computed on the un-preprocessed spectra). The principle is to get 

a validation set (for parameters optimization) as similar as possible as the dataset (VAL) to 

predict. Although not really demonstrated, this oriented strategy seems more efficient for 

heterogeneous data than doing naive cross-validation. The results of the optimized models on 

the pseudo-test are shown in Table 2. 

Table 2  

Other modelling approaches (simple weighted KNN, non-parametric Bayesian predictions such 

as in Fearn et al 2010 [1], etc.) were also assessed on this pseudo-test but all returned higher 

RMSE values than KNN-LWPLS and were therefore not considered for the final VAL 

predictions. All this work was implemented with the R package rnirs available at 

https://github.com/mlesnoff/rnirs.   

 

3.4        Participant 4 

Firstly, data were processed with SNV correction followed by a Savitsky-Golay filter to 

obtain the first derivative of the spectra (2nd order polynomial and 7 points window). A 

principal component analysis (PCA) was performed on the training dataset so that loadings and 

scores were extracted from the first to the fifteenth component. The following describes the 

applied procedure for each test sample: The first fifteen scores of the test spectrum are 

calculated using the PCA loadings. These scores are used to calculate the Euclidian distance 

with all the training samples. Then samples are ordered in ascending order of distance and the 

neighbors with a distance lower than 0.9 (determined by cross-validation with the training set) 

are chosen. In the case that less than 300 neighbors satisfy this condition, the next closest 



neighbors are integrated into the subset until 300 individuals are chosen. If the y values of the 

resulting dataset contain 50% of zero, the prediction is directly set to zero. Then this dataset is 

randomly split (sub-train: 2/3, sub-test: 1/3) to perform a PLS regression calibration. The 

number of latent variables is set as the one that minimizes the RMSEP. This procedure is applied 

for the three y values to predict. The sample test is predicted using the local partial least square 

regression model. Finally, all negative predictions were set to 0. 

 

3.5       Participant 5  

The Multi-layer Perceptron (MLP) is a non-linear statistical data modeling tool that tries 

to simulate the functions of biological neural networks. It consists of an interconnected 

collection of simple processing elements or artificial neurons and processes information in a 

connectionist approach to computation [15]. MLP is generally considered to be an adaptive 

system that changes its structure in response to external or internal information that flows 

through the network during the learning phase. 

While establishing the MLP model, all the data were normalized between 0 and 1. For 

normalization, the following equation was used: 

𝑦+56	 =	
898!"#

8!$%98!"#
         (Equation 4) 

To obtain real values from the normalized values, “y” value was calculated using the 

same formula. 

Normalized data were divided into two datasets for training and test. In the training set, 

5532 NIR spectra were used, whereas 1383 NIR spectra were used in the test set.  



The choice of model parameters was made on the basis of the minimum error on internal 

validation set. The optimal model parameters were found to be one hidden layer with 7 neurons, 

trained for 13 epochs with learning rate η = 0.50.  

The MLP model was trained with a backpropagation learning algorithm based on the 

Levenberg Marquardt algorithm which minimizes the total error by varying the weights in order 

to enhance the network performance. Training of the network was continued until the test error 

reached the determined tolerance value. 

The model was tested with test data after training. The model performance was 

evaluated by the root mean square error (RMSE) and the coefficient of determination (R2). 

 

  4        Debriefing  

No one among the participants discovered the X shift. In any case, it was possible to see 

the shift in several ways.  The first one was by projecting the test set on the PC scores calculated 

for the calibration set. The shift was not visible on the first PC’s but was obvious for the 13th to 

20th PC’s. A simpler and easier way was to see the classical T2 Hotelling vs Q (X residuals) 

plot (figure 1).  

Figure 1 

 

A third way was to plot the spectra for the calibration set together with those of the test 

set with a zoom. It is surprising that none of the 7 participants noticed this shift.  

Before predicting a test set, it is clever to select from the calibration set (when this one 

is much wider) the spectra which are the most similar to those of the test spectra. This was done 

by choosing the closest samples based on their standardized Mahalanobis distances. A set of 



600 spectra was extracted from the cal set. The 600 selected and the 600 of the test are averaged 

to produce two spectra which are plotted in Figure 2.  

 

Figure 2 

 

Warping methods could have been used to correct the shift on the wavelength axis but 

with this dataset a simple homemade method was applied. Firstly, a gap first derivative was 

applied on the two mean spectra presented in the previous figure. From these two spectra, a 

certain number of peaks (local maxima - 26) can be extracted from both spectra. Some are 

identical between calibration and validation, several are shifted to the right by one unit (Table 

3).  

Table 3 

 

A polynomial function of second degree fits five points at each peak and the first 

derivative of the polynomial gives the exact position of the peak which is calculated at –b/2c 

(first derivative of y=a+bx+cx2 at the crossing point with y=0). The median of the 26 

differences of the exact peak positions was calculated to be equal to 0.2496 and rounded to 

0.25. Then, the validation spectra were interpolated from 1.00 to 550.25 by a step of 0.25. The 

first column was removed and then the absorbance at 1.25 became the ones at point 1. Then 

subsequent columns were selected every 4 (1.25, 2.25, 3.25...) to obtain 550 variables.  After 

correction, the M distances for the calibration and validation sets show, then, the same 

distributions.  

After such shift correction, and based on the 600 spectra selected, the local algorithm of 

the WinISI package (Foss, Hilerod, Dk) was optimized to find the best combination of the 



number of samples, the number of PLS factors to be ignored and the maximum number of 

factors for each PLS model. Table 4 gives the results of this optimization and within parentheses 

the stats on the validation set.  

Table 4 

 

Table 5 shows the results for all participants. The first three columns represent the 

RMSEP for the three available y (Soy oil, lucern and barley) and the fourth column represents 

the relative error as calculated in equation 1 for the data as received from the participants, i.e. 

without the shift correction.  

     Table 5  

In a later stage, after the conference, the participants received the data corrected for the 

X shift and the same procedure was applied again. The results are indicated also in the second 

right part of Table 5. It can be observed that the impact of changing half a nanometer in the 

spectra has a large influence in the final results, with RMSEP of almost double the value. Most 

of the differences of the RMSEP are in biases: the random errors (SEPC) remain similar on 

corrected and uncorrected data. Moreover a 2-by-2 t student comparison has been done. Table 

6 shows the results indicating whether the proposed procedures are significantly different or 

not.  

Table 6 

It is important to point out that the shift obviously had a big impact on all the methods 

using the distances between the observations, and in particular KNN-LWPLS that gave very 

good results on the un-shifted data. 

 



Conclusion 

Dealing with a large dataset, the 2019 challenge demonstrated the efficiency of discriminant 

analyses and local regressions or nonlinear regressions respectively to detect the presence of 

the ingredients and quantify them. As in previous editions, the aim of the paper was, not to 

compare different techniques, nor to indicate whether a procedure is better than another one, 

but just to show different alternatives for the same problem. The differences between the 

methods are relatively small in practice and they are ranked in a different order regarding 

whether the data are shifted or not.  The main surprise is that no participant noticed the shift 

and this shows again that very good chemometricians may forget a simple principle that has 

been repeated for a long time: when using NIRS, look at the spectra.      
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Figure 1 - Influence plot T2 vs Q (circle = cal set, diamond = val set)  

 

  



Figure 2 - Mean spectra of the calibration and test sets   

 

 

  



Table 1 – Parameter optimization for Participant 2 

 

  

Parameters and definition  Tested range during the optimization Selected values
Learning rate (eta)                                                                                                                                       

S tep s ize s hrinkage us ed in update to prevents  overfitting. Eta 
s hrinks  the feature weights  to make the boos ting proces s  more 

cons ervative.(*)

Between 0.01 and 0.3 0.1

Maximum depth of a tree (max depth)                                                                                                    
Increas ing this  value will make the model more complex and more 

likely to overfit. (*)
Between 2 and 10

3 for variables  V1 and V3                                                                  
2 for V2

Gamma                                                                                                                    
Minimum los s  reduction required to make a further partition on a leaf 

node of the tree. The larger gamma is , the more cons ervative the 
algorithm will be(*)

Between 0.001 and 1000 0.01 for variables  V1 and V2                                                      
10 for V3

Lambda                                                                                                                   
L2 regularization term on weights  - Increas ing this  value will make 

model more cons ervative (*)
Between 0 and 100 10

Minimum child weight                                                                                         
this  s imply corres ponds  to minimum number of ins tances  needed to 

be in each node. The larger min_child_weight is , the more 
cons ervative the algorithm will be (*)

Between 0 and 100 50

Subsample (i.e. Sample selection)                                                                   
S etting it to 0.5 means  that XGBoos t would randomly s ample half of 

the training data prior to growing trees . and this  will prevent overfitting. 
S ubs ampling will occur once in every boos ting iteration.(*)

Between 0.25 and 1 0.75

Subsampling of columns                                                                                    
(i.e  Variable s election) (*)

Between 0.25 and 1 0.75



Table 2 - Results of calibrations on the pseudo-test for participant 3 

 

 

 

 

  

Response variable
y 1 y 2 y 3

BINARY  % Err 1.7 0 3.9
QUANT.  RMSEP 0.28 1.74 2.87

TOTAL    RMSEP 0 .14 0 .87 2.76



 

 

Table 3 – Peaks (local maxima) extracted from mean cal and val spectra 

 

 

 

  

PEAKS CAL 28 35 57 108 132 154 196 218 227 250 259 267 301 330 338 340 373 427 430 445 480 496 501 510 520 528
PEAKS VAL 28 35 57 109 133 154 196 219 227 251 259 268 301 330 339 341 373 427 431 445 481 496 501 510 521 529



Table 4 - Optimization results using Local Winisi – Foss (in parentheses with the stats on the 

corrected validation set).  

 

 

  

Validation set corrected
range mean CAL RMSEP R2 RMSEP (%)

0 - 5.5% 0.38 0.34 0.83
(0.37)

0 - 40% 8.71 1.11 0.99
(1.15)

0 - 52% 14.3 3.44 0.94
(4.07)

SoyOil 0.89

Lucern 0.13

Barley 0.24



Table 5 – Final results for all participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RE (in %) RE (in %) Method used
SoyOil Lucern Barley SoyOil Lucern Barley 

Participant 1 0.54 2.03 6.46 1.15 0.51 1.72 4.80 0.96 RF,SVM 
Participant 2 0.54 2.75 6.08 1.25 0.45 2.17 5.72 1.06 XGBboost
Participant 3 0.55 2.65 7.01 1.29 0.26 0.99 2.67 0.52 KNN-LWPLS(DA/R)
Participant 4 0.58 2.53 7.06 1.30 0.46 1.66 4.15 0.87 Local PLS
Participant 5 0.60 3.38 9.01 1.59 0.37 1.31 4.43 0.77 ANN 

Validation set uncorrected Validation set corrected
RMSEP RMSEP



 

Table 6 – 2-by-2 t-student tests comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

SoyOil Participant 1 Participant 2 Participant 3 Participant 4
Participant 2 NS
Participant 3 NS NS
Participant 4 S S NS
Participant 5 S S S NS

Lucerne Participant 1 Participant 2 Participant 3 Participant 4
Participant 2 S
Participant 3 S NS
Participant 4 S S NS
Participant 5 S NS S S

Barley Participant 1 Participant 2 Participant 3 Participant 4
Participant 2 NS
Participant 3 S S
Participant 4 S S NS
Participant 5 S S S S

S: Significantly different
NS: Not significantly different


