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 CURRENT
OPINION Monitor the quality of cardiopulmonary

resuscitation in 2020

Cornelia Genbruggea,b, Ward Eertmansc, and David D. Salcidod

Purpose of review

The current review will give an overview of different possibilities to monitor quality of cardiopulmonary
resuscitation (CPR) from a physiologic and a process point of view and how these two approaches can/
should overlap.

Recent findings

Technology is evolving fast with a lot of opportunities to improve the CPR quality. The role of smartphones
and wearables are step-by-step identified as also the possibilities to perform patient tailored CPR based on
physiologic parameters. The first steps have been taken, but more are to be expected. In this context, the
limits of what is possible with human providers will become more and more clear.

Summary

To perform high-quality CPR, at first, one should optimize rate, depth and pause duration supported by
process monitoring tools. Second, the evolving technological evolution gives opportunities to measure
physiologic parameters in real-time which will open the way for patient-tailored CPR. The role of
ultrasound, cerebral saturation and end-tidal CO2 in measuring the quality of CPR needs to be further
investigated as well as the possible ways of influencing these measured parameters to improve
neurological outcome and survival.
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INTRODUCTION

Out-of-hospital cardiac arrest (OHCA) is a major
cause of health problems and death worldwide
[1,2]. The outcome after cardiac arrest improved
slowly during the last decades with current survival
rates to hospital discharge of 10%. However, survival
rates differ between regions with survival rates
between 2.2 and 12.0% [3]. Many different factors
have an effect on the outcome and among which is
quality of the administered cardiopulmonary resus-
citation (CPR).

The main goal of CPR is to achieve return of
spontaneous circulation (ROSC) as quickly as possi-
ble secondary to maintaining sufficient cerebral and
myocardial perfusion to preserve the prearrest neu-
rological state. However, the mechanical goal of
CPR is to circulate blood in the absence of cardiac
output (CO) to perfuse the heart and brain until
defibrillation is possible or ROSC is achieved. To
achieve this goal, CPR currently exists out of chest
compressions, ventilation and resuscitation drugs. If
we pursue high-quality CPR, defined as the optimal
CPR for a person to achieve the highest chance of
survival, it is necessary to measure physiologic

parameters to follow the effect of a given treatment.
Measuring chest compression depth and rate is a
beginning but it is also only measuring to what
extent the evidence-based guidelines are followed
[4].

The continuous evolution in technology has a
constant impact on the possibilities for measuring
physiologic parameters and can improve in an indi-
rect manner the quality of CPR and therefore also
the outcome of cardiac arrest patients. If CPR is
based on invasive measured physiologic parameters,
higher 24 h rate of favourable outcome is observed
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in animal models [5,6]. Monitoring the quality of
CPR is not only the first step before we can improve
the quality of CPR but also a step in the direction of
an individualized patient care. If there is real time
feedback about the quality of CPR, it will be possible
to adapt our resuscitation strategies to improve the
quality of CPR, the exact specifications of which
may differ between individual patients. The key for
this future strategy is reliable, real time monitor(s),
which give us insight into the ongoing physiologic
status of the cardiac arrest patient.

The current review will give an overview of
different possibilities to monitor quality of CPR
from a physiologic and a process point of view
and how these two approaches can/should overlap.

MEASURING CARDIOPULMONARY
RESUSCITATION PERFORMANCE

CPR is foremost a mechanical process that can be
characterized, and therefore evaluated, by many
process parameters. The fundamental mechanical
unit of CPR is a single chest compression, which
begins with application of force to the sternum,
such that the sternal surface displaces inward
toward the spine [7]. Compression of the thoracic
space in this manner increases the intrathoracic
pressure and (in)directly facilitates ejection of blood
from the ventricles. A number of parameters char-
acterize the downstroke, including the peak force,
velocity, depth (displacement) and initial surface
position. Some of these parameters are thought to
be highly influential in the optimization of forward
blood flow during CPR, although historically
chest compression depth is supported by the most
substantial evidence [8]. Chest compression depth
can be measured or inferred through a number of
sensory modalities, the most common of which is
currently accelerometry, conducted alone or in
combination with supplementary sensors [9–11].
The largest human observational studies support
absolute depth as a key process measure related to

resuscitation outcomes, a finding that is echoed in
laboratory resuscitation models [12–14]. Little
human data are available supporting proportional
depth in the setting of OHCA, although it is intui-
tive that larger chest diameters might benefit from
deeper chest compressions [15

&

].
Of course, what goes down must come up, and

so each downstroke is followed by a corresponding
upstroke whereby downward force is withdrawn
from the sternum, such that it can return or ‘recoil’
to a resting, uncompressed position. At the start of
recoil, the deformation of the thorax and corre-
sponding redistribution of its contents creates a
negative pressure gradient between the compressed
space and the surrounding compartments. The net
effect on the circulatory system is to draw blood
back towards the heart [16]. Extent of recoil and
recoil or release velocity are two parameters of inter-
est in the upstroke phase of the chest compression,
with some evidence suggesting that both may have
implications for resuscitation outcomes [17–19].
Incomplete recoil is a practical consequence of the
provider leaning on the patient and is relatively
common [20]. Release velocity is the speed at which
the chest returns to resting level, and is a function of
the speed at which the provider is upstroking, the
present constitution of the chest, and likely other
innate patient factors [21

&

]. Measurement of both
can be accomplished with the same technologies
used to determine peak compression depth, where
force sensing provides a direct assessment of
leaning, unconfounded by chest deformations that
may alter resting level.

CPR is a cyclic mechanical process, and so chest
compressions are delivered in series, with the chest
oscillating between the target compression depth
and resting level. The period of this oscillation, more
frequently taken in inverse as the rate of chest
compressions, is a well characterized parameter of
CPR delivery associated with resuscitation outcomes
[22,23

&

]. While chest compression depth might
be considered analogous to cardiac contraction,
compression rate is conceptually analogous to
heart rate, with similar theoretical implications
for optimization, including considerations for ade-
quate ventricular filling time and contribution to
CO [24]. Measurement of chest compression rate is
possible with a more diverse array of sensors than
depth. Transthoracic impedance signal available in
nearly all modern prehospital defibrillator-monitors
allows for adequate rate measurement under many
circumstances, although the impedance waveform
is susceptible [25,26]. Rate can also be accurately
determined through analysis of the same sensors
used to determine depth, either through peak anal-
ysis or spectral analysis methods [27,28].

KEY POINTS

� Measuring quality of CPR can improve the administered
CPR quality.

� Higher CPR quality is associated with better outcome.

� New technology can and should be used to measure
and improve the quality of CPR.

� The next challenge is to identify the best physiologic
monitor(s) to use during CPR.

Cardiopulmonary resuscitation
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As chest compressions are delivered over time,
process interruptions may occur, breaking the con-
tinuity of CPR. Algorithmically, this could be
related to pulse checks, defibrillation events or
planned provider changes for prolonged CPR. There
is a body of literature on the effects of planned
pauses, most specifically and extensively on the
peri-shock pause interval, supporting the minimi-
zation of pause-related no-flow periods [29,30].
Theoretically, the same sensory modalities that
facilitate rate and depth measurement can detect
individual prolonged pauses. In the same manner,
the cumulative impact of pauses within any given
bout of CPR can be assessed through derivation of
the chest compression fraction, the proportion of
time when chest compressions are happening over
the total analysed time period [31]. When account-
ing for important confounders that obscure the
cause and impact of pauses contributing to low
chest compression fraction, significant observa-
tional evidence lends support for monitoring of this
measure [18,32].

CPR process quality assessment is most widely
conducted with the aid of clinical monitors
equipped with the necessary sensors. Real-time pro-
cess quality is frequently operationalized as audio-
visual feedback, and some evidence supports the use
of monitor-based real-time feedback for controlling
CPR process quality, although evidence is not over-
whelming [33]. The same real-time feedback may be
achievable with independent, portable technologies
deployed in smartphones or standalone quality
measurement units [34,35,36

&

,37,38
&

]. Further-
more, computer vision methods offer an additional
future avenue for measuring CPR process quality,
deriving process parameter measurements from
analysis of video imagery of CPR [39,40].

One of the challenges of the pursuit of high-
quality CPR process is determining which parameters
are both influential on outcomes and translatable
into practice for human care providers [41

&

]. As
advances are made in medical robotics, it is to be
expected that advanced mechanical chest compres-
sion devices will incorporate performance parame-
ters that are not practical for humans to self-adjust,
the limits of which may be relatively narrow [42

&

].
For now, those parameters that are most intuitive
human performers – rate, depth and pause duration
– are also those emphasized by the guidelines, and
should be the focus of CPR process quality control
efforts, supported by process monitoring tools [8].
One of the most consistent findings from large
human resuscitation trials is that, despite these rec-
ommendations, provider CPR performance varies
greatly, reflecting a need for greater work to ensure
high-quality CPR delivery [13,22,43

&

].

MONITORING THE PHYSIOLOGICAL
RESPONSE OF CARDIOPULMONARY
RESUSCITATION

Current resuscitation guidelines are mainly focused
on the performance of the CPR-provider, as
described above, which in theory should vary little
from patient to patient. Over recent years, patient-
tailored resuscitation has been recommended, if
feasible, during which the physiological/haemody-
namic response to resuscitative efforts should
be monitored. Figure 1 gives an overview of the
monitoring possibilities.

CORONARY PERFUSION PRESSURE AND
DBP

The coronary perfusion pressure (CPP), defined as
the aortic-to-right atrial pressure gradient during the
relaxation period of cardiac decompression, is the
primary determinant of myocardial perfusion and
oxygen delivery during resuscitation [16,44,45]. The
greater the CPP, the higher the resulting myocardial
blood flow. Therefore, augmenting CPP during CPR
by providing compressions with an optimal com-
pression depth (4.5–5 cm) and rate (100–120/min)
is pivotal to achieve ROSC, but limiting chest inter-
ruptions to the minimum is equally important to
avoid declining of CPP [12,46–49].

Evidence concerning the importance of CPP dur-
ing CPR is mainly derived from animal studies,
although human data also confirm that high CPPs
are key to establish ROSC [50–52]. In this way, CPP
provides unique feedback concerning the perfor-
mance of the CPR-provider. Although there is no
consensus about an optimal CPP, successful resusci-
tation becomes more likely when CPPs above
20 mmHg are being targeted. Animal data even sug-
gest toaimforCPPs between 30 and 40 mmHg [52]. In
recent pig studies, CPP-targeted resuscitation was
found to be superior to guideline-provided care in
terms of short-term and long-term survival [6,53,54].
Especially due to the complexity of measuring CPP in
the clinical field, undeniable evidence from human
studies to corroborate these experimental data is
currently lacking.

During CPR, arterial DBPs approximate aortic
diastolic pressures through which they can serve as
surrogate for CPP [55]. Although there is hardly any
clinical evidence, animal data demonstrated that
invasively measured DBPs are excellent discrimina-
tors for survival. Failure to maintain diastolic pres-
sures above 30–35 mmHg unlikely resulted in ROSC
[50,56,57].

Based on the available clinical and animal data,
an American expert panel endorsed to use CPP as the
primary physiological target (i.e. CPP>20 mmHg)

Monitor the quality of cardiopulmonary resuscitation in 2020 Genbrugge et al.
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FIGURE 1. Monitoring possibilities. Panel (a) a continuous recording of chest compression (CC) depth in millimetres calculated
from sternal accelerometry during cardiopulmonary resuscitation is shown over a period of approximately 16 min on a time
scale of seconds and reflects the potential for significant variability of CC quality in a single case. Variations in CC depth,
pause length, rate and leaning (incomplete return to baseline depth) can all be observed. Panel (b) a region of the trace in
panel (a) is magnified to illustrate measures of individual CC and series of CC. The left and right portions of the shaded CC
illustrate the downstroke and upstroke phases of the CC cycle, respectively, where the peak of the waveform is the maximum

Cardiopulmonary resuscitation

222 www.co-criticalcare.com Volume 26 � Number 3 � June 2020



 Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

when both arterial and central venous catheters are
in situ at the time of arrest, and to aim for DBPs
above 25 mmHg in case only an arterial line is in
place [58]. In patients suffering from an in-hospital
cardiac arrest, invasive haemodynamic monitoring
is often at hand, and consequently haemodynamic-
targeted CPR becomes feasible and highly recom-
mendable. On the contrary, in an out-of-hospital
cardiac arrest setting, placing this type of invasive
monitoring is rather difficult through which nonin-
vasive alternatives like end-tidal CO2 (ETCO2) mon-
itoring or cerebral oximetry need to be considered.

CAPNOGRAPHY

End-tidal CO2, measured during CPR, is primarily
reliant on pulmonary blood flow, and therefore can
serve as a surrogate for CO and coronary perfusion.
Aside from confirming endotracheal tube position-
ing, capnography can have a dual role during resus-
citation [59,60]. First, it can guide the rescuer in
providing high-quality CPR since ETCO2 is posi-
tively correlated with chest compression depth
and CO [61,62]. Failure to preserve ETCO2 concen-
trations above 10 mmHg has been associated with
death [63]. In case no invasive haemodynamic mon-
itoring is in place during CPR, a consensus state-
ment was made to aim for ETCO2 concentrations
above 20 mmHg without providing excessive venti-
lation [58]. Second, an abrupt, but sustained rise in
ETCO2 appears to be an early indicator of ROSC,
through which capnography might be used to jus-
tify the decision to terminate or continue with
resuscitation efforts. Available data suggest that,
under constant ventilation, an ETCO2 increase of
more than 10 mmHg strongly predicts ROSC
[64

&

,65–67]. However, it should be noted that an
invasive airway management is necessary to per-
form capnography. In addition, ETCO2 is influenced
by the ventilation rate which can lead to a misinter-
pretation of the measured values.

CEREBRAL SATURATION

During the last decade, the use of near-infrared
spectroscopy (NIRS) to measure cerebral oximetry
during cardiac arrest has gained a lot of interest. This
noninvasive technique measures cerebral saturation
(rSO2) in real-time, and in contrast to pulse oximetry

independent of a pulsatile signal. Not unimpor-
tantly, it has been shown that measuring rSO2 using
NIRS technology is feasible during CPR [68

&

]. How-
ever, so far, only one undersized clinical study com-
pared the effect of low-quality versus high-quality
CPR on rSO2 and did not show any difference [69].
However, the periods of low-quality CPR were short
(30 s until 6 min) and the time to allow changes in
rSO2 was rather limited. Together with the small
cohort size, a possible delay in effect on rSO2 could
be one of the reasons for this neutral observation.
However, higher rSO2 values have been measured
using a mechanical compression device compared
with manual compression [70]. Multiple studies
demonstrated that increases in rSO2 and higher
mean values during CPR are associated with ROSC,
though, with present evidence, they do not reflect
real-time quality of CPR [68

&

,70–74]. In the ideal
world, it would be possible to use cut-off values to
predict outcome on short and long-term as also to
indicate the quality of CPR. Different cut-off values
are proposed both for initial measured rSO2 values as
for mean rSO2 and absolute increase in rSO2. Due to
the heterogeneity of the used study protocols, pop-
ulation and devices (which have different rSO2

ranges) and the rather small study populations it
is not yet possible to confirm usable cut-off values.
An interesting finding demonstrating the potential
role of rSO2 during CPR is the observed dip in rSO2

every 2 min reflecting rhythm control [75]. On the
contrary, this finding has not yet been confirmed
by others.

Currently, the NICA trial (Impact of NIRS-
guided Cardiopulmonary Resuscitation After Car-
diac Arrest on Resuscitation Rate) is recruiting
and we can expect results by the end of 2021 [76].
This trial will compare NIRS-guided CPR (target
rSO2>40% after 10 min of Advanced Life Support
(ALS)) to guideline-provided CPR on ROSC rate and
short and long-time neurological outcome.

In animal studies, contradicting results have
been published comparing rSO2 with invasively
measured physiologic parameters such as brain oxy-
gen tension [77–80]. Correlations are observed dur-
ing CPR between rSO2 and coronary blood flow,
Mean Arterial Pressure (MAP) and CO measured
as pulmonary blood flow [77,80]. A correlation
between rSO2 and pulmonary blood flow has been
observed, if aimed for a preset target, 30, 50 or 70%

depth achieved. Varying recoil characteristics can be appreciated in the trajectories of the upstroke phase of this cluster of
CC. Local calculation of the chest compression fraction for this small window of cardiopulmonary resuscitation, here using a
peak-to-peak no-cardiopulmonary resuscitation threshold of 2 s would yield a fraction of approximately 60%. Panel (c) several
physiologic measures provide insight into the efficacy of the mechanical input of cardiopulmonary resuscitation. Here, they are
briefly summarized graphically.

Monitor the quality of cardiopulmonary resuscitation in 2020 Genbrugge et al.
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[80]. This implies if a certain rSO2 percentage/value
is pursued, higher quality CPR will be performed. As
in the human studies, no animal study investigated
yet the effect on hemodynamic variables if a NIRS-
guided CPR protocol is being followed. It is hard to
compare rSO2 with invasive oxygen tension meas-
urements or cerebral blood flow as they measure
something else. Tension is not necessary directly
correlated with saturation, which is highly depen-
dent of oxygen delivery and extraction, and with
flow.

Probably NIRS measurements reflect more
global perfusion than only rSO2. Even if this is the
case, information about the global perfusion status
of the patient is still very valuable, especially taken
into account that is associated with ROSC.

CARDIAC ULTRASOUND

In 2001, Salen et al. [81] was one of the first investi-
gating the role of cardiac ultrasound during resusci-
tation. Although at that time they could not show an
added role for cardiac ultrasound to capnography for
predicting ROSC, cardiac ultrasound had just found
itsway into the resuscitation setting. Inaddition to its
role in excluding the reversible causes of cardiac
arrest and guidance of procedures during resuscita-
tion, other applications have been explored during
the last decade [82,83]. Cardiac ultrasound can for
example differentiate between asystole, pulseless
electrical activity (PEA) and pseudo-PEA [84

&

].
Giving chest compressions at an optimal depth

and rate is one of the pillars of high-quality CPR. The
position of the hands is of equal importance as they
should be on the lower half of the sternum to
achieve the highest hemodynamic response [59].
In practice, often not the right ventricle is com-
pressed but the aorta or left ventricle outflow tract
inducing significant less circulating blood [85].
Ultrasound, preferably transoesophageal ultrasound
(TEE), can improve hand positioning and compres-
sion depth during chest compression in real-time
and consequently improve the resulting blood pro-
pulsion [86,87]. TEE also has the advantage that it
can be used in all body types. Pulse checks within
the predetermined 10 s have a poor sensitivity and
specificity which can be improved by using ultra-
sound [87–89]. Another potential use of cardiac
ultrasound in monitoring and improving the qual-
ity of CPR is the ability to assess the presence of
cardiac activity during asystole and PEA [90]. The
differentiation between pseudo and true PEA gives
the opportunity to treat these entities differently
and increase the opportunity to achieve ROSC.

On the contrary, the use of ultrasound during
cardiac arrest requires an experienced performer and

preferably a member of the ALS team who is only
dedicated to perform ultrasound at time of resusci-
tation. Another limitation is the possible lengthen-
ing of the hands-off time during CPR, however this
can be prevented by positioning the ultrasound
transducer before the pulse check and a verbal clock
during pulse checks as shown by the Cardiac Arrest
Sonographic Assessment protocol, that could reduce
the pulse check time from 19.8 to 15.8 s [91

&

]. How-
ever, no validation of this protocol has yet been
published.

BLOOD GAS ANALYSIS DURING
CARDIOPULMONARY RESUSCITATION

Despite the availability of blood sample analyses
during in-hospital CPR, they are not often used.
Nonetheless, there is some data showing a potential
benefit of the use of blood gas analysis during CPR
rather as prediction tool for outcome then a role for
monitoring CPR [92–97]. In a prehospital, blood
analyses are often not available, although some
point of care blood sample tests (venous, arterial,
intraosseous) could be made available in the preho-
spital setting [98].

Resulting from immediate ischaemia, lactate is
being formed as one of the end products of anaero-
bic glycolysis during cardiac arrest. Blood lactate
concentrations measured at admission have proven
to be associated with the duration of no-flow and
low-flow status during CPR [44,99,100]. Although
both could be important factors in determining
outcome following cardiac arrest, they cannot
always be reliably estimated, especially not in unwit-
nessed arrests [101]. Even in witnessed arrests, where
CPR is provided by a bystander, the quality of CPR
can be questionable either, through which low-flow
time becomes a meaningless variable [102]. Lactate
levels, measured during CPR, reflect the ischemic
status directly on a cellular level, and consequently
might serve as a better estimator of low-flow time or
could perhaps indicate the quality of (bystander)
CPR [100,103,104]. On the contrary, the evidence to
use lactate or even other values derived from blood
gas analysis (e.g. pH, PaO2, PaCO2 and HCO3 levels)
as an indicator for the quality of CPR is scarce.
Therefore, the effect of qualitative CPR on serial
blood measurements could be an interesting topic
for future research.

So far, more is known about the role of blood gas
measurements and the association with outcome.
For example, serum lactate levels measured during
CPR seem to correlate with survival, and some now
even suggest to initiate extracorporeal CPR more
rapidly in In-Hospital Cardiac Arrest (IHCA) patients
with high lactate levels since these patients have a

Cardiopulmonary resuscitation
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rather low probability of achieving rapid [92,94].
Moreover, pH levels above 6.8, measured during the
first minutes after the initiation of CPR, have been
associated with good neurological outcome. If the
potassium level is above 8.5 meq/l or if the PaO2

level is below 60 mmHg during the first minutes
of CPR, favourable neurological outcome becomes
unlikely [93,95–97].

CONCLUSION

To perform high-quality CPR, at first, one should
optimize rate, depth and pause duration supported
by process monitoring tools. Second, the evolving
technological evolution gives opportunities to mea-
sure physiologic parameters in real-time which will
open the way for patient tailored CPR. The role of
ultrasound, rSO2 and ETCO2 in measuring the quality
of CPR needs to be further investigated as well as the
possible ways of influencing these measured param-
eters to improve neurological outcome and survival.
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