

Socio-Intentional Framework for Agile
Methods Tailoring

by Soreangsey KIV

A thesis submitted in fulfillment of the requirements for the
degree of Doctor of Philosophy in Economics and Management

Sciences of the Université catholique de Louvain

Examination Committee:

President of the jury: Prof. Jean Vanderdonckt – UCLouvain
Advisor: Prof. Manuel Kolp – UCLouvain
Advisor: Prof. Yves Wautelet – KU Leuven
Examiner: Prof. Samedi Heng – ULiège
Examiner: Prof. Stephan Poelmans – KU Leuven
Examiner: Prof. Saïd Assar – Institut Mines-Télécom (IMT)
Examiner: Prof. Naji Habra – UNamur

October 2021

Acknowledgements

Throughout my PhD journey, I have received enormous support and assistance
in different ways. This dissertation would not have been possible without the
precious help and encouragement of many people to whom I would like to
express my gratitude hereafter.

First and foremost, I would like to express my sincere gratitude to my
advisors, Professor Manuel Kolp and Professor Yves Wautelet, for their
continuous support, advice, and encouragement. I am so grateful that they have
confidence in me and gave me the freedom to choose the topic of my interest. At
the same time, they have provided perfect guidance that allowed me to achieve
my goals. I could not have imagined having better advisors.

Prof. Manuel Kolp, I am sincerely grateful for the opportunity you offered
me, the teaching and research assistant at the Louvain School of Management.
Teaching and research are truly the things I love most in a job. In addition,
you are the kindest advisor anyone could have wished for. In the entire journey
of my PhD, you have always made time to advise and guide me with patience.
With your extensive knowledge and experience, you have helped me accomplish
both my assistant and research works in a much simpler way. I am so thankful
that you have given me such a stress-free work environment.

Prof. Yves Wautelet, you are my role model and my inspiration. I am
sincerely thankful for your invaluable advice, continuous support, patience,
and motivation during my PhD. Every discussion with you gave me insightful
knowledge and it has tremendously enhanced my ability in conducting research
and writing scientific content. In every obstacle that I have encountered during
this PhD, your immense knowledge, plentiful experience, and encouragement
have helped me get back on track and made me try even harder to achieve my
goals. It would not have been possible for me to achieve this PhD without your
help and your guidance.

I would like to thank the other members of my PhD committee: Prof.
Jean Vanderdonckt (UCLouvain), Prof. Samedi Heng (ULiège), Prof. Stephan
Poelmans (KU Leuven), Prof. Saïd Assar (Institut Mines-Télécom), and Prof.
Naji Habra (UNamur) for accepting to participate in the jury, for carefully
reviewing my thesis and for their stimulating questions and insightful feedback.

Many thanks go to my former coworker, Prof. Samedi Heng, for all his
guidance and his assistance throughout my PhD. Bong Samedi, you are not
only a great coworker, but also an incredible mentor. I truly appreciate that
you keep pushing me outside of my comfort zone, and encouraging me to be the
best version of myself. I am so lucky that I have had the chance to work with

i

you. I believe our discussions have largely improved my research experience
and allowed me to make the contributions presented in this thesis. I deeply
appreciate your help in work, research, and daily life.

In addition, I would like to thank all my friends and colleagues of Louvain
Research Institute in Management and Organization (LouRIM) for their help
and the nice work environment. Many sincere thanks go to Prof. Marco Saerens,
Thanh-Diane Nguyen, Mathieu Zen, Iyad Khadam, Nesrine Mezhoudi, Sylvain
Courtain, Ghazaleh Aghakhani, Pierre Leleux, Mehdi Ousmer, Nicolas Burny,
and Vu Nguyen Huynh Anh.

My sincere gratitude also goes to Mrs. Sylvie Baudine, Mrs. Sandrine
Delhaye, Mrs. Jasmine De Wulf, and Mrs. Heike Rämer for helping and
facilitating the administrative works. Mrs. Sylvie in particular, you are so kind,
helpful, and patient. I could not thank you enough for reviewing many of my
works.

I am wholeheartedly grateful to my best friend Sovann En who has helped
me go through a lot of obstacle for more than 10 years. Sovann, I would not be
able to come this far without your continuous help, support, advice, motivation,
care, and love. Every bit of your effort is sincerely appreciated.

I would like to offer my special thanks to my dear friend Dona Valy for his
care, encouragement, and sympathetic ear. Bong Dona, I admire your positive
outlook and your ability to make me laugh despite the situation. I would also
like to extend my appreciation to all the Cambodian families and friends in
Belgium. My sincere appreciation goes to Samnang Nary, Rachana Ro, Hasika
Meth, Kuchvichea Kan, Sokny Ly, Pinnara Ket, Elen Morm, Kannary Keth,
Kimnenh Taing, Makara Long, Vathna Lay, and Ratha Siv. I will never forget
the wonderful and fun memories we have shared. The times with you were my
happy distractions to rest my mind outside of my research.

Last but not least, my very special thanks go to my family, Sokha Kiv,
Samay Kieng, Sonissay Kiv, Sodany Kiv, Sodana Kiv, Theary Long, Julien
Lesouëf, and Chanhan Hy for their unconditional support, care, and love. My
dear Mom and Dad, this thesis is dedicated especially to you. I could not
describe how grateful I am for all your hard works and sacrifices to provide
a warm, happy family, and every possibility in my life. You are the ultimate
reason that I could have come this far. I would also like to thank my brothers
and sisters for their constant love and support. I am so blessed to have a family
I can always count on when times are rough. I love you all so much.

Soreangsey Kiv

ii

Abstract

Agile is nowadays one of the most-used software development approaches. To
gain the full benefit from adopting agile methods, software development teams
can choose to adopt agile methods on a custom-basis depending on the context
and defined criteria. Over the years, a vast amount of empirical studies aiming
to share adoption experiences and introduce the possibility to customize agile
methods has been published. Two key aspects in these studies are the goal-
orientation and the social aspect. Intuitively, a team adopts agile methods
because there are some things it wants to achieve. Once the team identifies the
right practices to achieve its goals, the adoption result highly depends on the
social factors, including the individuals, their interactions and collaborations.

In this thesis, we propose a socio-intentional framework for tailoring agile
methods that allows practitioners to analyze agile practices and to define the
right strategies for adopting them. The objective of our framework is to help
practitioners decide which agile practices to adopt based on what they want to
achieve and identify beforehand how team members should work together to
successfully adopt them.

To achieve this objective, we proceeded through four main contributions.
In the first contribution, we conducted a Systematic Literature Review (SLR)
to extract the motivation behind each agile method’s adoption and compared
it with the precepts given in the Agile Manifesto. The results show that the
Agile Manifesto is highly relevant to these motivations. We conclude that
the Agile Manifesto can be used as a criterion for practice selection. In the
second contribution, we made knowledge about agile practices adoption reusable
in a systematic manner by building an ontology. We started by conducting
another SLR to gather knowledge. Based on this, we have built and theoretically
validated our ontology. Finally, we conducted a survey with agile experts for
empirical validation. In the third contribution, we have built a user-friendly
tool that allows practitioners to get the information from the ontology easily.
In the last contribution, we proposed a methodology to analyze agile practices
on two different levels. The tactical level allows practitioners to decide what
agile practice they should adopt based on what they want to achieve and to
check the suitability of the selected practice(s) to the team’s situations. The
operational level allows practitioners to identify beforehand the vulnerabilities
in a practice adoption and define how to avoid or solve them. For each level, we
showed how to get the knowledge from our tool and to use modeling techniques
to ease the analyzing process. Finally, we showed how our framework can be
applied within a real software development team.

Table of contents

List of figures ix

List of tables xiii

I Introduction 1

1 Introduction 3
1.1 Research Context . 3
1.2 Research Design . 5

1.2.1 Design Science Research Paradigm 5
1.3 Reading Roadmap . 12

II State of the Art 15

2 Agile Software Development 17
2.1 Foundation of Agile Methodologies 17

2.1.1 Agile Values . 18
2.1.2 Agile Principles . 19

2.2 Overview of the main Agile Methodologies 19
2.2.1 Scrum . 20
2.2.2 eXtreme Programming (XP) 24
2.2.3 Kanban . 28
2.2.4 Scrumban . 31
2.2.5 Lean Software Development (LSD) 34

2.3 Conclusion . 37

3 Agile Methods Tailoring: an Overview 39
3.1 Software methods tailoring . 39

3.1.1 Contingency Factors . 40
3.1.2 Method Engineering Theory 41

3.2 Agile methods tailoring . 41
3.2.1 Most used practices . 42
3.2.2 Quality . 42
3.2.3 Business goal . 42
3.2.4 Maturity model . 43

Table of contents

3.2.5 Agile values . 43
3.2.6 Project . 43
3.2.7 Meta-model for agile method tailoring 44

3.3 Conclusion . 45

4 Socio-Intentional Modeling Framework: an Overview 47
4.1 Knowledge Acquisition in autOmated Specification (KAOS) . . 48
4.2 Non-Functional-Requirement Framework (NFR) 49
4.3 The i* Modeling Framework . 50
4.4 iStar 2.0 . 52
4.5 Tropos . 54
4.6 Conclusion . 55

III Socio-Intentional Framework for Agile Methods Tai-
loring 57

5 Agile Manifesto and Practices Selection: a Systematic Litera-
ture Review 59
5.1 Introduction . 59
5.2 Related Work . 61
5.3 Research Methodology . 62

5.3.1 Research Questions . 63
5.3.2 Search Strategy . 65
5.3.3 Study Selection . 65
5.3.4 Data Extraction . 68

5.4 Results . 68
5.4.1 RQ1: How have the Agile Manifesto and its influence

been discussed in tailored agile methods adoption? . . . 69
5.4.2 RQ2: Is the Agile Manifesto related to agile practices

selection? . 70
5.5 Threats to Validity . 73
5.6 Limitations . 74
5.7 Discussion and Conclusion . 74

6 Ontology Model for Agile Knowledge Representation 77
6.1 Introduction . 78
6.2 Research Design . 79
6.3 Case Studies Data Collection 80
6.4 Building the Agile Methods Ontology Model 82

6.4.1 Determining the Domain and Scope of the Ontology . . 82
6.4.2 Enumeration of Important Terms 83
6.4.3 Class and Relationship 85
6.4.4 Instances Creation . 88
6.4.5 Building Inference Rules 89

6.5 Ontology Theoretical Validation 90
6.6 Ontology Validation by Domain Experts 90

6.6.1 Survey Questions . 91

vi

Table of contents

6.6.2 Expert Panel . 93
6.6.3 Survey Procedure . 95
6.6.4 Result of Ontology Validation by Domain Experts . . . 95
6.6.5 Discussion on the Ontology Validation Results . 99

6.7 Threats to Validity . 101
6.8 Discussion, Conclusion and Future Work 102

7 Building an Ontology-Based tool for Agile Methods Adoption105
7.1 Information Retrieval Process Using Protégé 105
7.2 Important Components for Building OBAMA-Tool 107

7.2.1 Web Ontology Language (OWL) 108
7.2.2 SPARQL query . 109
7.2.3 OWLReady2 . 110
7.2.4 wxPython . 111

7.3 Tool Functionality . 112
7.4 Tool Architecture . 113

7.4.1 Technical architecture for all the information related to
practice . 113

7.4.2 Technical architecture for the information related to prac-
tice based on inputs . 114

7.5 Tool Evaluation . 115
7.5.1 Efficiency of the Tool 116
7.5.2 Discussion on the Tool Evaluation Results 118

7.6 Conclusion and Future Work 118

8 Towards a Systematic Socio-Intentional Framework for Agile
Methods Tailoring 119
8.1 Introduction . 119
8.2 Socio-intentional Modeling Framework Usage 121

8.2.1 Notion Definitions . 123
8.2.2 Modeling Technique . 124

8.3 Methodology for Tailoring Agile Methods Adoption 127
8.3.1 Defining Goals . 128
8.3.2 Checking Suitability . 129
8.3.3 Checking Vulnerability 130
8.3.4 Solving Vulnerabilities 131
8.3.5 Implementing Practice 132

8.4 Feasibility Study . 132
8.4.1 Defining Goals . 133
8.4.2 Checking Suitability . 135
8.4.3 Checking Vulnerability 137
8.4.4 Solving vulnerabilities 140
8.4.5 Implementing Agile Practice 141

8.5 Conclusion . 143

vii

Table of contents

IV Conclusion 145

9 Conclusions 147
9.1 Summary of contributions . 148

9.1.1 Validation of the Relationship between Agile Manifesto
and Agile Practice Selection 148

9.1.2 Ontology to Systematically Recycle Agile Practice Adop-
tion Experiences . 149

9.1.3 Evidence-based Tool . 150
9.1.4 Socio-intentional Framework for Agile Methods Tailoring 150

9.2 Limitations and Future Works 151
9.2.1 Ontology Model and Knowledge 151
9.2.2 Evidence-based Tool . 152
9.2.3 Socio-intentional Framework for Agile Methods Tailoring 152

References 155

Appendix A Ontology Model Validation: Survey Questions 167

Appendix B Ontology Model Validation: Survey Results 185

Appendix C Supporting Tool 191

Appendix D Socio-intentional diagrams for agile methods tailor-
ing 201

viii

List of figures

1.1 Thesis reading roadmap. 13

2.1 Most used agile methodologies based on VersionOne’s 13th survey
(from [161]) . 20

4.1 KAOS meta-model (Objectiver [127]) 49
4.2 NFR meta-model (Pereira et al. [115]) 51
4.3 i* language meta-model (Xavier et al. [67]) 51
4.4 iStar 2.0 meta-model (Dalpiaz et al.[42]) 54
4.5 Tropos meta-model for the concepts related to the goal diagram

(Susi et al. [149]) . 55

5.1 Research protocol. 63
5.2 Papers selection. 66
5.3 Dataset information. 69
5.4 The influence of the Agile Manifesto in tailored agile methods

adoption. 70
5.5 Mapping of problems, expectations and benefits with Agile Man-

ifesto. 72

6.1 Research protocol. 79
6.2 Methodology for Ontology Creation. 83
6.3 Example of ontology graph. 86
6.4 An evidence-based ontology for agile methods adoption. 87
6.5 Corpus-based approach for Ontology Theoretical Validation. . . 91
6.6 Example of survey questions. 92

7.1 Case Result: Problems encountered by team. 107
7.2 Case Result: Proposed solution. 107
7.3 Example of OWL syntax to create classes 109
7.4 Example of OWL syntax to define object property 109
7.5 Example of OWL syntax to create an individual and define its

relationships . 110
7.6 Example of SPARQL query. 110
7.7 OWLReady2 Architecture (Lamy [91]) 111
7.8 Ontology query in python programming language 112
7.9 Technical architecture for all the information related to practice. 113

ix

List of figures

7.10 Technical architecture for questions and answers based on the
inputs. 115

8.1 iStar 2.0 notions . 123
8.2 Example of Sprint planning in SD view 124
8.3 Example of Sprint planning in SD view 125
8.4 Example of Daily meeting in SR view 126
8.5 Example of the relationship between agile value, principle, and

goal in NFR Framework . 126
8.6 Goal-oriented tailoring agile adoption process. 127
8.7 Relationship between goals and agile practices listed by OBAMA-

Tool . 133
8.8 Input page 1 of OBAMA-Tool for agile values and Principle . . 134
8.9 Practices suggested by OBAMA-Tool to achieve selected Value 134
8.10 Relationship between agile values, principles, goals and agile

practices represented in iStar 2.0 135
8.11 Describing team’s situations by using Input page 2 of OBAMA-

Tool . 135
8.12 Result of team’s situations which is good for practice listed by

OBAMA-Tool . 136
8.13 Result of team’s situations which is bad for practice listed by

OBAMA-Tool . 136
8.14 Relationship between Daily meeting, the requisites for its success

and team’s situation visualized in iStar 2.0 137
8.15 Activities as part of Daily meeting listed by OBAMA-Tool . . . 138
8.16 Role required to adopting Daily meeting listed by OBAMA-Tool 138
8.17 Dependencies between roles to perform activities of Daily meeting

visualized in iStar 2.0. 139
8.18 Cause, Problems in Daily meeting listed by OBAMA-Tool . . . 140
8.19 Causes and Problems in Daily meeting visualized in iStar 2.0 . 140
8.20 Problems in Daily meeting, Solution and Role listed by OBAMA-

Tool . 141
8.21 Cause, Problems in Daily meeting and Solutions visualized in

iStar 2.0 . 142
8.22 Dependencies between roles to avoid vulnerabilities in Daily

meeting visualized in iStar 2.0. 142

C.1 Welcome page . 192
C.2 The goal a team can achieve by adopting an agile practice . . . 192
C.3 The agile value a team can achieve by adopting a practice . . . 193
C.4 The agile principle a team can achieve by adopting a practice . 193
C.5 The activity a team should perform as part of a practice 194
C.6 The problem a team may encounter while adopting a practice . 194
C.7 The situation of the team or the activity that they perform which

is bad for adopting a practice 195
C.8 The situation of the team or the activity that they perform which

is good for adopting a practice 195
C.9 The artifact required for adopting a practice 196

x

List of figures

C.10 The role required for adopting a practice 196
C.11 The requisites a team should prepare in order to successfully

adopt a practice . 197
C.12 The cause of the problem team may encounter 197
C.13 The solution a team may use to solve the problem 198
C.14 The general knowledge based on experiences related to agile

practice a team should learn . 198
C.15 Input page 1- For selecting agile values and principles 199
C.16 Input page 2 - For describing team’s situations 199
C.17 The situation of the team or the activity that they perform which

is bad for adopting a practice based on inputs 200

D.1 Relationship between Short Iteration and the requisites for their
success and team’s situation visualized in iStar 2.0 201

D.2 Activities of Short iteration visualized in Star 2.0 202
D.3 Cause, Problems in Short iteration and Solution visualized in

iStar 2.0 . 202

xi

List of tables

1.1 Summary of research work based on seven guidelines for Design
science research. 7

2.1 Mapping Scrum values and principles with the Agile Manifesto 22
2.2 Mapping XP values and principle with the Agile Manifesto . . 26
2.3 Mapping Kanban values and principle with the Agile Manifesto 30
2.4 Mapping LSD principles with Agile Principle 37

4.1 Comparison between i* and iStar 2.0 (Dalpiaz et al.[42]) 53

5.1 Inclusion and exclusion criteria for Abstract-based selection. . . 67
5.2 Mapping agile values and principles. 71

6.1 Inclusion and exclusion criteria for article selection. 81
6.2 Number of selected articles. 82
6.3 10 competency questions for building ontology. 84
6.4 An instance creation based on a case study. 88
6.5 Inference rules for answering questions in Section 6.4.1. 89
6.6 Participant General Information. 94
6.7 Results of Question 1.1. 96
6.8 Results of Question 1.2. 97
6.9 Results of Question 2.1. 98
6.10 Results of Question 2.2. 99
6.11 Results of Q.3. 100
6.12 Summary result of Question 4. 100

7.1 Relationship in ontology format for Feasibility Scenario. 106
7.2 Results of Q.5. 116
7.3 T-test results of tool usability. 117
7.4 Summary result of the General Feedback 117

8.1 Mapping agile concepts and relationships with iStar 2.0 122

B.1 Results of Question 1.1. Consider your own experience with agile,
how often do you need the information related to each concern
before you start adopting each agile practice? 185

xiii

List of tables

B.2 Results of Question 1.2. How would you rate the relevancy level
of each concern to the agile practice adoption? 186

B.3 Results of Question 2.1. To what extent do you agree that
information provided by the tool related to each concern is correct?186

B.4 Results of Question 2.2.To what extent do you agree that the
amount of information, provided by the tool, related to each
concern is good enough to satisfy your needs? 187

B.5 Result of Question.4 . 189

xiv

Part I

Introduction

1

Chapter 1

Introduction

This chapter introduces the whole thesis. It is organized as follows. Section
1.1 overviews the research context and the objectives of the thesis. Section
1.2 describes the research design we follow to achieve the objectives. Finally,
Section 1.3 provides the reading road-map of this thesis.

1.1 Research Context

In traditional software development, the software is developed in a sequential
process. It typically starts with requirements specification and ends with
product delivery. In user-intensive software development, to effectively deal
with quality expectations, change and risk management, and ensure that all
the requirements are satisfied, activities such as requirement gathering, design
and development, and testing become iterative and incremental. Among many
approaches introduced in the last two decades, there was the emergence of
agile methods [66] to offer alternatives to traditional approaches. The new
agile methodologies include eXtreme Programming (XP) [17], Feature-Driven
Development (FDD) [113], Dynamic Systems Development Method (DSDM)
[145], Crystal family [38], Scrum [136], etc. Each of these methodologies was
proposed with its own set of values, principles, and practices for practitioners
to follow. However, as there is no method that can be a one-size-fits-all, simply
choosing a particular agile methodology and following every rule is not an
efficient solution. Ideally, to avoid wasting efforts and resources on irrelevant
things, the software development team should adopt agile methods differently
according to context and criteria. For these reasons, agile methods tailoring has
gained a lot of interest in the agile community and it has always been actively
studied.

One among many aspects related to agile methods tailoring that have been
actively studied is the notion of goal [97, 56, 10, 139]. Intuitively, when software
development teams want to partially adopt agile methods — either from one
or a combination of methodologies — they should have in mind the objectives
they want to achieve after the adoption. According to John and Deborah [156],
there are different motivations behind agile methods adoption. Campanelli
and Parreiras [32] conducted a Systematic Literature Review (SLR) of agile
methods tailoring. Their results show that 42.9% of the papers use business

3

Introduction

goals as a criterion for agile practice selection. Alongside the business goals,
there is another group of researches that shows a strong influence of the Agile
Manifesto in choosing agile practices [100, 83, 9, 94]. According to Madi et al.
[100], knowing agile values is the key to follow the best set of practices as agile
values are fundamental. However, in practice, we have observed that many
software development teams decided to adopt agile methods without dedicating
any effort to understanding any agile value or principle [12, 16, 26, 48, 140].
Among 18 criteria for agile methods tailoring identified by the same SLR [32],
none of them is either an agile value or principle. As the relationship between
the Agile Manifesto and the practice is still very skeptical, a formal validation
for their relationship thus needs to be done.

Another aspect that is highly relevant and important to agile methods
tailoring is social. In the software development process, especially agile, the
individuals, the interactions and collaborations are the main factors in a suc-
cessful agile methods adoption. Van Kelle et al. [159] assessed 40 projects to
identify the success factors in an agile project. The results show that success (or
failure) cannot be determined by the project size, but rather the social factors.
Another similar finding from Eckstein [50] shows that most projects do not
fail due to technology, but rather social, organizational problems and a lack of
effective communication. Even though the social plays an important role in
the success of agile methods adoption, there are not many studies on the agile
methods tailoring that focus on this aspect. There are thus many problems and
limitations within these approaches that need to be addressed.

In any tailoring approach, knowledge is really important for the process to
analyze agile methods or practices. For instance, to select the right practice
that allows achieving targeted goals, we need to know the benefits of each
practice. After years of experience with agile methods, such information can be
vastly found in both academia and industrial knowledge bases. Many empirical
studies of agile methods adoption have been published to share the experiences
about agile practices/methods adoption, about customizing agile practices for
a given situation, and how to enable team members to collaborate efficiently,
etc. Even though this knowledge is very useful, it is however time-consuming to
collect and classify manually. It is the reason why many teams decide to adopt
a particular agile method or practice without considering any context-specific
factors. As a result, numerous similar agile adoption failures repeatedly happen.

In this research, we propose a socio-intentional framework for agile
methods tailoring that focuses on the intentional (why) and social (who)
dimensions. The framework targets precisely how team members work together
to successfully adopt the agile practice and to achieve their goals. In this
framework, we propose a methodology to analyze agile practices and to define
the right strategies for adopting them based on the team’s goals, its situations,
and dependencies between team members. Every step in the process of analyzing
an agile practice requires field information on the practice. To help practitioners
get such information efficiently, we created a user-friendly tool which can provide
the needed information. This tool was created on the basis of the agile practice
adoption experiences found in the literature. With the information provided
by the tool, we believe that the analysis should be done by means of graphical

4

1.2 Research Design

models. The model provides a graphical illustration of the basic concepts
and their relations that is easy to grasp even for non-experts on the modeling
languages [142]. Models have been used to visualize, to communicate, and to
better understand a system-to-be-built [24]. In our framework, we thus use
a suitable modeling framework to ease the analyzing process. This modeling
framework allows practitioners to visualize the relevant information about agile
practice adoption reported in the literature in goal and social perspective. For
instance, the goals we can achieve by adopting a practice, how team members
should work collaboratively in a given situation for successful adoption, what
problems are caused by team members, how to solve the problems, etc.

1.2 Research Design

In this section, we describe the research paradigm we follow to achieve the
objectives of the thesis.

According to Hevner and March [73], two paradigms characterize much
of the research in the Information Systems discipline: behavioral science and
design science. While the goal of the former paradigm is the truth, the latter’s
is the utility. The behavioral-science paradigm has its roots in natural science
research methods, which are used to develop and justify theories that explain or
predict organizational and human phenomena surrounding the analysis, design,
implementation, management, and use of information systems. Studies in
behavioral science develop sets of concepts or specialized language with which
we characterize phenomena. The results from these studies are used in higher-
order constructions - such as laws, models, and theories - that make claims
about the nature of reality [102]. On the other hand, design science attempts
to create things that serve human purposes. Design science research cycle is
fundamentally a problem-solving paradigm that is used to create and evaluate
IT artifacts, which were created to solve identified organizational problems
[102]. It seeks to create innovations that define the ideas, practices, technical
capabilities, and products, through which the analysis, design, implementation,
management, and use of information systems can be effectively and efficiently
accomplished [47, 157].

As the objective of the thesis is to propose a framework to solve problems
with the help of a tool, we thus follow the design science paradigm.

1.2.1 Design Science Research Paradigm

Hevner and March [73] provides seven guidelines as requirements for an effective
design science research:

• Problem Relevance: design science research aims to acquire knowledge
and understanding that enable the development and implementation of
technology-based solutions to heretofore unsolved and important business
problems;

• Research Rigor: design science research relies upon the application of
rigorous methods in both the construction and evaluation of the design
artifact;

5

Introduction

• Design as an Artifact: design science research must produce a viable
artifact. IT artifacts are broadly defined as constructs (vocabulary and
symbols), models (abstractions and representations), methods (algorithms
and practices), and instantiations (implemented and prototype systems);

• Design Evaluation: the utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed evaluation methods;

• Research Contributions: effective design science research must provide
clear and verifiable contributions in the areas of the design artifact, design
foundations, and/or design methodologies;

• Design as a Search: the search for an effective artifact requires utilizing
available process means to reach desired ends, while satisfying laws in the
problem environment;

• Communication of research: design science research must be presented
effectively both to technology-oriented as well as management-oriented
audiences.

According to Hevner and Marchn [73], these seven guidelines are meant
to assist the understanding of the requirements for effective design science
research. They are however not mandatory and we must use our creative skills
and judgment to determine when, where, and how to apply each criterion of the
guidelines in a specific research project. Based on these guidelines, our work in
this thesis can be summarized as in Table 1.1.

In the following sections, we describe what have been done answering the
requirements of the design science.

1.2.1.1 Problem Relevance

The main purpose of the thesis is to address the lack of a socio-intentional
framework that can efficiently help agile practitioners analyze agile practice
and prepare for successful adoption. Within this work, three sub-problems are
addressed:

1. PR1 - Lack of verification about the relationship between the Agile Mani-
festo and agile practice selection: in the topic of agile methods tailoring,
many approaches have been proposed based on the Agile Manifesto (agile
values and/or principles) [9, 18, 77, 83, 94, 100, 138]. Although the re-
lationship between the Agile Manifesto and practice has been discussed
in many researches, to the best of our knowledge, there is no formal
verification on this matter yet. In addition, we have observed that many
practitioners do not see the importance of the Agile Manifesto. In practice,
development teams do not dedicate sufficient effort to understand agile
values or principles before adopting agile methods [12, 16, 26, 48, 140].
This behavior coincides with one of the Agile Manifesto authors, Dave
Thomas, [154], who claimed that “Agile is Dead”. The lack of a formal ver-
ification leaves us questioning whether understanding the Agile Manifesto
has any influence on choosing the right agile practice;

6

1.2 Research Design

Table 1.1 Summary of research work based on seven guidelines for Design science
research.

Seven Guidelines
for Design Science

Research Work

Problem Relevance - PR1: lack of verification about the relationship between
the Agile Manifesto and agile practice selection;
- PR2: lack of a system to recycle agile practice adoption
experiences;
- PR3: lack of a socio-intentional framework for agile
methods tailoring.

Research Rigor - RR1: conduct an SLR to study and verify the relation-
ships between the Agile Manifesto and agile practices
selection;
- RR2: conduct another SLR to gather important knowl-
edge related to agile practice adoption and then build
an evidence-based ontology and a Graphic User Interface
(GUI) tool;
- RR3: propose a framework with a well-defined method-
ology to analyze agile practice and an illustrative example
that allows justifying the framework applicability.

Design as an Artifact - DA1: an ontology to describe entities, attributes, and
relationships among knowledge concepts about agile prac-
tice adoption;
- DA2: a GUI tool to help practitioners accessing the
inserted knowledge with ease.

Design Evaluation - DE1: validate ontology both theoretical (corpus-based)
and empirical (survey) approaches;
- DE2: evaluate the usability of the tool using survey;

Research Contribu-
tions

- RC1: a formal verification that Agile Manifesto is very
important for practice selection;
- RC2: a qualified evidence-based tool that can efficiently
and effectively help agile practitioners understanding agile
practices;
- RC3: a socio-intentional framework that explains how to
analyze agile practice and prepare for successful adoption,
with the help of a tool and a modeling language.

Design as a Search - DS1: our ontology contains enough knowledge to help
practitioners understand the agile practices. It yet needs
to be expanded using data from both the literature and
more real-life case studies;
- DS2: our tool is good enough in providing the infor-
mation. It however needs to be improved and developed
both usability and functionality;
- DS3: our framework is proved to be applicable in real-life
projects but we still need an empirical study to validate
the framework.

7

Introduction

Communication of re-
search

- CR1: the verification of the relationship between the
Agile Manifesto and agile practices selection can encourage
practitioners to have a deep understanding of the Agile
Manifesto before their adoption. It also provides a clear-
cut validation on the relationship which can be used in
future research, rather than an assumption;
- CR2: the ontology and the tool allow practitioners to
quickly understand agile practice adoption. They can also
help the researchers know how to create an ontology to
recycle and to share knowledge;
- CR3: the framework allows practitioners to gain knowl-
edge as a big picture and plan for successful adoption. It
provides a clearer understating of the socio-intentional
aspect of agile methods tailoring for both practitioners
and researchers.

2. PR2 - Lack of a system to recycle agile practice adoption experiences:
over the years, countless experiences about the agile methods or practice
adoptions have been shared in the literature. These experiences should
be helpful for practitioners in understanding agile practices on a deeper
level and allow them to prepare for the successful adoption. As this
knowledge is unstructured, it thus requires lots of effort and time to
locate relevant information. To make the knowledge more accessible,
Esfahani & Yu [58] gathered information about (1) the goals that can be
achieved by a practice and (2) the requisites required for its adoption, and
store in a repository. Even though the repository can help practitioners
understand two concerns related to agile practices (goal and requisite),
many remaining concerns need to be recycled in a systematic manner;

3. PR3 - Lack of a socio-intentional framework for agile methods tailoring:
Even though humans and their interaction are known as one of the
foundations in agile methods, there are not many researches that focus
on the social aspect within their tailoring process. To the best of our
knowledge, there are only two researches that advocate the use of socio-
intentional modeling techniques to depict social aspects of agile methods
[56, 59]. The former research [56] shows the advantage of modeling social
aspects, it however does not provide a clear methodology of how to
build the models and how to use these models effectively to analyze agile
practice. The latter research [59] proposed a methodology for tailoring
agile methods, it however only focuses only on the goal aspect.

1.2.1.2 Research Rigor

Our research objective can be achieved by solving the above-mentioned problems,
using well-defined research protocols.

1. RR1 - To study and verify the relationships between the Agile Manifesto
(value and principle) and agile practices selection, we conducted an SLR

8

1.2 Research Design

by following the approach described by Kitchenham and Charters [82]. We
extracted problems, expectations, and the benefits which are the reasons
behind agile methods or practice selection from the selected articles. We
then compared these problems, expectations, and benefits with the agile
values and principles. The results from the comparisons allow us to
formally confirm the relationship between the Agile Manifesto and agile
practice selection;

2. RR2 - To recycle the knowledge in a systematic manner, we started
by conducting another SLR by following the same approach [82]. We
exhaustively gathered all the necessary information related to the agile
practice adoption, based on experiences reported in research papers. Using
the collected knowledge, we then created an ontology by basically following
the methodology proposed in [109]. Finally, we validated the ontology to
ensure that all concepts and relationships correctly represent the purpose
for which it was created. We opted for two validation techniques: (1)
corpus-based approach [21] and (2) a survey with agile experts;

3. RR4 - To propose a new socio-intentional framework for agile methods
tailoring, we defined a methodology that focuses on both the why and who
dimensions. With our well-defined set of steps, practitioners can define
the right strategies to achieve their goal, know how to coordinate the
activities of the various actors and how they depend on each other. To be
efficient, we also included how to get the knowledge from our tool, how to
visualize them in models and how to analyze the result in every step of
the methodology. To prove that our framework is applicable in real-life
projects, we applied it to a real case as an illustrative example.

1.2.1.3 Design as an Artifact

We built two artifacts to solve the addressed problems.

1. DA1 - An efficient solution to recycle the experiences of agile practices
adoption would be an approach that allows us to describe the knowledge in
a way that can be systematically reusable. In this thesis, ontology is the key
to our solution. The notion of ontology refers to a consensus that defines
the entity, attribute, and relationship among knowledge concepts within
a specific domain using explicit descriptions and specifications in an inter-
operable format and understandable by both humans and machines [35, 52].
Ontologies have been widely used to represent empirical knowledge in a
structured manner. They allow sharing, reusing, and supporting decision
making [36, 124, 34]. The notion and advantages of ontology make it a
prominent solution to recycle agile practice adoption knowledge;

2. DA2 - Using an available tool to retrieve data placed within the ontology
requires some preliminary knowledge. For user convenience, we thus
created a GUI tool using Python programming language, named “OBAMA
- Ontology-Based tool for Agile Methods Adoption”. Our tool is in a
notebook-style where each page serves for a functionality. It can answer

9

Introduction

15 concerns related to agile practice adoption. Users can choose to see
all the information related to the agile practice adoption that we have
inserted, and also filter for the relevant information by describing their
adoption goals, and team’s situations.

1.2.1.4 Design Evaluation

There is no way to evaluate the result of an SLR, but we ensure the quality of
the results by addressing the threat to the validity as much as possible. The
remaining parts that need to be evaluated are ontology, tool, and the framework.

1. DE1 - Among many approaches to evaluate an ontology [27, 28, 122, 125],
we chose to follow Rao and Lila’s assessment part of their framework [125].
Their assessment part is the most suitable for our case due to its similarity
to the methodology we used for our ontology creation. Inspired by their
assessment part, three aspects were formulated to validate our ontology
(1) Are the concepts and/or relationships in the ontology used to answer
all concerns and vice versa? (2) Are all the concerns relevant? and (3) Are
the answers to the concerns correct? As our ontology is created based on a
text corpus of the domain, i.e., scientific research papers on agile practice
adoption, we validate the first aspect using the corpus-based approach.
For the other two aspects, we validate using a survey to directly get the
answers from agile experts;

2. DE2 - Using the same survey, we also evaluated our tool with nine
questions related to its usability in providing the information and helping
practitioners finding the right agile practices for adoption.

1.2.1.5 Research Contributions

In this thesis, three main contributions were made to solve the targeted problem:

1. RC1 - The results from our first SLR allow us to understand how the
Agile Manifesto has been discussed in tailored agile methods adoption
and to verify whether agile practices selection can be related to agile
values or principles defined in the Agile Manifesto. The result shows that
development teams have lost attention on the Agile Manifesto, having less
than half of them mentioned the Agile Manifesto. On the contrary, by
comparing the 4 values and 12 principles of the Agile Manifesto with the
team’s problems, expectations, and benefits extracted from the literature,
at least 80% of them can be mapped to each other. This result allows
us to verify that the Agile Manifesto is highly relevant to the reasons
behind the agile adoption. As it still covers fundamental aspects of any
agile methodology, it is important for the team to understand the Agile
Manifesto before adopting agile methods;

2. RC2 - We have built a qualified evidence-based tool that can efficiently
and effectively help agile practitioners understanding agile practices. By
conducting another SLR, we exhaustively extracted 86 case studies on

10

1.2 Research Design

agile practice adoption. Using these case studies, we created an ontology
to support knowledge representation about agile practice adoption. In
addition, we added seventeen inference rules to systematically discover
more relationships among concepts in the ontology. After that, we theoret-
ically validated our ontology by following the corpus-based approach [21].
The result shows that our ontology represents accurately the information
related to the agile practice adoption with minimum refinement for any
unseen knowledge in the future. We then created a user-friendly tool using
Python programming language before we validated both ontology and
tool using a survey. The results from our survey show that our ontology
and tool can provide the information efficiently, effectively and it helps a
team decide if they should adopt a practice. Even though our tool cannot
fully satisfy experts, yet they agree that it is good enough to serve our
purpose;

3. RC3 - We have defined a clear methodology for agile methods tailoring
that consists of two levels. Tactical level allows practitioners to (1) identify
the best practices to adopt based on their goals and (2) check the suitability
of a team based on their situations. Operational level allows the team
to identify (1) the vulnerabilities during the practice adoption caused by
team members, (2) possible problems based on the experiences, and (3)
solutions to avoid the vulnerabilities and solve the problems. In every
step of this framework, we explain how practitioners can use our tool to
get the information and then visualize them in models to facilitate the
analyzing processes.

1.2.1.6 Design as a Search

While our defined objectives have been achieved with both theoretical and
empirical validations, some improvements are still possible.

1. DS1 - Our ontology model and knowledge always need to be expanded
using data from both the literature and real-life case studies. In the first
SLR that we conducted, we collected data related to only the five most
commonly used practices. This amount is still very small compared to
the number of existing agile practices. Apart from the literature, the
ontology does not include any case study in real life. We believe that
there is valuable knowledge that can only be extracted by observation;

2. DS2 - There are parts of the tool that need to be improved and developed
in both usability and functionality. For instance, in the current version
of our tool, users can get the information only by selecting the concerns
they are interested in. A more sophisticated tool would allow users to
switch easily from one concept or concern to another. Also, when users
want to learn more about the source of the information, they should be
able to reach them within a simple click. More than that, a complete tool
would allow the users to encode new knowledge easily and to evaluate the
reliability of the existing knowledge;

11

Introduction

3. DS3 - Our framework is dedicated to only the planning part by focusing
on how to prepare a team before agile practice adoption, while there
should also include the evaluation process to further check the adoption
success. Our framework also lacks a study with the real team that allows
validating how helpful this framework is for the team in adopting agile
practices. We need empirical validation for instance by an exploratory
study to validate our framework.

1.2.1.7 Communication of Research

The contributions of our research are beneficial for both practitioners and
researchers.

1. CR1 - The verification of the relationship between the Agile Manifesto
and agile practices selection encourages practitioners to have a deeper
understanding of the Agile Manifesto before their adoption. It explains
why the Agile Manifesto is important by showing how it can help maximize
the team’s expectations and, eventually the benefits of agile adoption. For
the researcher, these results provide a clear-cut validation on the relation
between the Agile Manifesto and agile practices, instead of being just an
assumption or belief. This validation can be used as evidence to propose
any approach or framework that can help improve agile practice adoption;

2. CR2 - The ontology and tool allow practitioners to quickly learn about
useful concepts related to agile practices and their relationships. The
information provided by the tool can help (1) the team to find the right
practices suitable for the team and (2) understand how to avoid the risk
during adoption. Researchers can use it to discover or/and understand
different aspects of agile practice adoption. They can also learn how to
use ontology as an effective solution to recycle and to share knowledge
among practitioners in a structured and exploitable way;

3. CR3 - This framework emphasizes an important perspective in the agile
methods tailoring by combing the social with the goal aspect together.
By following our framework, the practitioners can understand how to
collaboratively work together and also the motivations and rationale
behind their activities. At the same time, the practitioners can make
good use of the agile practice adoption experiences which can be found in
the literature. This framework also shows the researchers the advantages
of using the diagram to visualize the information to ease the analyzing
process.

1.3 Reading Roadmap

This thesis consists of four parts and nine chapters. Figure 1.1 provides the
structure and reading roadmap of the thesis. Under the title of each chapter, we
list what we addressed in that chapter based on the seven guidelines of design
science, followed by the name of the conference in which the content of the
chapter is published or under reviewed.

12

1.3 Reading Roadmap

Structure of the Thesis

Part I: Introduction

Chapter 1: Introduction

Part II: State of the art

Chapter 2: Agile Software Development – an overview

Chapter 3: Agile Methods Tailoring – an overview

Chapter 4: Socio-Intentional Modeling Framework – an overview

Part III: Social-Intentional Framework for Agile Methods Tailoring

Chapter 5: Agile Manifesto and Practices Selection - a Systematic Literature Review

PR1, RR1, RC1, CR1 - PROFES 2018

Chapter 6: Ontology Model for Agile Knowledge Representation

PR2, RR2, DA1, DE1, RC2, DS1, CR2 - XP 2019, Expert System with Application Journal (Under Review)

Chapter 7: Building an Ontology-Based tool for Agile Methods Adoption

PR2, RR2, DA2, DE2, RC2, DS2, CR2 - XP 2019, Expert System with Application Journal (Under Review)

Chapter 8: Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

PR3, RR3, RC3, DS3, CR3 – ICSOFT 2017, IEEE-CBI 2021

Part IV: Conclusions

Chapter 9: Conclusion

Fig. 1.1 Thesis reading roadmap.

The second part of this thesis provides a general literature review; Chapter
2 provides the background of agile software development methodologies and an
overview of the current most commonly used agile methodologies, Chapter 3
provides a basic review of different approaches for software methods tailoring
in general and particularly for agile methods. In Chapter 4, we review some
modeling frameworks related to either goal or social dimension. The purpose of
each chapter in this first part is to develop a general overview and understanding
of the subject without relating each element of theory to a specific scientific
contribution of the thesis.

The third part of this thesis is built as a set of individual contributions
presented individually from Chapter 5 to Chapter 8. In each chapter, the
specific context, related work, contributions, research protocol, and the result
are discussed within the chapter themselves.

13

Introduction

Chapter 5 aims at understanding how has the Agile Manifesto and its
importance been discussed in tailored agile methods adoption. It also aims at
verifying whether the Agile Manifesto and agile practices selection are related.
In this chapter, we explain how we conducted the SLR, including details on
research questions, search strategy, and data extraction. After, we present the
results of our literature review, followed by the threads to validity. Finally, we
summarize a conclusion and findings.

Chapter 6 aims at building a valid ontology that allows to systematically
recycle the knowledge about agile practices adoption found in the literature. In
this chapter, we describe how we conducted another SLR to gather knowledge
from the literature. We then explain how we built and theoretically validated
the ontology. Finally, we describe how we conducted the survey to empirically
validate the ontology with the results.

Chapter 7 aims at building a user-friendly tool that allows practitioners to
efficiently retrieve the knowledge from the ontology. We start by explaining
the importance of a user-friendly tool and giving general information about
the techniques needed for the development. We then explain in detail each
important component needed for developing the tool. Finally, we explain how
we evaluated our tool with agile experts using a survey.

Chapter 8 aims at proposing a socio-intentional framework for agile methods
tailoring with the help of our tool and modeling techniques. We start by
explaining how to find the right modeling technique to represent the knowledge
of agile methods adoption. We then describe the methodology for tailoring the
agile methods. Finally, we use a case of a real software development team as an
illustrative example to demonstrate how our framework is applied in real life.

Chapter 9 concludes the thesis by discussing the contributions, limitations,
and the future works.

14

Part II

State of the Art

15

Chapter 2

Agile Software Development

In the early software development era, software was developed sequentially by
following the methodology called the waterfall model. This methodology was
described as a set of phases where each of them can be started only when the
previous one is completely done and the delivering phase is put at the very
end of the development. This kind of process is too rigid and too risky for
today’s user-intensive software development. The Agile movement has emerged
to effectively deal with quality expectations, to ensure that the software is
solving the right problems, and to be able to deal with immediate changes in
the requirements.

This chapter provides an introduction to agile software development, its
foundation, and some popular agile methodologies. This chapter is structured
as follows. Section 2.1 exposes the foundation of agile methodologies called the
Agile Manifesto. Section 2.2 describes some of the most popular agile method-
ologies based on the most recent survey, such as Scrum, eXtreme Programming
(XP), Kanban, etc. Finally, we conclude the chapter in Section 2.3.

2.1 Foundation of Agile Methodologies

Since the emergence of software in the 1950s, various software development
methodologies have been proposed. They aim to reduce cost and to meet users’
needs with an adequate level of quality. Among the methodologies which were
proposed at the earlier time, also known as traditional methodologies, Waterfall
[128], V-model [64], Spiral model [22], Rapid Application Development (RAD)
[103] and Rational Unified Process (RUP) [88] can be considered as the popular
ones. These methodologies are characterized as plan-driven, document-oriented,
process-oriented, and based on formal communication [4, 92, 119, 143]. In
other words, in these methodologies, the software is built using a pre-defined
and existing plan. These methodologies work well when the requirements are
complete and stable. However, they do not respond well to user-intensive
software where the requirements are likely to evolve.

To avoid the problems of the traditional methodologies, practitioners started
mixing old and new ideas to create new methodologies that worked in a given
situation of their teams. These methodologies emphasized close collaboration
between the Development Team and business stakeholders; frequent delivery of

17

Agile Software Development

business value, tight, self-organizing teams; and smart ways to craft, confirm,
and deliver code. These new methodologies were known as Agile and they were
created before 2001. It includes eXtreme Programming (XP) [17], Scrum [136],
Dynamic Systems Development Method (DSDM) [144], Adaptive Software
Development (ASD) [74], Crystal [39], Feature-Driven Development (FDD)
[114] and Pragmatic Programming [153].

To find the consistency and give a canvas to these agile methodologies, 17
representatives of these methodologies met at Snowbird in Utah in 2001. The
purpose of this meeting was to discuss and establish a common ground for an
alternative to the structured and traditional heavy software development life
cycles. What emerged from the meeting was a manifesto for Agile Software
Development, commonly known as the Agile Manifesto1 and the creation of the
Agile Alliance as a guiding force for agile practitioners.

In this manifesto, four values and twelves principles were defined, making
Agile a value and principle based rather than rule-based movement [66, 63].

2.1.1 Agile Values

The Agile Manifesto [66] states that, with an agile mindset, items on the left
ought to be valued more than items on the right, i.e., Individuals and interactions
(left item) over processes and tools (right item). However, those values are the
preferences, not the alternatives, and we should not undervalue the latter either.
Exploring each of these values will help in gaining knowledge of the agile process
philosophy while exposing how applying the philosophy to define methodologies
will enhance software development, aligning it with today’s volatile markets.
These four agile values include:

1. Individuals and interactions over processes and tools: individuals are
more flexible and responsive to changes while processes are rigid and
scheduled. The key to a good workflow and a high-quality product are
teamwork, communication, and collaboration;

2. Working software over comprehensive documentation: one of the big
differences between Agile and Heavyweight is the amount of the document
produced during the development [150]. Documentation should only be
needed in very few and specific instances, and if a software works well,
there is no need for documentation;

3. Customer collaboration over contract negotiation: it is fundamental
in agile that methodologies to have a close collaboration between the team
and their customer to understand exactly what they need. Negotiating a
contract makes the process inflexible;

4. Responding to change over following a plan: the benefits of having a
plan are not questioned, but more importantly the ability to adapt to the
rapidly changing environment and requirement.

1http://agilemanifesto.org/

18

2.2 Overview of the main Agile Methodologies

2.1.2 Agile Principles

The Agile Manifesto [66] documented 12 principles to guide the team and
manager rather than following pre-defined rules. Diebold and Zehler [49]
defined agile principles as the high-level ideas behind agile software development
as refinements of the core values defined in the Agile Manifesto. The role of
the principles was described as a bridge that narrows the gap between the
abstract general values and detailed specific practices [79, 99]. These twelves
agile principles include:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software;

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage;

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale;

4. Business people and developers must work together daily throughout the
project;

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.;

6. The most efficient and effective methodology for conveying information to
and within a Development Team is a face-to-face conversation;

7. Working software is the primary measure of progress;

8. Agile processes promote sustainable development. The sponsors, develop-
ers, and users should be able to maintain a constant pace indefinitely;

9. Continuous attention to technical excellence and good design enhances
agility;

10. Simplicity, the art of maximizing the amount of work not done is essential;

11. The best architectures, requirements, and designs emerge from self-
organizing teams;

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

2.2 Overview of the main Agile Methodologies

The popularity of agile methodologies is constantly increasing to offer flexible
software development. Over the last two decades, many agile methodologies
have been proposed with their set of values, principles, and practices to meet
specific requirements and contexts. For instance, Scrum is proposed to put
more focus on project management organization, while XP is designed to be
more responsive to customer requirement changes [105].

19

Agile Software Development

According to the 13th survey report conducted by the VersionOne in 2019
[161], the most commonly used agile methodologies include: Scrum, Extreme
Programming (XP), Scrumban, Kanban, Lean, and the combinations of these
methodologies (see Figure 2.1). In the following sections, we describe these
methodologies individually. We also show the relationships between the Agile
Manifesto and each agile methodology. This relationship is the result of mapping
between the values and principles of each methodology with those defined in
the Agile Manifesto.

Agile Methodologies Used
Scrum and Scrum/XP Hybrid (64%) continue to be the most common agile methodologies used by respondents’ organizations.

AGILE METHODS AND PRACTICES

54%
SCRUM

14%
OTHER/
HYBRID/

MULTIPLE

8%
SCRUMBAN

10%
SCRUM/

XP HYBRID

5%
KANBAN

3%
ITERATIVE DEVELOPMENT

2%
LEAN STARTUP

1%
EXTREME

PROGRAMMING (XP)

3%
DON’T KNOW

Agile Techniques Employed
Notable changes in agile techniques and practices that respondents said their organization uses were Release planning (57%

this year compared to 67% last year) and Dedicated customer/product owner (57% this year compared to 63% last year).

02 04 06 08 0 100

Daily standup

 Sprint/iteration planning

Retrospectives

Sprint/iteration review

Short iterations

Planning poker/team estimation

Kanban

Release planning

Dedicated customer/Product owner

Single team (integrated dev and test)

Frequent releases

Common work area

Product roadmapping

Story mapping

Agile portfolio planning

Agile/Lean UX

86%

80%

80%

80%

67%

57%

61%

61%

57%

54%

50%

45%

45%

38%

33%

28%

*Respondents were able to make multiple selections

TOP 5 AGILE TECHNIQUES

DAILY
STANDUP

86%
SPRINT/ITERATION

PLANNING

80%

RETROSPECTIVES
80%

SPRINT/ITERATION
REVIEW

80%

SHORT
ITERATIONS

67%

*Respondents were able to make multiple selections

PAGE 9

 stateofagile.com #StateOfAgile

Fig. 2.1 Most used agile methodologies based on VersionOne’s 13th survey (from
[161])

2.2.1 Scrum

Scrum was first introduced by Schwaber in an article in 1996 [134]. But only until
2002 that the methodology was fully described in a book written by Schwaber
and Beedle [136]. Scrum is a process framework to deliver products with the
highest possible value and handle complex problems or situations. Bogojevi’c
[23] defined Scrum as a lightweight software development process having a
cross-functional team who develop as much quality software as possible within
a series of short time boxes called “Sprints”, which last about a month. Scrum
is characterized by short, intensive, daily meetings of software development
stakeholders. Compared to other agile methodologies, Scrum focuses on project
management rather than technical practices.

Scrum was originally created with only practices. Later on, some authors
defined its values and principles based on experiences. According to Sutherland
and Schwaber [151], Scrum is founded on empirical process control theory or
empiricism, where the knowledge comes from experience and making decisions
based on what is known. The empiricism theory is supported by three pillars:
transparency, inspection, and adaptation.

20

2.2 Overview of the main Agile Methodologies

2.2.1.1 Scrum values

The three pillars that support empiricism can come to life when five Scrum
values are embodied and lived by the Scrum team. These five values include:
commitment, courage, focus, openness and respect. Agile Alliance [8] explains
each value as follows:

• Commitment: team members personally commit to achieving team goals;

• Courage: team members do the right thing and work on tough problems;

• Focus: concentrate on the work identified for the sprint and goals of the
team;

• Openness: team members and stakeholders are open about the works and
challenges that the team encounters;

• Respect: team members respect each other to be capable and independent.

2.2.1.2 Scrum Principles

Agile Alliance [8] also provides the agile team with three principles underpinning
the empirical nature of Scrum with the brief description as follows:

• Transparency: the team must work in an environment where everyone is
aware of what issues other team members are running into. Teams surface
issues within the organization, often ones that have been there for a long
time that get in the way of the team’s success;

• Inspection: frequent inspection points were put into the framework to
allow the team an opportunity to reflect on how the process is working.
These inspection points include the Daily Scrum meeting and the Sprint
Review Meeting;

• Adaptation: the team constantly investigates how things are going and
revises those items that do not seem to make sense.

Another group called Scrum Study [137] also defines extra six principles as
follows:

• Empirical Process Control: this principle emphasizes the core philosophy
of Scrum based on the three main ideas of transparency, inspection, and
adaptation;

• Self-organization: this principle focuses on today’s workers who deliver sig-
nificantly greater value when self-organized and this results in better team
buy-in and shared ownership, and an innovative and creative environment
which is more conducive to growth;

• Collaboration: this principle focuses on the three core dimensions related
to collaborative work: awareness, articulation, and appropriation. It also
advocates project management as a shared value-creation process with
teams working and interacting together to deliver the greatest value;

21

Agile Software Development

Table 2.1 Mapping Scrum values and principles with the Agile Manifesto

Agile Manifesto Scrum
Values

- Individuals and interactions over processes and
tools

Commitment, Courage,
Respect

- Working software over comprehensive documenta-
tion

Focus

- Customer collaboration over contract negotiation Openness
Principles

- Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software

Value-based prioritization

- Deliver working software frequently Time-boxing, Iterative
Development

- Business people and developers must work together
daily throughout the project

Transparency, Collabora-
tion

- Build projects around motivated individuals Self-organization
- The most efficient and effective methodology of
conveying information to and within a Development
Team is face-to-face conversation

Transparency

- Continuous attention to technical excellence and
good design enhances agility

Adaptation

- At regular intervals, the team reflects on how to
become more effective

Inspection

• Value Based Prioritization: this principle highlights the focus of Scrum
to deliver maximum business value from beginning early in the project
and continuing throughout;

• Time-boxing: this principle describes how time is considered a limiting con-
straint in Scrum and used to help effectively manage project planning and
execution. Time-boxed elements in Scrum include Sprints, Daily Stand-up
Meetings, Sprint Planning Meetings, and Sprint Review Meetings;

• Iterative Development: this principle defines iterative development and
emphasizes how to better manage changes and build products that satisfy
customer needs. It also delineates the Product Owner’s and organization’s
responsibilities related to iterative development.

Table 2.1 list the results from mapping Scrum values and principle with the
Agile Manifesto.

2.2.1.3 Scrum Roles

Following Schwaber et al. [151], Scrum Teams are self-organizing and cross-
functional which consists of a Product Owner, the Development Team, and a
Scrum Master.

22

2.2 Overview of the main Agile Methodologies

• Product Owner : it is not a committee but only one person who is respon-
sible for maximizing the value of the product and managing the Product
Backlog. Product Owner may represent the desires of a committee in the
Product Backlog, but those who want to change a Product Backlog item’s
priority must address it to the Product Owner;

• Development Team: it is a group of 4 to 10 cross-functional people who are
responsible for delivering a potentially releasable product at the end of each
sprint. In Scrum, the Development Team is structured and empowered by
the organization to organize and manage their own work;

• Scrum Master : it is the person who is an expert at Scrum and who can
therefore coach others. The Scrum master is the role who is responsible
for ensuring the team lives agile values and principles and follows the
processes and practices that the team agreed that they would use.

2.2.1.4 Scrum Artifacts

Scrum’s artifacts represent work or value to provide transparency and opportu-
nities for inspection and adaptation. Artifacts allow maximizing transparency of
key information to make everyone have the same understanding of the artifact.
Following [8, 151], there are four artifacts in Scrum:

• Product Backlog: it is an ordered list of all the possible changes that could
be made to the product. Items on the product backlog are options, not
commitments. Just because an item exists in the Product Backlog, it
does not guarantee it will be delivered. The Product Owner maintains the
product backlog on an ongoing basis, including its content, availability,
and ordering;

• Sprint Backlog: it is a set of selected product backlog items that a team
must deliver by the end of each sprint. The team needs to identify
necessary tasks to develop those sprint backlog items in order to achieve
the sprint goal;

• Increment: it is a collection of the product backlog items that meet the
team’s “Definition of Done” by the end of the sprint. The Product Owner
may decide to release the increment or build upon it in future sprints;

• Definition of Done: it is a team’s shared agreement on the criteria that a
product backlog item must meet before it is considered done.

2.2.1.5 Scrum Practices

The event in Scrum is a formal opportunity to inspect and adapt something
which is specifically designed to enable critical transparency and inspection
[151]. There are 4 events in Scrum which can be performed within each iteration,
also known as Sprint. These four events include:

23

Agile Software Development

• Sprint Planning: it is an event where the entire Scrum team collaborates
to plan the work to be performed within the next Sprint. Sprint Planning
is time-boxed to a maximum of eight hours for a one-month Sprint. The
result from the Sprint planning is the list of what can be delivered from
the upcoming Sprint and how these works should be done;

• Daily Meeting: it is a 15-minute time-boxed event for the Development
Team which is held every day to plan work for the next 24 hours. Three
main questions that should be asked during the events include “what
did I do yesterday that helped the Development Team meet the sprint
goal?”, “what will I do today to help the Development Team meet the
sprint goal?”, and “do I see any impediment that prevents me or the
Development Team from meeting the sprint goal?”;

• Sprint Review: it is held at the end of the sprint where the Scrum Team
and stakeholders collaborate to inspect what was done in the sprint and
adapt the Product Backlog if needed. The result of the Sprint Review
is a revised Product Backlog that defines the probable Product Backlog
items for the next sprint;

• Sprint Retrospective: it is conducted after the Sprint Review and prior
to the next Sprint Planning. It is an opportunity for the Scrum Team to
inspect itself and create a plan for improvements to be enacted during
the next sprint. The purpose of the event is to inspect how the last sprint
went, to identify and order the major items that went well and potential
improvements, and to create a plan for implementing improvements in
the next sprint.

2.2.2 eXtreme Programming (XP)

XP is an agile methodology founded by Kent Beck based on an experiment
of the Chrysler C3 Project in 1996 [23]. According to Beck [17], XP is a
lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to
develop software. XP is suitable for the Development Team with the size of
2 to 12 members and preferably co-located. This methodology focuses on the
technical aspect consisting of 10 to 12 engineering practices such as unit tests,
frequent full system integration, pair programming, simple design, and frequent
releases of working software, etc. Each iteration that usually lasts between
1 and 3 weeks consists of 6 phases including: exploration, iteration planning,
iteration to release, production, maintenance, and death phase.

2.2.2.1 XP Values

According to Beck [17], four values of XP were defined as follows:

• Communication: everyone is part of the team and face-to-face is the best
way to transfer knowledge between each other in the team;

• Simplicity: we need to avoid waste by doing only what is needed and
asked for, do not try to predict the future;

24

2.2 Overview of the main Agile Methodologies

• Feedback: concrete feedback about the current state of the system is
absolutely priceless. The more feedback we have, the easier it is to
communicate;

• Courage: courage is an effective action in the face of fear. A team needs
the courage to raise organizational issues, to stop doing something that
does not work, and to accept the feedback.

2.2.2.2 XP Principles

Following Beck [17], there are five fundamental principles as follows:

• Rapid feedback: team members should be able to get the feedback as soon
as possible. They then need to understand and react to it right away,
within seconds or minutes instead of days, weeks, or months;

• Assume simplicity: treat every problem as if it can be solved with ridiculous
simplicity. Team should focus on doing a good job (tests, refactoring,
communication) of solving today’s job today and trust their ability to add
complexity in the future where they need;

• Incremental change: big changes that are made all at once just do not
work. Any problem is solved with a series of the smallest changes that
make a difference;

• Embracing change: the best strategy is the one that preserves the most
options while actually solving the most pressing problem;

• Quality work: everybody likes doing a good job. In order to enjoy their
works, the team needs to do an excellent job and make valuable products.

Table 2.2 list the results from Mapping XP values and principle with the
Agile Manifesto.

2.2.2.3 XP Roles

Kent [17] describes seven roles in XP as follows:

• Programmers: this role is responsible for programming the entire system,
writing tests, and keeping the program code as simple as possible;

• Customer : this role is responsible for writing the stories and functional
tests, prioritizing the stories, giving feedback on the result, and deciding
when each requirement is satisfied;

• Tester : this role is responsible for writing test cases, running functional
tests, broadcasting test results, and maintaining testing tools;

• Tracker : this role is responsible for giving feedback about everyday work
on a project. The Tracker traces time estimates made by the team and
provides feedback on how accurate they are, inspect the progress of each
iteration, and evaluate whether the iteration goal is reachable;

25

Agile Software Development

Table 2.2 Mapping XP values and principle with the Agile Manifesto

Agile Manifesto XP
Values

- Individuals and interactions over processes and
tools

Communication, Courage

- Working software over comprehensive documenta-
tion

Simplicity

- Customer collaboration over contract negotiation Feedback
Principles

- Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software

Incremental change

- Welcome changing requirements Embracing change
- Business people and developers must work together
daily throughout the project

Rapid feedback

- Continuous attention to technical excellence and
good design enhances agility

Quality work

- Simplicity, the art of maximizing the amount of
work not done is essential

Assume simplicity

• Coach: it is someone who has a sound understanding of XP practices and
experience in working with XP teams. Coach is responsible for guiding
the other team members in following the process;

• Consultant: it is an external member of the team. His primary role is to
advise the team with his technical knowledge and to guide the XP team
in solving their specific technical issues;

• Manager : this role is responsible for making decisions regarding the
project, communicating with the project team in order to understand the
status of the project, and distinguishing any difficulties or deficiencies in
the process.

2.2.2.4 XP Artifacts

Following Beck [17], there are five artifacts produced within an XP project as
follows:

• User Story Card: it is an index card that contains a requirement in the form
of a user story, together with a short description of requirements, priority,
effort, and test scenarios. The user story card is used for implementation,
discussion, and planning;

• Task List: it is a listing task needed to be built in order to accomplish a
user story. This task list helps programmers to estimate the effort and
planning;

26

2.2 Overview of the main Agile Methodologies

• CRC Card: it stands for Class-Responsibility-Collaboration. It contains
the responsibilities and collaborations of classes (Object-Oriented) that
allow the team to do the design of the system;

• Customer Acceptance Test: it is the test scenario that customers write
to validate the implementation. Normally, it is written on the user story
card;

• Visible Wall Graphs: it is a graphical board that is used to publicly
show the progress of the team — e.g., how many user stories are being
developed, tested, and accepted. It allows the team to communicate and
see the progress of the project.

2.2.2.5 XP Practices

Below are the descriptions of the practices as described by Kent [17]:

• Sit Together : team members are asked to sit together in the same space
allows them to have face-to-face communication without barriers;

• Whole Team: build a cross-functional group of people with the necessary
roles to work together daily to accomplish a specific outcome;

• Informative Workspace: set up a team space to facilitate face-to-face
communication, allow people to have some privacy when they need it,
and make the work of the team transparent to each other and interested
parties outside the team;

• Energized Work: do not overwork yourself or let others overwork you,
take steps to make sure you are able physically and mentally to get into a
focused state;

• Pair Programming: all software products are developed by two people
sitting at the same machine. The idea behind this practice is that two
brains and four eyes are better than one brain and two eyes. You effectively
get a continuous code review and quicker response to nagging problems
that may stop one person dead in their tracks;

• Stories: it is a short description of things users want to be able to do with
the product. Stories are used for planning and served as reminders for
more detailed conversations when the team gets around to realizing that
particular story;

• Weekly Cycle: it is synonymous with an iteration. The intent behind
the time-boxed delivery period is to produce something to show to the
customer for feedback. In the case of XP, the team meets on the first day
of the week to reflect on progress to date, the customer picks the stories
they would like delivered in that week, and the team determines how they
will approach those stories;

27

Agile Software Development

• Quarterly Cycle: it is synonymous with a release. The purpose is to keep
the detailed work of each weekly cycle in the context of the overall project.
The customer lays out the overall plan for the team in terms of features
desired within a particular quarter, which provides the team with a view
of the forest while they are in the trees, and it also helps the customer
work with other stakeholders who may need some idea of when features
will be available;

• Slack: the idea behind slack in XP terms is to add some low priority tasks
or stories in the weekly and quarterly cycles that can be dropped if the
team gets behind on more important tasks or stories. In other words,
account for the inherent variability in estimates to make sure that the
team have a good chance of meeting the forecasts;

• Ten-Minute Build: the goal with the Ten-Minute Build is to automatically
build the whole system and run all of the tests in ten minutes. This
practice encourages the team to automate their build process so that they
are more likely to do it on a regular basis and to use that automated build
process to run all of their tests;

• Continuous Integration: it is a practice where code changes are immedi-
ately tested when they are added to a larger code base. The benefit of
this practice is they can catch and fix integration issues sooner;

• Test-First Programming: instead of running the test after developing code
and write the test, in this practice developer should follow the path: write
failing automated test → run failing test → develop code to make the
test pass → run test → repeat;

• Incremental Design: do a bit of work upfront to understand the proper
breadth-wise perspective of the system design, and then dive into the
details of a particular aspect of that design when they deliver specific
features. This approach reduces the cost of changes and allows the team
to make design decisions when necessary based on the most current
information available.

2.2.3 Kanban

According to Kniberg et al. [87], Kanban is taken from a Japanese term which
means Signboard. A Kanban system utilizes visual cues that calculate what
to produce when to produce and how much to produce. Kanban is intended
to manage the workflow and increase performance which aims to focus on the
efforts on the items that bring value to the end customer and remove waste while
not overburdening the Development Team. Like Scrum, Kanban is a process
designed to help teams work together more effectively by using concepts such as
wide communication, signboard and working status to provide a comprehensive
view of the project. Opposite to Scrum, instead of working in a time-box of
work every 2 to 4 weeks, Kanban encourages continuity in the workflow. There
is not any defined role in Kanban, practitioners can define as many roles as they
want. However, for each iteration, Kanban recommends minimizing the cycle

28

2.2 Overview of the main Agile Methodologies

time, so if adding a role helps minimize the cycle time, the role can be added
and if it makes the process slower, then the role should not be there. Also, if
the cost of the role is higher than the value of improved cycle time, then it is
an unnecessary role.

2.2.3.1 Kanban Values

Mike Burrows [30] defines nine values of Kanban as follows:

• Understanding: understand the process that had been working and what
they are about to change;

• Agreement: agree to move forward and accept the changes;

• Respect: respect each other’s roles and responsibilities;

• Leadership: encourage and support leadership and initiative at all levels
within an organization by facilitating self-organization;

• Flow: make ongoing process with a constant pace by understanding the
effort to get certain results in specific ways;

• Customer Focus: the actual value of a project is the completed tasked
which is the utmost satisfaction of the customer;

• Transparency: make teams transparent with 3 principles: visualization of
process, the introduction of explicit policies, and creating feedback loops;

• Balance: maintain the work balance to keep both the employees and the
client happy by limiting the number of work in progress (WIP);

• Collaboration: work together and search beyond our inner team to col-
laboratively find solutions and make plans for organizational and process
improvements.

2.2.3.2 Kanban Principles

According to Agile Alliance [7], six principles in Kanban are defined as follows:

• Start with what you do now: understand current processes as they are
actually practiced and respect existing roles, responsibilities, and job
titles;

• Agree to pursue improvement through evolutionary change: accept and
welcome changes in a continuous learning process;

• Encourage acts of leadership at every level: empower the team members
and give room for leadership at each level of the organization;

• Understand and focus on your customers’ needs and expectations: priori-
tize on activities that fulfill the client’s needs and expectations and then
create true business value;

29

Agile Software Development

Table 2.3 Mapping Kanban values and principle with the Agile Manifesto

Agile Manifesto Kanban
Values

- Individuals and interactions over processes
and tools

Respect, Leadership, Flow, Bal-
ance

- Customer collaboration over contract ne-
gotiation

Customer focus, Transparency,
Collaboration

- Responding to change over following a
plan

Agreement

Principles

- Business people and developers must work
together daily throughout the project

Understand and focus on your cus-
tomers’ needs and expectations

- Build projects around motivated individ-
uals

Encourage acts of leadership at ev-
ery level

- The best architectures, requirements, and
designs emerge from self-organizing teams

Manage the work; let people self-
organize around it

- At regular intervals, the team reflects on
how to become more effective

Agree to pursue improvement
through evolutionary change,
Evolve policies to improve
customer and business outcomes

• Manage the work; let people self-organize around it: let people manage
their way to achieve it, they know best how to do their work;

• Evolve policies to improve customer and business outcomes: as the envi-
ronment evolves, rules and policies should evolve with it.

Table 2.3 lists the results from Mapping Kanban values and principles with
the Agile Manifesto.

2.2.3.3 Kanban Practices

Based on Baleviciute [15], there are five practices in Kanban:

• Visualize Workflow: create an overview of the entire project that encour-
ages a team to seek the best result using the board. Divide the board
into three sections: “Input”, “Work In Progress” and “Output”. Put
task cards on the board and tag important tasks with short descriptions.
Use different columns to show team members which tasks are the most
important and should be started first;

• Create a Workflow: backlog can be split into two columns: backlog and
backlog priorities. Assign stories or tasks to team members by the “Pull
principle” where every team member chooses his own task. Tasks that are
in the priority column are pulled first. The column “Work In Progress”

30

2.2 Overview of the main Agile Methodologies

can have other columns such as “Plan”, “Development”, “Design”, “Draft”,
“Test”, “Deploy”, “Integrate”, “Done”,.etc;

• Work In Progress (WIP) Limits: there should always be work limits
per column to avoid multi-tasking which may result in a wasted time.
WIP limits helps to match the team’s development capacity. If the given
column is set to four, then there should be only four tasks being worked
on at one time. Those tasks that cannot be completed should be moved
back to the backlog and a new task is selected from the priority list. WIP
limits is great to identify bottlenecks;

• Manage Performance: Kanban uses lead and cycle times to measure
performance. Lead time shows how long it takes to complete a task from
its request until that request is done and delivered to the end consumer.
Cycle time shows how long a task has been in production or the work in
progress section except for the queue. A cumulative flow diagram helps
to monitor the progress of all tasks;

• Planning Routines: Kanban has neither a precise planning routine nor
pre-defined iteration length. Some teams work continuously using short
time-frames, usually shorter than one week, or choose bigger iterations
like quarterly goals.

2.2.3.4 Kanban Artifact

The only artifact defined in Kanban is the Kanban board which is used to
visualize work, limit WIP, and maximize the efficiency of the workflow. A basic
Kanban board structure includes:

• Column: it is a specific process step, for instance to do, doing and done;

• Visual Card: it is used to write one work item, it can sometimes encapsu-
late one user story;

• WIP Limits: it is a maximum number of cards that can be present in one
column at any given time. WIP limits allow controlling the workflow and
giving the warning sign when there are too much of the committed works
which have not been done;

• Commitment Point: it is when an idea is picked up by the team and work
starts on the project;

• Delivery Point: it is the moment that the product or service is in the
hands of the customer. In Kanban, the main goal is to take cards from
the commitment point to the delivery point in the shortest time.

2.2.4 Scrumban

Scrumban is a mixed methodology of both Scrum and Kanban which increases
adaptability and universality for product manufacturing and support focused
companies [126]. According to Baleviciute [15], Scrumban allows saving time by

31

Agile Software Development

using planning on demand technique where the team plans only when there is a
demand and there is no estimating or sprint planning needed. By saving time on
planning, the team can put effort into quality control and verify if the work item
is ill-formed. It also allows controlling a manufacturing process and to inspect if
work is promoted to the ready queue. Scrumban focuses on waste minimization
by using inter-process buffers and flow diagrams to show the weaknesses and
opportunities of the process. This methodology allows eliminating everything
that is not adding value to the customer.

As a mix of Scrum and Kanban, this methodology respects the same values
and principles of the two methodologies.

2.2.4.1 Scrumban Roles

• Product Owner : this role is responsible for maintaining the product
backlog by representing the interests of the stakeholders, ensuring the
value of the work the Development Team does;

• Scrumban Sensei: this role is responsible for the correct use of the Scrum-
ban process. Although the designation of a Scrumban sensei and its
presence in Scrumban meetings are generally advisable, teams with a lot
of Scrumban experience may also work without this role;

• Development Team: it is a cross-functional group of people who are
responsible for delivering potentially shippable increments of the product
at the end of every production cycle;

• Stakeholders: it is the people who enable the project. They directly
involve in the process only during the reviews. Apart from that, they
may solely influence the team by discussing their needs with the product
owner. Typically, the main stakeholders are managers, customers, and
users.

2.2.4.2 Scrumban Artifacts

• Product Backlog: it is an ordered list of requirements that the team
maintains for a product. In Scrumban, one should document requirements
in “user story” format. Anyone can edit the backlog, but the product
owner is ultimately responsible for ordering the user stories. Stories in
the product backlog contain rough estimates of both business value and
development effort;

• Selected Backlog: it is a list of work the Development Team must address
next with a defined capacity limit (also known as work-in-progress). As
soon as capacity is available, it is filled up with user stories/features from
the top of the product backlog;

• Story In Progress (SIP) Backlog: it is a list of user stories, which the
Development Team currently addresses. Team members pull user stories
from the selected backlog when there are no more remaining tasks in the
task backlog;

32

2.2 Overview of the main Agile Methodologies

• Task Backlog: it is a table structured along with the phases that are
necessary for completing the project, e.g. design, development, and test.
The Development Team breaks the user stories/features from the SiP
backlog down into single tasks. Once a task has finished one phase, a
team member from the consecutive phase eventually pulls the task to
process it further;

• User Story: it is a description of a certain product feature or behavior,
written strictly from the user’s point of view. It is usually the product
owner who writes the user stories;

• Task: it is a unit of work which should be feasible within one working day
or less. To implement a user story, a team must accomplish all associated
tasks;

• Parking Lot: it is for the tasks which the team cannot finish due to external
dependencies. For example, another team has to review a document.
Placing a task in the parking lot prevents the team from deadlocks, where
unfinished tasks block production lines;

• Cumulative Flow Diagram (CFD): it is a publicly displayed chart showing
a detailed view of the teams’ past and present performance. The CFD
allows identifying bottlenecks in the production flow. It also enables the
product owner to predict the time a new requirement will most probably
need to complete;

• Impediment Backlog: it is a list maintained by the sensei, including all
current impediments.

2.2.4.3 Scrumban Practices

• Extend Board: on the board, team create columns which consist of “To
do”, “Work in progress” and “Done”. Column “Work in progress” can
then be divided into more columns to indicate the particular stage a task
goes through. Using these columns, everyone knows the current situation,
and tasks are completed as soon as possible. New tasks are put on the
board without assigning them to a particular team member. For this
reason, team members can choose which task they would like to work
with;

• Backlog Limit: team makes a list of tasks, puts them into the backlog, and
sets work in progress limit for this column. Because Scrumban does not
have regular planning meetings, a limit is used to implement the planning
on the demanding technique. The team pulls items from the backlog into
the process until it becomes empty, and an empty backlog is a trigger
to notify that it is time to plan more tasks. It is better and easier to
plan small, aiming only a few tasks per iteration. Team can also use the
prioritization on the demanding technique which provides the team with
information on which task must be taken next;

33

Agile Software Development

• Find Bottlenecks: divide team’s work in progress section into smaller
columns to implement separate WIP limits. This approach allows the
team to discover bottlenecks which block the process flow;

• Metrics Performance: Scrumban uses the average lead and cycle time as
its key metrics for performance. If lead and cycle time is under control,
then the team can understand how long does it take for a task to reach
the end consumer, how long it takes to develop and how long does it take
to manage management. With these metrics, team can predict how long
it will take to provide a certain amount of value or earn some amount of
money.

2.2.5 Lean Software Development (LSD)

The Lean Software Development (LSD) comes from the Lean manufacturing
of Toyota production system and Charette’s Lean development in the 1980s
[62]. In 2003, Lean was defined as software development by Poppendieck and
Poppoendieck [116]. According to the authors, LSD is an iterative methodology
that focuses on minimizing waste while maximizing customer value through the
optimization of the entire process. LSD is considered to be more of a philosophy
which has no specific role or artifact but rather emphasized project management.
It was largely used in manufacturing and recently in software development
to a lesser extent. LSD is ideal for projects where there is a need for radical
change. The ultimate goal of a lean organization is to provide perfect value to
its customer with zero waste. It does so by focusing on its key processes and
continuously improving them. The optimization of each process is the core idea
of the Lean philosophy. Instead of practice,

2.2.5.1 Lean Principles and Thinking-Tools

Poppendieck and Poppoendieck [116] promote seven principles in SLD. The
methodology revolves around these principles, and all other aspects of Lean are
designed to reinforce them. The authors also introduced 22 thinking tools which
allow achieving the seven SLD principles and can help the team customize the
right agile practices for any environment. We describe the principles and their
supporting thinking tool as follows:

• Eliminate Waste: Eliminate anything that does not add customer value.

– Seeing Waste: seven types of manufacturing waste translated into
the software domain including partially done work, extra processes,
extra feature, task switching, waiting, motion and defect;

– Value Stream Mapping: it is a good way to discover waste in the pro-
cess. This involves drawing a chart of the average customer request,
from arrival to completion. At the bottom, draw a timeline that
shows how much time the request spends in value-adding, waiting,
and non-value-adding activities.

34

2.2 Overview of the main Agile Methodologies

• Amplify learning: Use short iterative cycles to provide quick, constant
feedback to ensure the right things are being focused on.

– Feedback: increasing feedback is the single most effective way to
deal with troubled software projects. Developers should know their
immediate customer and have ways for that customer to provide
feedback;

– Iterations: iterations provide a dramatic increase in feedback. Iter-
ations are a point of synchronization between the different teams
and the customer. Iterations force decisions to be made because the
system is deployed early and often;

– Synchronization: build the system every day after a small batch of
work has been completed by each of the developers and followed by
an automated set of tests;

– Set-Based Development: it starts by defining everyone’s constraints
and then selects a choice that fits into those constraints. Talking
about constraints allows developers to defer making choices until the
last possible moment.

• Decide as late as possible: do not make decisions until enough is known
to make the decision—a sound understanding of the problem and the
trade-offs of potential solutions is required.

– Options Thinking: agile processes create options that allow decisions
to be delayed until the customer needs are more clearly understood
and the evolving technologies have had time to mature. Delaying
irreversible decisions leads to better decisions, limits risk, helps
manage complexity, reduces waste, and makes customers happy;

– The Last Responsible Moment: it is the moment in which failing to
make a decision eliminates an important alternative. If commitments
are delayed beyond this moment, then decisions are made by default,
which is generally not a good approach to making decisions;

– Making Decisions: there are four types of decision making. Breadth-
first involves delaying decisions. Depth-first involves making early
commitments. Intuitive decision-making relies on past experiences
rather than rational thought to make decisions. Rational decision
making involves decomposing a problem, removing the context, ap-
plying analytical techniques, and exposing the process and results
for discussion;

– Pull Systems: the set of user stories is not assigned to developers;
the developers choose the feature they want to work on.

• Deliver as fast as possible: minimize the time it takes to identify a business
problem and deliver a system or feature that addresses it.

– Queueing Theory: it strives to make the wait as short as possible.
The fundamental measurement of a queue is cycle time which can

35

Agile Software Development

be reduced by controlling the rate of work arrival and removing the
variability in the processing time;

– Cost of Delay: give the team an economic model that will empower
the members to figure out for themselves what is important for the
business.

• Empower the team: empower the team to succeed involving developers in
the details of technical decisions is fundamental to achieving excellence.

– Self-Determination: create an environment in which capable workers
can actively participate in running and improving their own work
areas;

– Motivation: it starts with a clear and compelling purpose. After
that, empower the team by ensuring that the purpose is achievable,
giving the team access to customers, letting the team makes its own
commitments, using management’s role to run interference, creating
a sense of belonging, providing a safe environment, and encouraging
the desire to make progress;

– Leadership: a successful team should have a respected leader who is
excited and passionate about their work, exceptional developers who
exercise leadership through superior knowledge, and a project man-
ager who can identify waste, coordinate iteration planning meetings,
help the team acquire resources, coordinate/ synchronize multiple
teams, and provide a motivating environment;

– Expertise: share Expertise by promoting mentorship and pair pro-
gramming. Also, enforce standards in the development such as
naming standards, coding standards, language standards, checking-
in/out standards, and building standards.

• Build integrity in: system integrity comes from wise leadership, relevant
expertise, effective communication, and healthy discipline.

– Perceived Integrity: to prevent developers from getting lost in the
details and customer value, visions of perceived integrity should
be refreshed regularly through customer feedback. Simultaneously,
the team needs to construct domain models such that software
implementation can flow directly from these models which can be
understood and directly usable by the customers and developers;

– Conceptual Integrity: it is measured by how well a system’s com-
ponents work together as a smooth and cohesive whole. It can be
achieved by effective communication;

– Refactoring: complex systems have effects that are not fully under-
stood at design time. However, the architecture must remain healthy
as the system evolves. It is also important to maintain conceptual
integrity by simplicity, clarity, suitability for use, no repetition, and
no extra features;

36

2.3 Conclusion

Table 2.4 Mapping LSD principles with Agile Principle

Agile Manifesto LSD
Principles

- Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software

Deliver as fast as possible,
Build integrity in

- Deliver working software frequently Deliver as fast as possible
- Business people and developers must work together
daily throughout the project

Build integrity in

- Build projects around motivated individuals Empower the team
- The most efficient and effective methodology for
conveying information to and within a Development
Team is face-to-face conversation

Build integrity in

- Continuous attention to technical excellence and
good design enhances agility

Build integrity in, See the
whole

- Simplicity, the art of maximizing the amount of
work not done is essential

Eliminate waste

- The best architectures, requirements, and designs
emerge from self-organizing teams

Empower the team

- At regular intervals, the team reflects on how to
become more effective

Amplify learning

– Testing: it proves that design intent is achieved and that the system
does what customers want it to do. Tests should be automated as
much as possible and run as part of the daily build.

• See the whole: use cross-functional teams to keep from missing important,
possibly critical aspects of the problem and of the system designed to
solve it.

– Measurements: measurements are important for tracking the progress
of software development. Try to create measurements that will
measure everything such as standardize, specify and decompose;

– Contracts: a common misconception is that agile development cannot
be used in the context of contract work in which each firm is expected
to look out for itself. We can incorporate LDS with different types
of contracts, including fixed-price contracts, time-and-materials con-
tracts, multistage contracts, target-cost contracts, target-schedule
contracts, and share-benefit contracts.

Table 2.4 lists the results from mapping LSD principles with the Agile
Principle.

2.3 Conclusion

In this chapter, we present the state-of-the-art of agile methodologies. The
common ground shared by most of the agile methodologies was defined by four

37

Agile Software Development

agile values and twelve agile principles, also known as the “Agile Manifesto”.
Over the years, a lot of agile methodologies in the practice have been proposed.
Based on the survey, the most popular methodologies nowadays are Scrum,
eXtreme Programming, Kanban, Scrumban, Lean, and the combination of these
methodologies. Even though different agile methodologies define their own set
of values and principles which fit different contexts and environments, most of
them are still covered by the Agile Manifesto. In the words, the Agile Manifesto
should have a perceptible influence on the values and principles of most of those
methodologies. As agile practices are created in order to achieve the values and
principles of each methodology, the relation between the Agile Manifesto and
agile practices should thus be further studied.

38

Chapter 3

Agile Methods Tailoring: an Overview

In practical software development, simply choosing a particular agile method
and following every rule will be tedious. To minimize efforts, the team should
only adopt the most suitable methods or practices that best fit their situations.
It helps to eliminate unnecessary efforts and avoid failure. The selection that
makes a method more adherent to the development context is known as software
methods tailoring [61].

This chapter provides a review of different approaches for software methods
tailoring in general and for agile methods. This chapter is structured as follows.
First, we discuss general software methods tailoring including contingency
factors and methods engineering in Section 3.1. We then continue to discuss
agile methods tailoring in Section 3.2. Finally, we make a conclusion in Section
3.3.

3.1 Software methods tailoring

Software development methods have been defined with the assumption that
they can be applied to any type of project and application development [98].
Empirical research shows that methods used in software practice are rather
limited, and those developers who use the methods tend to use different com-
binations and parts of methods rather than following all the steps required
by a particular method [61]. With numerous projects failure, the software
development community started to recognize the problem and search for a way
to tailor the process to be more adherent to the context of the development.
Software method tailoring has been discussed for a long time and continues to
be a current need [41]. No matter the selected method or process, tailoring is
normally needed for context adequacy in either organization or project levels
[78]. Tailoring can be supported and stimulated by the adopted software method
or executed based on the organization’s needs [61].

Tailoring in software process context can be defined as the adaptation of
the method to the aspects, culture, objectives, environment, and reality of the
organization adopting it [31]. The options to execute software method tailoring
have been studied and can be mainly classified as contingency factors and
method engineering [60].

39

Agile Methods Tailoring: an Overview

3.1.1 Contingency Factors

Research on contingency factors has been a long and continuing research stream
in the information system. Davis [45] is one of the early and widely cited
contributions. The author proposed the concept of strategy selection based on
uncertainties concerning information requirements determination processes. In
this approach, an appropriate strategy is selected from available alternatives
based on an assessment of different levels of uncertainty. Thus, in Davis’ model,
an organization would be expected to have several alternative methods available
and the developers would be expected to be highly experienced with each
method to select the most appropriate one for the right situation. Similarly,
Gremillion and Pyburn [69] also proposed a contingency approach where the
development projects are evaluated according to the criteria of commonality,
impact, and structure before deciding on a development approach. Avison
and Wood-Harper [13] reviewed various Information System Development(ISD)
methods and concluded that none can be appropriate in all situations. They then
proposed their contingency framework called Multiview. This framework has
been devised which includes descriptions of relevant techniques and tools. The
analysts and users select those aspects of the approach which are appropriate
to the context, in effect creating a unique methodology for each application.
Benyon and Skidmore [19] proposed another approach which is known to be
a single tool kit. In this toolkit, they combined the essential features of five
different approaches ranging from soft to hard, and from process-driven to
data-driven. To use this approach, developers would be expected to be skillful
enough to choose the appropriate method or tool depending on the situation.

Based on the above-mentioned researches, Contingency research is typically
premised on the notion that specific features of the development context are
mapped to the selection of an appropriate ISD method from a portfolio of
methods. The assumption is that there is no software development method
good enough for the cases an organization can face when developing software [41].
The contingency factors approach handles the tailoring of software development
methods by choosing multiple methods at once for the organization. This
selection is generally based on development context features such as uncertainty
level, impact, and structure.

The main challenge for contingency factors adoption is that the team mem-
bers would have to understand and be capable of executing a range of methods
according to the contingencies needed for the context. The contingency ap-
proach was criticized by Kumar and Welke [89] for being inadequate to cover
all contingencies, and further, that the cost of sourcing and training for each
method that is required by the contingencies of development. According to the
authors, this situation would be further exacerbated by the rapid and funda-
mental changes in the prevailing development environment in organizations. In
addition, the contingency literature does not provide enough practical guidelines
on how methods or tools may be mapped to development contingencies. The
solution proposed by Kumar and Welke [89] is “method engineering”.

40

3.2 Agile methods tailoring

3.1.2 Method Engineering Theory

While ISD methods in their provision of a disciplined standard for development
give a lot of advantages, it still requires flexibility so that the methods can
be tuned to meet specific project needs Harmesen et al. [70]. To harmonize
the methods, they propose a method-based repository that contains suitable
method fragments and build situational methods out of the existing method
fragments. The authors provide a detailed description of the application of
situational method engineering, but the example they used to illustrate their
approach is drawn from a literature example rather than a real case study.

According to Tolvanen and Juha-Pekka [155], methods should be constructed
according to the needs of particular ISD situations and contingencies. To develop
ISD methods and improve their flexibility, the authors developed methodical
guidelines that are founded on engineering principles. In the guideline, they
specified how knowledge related to methods should be described, analyzed,
and maintained for ISD projects, and how it should be adapted into ISD
tools. They thus built a meta-model which they defined as a modeling process
that takes place one level of abstraction and logic higher than the standard
modeling process. Their meta-model captures information about the concepts,
representation forms, and uses of a method. The author also suggested that
meta-modeling provides advantages in terms of representing, systematizing, and
comparing methods.

Based on these previous researches, Method Engineering theory is a meta-
method process and the creation of a new method to be applied to specific
contexts using the existing method fragments. It is the creation of organization
or project-specific methods and not the acquisition of existing methods from
the community or a vendor [72]. The purpose is to build a more efficient
method responding to the challenges of actual projects and context. While
it brings flexibility to the owners, it however introduces challenges such as
how to control the fragments or how to assemble the method for the context-
specific situations [72]. One common feature of both the contingency and
method engineering research is that they are largely deductive in nature. They
employ theoretical and conceptual arguments to support how methods should be
tailored or constructed. Very little information is available in terms of practical
applications of these ideas in real life.

3.2 Agile methods tailoring

Like other software development methodologies, Agile methodologies are not
always used to their full extent due to some constraints. Instead, software
companies adopt agile methods in different ways based on different criteria
such as business goals, culture and resources [5]. According to Kurapati et
al. [90], practices selection allows organizations to best achieve their goals.
Campanelli et al. [32] did an SLR on 56 research papers on agile methods
tailoring. The authors then defined 6 types of research work on agile methods
tailoring including most used practices, quality, business goals, maturity model,
agile values, and project types. In addition to these researches, there is another
direction, namely “created meta-models”. This research branch aims to formalize

41

Agile Methods Tailoring: an Overview

the descriptions of agile methods and to make the method adoption process
better, faster, and lower risks [43, 105, 139, 97].

3.2.1 Most used practices

Jalali and Wohlin [76] presented a list of practices found from an SLR on the
use of agile methods in global software engineering (GSE). They also identified
different conditions and factors, which affect the success of agile practices in
GSE contexts. By analyzing 77 peer-reviewed papers and articles, 25 practices
were identified as the most frequently used. These practices have been described
to be successfully adopted based on different factors including project size,
duration, domain, and the knowledge area.

Kurapati et al. [90] wanted to understand which agile practices are used in
industry. They did a survey with 109 participants and analyzed practice adoption
associated with the project and organizational level. Twenty-five practices from
two agile methods (XP and Scrum), were presented to the participant to choose
from. The results of this survey help us to identify the most commonly adopted
practices. It also shows practices that are generally adopted together and
correlated customer satisfaction after adopting the practices.

3.2.2 Quality

According to de Azevedo Santos et al. [46], organizations adopt agile practices
as a means to achieve quality in their product. To validate their premise, they
conducted a quantitative survey with 109 participants working on different
fronts of the process of software and analyze the impact of agile practices on
quality. In other words, their work focused on the quality aspects of the agile
practices associated with the high quality of the software product. The survey
results show that from the perspective of using agile practices, the quality of
the software product can be improved by three aspects: bigger involvement of
the staff, agile management of the requirements proposed, and code developed.

3.2.3 Business goal

Esfahani et al. [57] proposed a knowledge-based framework called Strategic
Analysis for Agile Practices (SAAP). The objective of the framework is to
associate the business goals of the organization with the agile practice selection
process using concepts from the Balanced Score Card (BSC). In this framework,
organizational strategies are significant situational attributes that affect the
choice of agile practice. The framework consists of three main components,
including the Strategies Graph, the Evidential Knowledge Base of Agile Practices,
and the Strategic Analysis Process. First, important strategic goals of the
organization are extracted, classified, and visualized. Then, the strategic
knowledge about how each agile practice contributes to different strategic
goals under various project conditions is retrieved from empirical studies. To
situationally analyze the strategic impacts of every candidate agile practices,
they use Strategic Graph.

42

3.2 Agile methods tailoring

3.2.4 Maturity model

To adopt agile practices based on an agile maturity model, Sidky and Ahmed
[141] introduced Sidky Agile Measurement Index (SAMI) framework derived
from agile values and principles. It was designed to guide organizations seeking to
become more agile. The goal is not to focus on any particular methodology, but
rather embracing and realizing the actual values that make a team Agile. There
are 5 steps in the framework, including collaborative, evolutionary, integrated,
adaptive, and encompassing. Each step aims to instill a new value in teams
and organizations. To use this framework, Agile Coach creates an instance
of the SAMI for a particular team by populating each of the steps with a set
of practices that help the team or organization embrace the value designated
by that step. A large number of these practices can come from existing agile
methods or an in-house set of practices that suits their specific environment
and constraints.

3.2.5 Agile values

According to Mardi et al. [100] agile values such as quickness, flexibility, and
responsiveness are the reason behind the fame of agile methods. These values
are fundamental that define the culture of the software company where a
set of practices can be followed based on them. Their research focused on
understanding the key agile values and how frequently they were mentioned
in the literature. They started by looking into the experiences published
previously in the agile literature. They then collected and analyzed how the
agile practitioners identify agile values. Finally, they followed up on the analysis
by collecting and comparing these values with the comments of Agile Manifesto
signatories1. The agile key values obtained from this work include flexibility,
customer-centric, working software, collaboration, simplicity, communication,
natural, learning, pragmatism, and adaptability.

3.2.6 Project

Saleh [129] provides a methodology to select the best agile practices for projects
based on the association between the project’s characteristics and the abilities
of the agile practices. The key project areas which were analyzed in the work
include team size, iteration duration, and team distribution. In his model,
first, the abilities of agile practices are classified based on a detailed analysis
of existing research in the field of agile development. The practices are then
clustered according to their abilities using K-means clustering. After that, a
model of the Agile System Development Life Cycle (Agile SDLC) phases is
used to categorize the practices based on their role in the development process.
Finally, rules are applied to match project characteristics with the abilities of
practices and produce a list of recommended practices.

1https://agilemanifesto.org/display/index.html

43

Agile Methods Tailoring: an Overview

3.2.7 Meta-model for agile method tailoring

The meta-model for agile method tailoring aims at making relations, attributes,
control flows, rules of a particular process more appealing based on a particular
perspective, e.g., products and capability assessment [71], partial agile adoption
[105], and goal-oriented [97, 139, 56].

Damianil et al. [43] proposed a meta-model that supports the derivation
of specific data models for agile development processes. They defined two
meta-models based on SPEM (Software Process Engineering Meta-model) spec-
ification [110]. One is used to generate models for describing the development
process while the other is used to generate models for describing a measurement
framework. To connect the two meta-models they defined a simple trigger layer.
Their work provides the basis for a framework to model a generic software
process meta-model and related measures which they claimed to be derivable
into a model of any specific agile methods such as Scrum, XP, etc.

Mikulnas et al. [105] proposed a meta-model which enables the fusion of
different agile methods referred as partial agile methods adoption. The core idea
is to decompose each agile method into components which in theory could always
be categorized into a common pre-defined structure. To create this meta-model,
they analyzed the problem of a partial agile method adaptation and decomposed
them into sub-problems. They then defined a set of concepts, where each of
them has a direct or indirect relationship to the sub-problems. The integral
solution has been achieved by developing these concepts, deriving their classes,
and organizing them into the framework of the partial agile method adaptation.
The constructed meta-model for the framework serves as a structure for the
decomposition of the agile methods. It is a guide for creating patterns and
developing models for the partial implementation of the agile methods from
these patterns. Their work offers great flexibility in adopting agile methods
since one can manually select and combine different alternative components
coming from different methods at will.

To complement existing process modeling approaches with a new perspective,
Esfahani et al. [56] proposed another type of modeling aimed at describing
and analyzing the social and human aspects of a software process. In their
work, i* modeling framework [54] is used to model the social perspective in
agile methods. Their framework is composed of two processes. First, they use a
Strategic Dependency (SD) model to depict the dependencies between different
(social) actors. Then, they refine the SD model with a Strategic Rationale model.
The SR model is used to illustrate actors’ internal goals and the combination
of activities, artifacts, qualitative attributes, sub-goals, and dependencies that
help the actors to achieve their major goals. An explicit representation of the
social requirements enables software companies to assess the chances of success
by highlighting the major vulnerabilities of the process, checking (before the
adoption process whether the social aspects of the process will be a good fit
for current team members, and answer different kinds of social/organizational
questions about the process.

Lin et al. [96] proposed a novel goal-oriented method to model a software
development process on the top of the Agile Unified Process [10], called Goal
Oriented Agile Unified Process (GOAUP) that could also be applied to OpenUP

44

3.3 Conclusion

and other agile-oriented forks of the unified process. In their model, the top
goal for one iteration named Software iteration finished is a composite state.
This goal is contributed by sub-goals where each of them is achieved by four
lead transitions: inception → elaboration → construction → transition. The
model of AUP via the Goal-Net method provides a new way to look at AUP
from a goal perspective.

3.3 Conclusion

Software method needs to be tailored to be more adherent to the context of the
development and to avoid the failure of the software development. The options
to execute the software method tailoring have been studied and can mainly be
classified as contingency factors and method engineering. Contingency research
is the notion that an appropriate ISD method from a portfolio of methods
is selected based on specific features of the development context. Method
engineering theory is the creation of a new method to be applied to specific
contexts using the existing method fragments.

In agile methods, there are 6 groups of researches on agile methods tailoring
including most used practices, quality, business goals, maturity model, agile
values, and project types. Researches about most used practices discuss how
most popular agile practices are chosen based on different conditions and the
factors which affect the success of agile practices. In another research group,
quality in the software product was found to be the reason that organizations
adopt agile practices. Other than that, business goal of the organization was
associated with the selection process for agile practice adoption. There is
research that provides a framework derived from agile values and core principles
to help guide organizations seeking to become more agile-based on maturity
model. Similarly, agile values have been discussed to be the reason behind
the fame of agile methods. Finally, there is a group research that creates
a methodology to select the best agile practices for projects based on the
association between the project’s characteristics and the abilities of the agile
practices. To formalize their descriptions about agile methods and to make the
method adoption process better and faster, and at the same time to minimize
the risks, meta-models have been created from different perspectives.

45

Chapter 4

Socio-Intentional Modeling Framework:
an Overview

Modeling is a one of the main activities in the software development process.
Illustrating information in graphical models allows practitioners to understand
and analyze agile practice easier. Goal-oriented modeling has been popularly
used in the software engineering discipline with different definitions of the term
“Goal”. According to KAOS modeling [127], goals are desired system properties
that have been expressed by some stakeholder(s). Based on Yu [67], goals
describe the objectives that should be achieved through the cooperation of
actors in the software-to-be and the environment. Illustrating the information
about agile methods adoption in the goal perspective allows practitioners to
identify the strategy to achieve their desired goals. As defined in the Agile
Manifesto, agile methods focus on the social aspects more than the others
including process, technique, tool, etc. In other words, the success of agile
methods adoption depends highly on the individuals, their interactions and
collaboration. It is thus important to find a modeling technique that can
encompass human related issues in agile practice adoption. In socio-intentional
modeling frameworks such as i* [165], Tropos [149], and iStar 2.0 [42], the role
is one of the core elements of the modeling constructs. Each role is constructed
with goals it wants to achieve and multiple dependencies to one another to
collaboratively achieve their goals. Such a representation can help practitioners
evaluate whether a practice is socially compatible with their team. It also allows
reducing adoption failure by minimizing the vulnerabilities caused by roles.

In this chapter, we review some socio-intentional modelings frameworks that
allow us to represent and analyze goals and dependencies between roles using
various techniques. Reviewed frameworks are the popular ones that provide
the most representation notions related to either goal or social dependency. In
the following sections, from Section 4.1 to Section 4.4, we respectively describe
KAOS, NFR framework, i* modeling framework, iStar 2.0, and Tropos. In
Section 4.6, we provide a conclusion about these frameworks.

47

Socio-Intentional Modeling Framework: an Overview

4.1 Knowledge Acquisition in autOmated Specification
(KAOS)

KAOS is a methodology proposed by Dardenne et al. [44] for requirements
engineering, enabling analysts to build requirements models and to derive
requirements documents. A major benefit of KAOS resides in the fact that
it provides a continuum between the problem description and the expected
solution description. This bi-directional traceability between problem and
solution spaces is fundamental not only for the requirements analyst to be sure
that the system to build will be the right one but also for developers who need
to understand the context and objectives to make correct architectural and
design choices. The complete KAOS model leaves no space for wishful thinking
(a goal unrefined), no space for requirements for which we do not know who is
responsible, no space for unjustified operations, and no space for operations, for
which we ignore who will execute what and when.

KAOS model explains step by step how to build a complete KAOS model
and how to generate a requirement document using a supporting tool called
Objectiver [127]. Their methodology to create a complete requirement document
was proposed based on ten the following key ideas :

1. Build a requirements model for describing the problem to be solved and
the constraints that must be fulfilled by any solution provider;

2. Justify your requirements by linking them to higher-level goals. A goal
can be justified by the other goal that explains why it was introduced
in the model or refined as a collection of sub-goals describing how the
refined goal can be reached;

3. Build a model of the whole system, not just the software part of it.
It is very important to identify, record, and take into account all the
requirements and assumptions about that part of the environment that
interacts with the software system;

4. Build a responsibility model which includes agents which can either
be human or automated components that are responsible for achieving
requirements and expectations;

5. Build a consistent and complete glossary of all the problem-related terms
you use to write the requirements. In KAOS, analysts can work on the
glossary progressively and simultaneously during goals and requirements
definition by building a KAOS object model;

6. Describe how the agents need to behave in order to satisfy the require-
ments they are responsible for. KAOS provides operation diagrams which
allows describing all the behaviors that agents need to have to fulfill their
requirements;

7. Generate the requirements document based on the requirements model.
Requirements on the system architecture are derived from the responsibil-
ity model and requirements for the system behavior from the operational
model;

48

4.2 Non-Functional-Requirement Framework (NFR)

8. Validate your requirements by first reviewing the model is more efficient
than asking people to read a long technical document;

9. Use a defensive approach to the building of a requirements model that
investigates in a systematic way what can go wrong in the system-to-be,
that is how and why some requirements can no longer be satisfied;

10. Consider your requirements document as a reference that shall need
updating during
the project development life cycle;

To support their methodology on the construction of a requirements model
by means of diagrams, KAOS provides the graphical representation which can
be described by the meta-model in Figure 4.1.

A KAOS Tutorial

© Respect‐IT sa

6. Methodology summary

6.1. KAOS meta-model

The KAOS/Objectiver methodology (www.objectiver.com) is a requirements engineering
methodology that covers identification of the business requirements, of the requirements, of
the responsible agents and, if needed, of the behaviors they need to conform in order to
satisfy the requirements.

The methodology relies on the construction of a requirements model, the graphical part of
which is represented by means of diagrams displayed in this document.

The following figure sums up the set of concepts and notations you may find in the
methodology. Next a glossary explains each concept shortly in turn.

6.2. KAOS glossary
Agent

Active Object*(=processor) performing operations* to achieve goals*. Agents can be the software being
considered as a whole or parts of it. Agents can also come from the environment* of the software being
studied; human agents are in the environment*.

Association
Object*, the definition of which relies on other objects linked by the association.

Composite system

 Page 45

The software being studied and its environment*.

Fig. 4.1 KAOS meta-model (Objectiver [127])

4.2 Non-Functional-Requirement Framework (NFR)

NFR Framework was proposed by Chung et al. [37] aims to put the main focus
on non-functional requirements in the developer’s mind by using nonfunctional
requirements such as security, accuracy, performance, and cost to drive the
overall design process. The framework offers a structure for representing and
recording the design and reasoning process in graphs, called soft-goal interdepen-
dency graphs (SICs), and cataloging of knowledge about NFRs and development
techniques.

The purpose of this framework is to describe non-functional requirements
which are shown as soft-goals. Starting from the top of a graph, soft-goals are

49

Socio-Intentional Modeling Framework: an Overview

connected by interdependency links that describe the refinements of parent soft-
goals downward into other offspring soft-goals. Each soft-goal has an associated
label representing the degree to which a soft-goal is achieved, which shows the
contribution of offspring soft-goals upwards upon the meeting of other parent
soft-goals. The whole process design includes the decision of what soft-goals to
state, how they are refined, what extent they are refined, and how to calculate
the label value under the control of the developers.

Another important aspect of the framework is the possibility to draw the
body of design knowledge (including development techniques) in three different
kinds of organized knowledge catalog. The first kind of catalog represents
knowledge about the particular types of NFRs and their associated concepts
and terminology. The second kind is used to systematically organize available
development techniques to help the developer to meet requirements. The third
kind of catalog shows implicit interdependencies (correlations, trade-offs) among
soft goals. These catalogs provide a valuable resource for use and re-use during
the development of a variety of systems.

The design process consists of eight sequential and iterative steps as follows:

• Acquire or access the knowledge about the domain and the system be-
ing developed, functional requirements for the particular system, and
particular kinds of NFRs, and associated development techniques;

• Identify the main non-functional requirements that the particular system
under development should meet;

• Decompose NFRs soft-goals based on topic or NFR type;

• Prioritize soft-goals;

• Identify possible development techniques (operationalizations) for achiev-
ing the NFRs (soft-goals);

• Deal with ambiguities, tradeoffs, and priorities, and interdependencies
among NFRs and operationalizations;

• Select operationalizations;

• Support decisions with design rationale;

• Evaluate the impact of decisions.

To support their methodology on how to describe non-functional require-
ments by means of diagrams, the NFR framework provides the graphical
representation which can be described by the meta-model in Figure 4.2.

4.3 The i* Modeling Framework

Yu and Mylopoulos [165] introduced a modeling language called i* to highlight
the importance of WHY dimension in software processes, to provide the inten-
tional view of modeling domain which can express motivations, intents, and

50

4.3 The i* Modeling Framework
BVCCON-TOOL for Business Process Configuration 5

Fig. 3. NFR Metamodel - BVCCoN.

2.4 Technologies

To develop the BVCCoN-Tool, we used a set of unified modeling frameworks,
tools and patterns implementation found in Eclipse community [1]. Among the
modeling frameworks, we highlight EMF (Eclipse Modeling Framework) [14],
that supports the metamodel specifications and provides functionality to auto-
matic code generation in Java, the GMF (Graphical Modeling Framework) [4],
that is a model-driven approach to developing graphical editors based on Eclipse
and Epsilon [5]. The last is a family of language and tools for code generation,
model-to-model transformation, model validation, comparison, migration, and
refactoring of metamodels. Besides that, it uses XMI (Metadata Interchange) to
store, manipulate, recover and interchange of metadata.

To develop the tool, we choose one of the three views of BVCCoN approach,
and we code the metamodel in Emfatic language of Epsilon Framework [2]. Then,
we performed some changes to the metamodel be according to abstract syntax.
Besides that, with EuGENia [3] annotations in the metamodel we also defined a
concrete syntax to get an enriched metamodel. Listing 1.1 demonstrates a piece
of the NFR metamodel. In particular, the annotations represent the following
issues.

– Line 2: the NFRModel is a compartment where the NFR Elements are drawn.
An Eclass that must be annotated like gmf.node.

– Line 16: each NFRSoftgoal is an NFRElement. It’s graphical representation
is a rectangle with dash lines.

– Line 24: each NFRSoftgoalContribution is represented like a link between his
source and target NFRSoftgoal.

– Line 30: in the diagram, each OrContribution is a kind of NFRSoftgoalCon-
tribution. It is a link which representation is a continuous line labeled with
the word “OR”.

Fig. 4.2 NFR meta-model (Pereira et al. [115])

rationale behind activities. The i* language is presented as a goal and actor-
oriented modeling and reasoning framework that consists of a modeling language
along with reasoning techniques for analyzing created models. The i* language
is composed of two modeling components: Strategic Rationale (SR) model for
representing actor objectives and their alternative ways of fulfillment, also the
required resources; and Strategic Dependency (SD) models for describing the
dependency relations among organizational actors.

To build an SD model, i* proposes a set of nodes to represent actors
(Agent, Role, and Position) and a set of dependencies to describe how an actor
(depender) depends on some other (dependee) in order to obtain some objective
(dependum). In i*, the types of dependency are classified based on the object
of dependency (Goal, Soft-goal, Task, and Resource). The model also defines
three degrees of strength (open, committed, and critical) for the dependency
according to the level of vulnerability of the depender when the dependee fails
to accomplish the specified element.

DependableNode Dependency

Actor

Is-a is-part-of

Agent Role Position

InternalElement

IELink

-type : {AND, OR}

Decomposition Means-end

-type : {Make, Some+, Help, Unknown, Some-, Hurt}

Contribution

Dependum

IntentionalElement

Goal Task Soft-goal

Resource

ActorRelationship

{complete, disjoint}

{complete, disjoin}

1

*

*
1

{complete, disjoint}

To *

From *

boundary

{incomplete, disjoin}

To *

From *

*
1

Depender

*1

Dependee

Fig. 4.3 i* language meta-model (Xavier et al. [67])

51

Socio-Intentional Modeling Framework: an Overview

The representations of the dependency relations depicted in SD models are
not as detailed as those represented in SR models. SR diagrams represent a
more elaborate view of actors’ intentional elements (Goal, Soft-goal, Task, and
Resource). In order to do that, the intentional elements inside the SR model
are refined accordingly using three types of links (1) Means-end links which
indicates a relationship between an end, and a means for attaining it. The
“means” is expressed in the form of a task, since the notion of task embodies how
to do something, with the “end” is expressed as a goal. (2) Task-decomposition
link to describe a task and its component. A task can be decomposed into
different types of intentional elements. (3) Contribution link to describe how
intentional elements can contribute (Make, Some+, Help, Unknown, Break,
Some-, or Hurt) to the satisfaction of a soft-goal. Figure 4.3 shows a UML class
diagram representing the i* language.

Based on the core concepts in i* language, two main frameworks, Tropos
and iStar 2.0 have been introduced for a better representation and usage.

4.4 iStar 2.0

iStar 2.0 is an updated version of i* language, introduced by Dalpiaz et al. in
2016 [42]. According to the authors, there are some drawbacks of i* language
that make it hard to be spread outside the experts’ community. First, it is
hard for newcomers to learn the intricacies of the language. Second, there is
not any shared body of knowledge for the educator to teach. Thirdly, there is
not any established reference for using i* in practitioners’ projects, and finally,
it is hard for technology providers to determine which are the core constructs
to be implemented and the techniques to apply on top of those constructs.

The i* research community later started to identify a widely agreed-upon
set of core concepts in the i* language to solve the aforementioned problems.
To build a solid, unified basis for teaching and conducting research with i*, the
community discussed this language in several meetings and discussions started
from October 2014 until May 2016. The result of this two-year community
effort is iStar 2.0 which is claimed to improve consolidation, simplicity, accuracy,
usability, expressiveness, extensibility, and teachability. Figure 4.4 illustrates
the meta-model of iStar 2.0.

There are obviously some differences between i* and the newest version iStar
2.0 which can be summarized in Table 4.1. Some concepts (nodes and links) in
i* are omitted or replaced, and some new others are introduced in iStar 2.0.

iStar 2.0 also introduces another type of model view called Hybrid in addition
to the existing model views (SD and SR) in i*. In this Hybrid view, the
representation is flexible and can be defined accordingly. For instance, it can be
used to combine SD/SR views where we want to focus on the strategic rationale
of a particular set of actors, but not all. It can also be used to show only actors
and actor links or to show only the functional view by hiding all the qualities,
contribution and restriction links, etc.

52

4.4 iStar 2.0

Table 4.1 Comparison between i* and iStar 2.0 (Dalpiaz et al.[42])

Nodes and links i* iStar 2.0 Comment
Actors General actors General actors

Roles, positions,
agent

Roles, agent

Actor links
is-a is-a
is-part-of, plays,
occupies, cover

participated-in iStar 2.0 simplify
i* with a generic
relationship that
may be applied
among two actors
of many types

INS - Agent can only
be an instance in
iStar 2.0

Intentional elements Goal, task, re-
source

Goal, task, re-
source

Soft-goal Quality They move from
hard/soft goal
dichotomy as
the distinction
between the
concepts is based
on the level
of satisfaction
which is varied
in practice

Intentional elements links
Means-end, task
decomposition

Refinement A single rela-
tionship for
simplicity, dif-
ferent semantic
depends on the
connected ele-
ments and the
logical connec-
tors AND/OR

Contribution Contribution
Qualification,
Neededby

New relation-
ships to link
goal/task to qual-
ities/resource,
respectively

53

Socio-Intentional Modeling Framework: an Overview

14 F. Dalpiaz, X. Franch, and J. Horkoff

8 Metamodel

The metamodel for iStar 2.0 is shown in Fig. 14. The concepts and relationships
in the metamodel have been explained and illustrated in the previous sections. We

{xor}

Actor

Agent Role

participates-in .

0..*
0..*

Intentional
Element

wants .
1 0..*

Quality

Task

Resource

Dependency

depender

0..*

1

dependee .

0..*

1

dependerElmt .
0..*

0..1

dependeeElmt .
0..*

0..1

dependum .
1

1

Goal

GoalTask
Element

contributesTo .
0..*

0..*

neededBy

0..*

0..*

. is-a
0..*0..*

. qualifies
0..*

0..*

. qualifies

0..*

0..*

Refinement . refines 10..1

AND-
refinement

OR-
refinement

to .
0..1 1..*

to .0..1

2..*

Contribution
Type

{xor}

Fig. 14. Metamodel of iStar 2.0

describe a number of integrity constraints that explain more detailed constraints
on the models that the iStar 2.0 metamodel allows:

– The is-a relationship applies only between pairs of roles or pairs of actors;
– There should be no is-a cycles;
– There should be no participates-in cycles;
– A pair of actors can be linked by at most one actor link: it is not possible to

connect two actors via both is-a and participates-in;
– In a dependency D, if the dependerElmt x exists, then the actor that wants

x is the same actor that is D’s depender ;
– In a dependency D, if the dependeeElmt y exists, then the actor that wants

y is the same actor that is D’s dependee;
– The depender and dependee of a dependency should be different actors;
– For a dependency, if a dependerElmt x exists, then x cannot be refined or

contributed to;
– The refinement relationship should not lead to refinement cycles (e.g., G OR-

refined to G1 and G1 OR-refined to G, G OR-refined to G, etc.);
– The relationships between intentional elements (contributesTo, qualifies, need-

edBy, refines) apply only to elements that are wanted by the same actor;

Fig. 4.4 iStar 2.0 meta-model (Dalpiaz et al.[42])

4.5 Tropos

Tropos is an agent-oriented software engineering (AOSE) methodology that
covers the whole software development process proposed by Castro et al. [33].
Tropos proposed goal-oriented modeling techniques to capture and analyze both
business and system requirements, risk and security, and (social and geographic)
location requirements based on Eric Yu’s i* modeling framework [164]. The
Tropos methodology supports four phases of software development as follows:

1. Early requirements: It is the phase that the organizational model is
created. This model is concerned with the understanding of a problem by
studying the organizational context within which the system-to-be will
eventually function. This model includes stakeholders, relevant actors,
their respective goals, and how they depend on each other to fulfill their
goals, to perform their plans, and to provide the resources. The outcome
of this early requirements phase includes two main diagrams: the actor
diagram and the goal diagram where the latter is a refinement of the
former with emphasis on the goals of a single actor;

2. Late requirements: It is the phase where the system-to-be is described
with a definition of the functional and non-functional requirements of the
system-to-be within its operational environment. To do that, the system-
to-be is treated as one actor which has a number of dependencies (can be
a depender or a dependee) with the other actors of the organization. The
requirement state changes from “early” to “late” when these dependencies
are defined;

54

4.6 Conclusion

3. Architectural design: it is the phase where the system’s global architecture
is defined in terms of subsystems, interconnected through data, control,
and other dependencies. Since the fundamental concepts of Tropos archi-
tectures are intentional and social, subsystems and system components
are represented as actors and their dependencies to other system compo-
nents are social, rather than procedural/structural. By this mean, system
components need to have the ability to monitor dependencies to other
actors and if any dependencies cannot be fulfilled, system components
need to be able to cancel the dependencies and replace them with new
ones, through planning, negotiation, etc.;

4. Detailed design: it is the phrase where the specification of actor commu-
nication and behavior is defined in further detail. Agents’ goals, beliefs,
and capabilities are specified in detail, along with the interaction between
them.

As Tropos is a methodology which was proposed based on i*, their concepts
and relationships are mostly the same. The primary difference of the Tropos goal
model with i* is the possibility to decompose goals (AND/OR) in Tropos. The
concepts related to the goal diagram in the Tropos meta-model are illustrated
in Figure 4.5.404 Informatica 29 (2005) 401–408 A. Susi et al.

Actor Decomposition

Goal

Plan

Resource

Boolean Decomposition
+Type: String

Contribution
+Metric: String

Means-End Analysis

0..n

1

1

1

pointOfView

pointOfView

pointOfView
1

1

1

contributeTo

contributeTo

contributeTo

contributedBy
1

0..n

0..n

0..n

0..n 0..n

1

0..n

end

means
0..n 1 1

end1

0..n means 0..n

1

1

root

root

0..n 0..n0..n 0..n
{XOR}

{XOR}

Figure 3: The UML class diagram specifying the concepts related to the goal diagram in the Tropos metamodel.

the papers between PC Member and Reviewer,
as shown in Figure 1. The goal assign papers
to reviewers is decomposed in two subgoals:
send the papers, that is operationalized as send
papers by e-mail, and select reviewers
decomposed in verify the competences and
verify conflicts. This latter represents the “Why”
for the resource dependency conflicts between the PC
Member and the reviewer. Moreover, the fulfillment
of these two sub-goals can contribute positively to the
fulfillment of the softgoal be fair in the review
assignment as described by the positive contribution
relationships in the diagram.

4 Metamodel Extension
Secure Tropos has been proposed in [16] as a formal frame-
work for modelling and analyzing security. It enhances
Tropos introducing four new concepts and relationships
behind Tropos dependency: trust, delegation, provision-
ing, and ownership. The basic idea of ownership is that
the owner of a resource (goal or plan) has full authority
concerning access and disposition of his resource (goal or
plan). The distinction between owning a resource makes
it clear how to model situations in which, for example, a
client is the legitimate owner of his/her personal data and a
Web Service provider that stores customers’ personal data,
provides the access to her/his data. We use the relation for
delegation when in the domain of analysis there is a formal
passage of authority (e.g. a signed piece of paper, a dig-
ital credential is sent, etc.). The trust relations have their
intuitive meaning among agents, namely the believe of an
agent that the actor does not misuse some resources.

Figure 5 shows the the new part of the Tropos metamodel
concerning trust and ownership. An actor (the truster)
trusts another actor (the trustee) about the achievement

of a goal, the fulfillment of a plan or the delivering of a
resource. The content of the trust relationship is called
trustum. An actor can be the owner of a resource, a plan
and goal and he/she has authority concerning the use of the
resource, the execution of the plan and achievement of the
goal, respectively.

Actor Trust

Goal Plan Resource

truster

trustee

1

0..n

0..n

trustum

0..1 0..1 0..1

1

{XOR}

trustum1 1 1 trustum

0..n 0..n 0..n

1 ownedBy

owns owns owns

Figure 5: The Tropos metamodel related to the concept of
Trust.

The metamodel describing delegation relationships is
basically identical to the metamodel for the dependency re-
lationship as presented in Figure 1. The delegater delegates
the delegatee for the achievement of a goal, the execution
of a plan or the delivering of a resource. As for the depen-
dency relationship, it is also possible here to specify the
reason (why) of a delegation.

We have shown in [17] how the original concept of Tro-
pos dependency can be expressed in terms of trust and del-
egation. Roughly, when an actor depends on another actor
to achieve a goal (to fulfill a task or to deliver a resource),
it is implicitly intended that the actor trusts the other actor
and delegates it for such activities. A precise formalization
of dependency refinement in terms of trust and delegation
has been presented in [17].

Figure 6 presents an example of application the ex-

Fig. 4.5 Tropos meta-model for the concepts related to the goal diagram (Susi
et al. [149])

4.6 Conclusion

Socio-intenional modeling allows us to fill the gap in the spectrum of conceptual
modeling languages by focusing on the intentional (why) and social (who)
dimensions. The analysis that focuses on socio-intentional aspects allows us to
understand the dependencies between various team members and to clarify the
motivations, intents, and rationale behind their activities.

55

Socio-Intentional Modeling Framework: an Overview

In this chapter, we have reviewed five modeling frameworks considered to be
the most well-known that can represent either goal or social dimension. Among
them, 3 (KAOS, NFR, i*) were proposed with their own representations as well as
the methodologies on how to build the model effectively. iStar 2.0 is the extended
version of the i* modeling framework. Tropos is a methodology that explains
how to use i* modeling framework to capture and analyze the requirement.
Despite some similarities within these frameworks, they are used for emphasizing
different aspects. KAOS provides a continuum between the problem description
and the expected solution description. The methodology and representations in
this framework allow describing the requirements of system-to-be, how to build
it correctly, and who is responsible for each requirement. On the other hand,
NFR focuses on how to describe non-functional requirements (also known as
soft-goal) and identify techniques to achieve these soft-goals. Similar to the two
previous frameworks, i* modeling also allows describing system requirements. In
addition, i* provides extra representations and techniques that allow describing
the dependency between actor, goal, resource, and task in order to achieve
goals. iStar 2.0 is the most updated version of i* which is claimed to improve
consolidation, simplicity, accuracy, usability, expressiveness, extensibility, and
teachability of the original version. At the same time, iStar 2.0 also introduces
another model view called hybrid which gives a broader way to build the
socio-intentional model. Finally, Tropos proposes a methodology based on
the representation in i* modeling framework to capture business and system
requirement that supports four phases of software development.

56

Part III

Socio-Intentional Framework for Agile
Methods Tailoring

57

Chapter 5

Agile Manifesto and Practices Selection:
a Systematic Literature Review

The fundamental core of an agile method should be well understood before
deciding on which parts of the method to adopt. The quickest way to do so is by
understanding the Agile Manifesto. We have observed however that, in practice,
agile practitioners do not dedicate the necessary attention to the manifesto and
directly aim at a specific agile method or practice. This has led us to question
the role of the Agile Manifesto in tailored agile methods adoption.

This chapter aims at understanding and verifying the relation between the
Agile Manifesto and agile practice selection. To this end, we carried out a
systematic literature review (SLR) to answer four research questions related
to tailored agile method adoption i.e., the perception of the Agile Manifesto
in adopting tailored agile methods, and what are the influences, relevance
of the manifesto in meeting the team’s problems, expectations, and benefits.
This chapter is structured as follows. First, we explain the research context
in this chapter in Section 5.1. We then discuss some related works in Section
5.2. Our research methodology, including details on research questions, search
strategy, and data extraction is discussed in Section 5.3. Then, the results of
our literature review are presented in Section 5.4 followed by the threads to
validity in Section 5.5. In Section 5.6, we address the limitations of this chapter.
Finally, our conclusion and findings are summarized and discussed in Section
5.7.

The content of this chapter is mainly taken from our article published in the
International Conference on Product-Focused Software Process Improvement
(PROFES - 2018) proceeding [84].

5.1 Introduction

Representatives from eXtreme Programming (XP), Scrum, Dynamic Systems
Development Method (DSDM), Adaptive Software Development (ASD), Crystal,
Feature-Driven Development (FDD), and Pragmatic Programming met in 2001
to discuss and establish common ground for an alternative to structured and
traditional heavy software development life cycles. They eventually emerged
with a manifesto for Agile Software Development, commonly known as the

59

Agile Manifesto and Practices Selection: a Systematic Literature Review

Agile Manifesto (http://agilemanifesto.org/), defining values and principles to
be respected to be defined as agile.

No method can, of course, be a one-size-fits-all solution. Likewise, simply
choosing a particular agile method and following every rule is also inconsistent
and inefficient. Instead, software Development Team apply agile methods
differently, i.e., depending on their problems, resources, and goals or expectation
[5]. For instance, the Development Team will choose to adopt concepts and
building blocks that are the most suitable to them based on their specific
situation, goals, problems, constraints, etc. This selection makes the method
more adherent to the development context; it is known as software methods
tailoring [61].

Choosing agile concepts, or more concretely agile practices, to adopt requires
sufficient knowledge of the concepts and the impacts these could have on the
team. Understanding all the details of agile concepts could be a time-consuming
and complicated task so that many approaches have been proposed in order to
simplify agile methods tailoring.

One of the interesting topics in agile methods tailoring is the relation and
straight-forward interpretation between each agile practice and agile values or
principles [9, 18, 77, 83, 94, 100, 138]. On this basis, different ideas for agile
methods tailoring have been suggested. For instance, Ahmed and Sidky [9]
proposed the road-map to adopt agile practices based on five values, considered
as the most essential to agility. According to Madi et al. [100], knowing the
most important values is the key to follow the best set of practices as agile
values are fundamental. They analyzed papers and books to explore the key
agile values and the relationships between them. Our previous works [83, 86]
illustrated the strong relationship between the Agile Manifesto (values and
principles) and agile practices, together with an approach for practices selection
using an intentional modeling framework.

Even though the ideas seem so rational and reliable, to the best of our
knowledge no formal verification on the relation between agile practices and
values or principles has been performed yet. Their relations were based on the
assumptions or beliefs of authors. Moreover, although their relations have been
supported by many researchers, we have observed that agile practitioners do
not seem to agree that Agile Manifesto is important for the adoption of the
agile method. In many cases [12, 16, 26, 48, 140], Development Teams do not
dedicate any effort to understanding any agile value or principle before adopting
any agile method. They simply adopt the specific agile methods or practices
which have been known as popular and follow the prescribed process. In other
words, practitioners nowadays are “doing agile” more than “being agile”. While
these two concepts sound similar, they describe two different ways practitioners
adopt agile methods. “Doing agile” means adopting the practices by focusing
only on the process, tool, and technique without understanding the values and
principles behind them. On the other hand, “being agile” means adopting the
agile practices by comprising the internal processes of the individual, which
reflect the personal being in the agile context. “Being agile” focuses on the way
of thinking of an individual towards agile values and principles [51, 123]. This
observation is corresponding to the claim that “Agile is Dead” raised by Dave

60

5.2 Related Work

Thomas, one of the Agile Manifesto authors [154]. According to the author, the
word “agile” has become meaningless as none of the things practitioners are
doing are in the spirit of the Agile Manifesto and they no longer use an “agile
mindset” as a guide to what is useful in their practice.

These reasons motivated us to study and verify, from a statistical point of
view, the relation between the agile values, principles and practices in tailored
agile methods adoption, by means of a systematic literature review. Indeed,
value and principle are subjective concepts that vary greatly from one method
to another. Gathering all the values and principles in literature and categorizing
them would require enormous time and effort. We leave thus this question for
future research. Also, we aim to ease the selection process, having a limited
number of concepts would definitely be helpful and efficient. Consequently, we
decided to focus on the fundamental 4 values and 12 principles defined in the
Agile Manifesto.

In this chapter, we conducted a systematic literature review to extract key
information from the case studies such as: (1) How has the Agile Manifesto and
its importance been discussed in tailored agile methods adoption? And (2) Can
the Agile Manifesto and agile practices selection be related? We believe that
this study will help to enhance the value of the fundamental ideas of the Agile
Manifesto and make its importance more obvious to the community.

5.2 Related Work

Over the last decade, many agile methods have been proposed based on the
Agile Manifesto to meet specific requirements and situations. For instance,
Scrum is proposed with the objective to put more focus on project management
organization while XP is designed to be more responsive to customer requirement
changes [105]. Although agile methods are flexible, they may not be easy to
adopt. To ease the process, various meta-models have been proposed [56, 97,
105, 135, 139, 162, 163], serving as a road-map for agile adoption. We note, for
instance, the situational method framework [135], development process [105],
goal-oriented meta-model [56, 97], Agile Unified Process [10], Goal-Net theory
[139], etc.

Another research direction focusing on selecting agile practices during adop-
tion is agile methods tailoring [5, 9, 32, 57, 90, 100]. Campanelli and Perreiras
[32] analyzed methodological and practical aspects of research on tailored agile
methods and the criteria used for agile methods tailoring. Their results show
that practice selection is based on the internal environment such as project
type, communication, culture and management support, and objectives. Qumer
and Henderson-Sellers [121] also acknowledged the impact of organizational
culture and technical aspects. Abbas et al. [5], Esfahani et al. [57], Kurapati et
al. [90] and Madi et al. [100] provided a formalized answer on how to select
agile practices for tailored agile methods adoption but admitted that no final
academic solution was found on practice selection in tailored agile methods
adoption.

Alongside the aforementioned approaches that depend mainly on the business
goals, the culture and the resources of the organization, there exists a new group

61

Agile Manifesto and Practices Selection: a Systematic Literature Review

of methods based on agile values and principles [9, 83, 100]. Madi et al. [100]
identified 10 key agile values and show how frequently they were mentioned
in the literature. Their identified agile values are: flexibility, customer-centric,
working software, collaboration, simplicity, communication, natural, learning,
pragmatism and adaptability. According to them, these 10 values constitute
the most important influence on practitioners in practice selection. The Sidky
Agile Measurement Index (SAMI) [9] showed the adoption of agile practices
based on an agile maturity model. SAMI is a 5-step road map to guide
adopting teams based on five values considered essential to agility: (level 1)
enhancing communication and collaboration; (level 2) delivering software early
and continuously; (level 3) developing high quality, working software in an
efficient and integrated manner ; (level 4) respond to change through multiple
levels of feedback; and (level 5) establishing an environment to sustain agility.
SAMI is not based on any specific agile method such as XP, Scrum or Crystal,
but instead, uses agile values and principles to define the path to agility.
However, the framework was built just based on assumptions of the author
as mentioned in [9]. Lee and Yong [94] also claimed that each agile practice
should help accomplish agile principles in a method and can be grouped into
management practices, software process practices, and software development
practices. Similarly, we defined in [83, 86] the relation between agile value,
principle and practice in the goal perspective where principle contributes to value
and practice is used to achieve the principle. We also proposed a framework
which can be used to help to select practices. In all these references, agile
value and principle are seen, directly and indirectly, as the set of goals that the
Development Team needs to achieve in order to be agile and practice is used to
help them accomplish these goals.

Motivated by these methods, we strongly believe that there is a relation
between agile value, principle and practice from a goal perspective. In other
words, when it comes to selecting agile practice, by understanding the Agile
Manifesto, practitioners should be able to effectively and quickly distinguish
the outcome of different practices more easily. Although such idea has been
confirmed by many researchers [9, 83, 94, 100], its usefulness in supporting a
practitioner to select an agile practice remains unclear.

Many SLRs have been performed with respect to many different aspects in
agile methods, from the general concept such as [6, 40, 55] to the specific topics
like [32, 75, 132]. Among all, the more closely related to our work is [32], a
systematic literature review of 56 research papers on agile methods tailoring. It
provides detailed literature on agile methods tailoring and a deep understanding
of how the researches on agile methods tailoring were conducted. The authors
identified also the research community view on agile method tailoring, and the
research gaps on the theme. The result, however, does not prove anything about
the relation between agile value, principle and practice.

5.3 Research Methodology

In this chapter, we adopt an SLR approach [82] to study and verify the relation-
ships between the Agile Manifesto and agile practices, in the context of tailored

62

5.3 Research Methodology

agile methods adoption. An SLR allows us to adopt a formal and systematic
approach to identify, select and synthesize recent literature relevant to our
research questions [82]. It consists of defining (1) research questions, (2) search
strategy, (3) study selection, (4) data extraction, and finally (5) data analysis.
Each step will be explained hereafter. Figure 6.2 illustrates the process we have
followed.

(4) Data Extraction

(5) Data Analysis

and Results

(1) Define Research

Questions (RQs)

Define Search Terms

Define Data Source and

Search Criteria

Abstract-based

Selection

Early Selection

Define Criteria Selection

Full-text Screening

Selection

Criteria

Fig. 5.1 Research protocol.

5.3.1 Research Questions

The main aim of this chapter is to confirm the relationship between the Agile
Manifesto and agile practices, more specifically whether or not the Agile Mani-
festo (i.e., the 4 values and 12 principles) is still the core concept that teams
should understand before choosing an agile practice or method to adopt. To
answer this, we have formulated two fundamental Research Questions (RQs) in
this chapter:

5.3.1.1 RQ1: How has the Agile Manifesto and its importance been
discussed in tailored agile methods adoption?

This first question is to verify whether or not the Agile Manifesto has lost its
attention and importance. Answering this question allows us to know about
the state of the art of the Agile Manifesto from a practitioner’s point of view; it
includes:

• RQ1.1: How often has the Agile Manifesto been discussed by agile practi-
tioners during their adoption?

• RQ1.2: In which manner has the Agile Manifesto been discussed, as a
whole or only part of it, just as a reminder or in detail?

63

Agile Manifesto and Practices Selection: a Systematic Literature Review

• RQ1.3: Has the Agile Manifesto been recognized as important by practi-
tioners for their adoption or not? If it has, how often and how has it been
described?

5.3.1.2 RQ2: Is the Agile Manifesto related to agile practices selec-
tion?

This question verifies whether or not there exist relations between the Agile
Manifesto and practices, as mentioned by many researchers. As pointed out
in the related work (see Section 5.2), agile values and principles have been
regarded as a set of goals to achieve for a method to be agile. This set of goals
is said to be accomplished by adopting agile practices.

We seek to answer this question by comparing the Development Team’s
goals of adopting agile methods with what is described in the Agile Manifesto.
The results would allow us to confirm whether or not the Agile Manifesto could
be related to agile practice selection, from the practitioner’s point of view.

Based on our observation, Development Team’s goals in adopting tailored
agile methods can be described in three situations: (1) sometimes, Development
Teams decide to change their development process based on problems they
encountered. Their goal is to solve these problems by using a set of agile
practices or methods; (2) in some other cases, problems are not the root cause of
the adoption. Knowing that agile methods are the most popular nowadays, some
Development Teams decide to follow them with the hope of improving their
current processes. They have their predefined goals or expectation to achieve
by adopting specific agile practices or methods; (3) regardless of the problem
to solve or the expectation to fulfill, in many cases, result from adopting agile
methods are described as benefits. These benefits can be seen as accomplished
goals.

Hence, in order to know whether or not the Agile Manifesto could be related
to agile practice selection, we defined three other sub research questions:

• RQ2.1: Is the Agile Manifesto relevant to the team’s problems that led to
tailored agile methods adoption?

• RQ2.2: Is the Agile Manifesto relevant to the team’s expectations from
tailored agile methods adoption?

• RQ2.3: Is the Agile Manifesto relevant to the team’s benefits of tailored
agile methods adoption?

If the Development Team’s goals of agile methods adoption in most situations
are relevant to the Agile Manifesto, then the description in the manifesto can still
cover the core goals of this methods creation. Understanding the Agile Manifesto
would allow the Development Team better defining their goals in adopting agile
methods and consequently better selecting the set of agile practices.

64

5.3 Research Methodology

5.3.2 Search Strategy

5.3.2.1 Search terms.

Our objective is to understand the importance of the Agile Manifesto in tailored
agile methods adoption. Software method tailoring is the process that makes the
method more adherent to the development context [61]. Various terms are used
in the literature as a synonym for tailor, i.e., partial, customize, and practice
selection [5, 14, 56, 83, 90]. Based on the research questions, we defined search
terms as the combination of various words referring to tailored agile methods
including partial, tailor, customize, practice selection and the name of the most
popular agile methods (according to the 11th VersionOne survey [160]). Since we
want to find out the expectations/goals of adopting agile methods, we thus also
added the word “goal” into the search terms. We summarize the search terms
as follows: “(Agile OR Scrum OR XP OR Kanban OR ScrumBan OR Lean
OR DSDM OR AgileUP OR FDD OR Iterative Development) AND ((practice
AND select) OR tailor OR customize OR partial OR adopt OR expectation OR
goal)”.

5.3.2.2 Search Engines and Search Criteria.

We only consider formal data sources, i.e., papers that were published in peer-
reviewed conferences and journals from the four well-known digital libraries in
the field of software engineering: IEEEXplorer (http://ieeexplore.ieee.org), Sci-
enceDirect (http://sciencedirect.com), SpringerLink (http://link.springer.com)
and ACM Digital Library (https://dl.a cm.org). We did not consider GoogleScholar
since it provides also unpublished and non-peer-reviewed papers.

For each search engine, we used advanced search options to ensure our
dataset quality. In general, we set the publication years between 2000 and 2017,
the field of Software Engineering, and the search terms matching the title of the
paper, keywords, or abstract. We found 13125 papers in total: 1722 papers in
IEEE Xplorer, 526 papers in ScienceDirect, 9053 papers in SpringerLink, and
1824 papers in ACM Digital Library (see Figure 5.2).

5.3.3 Study Selection

We defined a 3-step paper selection process due to the number of papers found:
Early Selection, Abstract-based Selection and Full-text Screening Selection. Each
step, described in the following subsections, has well-defined selection criteria.
Figure 5.2 provides the results of selected papers of each step.

5.3.3.1 Early Selection.

The goal was to have a consistent list of papers. All the search results were
merged into a single file listing 13125 papers in total. We then eliminated
redundant papers or papers not published in the 2000-2017 period. This step
allowed us to discard about two-thirds of the papers to finally retain 4361
papers.

65

Agile Manifesto and Practices Selection: a Systematic Literature Review

Article identified from IEEE

(n = 1722)

8764 duplicate articles removed

4361 articles selected for abstract
screening

3928 articles excluded.

Excluded reasons:
- Agile usage/implementation/adoption not for

software development
- Agile usage in only in theory

- Simulation model

- Article from workshops

- Describe a specific practice/technique

- Agile method which has not been introduced

in one of the most popular agile methods

Id
e

n
ti

fi
ca

ti
o

n

S
c

re
e

n
in

g

In
c

lu
d

ed

51 articles selected for data
extraction

Article identified from ACM

(n = 1824)

Article identified from
Springerlink
(n = 9053)

Article identified from
ScienceDirect

(n = 526)

433 articles selected for full-text
screening

382 articles excluded.

Excluded reasons:
- Does not meet any of the following criteria:

describe about the influence of agile value or
principle over agile methods or practice
selection; describe how they adopt some set
of practices or methods based on their
problems or expectations; describes the
benefits they gained from adopting some set
of agile practices or agile methods

Fig. 5.2 Papers selection.

5.3.3.2 Abstract-based Selection.

The goal was to determine whether or not the article relates to our research
questions based on its abstract which was carefully read by three reviewers.
Before we started the real selection process, we defined and refined several times
criteria for inclusion and exclusion to gather the maximum possible relevant
articles and effectively reject irrelevant papers. The final criteria are summarized
in Table 6.1:

We used Covidence (www.covidence.org), a collaborative tool for facilitating
the SLR process.

To get started, we needed to upload the title and abstract of the 4361 papers
into Covidence. However, since SpringerLink and the ACM Digital library do
not allow downloading multiple abstracts at once, we therefore developed a
third-party program for help. We then started the review process.

Each reviewer read the title and abstract of each paper and voted individually
(Yes/No/Maybe) based on the above criteria. Papers with three ‘Yes’ votes
were included for the next step, those with three ‘No’ votes were eliminated

66

5.3 Research Methodology

Table 5.1 Inclusion and exclusion criteria for Abstract-based selection.

Inclusion criteria Exclusion criteria
- Tailored/partial/customized agile
methods or agile practices selection;

- Agile usage/implementation/
adoption not for software develop-
ment;

- Empirical/research on adopting
agile methods for software develop-
ment;

- Agile usage in theory;

- Literature review/survey on agile
framework;

- Simulation model;

- Challenge/issue in agile methods
adoption;

- Article from workshops;

- Approach, model, framework, in-
troduction or guide to agile methods
adoption;

- Use of a specific practice/technique
(daily meeting, pair programming,
etc.);

- Integration of agile methods to
other methods;

- Agile method which has not been
introduced in one of the most popu-
lar agile methods

- Transformation from other to agile
methods;
- Agile practices usage.

and papers with three ‘Maybe’ or conflicted votes were solved by a face-to-face
discussion. 433 papers were selected for the next step.

5.3.3.3 Full-text Screening Selection.

The goal was to do a full-text screening of each paper and determine if it
still relates to our research questions. We followed the same process as in the
previous step and used the same tool.

First, we downloaded manually the full-text in PDF format and uploaded
it to Covidence. 399 papers were successfully uploaded, and 4 papers were
rejected for technical and format reasons. In addition to the abstract-based
selection, we extended our inclusion criteria to the real case study which:

• describes the influence of agile value or principle over agile methods or
practice selection;

• describes how they adopt some set of practices or methods based on their
problems or expectations;

• describes the benefits they gained from adopting some set of agile practices
or agile methods.

As long as one of the criteria is found, the article is included. In the end,
383 papers were eliminated and only 51 papers were selected in this study.

67

Agile Manifesto and Practices Selection: a Systematic Literature Review

5.3.4 Data Extraction

Each paper was read carefully and data was extracted by only one reviewer.
We divided the 51 papers into three sets and each reviewer took care of one set.
For each paper, we extracted the following information:

• Conference or Journal name and year of publication: It allows us
to determine if the dataset is representative for our study;

• Type of agile: It allows us to know in which environment the tailored
agile methods are adopted;

• Type of institution: It allows us to know in which sector agile methods
are tailored and adopted;

• Mention about Agile Manifesto: It allows us to answer RQ1.1 and
RQ1.2. We denoted the findings as ‘Yes’ when the paper explicitly
mentioned the word Agile Manifesto and we extracted values or principles
and denoted them otherwise;

• Agile Manifesto influence on partial agile adoption: Basically, we
tried to find a clear statement of influence by the authors. We denoted
‘Yes’ if the author simply refers to ‘Agile Manifesto’ as influential, or we
extracted the values and principles if any of them were described as the
influence. It allows us to answer RQ1.3;

• Problem: We read very carefully to understand the cause behind the agile
methods tailoring. For any mentioned problem that led to agile practices
or methods adoption, we extracted the specific statements without any
modification and stored them in a list. Mapping this list to the 4 values
and 12 principles of the Agile Manifesto allowed us to determine whether
or not the Agile Manifesto is relevant to the team’s problems and to
answer RQ2.1;

• Expectation: We followed the same process for extracting problems.
Instead of looking for the team’s problems, we tried to understand their
expectations from specific practices or agile methods before the adoption.
This allows us to answer RQ2.2;

• Benefit: Again the same process was followed. Instead of looking for
the team’s problems, we tried to understand the team’s benefits after the
adoption. This allows us to answer RQ2.3.

5.4 Results

As seen in Figure 5.3, we found that more than 60% of the selected papers were
published in the field of agile methods and highly ranked conferences (A- or
B-based on Core Portal Conference — http://portal.core.edu.au/conf-ranks/)
including ICSE, HICSS, XP, AGILE, and PROFES. In addition, most of these
papers were published less than 10 years ago. We also noticed that more than

68

5.4 Results

70% of the studies in the dataset were conducted in IT companies while the
rest were in the IT sector of a non-IT company. Furthermore, it is noticeable
that agile methods are tailored and used mainly in a normal agile environment
(51%), distributed environment (23%), and Scaled Agile (8%). As a result, we
can conclude that our dataset is representative for our study.

IT

comapny

70%

Non IT

company

20%

Undefined

10%

Distribut

ed agile

23%

Embedded

system

4%

Normal Agile

51%
Scale agile

8%

Undefined

14%

0

2

4

6

8

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

14

10

6

4 4
3 3 3

2 2

X
P

O
th

e
rs

A
G

IL
E

IC
S

E

Jo
u

rn
a

l
p

a
p

e
r

B
o

o
k

 c
h

a
p

te
r

H
IC

S
S

P
R

O
F

E
S

E
u

ro
S

P
I

IC
G

S
E

(a) Number of papers per year.

(c) Number of papers per conference, journal and book chapter.

(b) Number of papers per type of institution.

(d) Number of papers per environment.

Fig. 5.3 Dataset information.

5.4.1 RQ1: How have the Agile Manifesto and its influence been
discussed in tailored agile methods adoption?

Figure 5.4 summarizes the result of our analysis from the 51 papers.
Overall, 51% (26 papers) of the papers mention the Agile Manifesto when

evoking the tailored agile methods adoption (see Figure 5.4.a). Furthermore,
all the papers do not discuss the Agile Manifesto in the same way. 38% of them
(10 papers out of 26) simply mention the word “Agile Manifesto” without even
referring to neither a value nor a principle. The other 38% refer to only the
values, 12% (3 papers) refer to only the principles and the rest 12% refer to
both values and principles (see Figure 5.4.b).

Concerning the influence of the Agile Manifesto on tailored agile methods
adoption (see Figure 5.4.c), it is only discussed in 14 papers among which 11
papers (42%) acknowledge it with a clear explanation while the other 3 (12%)
only acknowledge without further details.

The result of RQ1 shows that the interest of the Development Team in
understanding the Agile Manifesto is not significant. Overall, out of 51 case
studies, 51% talk about it while only 21% (11 papers) acknowledge its influence.

69

Agile Manifesto and Practices Selection: a Systematic Literature Review

Do not mention

anything related

to Agile

Manifesto

49%

Mention about

Agile Manifesto

51%

Mention only

values

38%

Mention only

principles

12%

Mention both values

and principles

12%
Simply use the word

'Agile Manifesto'

38%

Describe its influence

in detail

42%

Simply said

that it has

influence

12%

Do not mention

about influence

46%

(a) Mention about

Agile Manifesto.

(b) Different ways of mentioning

about Agile Manifesto.

(c) Mention about influence of

Agile Manifesto.

Fig. 5.4 The influence of the Agile Manifesto in tailored agile methods adoption.

5.4.2 RQ2: Is the Agile Manifesto related to agile practices selec-
tion?

To answer RQ2, our intuition was to compare the problems, expectations, and
benefits extracted from the 51 selected papers with the Agile Manifesto, i.e.,
the 4 values and 12 principles. Since we had already provided the mapping
among the 4 values and 12 principles in [86] (see Table 5.2), we only compared
them (problems, expectations, and benefits) with the 12 principles.

From the data extraction process, we gathered 3 lists of statements, one for
the problems1, one for the expectations2, and one for the benefits3. As a result,
we have 42 statements describing problems, 155 statements describing expected
results, and 205 statements describing benefits.

The mapping process was carried out manually by one author and double-
checked by another, in the form of a Cartesian product. This means that for each
list, we compared every statement to the 12 principles of the Agile Manifesto.
They are mapped when they have a close relation to one another. For instance,
the problem “delivery pains” is closely related to both Principle_6 “Our highest
priority is to satisfy the customer through early and continuous delivery of
valuable software” and Principle_7 “Deliver working software frequently, from a
couple of weeks to a couple of months, with a preference to the shorter timescale”.
This problem is thus mapped to both the Principle_6 and the Principle_7.
The result of the mapping is exposed in Figure 5.5.a. Figure 5.5.b provides the
mapping of problems, expectations, and benefits to the 4 values. The number of
problems, expectations, and benefits, which were mapped to the values, is the
result of the union between the different principles contributing to each value.

1Problems were extracted from 12 papers that described the problems they encountered
which led them to tailored agile adoption.

2Expectations were extracted from 27 papers that discussed the team’s expectations.
3Benefits were extracted from 37 papers that discussed the benefits of tailored agile

methods adoption.

70

5.4 Results

Table 5.2 Mapping agile values and principles.

Value Principle

Principle_5: Build projects around motivated individuals.

Give them the environment and support they need, and trust

them to get the job done.

Principle_6: The most efficient and effective method of

conveying information to and within a development team is

face-to-face conversation.

Principle_8: Agile processes promote sustainable

development. The sponsors, developers, and users should be

able to maintain a constant pace indefinitely.

Principle_11: The best architectures, requirements, and

designs emerge from self-organizing teams.

Principle_12: At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its behavior

accordingly.

Principle_1: Our highest priority is to satisfy the customer

through early and continuous delivery of valuable software.

Principle_3: Deliver working software frequently, from a

couple of weeks to a couple of months, with a preference to

the shorter timescale.

Principle_7: Working software is the primary measure of

progress.

Principle_10: Simplicity--the art of maximizing the amount of

work not done--is essential.

Value3: Customer collaboration

over contract negotiation
Principle_4: Business people and developers must work

together daily throughout the project.

Principle_2: Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

Principle_9: Continuous attention to technical excellence and

good design enhances agility.

Value1: Individuals and

interactions over processes and

tools

Value2: Working software over

comprehensive documentation

Value4: Responding to change

over following a plan

The final lists of problems, expectations, benefits, and the result of mapping
with Agile Manifesto are available online at https://goo.gl/rrghEH.

The correlation ratio between the Agile Manifesto and agile methods adop-
tion goal (problems, expectations, and benefits) is defined by the number of
problems, expectations, and benefits that can be mapped to at least one agile
principle over the total number we found. For instance, 40 out of 42 problems
can be mapped to at least one of the principles. The correlation ratio between
problems and the Agile Manifesto is thus 95%.

5.4.2.1 RQ2.1: Is the Agile Manifesto relevant to the team’s prob-
lems that led to tailored agile methods adoption?

As seen in Figure 5.5.a, most of the problems (95%) can be mapped to the 12
principles. The top line in Figure 5.5.a shows the distribution of problems in

71

Agile Manifesto and Practices Selection: a Systematic Literature Review

0 4 4 3 0 4 6 0 0 8 11 82

30 19 8 18 21 42 42 7 37 33 4 1731

38 29 11 32 22 40 39 10 42 63 23 4717Benefits

Expectations

Problems

O
th

e
rs

P
ri

n
c
ip

le
_

0
1

P
ri

n
c
ip

le
_

0
2

P
ri

n
c
ip

le
_

0
3

P
ri

n
c
ip

le
_

0
4

P
ri

n
c
ip

le
_

0
5

P
ri

n
c
ip

le
_

0
6

P
ri

n
c
ip

le
_

0
7

P
ri

n
c
ip

le
_

0
8

P
ri

n
c
ip

le
_

0
9

P
ri

n
c
ip

le
_

1
0

P
ri

n
c
ip

le
_

1
1

P
ri

n
c
ip

le
_

1
2

V2

V
1

11 8 8

17

2

60
56

33

21

31

68

47

63

51

17

0

10

20

30

40

50

60

70

80

Value1 Value2 Value3 Value4 Others

Problems Expectations Benefits

(a) Relevance with principles (b) Relevance with values

0 4 4 3 0 4 6 0 0 8 11 82

30 19 8 18 21 42 42 7 37 33 4 1731

38 29 11 32 22 40 39 10 42 63 23 4717Benefits

Expectations

Problems

O
th

e
rs

P
ri

n
c
ip

le
_

0
1

P
ri

n
c
ip

le
_

0
2

P
ri

n
c
ip

le
_

0
3

P
ri

n
c
ip

le
_

0
4

P
ri

n
c
ip

le
_

0
5

P
ri

n
c
ip

le
_

0
6

P
ri

n
c
ip

le
_

0
7

P
ri

n
c
ip

le
_

0
8

P
ri

n
c
ip

le
_

0
9

P
ri

n
c
ip

le
_

1
0

P
ri

n
c
ip

le
_

1
1

P
ri

n
c
ip

le
_

1
2

V2

V
1

(a) Relevance with principles

11 8 8

17

2

60
56

33

21

31

68

47

63

51

17

0

10

20

30

40

50

60

70

80

Value1 Value2 Value3 Value4 Others

Problems Expectations Benefits
(b) Relevance with values

1

Fig. 5.5 Mapping of problems, expectations and benefits with Agile Manifesto.

line with related principles. The three most relevant ones are Principle_10,
Principle_11, and Principle_12. The reason is that most problems faced by
the Development Team are customer-based and the change-oriented ones that
motivate tailored agile methods adoption. Four principles are not mapped with
any problem. However, at the value level, we can see in Figure 5.5.b that all
the values are relevant.

We can summarize that the Agile Manifesto and the team’s problems
are closely related to one another. However, the number of problems is not
significant; it leads us to conclude that problems faced by the Development
Team are not the main reason for tailoring agile methods for adoption.

5.4.2.2 RQ2.2: Is the Agile Manifesto relevant to the team’s expec-
tations from tailored agile methods adoption?

We extracted 155 expectations in total from the selected papers. Figure 5.5.a
(second row) and Figure 5.5.b present the detailed statistics of agile principles
and values respectively. The majority of the expectations (80%) can be mapped
to at least one principle. The three most relevant principles are Principle_6,
Principle_7, and Principle_9 which contribute to Value2 “working software
over comprehensive documentation” i.e., having a working software is always
what people expect the most. More precisely, Principle_6 and Principle_7
describe a very similar idea on software delivery and thus they both have slightly
different numbers of “expectations”. At the value level, Value1 “Individual and
interaction over process and tool” is the most relevant. In contrast to the
“problems” section, Principle_11 and Value4 are the least relevant. While the
differences between the two most relevant values (Value1 and Value2) are not
significant, a big gap exists between the most and the least relevant values
(Value1 has 60 related expectations and Value4 just 21).

Briefly speaking, we can conclude that the Agile Manifesto is relevant to
the team’s expectations when tailoring agile methods for adoption. However,
agile principles are not all equally important. This corresponds exactly to the
motivation of tailored agile methods adoption, i.e., adopting only the most
relevant principles or practices instead of full adoption.

72

5.5 Threats to Validity

5.4.2.3 RQ2.3: Is the Agile Manifesto relevant to the team’s bene-
fits of tailored agile methods adoption?

The mapping results between the benefits extracted from the papers and the
elements of Agile Manifesto are presented in Figure 5.5.a for the principle level
and Figure 5.5.b for the value level. We found that the majority of the benefits
(92%) could be mapped to at least one principle. At the value level, Value3
and Value1 are the most relevant among all. This proves that agile methods
allow Development Teams to improve their communication both between team
members and to customers. Globally, the number of “benefits” mapped to each
value does not change much from one value to another. Also, it is noticeable
that there is a strong correlation between expectations and benefits.

The overall results show that 95% of problems, 80% of expectations, and
92% of benefits can be mapped to principles and values of the Agile Manifesto.
It means that the Agile Manifesto is highly related to the real development of
the team’s goals in every situation: problems, expectations, and benefits.

5.5 Threats to Validity

Kitchenham [80] states that the systematic process involved in SLR is designed
to avoid bias. Thus, in every step of our SLR process, we manage the bias as
much as we can.

Starting from the data source, Kitchenham et al. [81] claims that researchers
should collect from at least 4 different sources. Inspired by this idea, we
collected our data from four different sources: IEEEXplore, ACM Digital
Library, SpringerLink, and ScienceDirect. For the keywords used in search
engines, we used multiples terminologies (synonyms) used by both researchers
and practitioners. We only consider papers published between 2000 and 2017,
since the Agile Manifesto could not be mentioned before 2000. Therefore, we
unavoidably missed some papers. However, we believe that we have retrieved a
large and representative sample for this review. Regarding the inclusion and
exclusion criteria, we defined and refined them several times before starting
the real selection to collect the maximum relevant papers and effectively reject
irrelevant ones. According to Kitchenham [80], this can greatly minimize the
possibility of bias. To address the problem of quality, in accordance with
Campanelli and Parreiras [32], we only considered peer-reviewed papers from
conferences and journals. Next, in the data extraction and classification stages,
we applied standard classifications defined in the current literature based on
shared and common definitions. We had multiple face-to-face discussions when
there were misunderstandings in some concepts.

To summarize, we have considered the internal validity of this chapter to
be acceptable. Most of the biases encountered are inherent and we aimed to
manage them as much as we could.

73

Agile Manifesto and Practices Selection: a Systematic Literature Review

5.6 Limitations

There are some limitations in this chapter caused by the biases in the SLR
process that we could not avoid.

First, there is no explicit definition of the term “quality” in our article
selection criteria. Instead, we simply assume that all conference papers/journals
reach an acceptable level of quality.

Second, there is bias in the data extraction where we tried to capture the
importance of the Agile Manifesto. Its importance was not always explicitly
mentioned but interpreted by the readers. Consequently, some data may have
been missed or misunderstood.

Finally, there is bias in the publication trends. Based on Kitchenham and
Charters [82], they refer to the problem that positive results are more likely
to be published than negative ones. In other words, very few case studies
have reported their failures in agile methods adoption. Instead, they have been
focusing more on the benefits of the adoption. There are thus many unsuccessful
cases we have missed.

5.7 Discussion and Conclusion

The primary aim of this chapter was to verify the relation between the Agile
Manifesto and agile practices selection through an SLR approach. We first tried
to find out how the Agile Manifesto has been discussed in tailored agile methods
adoption. Then, we tried to see whether or not agile practices selection can be
related to agile values or principles defined in the Agile Manifesto by comparing
them with the team’s problems, expectations, and benefits.

The result of RQ1 shows that our observation is true, the Agile Manifesto
has really lost attention from the Development Team. Among the 51 selected
papers, only about half of them (51%) mentioned the Agile Manifesto (detail
and not detail). Agile practitioners tend to follow only the rules of a specific
methodology such as Scrum, XP, etc., and completely ignore the manifesto.

On the contrary, the results of RQ2.1, RQ2.2, and RQ2.3 show that the 4
values and 12 principles of the Agile Manifesto are highly relevant to the team’s
problems, expectations, and benefits. 95% of problems, 80% of expectations, and
92% of benefits can be mapped to principles and values of the Agile Manifesto.
It means that the Agile Manifesto still covers fundamental aspects of any agile
method. Therefore, Development Teams should spend some time to understand
the Agile Manifesto before adopting any agile method including a tailored
one. In addition, as can be seen in Figure 5.5, there is a strong correlation
between expectations and benefits (except for the principles Principle_10 and
Principle_12). This high correlation can explain that, by tailoring agile methods
to meet their expectations, the team can of course obtain the benefits accordingly.

In conclusion, even though a lot of research supports the idea that the Agile
Manifesto (values and principles) allows defining the set of practices, yet software
Development Teams tend to neglect the Agile Manifesto when tailoring agile
methods for adoption. We found however that the Agile Manifesto should be
more valued and draw more attention from the Development Team; it deserves

74

5.7 Discussion and Conclusion

to be a guideline for the Development Team to tailor any agile method and
select the right features for adoption. Having a deep knowledge of the Agile
Manifesto gives advantages for better tailoring agile methods to maximize the
team’s expectations and eventually the benefits.

Finally, this study provides a more insightful validation on the relation
between the Agile Manifesto and agile practices which was always made based
on the assumptions or beliefs of the researchers. This validation can be used as
the evidence to create a more complete framework for tailored agile methods
adoption in an alternative perspective. For the next step, we aim at building
a repository through a systematic review of the empirical studies to gather
the relationships between the Agile Manifesto and each practice. Using this
repository, the practitioner can then identify easily the related practices to fulfill
fully or partially the principles and values of the Agile Manifesto.

Acknowledgments

The authors would like to thank Benjamin Croix for his involvement in the
Systematic Literature Review, i.e., the papers selection process, and data
extraction.

75

Chapter 8

Towards a Systematic Socio-Intentional
Framework for Agile Methods Tailoring

In this chapter, we propose a framework to analyze agile practice before the
adoption, with the help of the OBAMA-tool and modeling technique. We
start by explaining the research context, related works, motivation, and the
contributions of this chapter in Section 8.1. Each contribution is then described
in detail in the following sections. Section 8.2 discusses the first contribution
which is about finding the right socio-intentional representation to depict the
information on agile methods adoption. The notions and modeling techniques
are also highlighted. Section 8.3 describes the second contribution which is the
proposed methodology for tailoring agile methods. In every step, we explain
how to find relevant information from the tool, how to build the model, and
how to analyze agile practice. In the last contribution, we use a case of a real
software development project as an example to demonstrate how our framework
is applied in practice. This feasibility study is described in Section 8.4. Finally,
we provide a conclusion and discuss the future works in Section 8.5.

A preliminary study of our framework for agile methods tailoring is published
in Software Technologies - 12th International Joint Conference (ICSOFT - 2017)
proceeding [83]. Based on the contributions in Chapter 5, Chapter 6, and
Chapter 7, we present in this chapter a more sophisticated version of the
framework. The following content is based on our article, accepted by the IEEE
International Conference on Business Informatics (IEEE CBI - 2021).

8.1 Introduction

After years of experience with agile methods, practitioners find a growing
interest towards agile methods tailoring in order to adopt only fragments of
different methods based on different criteria. Let us imagine a scenario where
a development team wants to adopt agile methods, the right way should be
adopting only agile practice that fits their needs and context. Once agile practice
is identified, to get the expected result from the adoption, the development
team needs to have a strategy to adopt it successfully. In order to facilitate
these processes, many approaches have been proposed by focusing on different
aspects of the software development such as process, resource, and goal [11, 43,

119

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

59, 71, 105, 133]. However, none of them focuses on socio-intentional aspects,
precisely the way team members work together to successfully adopt the agile
practice and to achieve their goals.

Prior studies that modeled an agile context using socio-intentional aspects
in the most convincing way are [56, 59, 11]. Esfahani et al. [56] proposed
the usage of the i* modeling framework [54] to visualize the social perspective
in agile methods. Even though this work provides evidence to show that the
representation of the relationships and dependencies between the role helps
analyze agile methods and identifying possible vulnerabilities, it does not provide
a clear methodology of how to build the model and how to use them effectively
for agile methods tailoring. Later on, the authors proposed a framework for
the evaluation of a candidate agile method prior to its enactment within the
development environment of an organization [59]. This framework includes
the steps to analyze agile practices, identify problems of process and find
solutions based on the concept of strategic actors of organizations, and their
dependency relations. Their framework includes the steps to analyze whether
an agile practice is suitable for the adoption based on the team’s objective and
situations. Similarly, Ambler and Mark [11] proposed a Disciplined Agile (DA)
toolkit that takes a goal-driven approach to guide through the process-related
decisions, to tailor and scale agile strategies based on the situation a team faces
and the outcomes it desires. These last two frameworks however focus only on
the goal aspect. On the other hand, the social aspect is known as being one of
the foundations of agile methods. Two main agile values and four main agile
principles focus on people, their interactions and collaborations. According
to Eckstein [50], most projects do not fail due to technology, but because of
social and organizational problems, and a lack of effective communication. In
other words, neglecting the dependencies between roles hampers the chance to
successfully adopt an agile practice and may cause the team to miss its goal.

Three key problems were identified from existing frameworks:

1. The 4 values and 12 principles of the Agile Manifesto have never been used
in any of the frameworks. In Chapter 5, we prove that understanding
the Agile Manifesto is an effective way to define the outcome of different
practices. Nevertheless, the existing frameworks would rather be oriented
to business goals, various values, or principles than the ones defined by
the Agile Manifesto;

2. Theses frameworks focus on what to do (process), what to produce (prod-
uct) and what to achieve (goal), but they have hardly discussed any
concerns related to the social aspects. For instance, dependencies between
team members to conduct a practice, the vulnerabilities caused by the
roles, and how they solve the problems, etc;

3. In most frameworks, the tailoring processes are made based on theory or
the propositions of the authors. The actual experiences of agile practice
adoption, which can be found in the literature, have barely been used. As
a consequence, the outcome of real-life practice adoption is different from
the expectation.

120

8.2 Socio-intentional Modeling Framework Usage

To address these problems, we propose a socio-intentional framework that
focuses on the intentional (why?) and social (who?) dimensions. In this
framework, we propose a methodology to analyze agile practices and to define
the right strategies for adopting them based on the team’s goals, their situations,
and dependencies between team members. First, we analyze the relationship
between the adoption goals, agile practice, and the suitability of the team for
the adoption. In the goal dimension, the Agile Manifesto is used as one of the
criteria for agile practice selection. By balancing between the best agile practice
that can achieve the desired goals and the most suitable one with respect to
the team’s situation, we can decide what practice to adopt. Once the right
agile practice is identified, we analyze the social requirements (roles, tasks, and
dependencies) for adopting it. This step allows us to foresee the vulnerabilities
that can lead to adoption failure. Based on that, we can prepare for a successful
adoption by solving the vulnerabilities. In our framework, rather than following
agile practice adoption prescribed in a theory, we use our evidence-based tool
to provide the needed information. This tool was created based on real agile
adoption experience found in the literature. By doing so, we bring the results of
agile methods tailoring closer to reality. As it is hard to analyze the information
listed by the tool in textual format, the information is also presented through
a social-intentional modeling language; this is intended to ease the analyzing
process.

This chapter is the continuation to the Chapter 5, Chapter 6, and Chapter
7. The contributions in this chapter are divided into three parts as follows:

1. Socio-intentional Modeling Framework Usage: to ease the analyz-
ing process, we propose using models to visualize the information provided
by the tool. We find suitable modeling language and notions by mapping
the concepts and relationships in our ontology model with the notions
of different modeling languages that can represent either goal or social
dimension. For the agile concepts that cannot be mapped, we propose
extended notions for the representation;

2. Methodology for practices selection and adoption: to guide prac-
titioners on how to analyze agile practices and prepare for the successful
adoption, we propose a well-defined set of steps, where each of them also
includes how to use the tool and modeling technique to ease the analyzing
process;

3. Feasibility Study: to demonstrate how to use our framework, we provide
an illustrative example using a case of a real software development project.

8.2 Socio-intentional Modeling Framework Usage

There are several well-known modeling frameworks which have been proposed
to visualize goal and/or social aspect, including NFR [37], KAOS [44], i* [165],
Tropos [37] and iStar 2.0 [42]. To find the most suitable representations, we
performed the Cartesian product of the elements (concepts and relationships) in
our ontology model and the notions of different modeling frameworks that can

121

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

represent either goal or social dimension. We basically compared every element
we wanted to represent with every notion in every selected modeling framework.
The best match was the one that had the closest objective/definition. In the
comparison, we decide to exclude Tropos as all their notions are either included
in the i* or iStar 2.0 framework.

Table 8.1 shows the mapping results between the agile elements (concepts
and relationships) and the notions of different modeling frameworks. Based on
these results, iStar 2.0 was the most suitable framework as our agile elements
match best to its notions.

Table 8.1 Mapping agile concepts and relationships with iStar 2.0

Agile elements KAOS NFR i* iStar 2.0
Value Goal Soft-goal Soft-goal Quality
Principle Goal Soft-goal Soft-goal Quality
Goal Goal Soft-goal Soft-goal Quality
Requisite Requirement Soft-goal Soft-goal Quality
Practice Operation Operationalizations Task Task
Activity Operation Operationalizations Task Task
Solution Operation Operationalizations Task Task
Role Agent N/A Role Role
Artifact Entity N/A Resource Resource
Problem N/A N/A N/A N/A
Situation N/A N/A N/A N/A
Contribute to Refinement Contribution Contribution

(Some)
Contribution
(help)

Achieve Refinement Refinement Contribution
(Some)

Contribution
(Help)

Help Refinement contribution (Help) Contribution
(Some)

Contribution
(help)

Harm N/A Contribution
(Hurt)

Contribution
(Hurt)

Contribution
(Hurt)

Cause Cause Contribution
(Make)

Contribution
(Make)

Contribution
(Make)

Perform Perform Operationalize Social depen-
dency

Social depen-
dency

Is responsible for Responsibility N/A Social depen-
dency

Social depen-
dency

Requires N/A N/A N/A NeededBy
Solve N/A N/A N/A N/A
Total Mapped
Elements

15/21 13/21 16/21 17/21

122

8.2 Socio-intentional Modeling Framework Usage

8.2.1 Notion Definitions

For most of the elements, we follow the exact definitions defined by iStar 2.0.
We however slightly change the definitions of the relationships NeededBy and
Contribution link (Make) adapting to our needs.

Nodes Relationships

Actor
Boundary

Role

 Neededby

 Contribution link (Make)

 Contribution link (Help)

 Contribution link (Hurt)

 Contribution link (Break)

 Refinement (AND)

 Refinement (OR)

 Dependency link

Fig. 8.1 iStar 2.0 notions

Figure 8.1 visualizes the notions of the iStar 2.0. We summarize the definition
of the nodes and relationships which are going to be used in our framework
hereafter.

8.2.1.1 Nodes

• Role: an abstract characterization of the behavior of a social actor within
some specialized context or domain of endeavor;

• Quality: an attribute for which an actor desires some level of achievement;

• Task: an action that an actor wants to be executed, usually with the
purpose of achieving some goal;

• Resource: a physical or informational entity that the actor requires in
order to perform a task;

• Depender : an actor that depends for something to be provided;

123

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

• Dependee: the actor that should provide something.

8.2.1.2 Relationships

• NeededBy: a relationship that links goal, task, and resource. It indicates
what needs to be accomplished or provided to achieve a goal or execute a
task;

• Contribution links: a relationship that represents the effects of an element
on another. There are four types of contribution link which can be
divided into two categories: Fulfilled and Denied. The first one refers to
a sufficient positive evidence (help, make) while the later one refers to a
strong negative evidence (hurt, break);

• Refinement links: a generic relationship that links goals and tasks hierar-
chically. There are two types of refinement: AND and OR;

• Dependency link: a relationship that represents dependency between
Depender and Dependee.

8.2.1.3 Notion Extension

There are several concepts and relationships in our ontology model which cannot
be mapped to any iStar 2.0 notions. We thus extend the representations of the
remaining elements as Figures 8.2.

Agile element Extended Notion Definition

Situation
[Name]

A state or situation that can affect (good
or bad) another situation, goal or
quality.

Problem

A bad state or situation that is conflict
with another situation, goal or quality.

Have

A relationship “Have” between role and
other elements

Encounter

A relationship “Encounter” between
role and other elements

Solve

A relationship “Solve” between solution
and problem

Fig. 8.2 Example of Sprint planning in SD view

8.2.2 Modeling Technique

Our purpose is to visualize all the information provided by the tool in models. By
all means, the visualization should help practitioners analyze agile practices and
identify what practices they should adopt and how to adopt them successfully.

124

8.2 Socio-intentional Modeling Framework Usage

iStar 2.0 framework guides us to visualize socio-intentional perspective in
multiple model views, that include Strategic Dependency, Strategic Rationale
and Hybrid. The first two model views fit very well with our needs. We however
need to use another model view inspired by the NFR framework to fit some of
our cases.

In the following sections, we explain how these model views can be used in
our framework.

8.2.2.1 Strategy Dependency

Prioritize the user stories

Determine how they want to execute
the sprint cycles

Product
owner

D D

D
D

Agile
Team Sprint backlog

D D

Fig. 8.3 Example of Sprint planning in SD view

The SD model describes external dependency relationships between actors,
from depender to dependum to dependee, to achieve a goal, quality, task, and
resource. This view is suitable to briefly describe the dependencies between roles
in the team to achieve the functional and/or the non-functional goal, to perform
the activity, and to provide the resource needed during the development. The
relationships between elements within each actor are however not visualized
in this view. For example, in the practice Spring planning, the Agile team
depends on the Product Owner to provide the Sprint backlog and prioritize the
user stories while the Product Owner depends on the Agile team to determine
how they want to execute the sprint cycles. This example is visualized in
SD view as shown in Figure 8.3. This model is used when we focus on the
dependencies between dependers and not the details about the relationships
between dependums and other elements.

8.2.2.2 Strategic Rationale

The SR view shows all the details captured in the model, including actors,
dependencies, actor association links, and the internal details of each actor.
Modelers can view the strategic rationale inside each actor in the model. This
model is a perfect way to visualize how to conduct an agile practice as it
provides a deep representation of the internal, intentional dependency with the
refinement and contribution links to describe the stakeholders’ interests and the
(combination of) activities, sub-goals, artifacts that help achieve the main goal.

For example, to conduct a practice Daily meeting, Development Team
depends on Scrum Master to have an effective meeting while Scrum Master
depends on Development Team to build an self-motivated team. To conduct an

125

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

effective meeting, Scrum Master has to arrange the meeting every morning and
gather everyone in the team. To build a self-organizing team, Development Team
has to stand-up voluntarily to report their problems and suggest the solutions for
any posted problems by writing on white board. This example can be visualized
in SR view as shown in Figure 8.4. Using this model, we can see both the
dependencies between dependers and the detail about the relationships between
other elements.

Arrange A 15 minute
stand-up every morning

All team members from
every location participate

Scrum
master

Development
team

Suggest the solution for any
posted problem

Stand-up voluntarily to
report their problems

Effective
meeting

D

Conduct an
effective meeting

Improve self-
motivation

Self- motivated
team D

White
board

Meeting is
effectively
conducted

Team be self-
motivated

D

D

Fig. 8.4 Example of Daily meeting in SR view

8.2.2.3 NFR Framework

Working software over
comprehensive documentation

Our highest priority is to satisfy the
customer through early and

continuous delivery of valuable
software

Legend :

A
nd

S
om

e
 +

 Soft goal Contribution link And Contribution link Some+ Means-end link Task Resource

Continuous delivery Value Early deliveries
Customer

satisfaction

H
el

p

Hel
p

H
el

p

H
el

p

Help

Fig. 8.5 Example of the relationship between agile value, principle, and goal in
NFR Framework

iStar 2.0 model views allow us to visualize stakeholders’ goals, the combina-
tion of activities, sub-goals, artifacts that help achieve the goals, etc. One minor
problem of these views is the obligation to include actors in the model, which is
not applicable in some steps of our framework. For instance, in the defining goal
step, the purpose is to visualize dependencies between goals and agile practices.

126

8.3 Methodology for Tailoring Agile Methods Adoption

No actor should thus be included. Inspired by the NFR framework, we propose
to represent the relationships between iStar 2.0 notions and the ones we propose
without involving any actor. Figure 8.5 is an example of how we visualize the
relationship between agile values, agile principles, and goals.

8.3 Methodology for Tailoring Agile Methods Adoption

Tailoring agile methods adoption aims at choosing the right practices to achieve
one’s goals and integrating them successfully into the software development
process. Our socio-intentional framework is divided into two different levels:
Tactical and Operational. The Tactical Level helps the team decide what agile
practice they should adopt based on what they want to achieve and the suitability
of the selected practices to the team’s situations. The Operational Level helps
the team prepare for the successful adoption by identifying beforehand the
vulnerabilities in the agile practice adoption and suggesting how to avoid or
solve them.

Defining
goals

Checking
suitability

Checking
vulnerabilities

Solving
vulnerabilities

Implementing
agile practice

Have more goal to be achieved?

Any risk?

No

Yes

No

Yes

Fig. 8.6 Goal-oriented tailoring agile adoption process.

Figure 8.6 visualizes the whole process of tailoring agile methods for adoption
using our framework. The description of each step is depicted hereafter.

Figure 8.6 illustrates the whole process of tailoring agile methods adoption
using our framework. The description of each step is depicted hereafter.

• Step 1: Defining Goals. First, the software development teams needs
to define what they want to achieve by adopting agile practices. It can
be something they want to achieve for a better software development
process and/or they want to have the agile mindset as defined in the agile
manifesto (agile values and principles). Based on the defined objectives,
they can then identify the suitable practices;

127

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

• Step 2: Checking Suitability. Team’s situations can affect the result
of agile practice adoption. To identify whether a team is suitable to adopt
a practice, practitioners need to define situations of the team and analyze
the impacts (Help or Hurt) on the agile practice adoption;

• Step 3: Checking Vulnerabilities. To successfully integrate the ag-
ile practice into their development process, the team members need to
perform their activities correctly and avoid the vulnerability as much as
possible. In our framework, vulnerabilities can be identified by analyz-
ing (1) various dependencies between roles to perform activities and (2)
problems encountered in previous experiences. The vulnerability happens
when (1) any role fails to do its activities, (2) the artifact required is not
sufficiently provided, and (3) when problems identified in the literature
might happen in their team;

• Step 4: Solving Vulnerabilities. Based on the results from step 3, if
any vulnerability is identified, the team should avoid it by reinforcing the
roles in charge, provide the required artifacts and apply the solution to
the expected problems;

• Step 5: Implementing Practices. The team can implement the prac-
tices into their development process by ensuring that the activities which
are parts of the practice and the tasks to avoid the vulnerabilities are
accomplished.

In every step of the framework, practitioners start by finding the relevant
information from the OBAMA-tool. This information is then illustrated in
iStar 2.0 before it can be analyzed. In most steps, practitioners can build the
model by simply representing the relevant information with the corresponding
iStar 2.0 nodes or links, as mapped in Table 8.1 or the extended notions as
shown Figure 8.2. For instance, in step 1, the information about goal, agile
value and agile principle are represented by the quality node; and practice is
represented by the task node. The relationships between nodes are represented
by the contribution link Help. Except for step 3, practitioners need to analyze
the purpose of each activity before they can build the dependencies between
actors.

In the following sections, we explain in detail each step of the framework.

8.3.1 Defining Goals

In the first step of our framework, agile practitioners need to define what they
want to achieve by adopting agile practices. The reason behind their adoption
can be some random goals related to software development and/or the agile
mindsets (Agile Manifesto).

Goal can be something a team intuitively wants to achieve. It can also be
derived from the problems or the obstacles within their current development
process which they want to overcome. For instance, if a team has difficulty
in understanding the requirement because the customer is hardly available
for the discussion, then we can derive these problems into multiple goals such

128

8.3 Methodology for Tailoring Agile Methods Adoption

as improve understanding customer’s needs and improve communication with
customer, etc. Besides goal, there is a set of the agile mindset defined in the
Agile Manifesto, which can also be achieved by agile practices. The relationships
between the Agile Manifesto (value, principle) and agile practice are explained
in Chapter 6 and Chapter 7.

To find the information related to what a practice can achieve, we choose
three following concerns: (1) the goal team can achieve by adopting a practice,
(2) the agile value a team can achieve by adoption a practice, and (3) the agile
principle a team can achieve by adopting a practice.

To build the model based on the information provided by the tool, we
represent the information about goal, agile value and agile principle by Quality
node, and practice by the Task node. We then build the relationships between
nodes (practice and goal, goal and principle, principle and value) by using the
Contribution link.

To analyze what practice we should adopt, we need to check how many
goals are contributed by each practice. It also depends on how we prioritize the
goals we want to achieve. A suitable practice should be the one that contributes
to most of the top-prioritized goals.

An illustrative example of how to get the information, build the model, and
analyze agile practice at this step can be found in Section 8.4.1.

8.3.2 Checking Suitability

This step helps practitioners decide whether or not they should adopt specific
practices based on team’s situations. Each agile practice has a list of the pre-
conditions (also known as Requisite) required in order to adopt it successfully.
These requisites are impacted by the team’s situations [58]. To know whether a
team is suitable to adopt a practice, we thus check the suitability based on its
situations.

To find the relevant information about the impact of the team’s situa-
tions on practice, we follow two following steps:

1. Describe team’s situations and select the practice(s) team wants to adopt
in the Input page 2. The situational factors listed in this page are agile
practice selection criteria defined in [32], on the basis of an SLR;

2. In the page Information related to practice based on input, we choose the
concerns (1) the situation of the team which is bad for adopting a practice
and (2) the situation of the team which is good for adopting a practice to
know how team’s situations impact each practice.

To build a model that allows analyzing the suitability of a practice, we
represent the information about practice by Task node, requisite by Quality
node and situation by Situation node. We then connect practice and requisite by
using NeededBy link, and connect requisite and situation by using Contibution
link (Hurt or Help).

To analyze what practices are suitable for the team, we need to check how
requisites are hurt or helped by the situations. We then denote the status of
each requisite based on how many situations have good or bad impact to it.

129

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

These impacts lead to the accumulation of evidence for a requisite to be satisfied
(), weakly satisfied (), weakly denied (), or denied (). The most suitable
practice is the one that has all the requisites satisfied by the team’s situations.

An illustrative example of how to the information, build the model, and
analyze agile practice at this step can be found in Section 8.4.2.

8.3.3 Checking Vulnerability

To check the vulnerability, we need to know the activities we need to perform
as well as the relationships, particularly dependencies between roles along with
the artifacts required. At the same time, we also need to know the possible
problems they may encounter so that they can find alternatives to avoid them.

8.3.3.1 Dependency between roles in performing the activities

Each agile practice is composed of many activities which require a lot of
dependencies, back and forth, between the roles as well as the artifacts. To gain
the full benefit from adopting these practices, it is important to perform all the
activities correctly and avoid all possible risks or failures. The information and
visualization of the dependencies allow us to see what roles and artifacts are
critical and then identify the possible chances of failure. For instance, if many
activities depend on a particular role and a person who plays that role is not
reliable, the probability of failure will increase.

To find the relevant information about activity, role and artifact, in
the page Information related to practice based on input, we choose the concern
(1) the activity a team should perform as part of a practice, (2) the roles or
responsibility distribution needed for a practice and (3) the artifact required for
adopting a practice.

To build a model that can capture detailed information, including de-
pendencies between actors, actor association links, and the internal details of
each actor, we need to use SR model view. We start by representing each
agile role by Actors Boundary, activity by Task node and artifact by Resource
node. We then put activities in the Boundary of the Actor in charge. After
that, we group the activities based on the goals they contribute to. We then
build the relationship between activities, resources and goals. We represent
the relationship between activities and goals by Refinement link, and between
activity and artifacts by NeededBy link. Finally, we build the Dependency links
between roles based on what goals each role wants to achieve and which role is
in charge.

To analyze the vulnerability of practice, we need to analyze all dependencies,
either between roles or resources. There is vulnerability when there is dependum
that cannot be satisfied.

An illustrative example of how to the information, build the model and
analyze agile practice at this step can be found in Section 8.4.3.1.

8.3.3.2 Problems team may encounter and Solutions

130

8.3 Methodology for Tailoring Agile Methods Adoption

Many case studies on the agile practice adoption experience are usually
described with a list of problems the team has encountered, and sometimes
with the solutions. We can identify the vulnerability when any of the reported
problems will likely happen in the team.

To get the information about causes and problems, we choose the concern
the problem a team may encounter while adopting a practice on the page
information related to practice based on input.

To build a model to represent the causes and problems, we use the
NFR model view. We start by representing the cause, either by Task node or
Situation node, according to the type of the cause. We then represent problem
by the Problem node. Finally, we connect the cause and the problem with the
Contribution link (Make).

In the analysis, we focus more on the problems caused by the team’s
situation or activities it has to perform. Some situations or activities can cause
more than one problem. For the problems which were reported without any
defined cause, we need to check whether or not they can probably happen in
the team. The more problems will likely happen in the team, the higher chance
it fails to adopt the practice. Identifying the causes and the problems allows us
to find beforehand the effective ways to avoid them.

An illustrative example of how to the information, build the model and
analyze agile practice at this step can be found in Section 8.4.3.2.

8.3.4 Solving Vulnerabilities

Besides the activities which are parts of agile practice, team members need to
carry out some extra tasks to avoid the identified vulnerabilities. For instance,
to avoid the vulnerabilities that may happen while performing Daily meeting,
the Scrum Master needs to guide other team members on how to correctly
perform their task and provide all the necessary resources. To prevent other
vulnerabilities found in the literature, practitioners can use solutions provided
by our tool or/and figure out new ones.

To find the relevant information about the solutions and the role in
charge, we choose the concern the solution a team may use to solve the problem.

To build a model to represent the solutions to the problems, we simply
add the solutions to the diagram in the Step 3 by using Solution node, and
then connect solution to the problem by using Solve link. This diagram allows
us to brainstorm and identify the suitable solutions to avoid the vulnerabilities.
After identifying all the solutions, we conclude all the necessary activities by
building another model in SD view. We start by representing the role in charge
by the Role node, and activities by task node. We then build the relationship
between roles and activities by using Dependency link.

In the analysis, we focus on finding the solutions to solve the problems.
A good solution should be effective and applicable to a team’s situation. In
addition, the distribution of the role in charge of the solutions is also important.
We need to assign the right role for the right task so that the vulnerabilities
can be avoided.

An illustrative example of how to the information, build the model and
analyze agile practice at this step can be found in Section 8.4.4.

131

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

8.3.5 Implementing Practice

After all the analysis in previous steps, the team can start implementing the
practice into their development process. To successfully adopt a practice, the
team needs to improve the situations which identified as harmful for adoption.
Team members have to work together to accomplish all the activities as part of
a practice. In addition, they have to perform some extra activities to avoid the
identified vulnerabilities.

An example of how to use the models from the previous steps during the
implementation can be found in Section 8.4.5.

8.4 Feasibility Study

In order to illustrate the theoretical framework, we use the example of a genuine
Development Team made of 4 members that has to adopt agile practices for the
development of a software project in a small enterprise. This situation is taken
from a real-life application in the context of a training program supported by the
university of one of the authors. More precisely the Development Team made
of master-level students (i.e. interns) had to develop a timetable application by
using PHP and MySQL. These interns have no experience with any software
development methodology. Since the company has been using agile methods for
a long time, they preferred the interns to develop their projects using Scrum.
However, the company let the interns flexibly decide on how they could adopt
Scrum in their team. To help the interns adopt agile practice successfully,
we suggested them to use our framework and tool as presented in this paper.
We asked them to describe team’s situations and goals. The internship was
taken during the Covid-19 pandemic making it impossible for us to proceed
in a full validating case study fashion. We however use the case as a relevant
illustrative example where enough data was collected and the relevancy allowed
us to evaluate the framework applicability. The description of their situations
and goals are indeed complex enough to demonstrate how to use the framework.

According to their description, the company provided good management
support for the team. As the team was new to agile methods, a training on
Scrum was provided by the company. In addition, the company assigned an
experienced Scrum Master and a highly available product owner to work with
them. The requirements had already been collected at the moment the team was
formed and were expected to be stable at the start of the project. Even though
these interns were new to agile methods but they had good knowledge in both
the work domain and technology. While the interns were assigned to work at the
same company site, they had to work remotely and face-to-face communication
was not possible due to the pandemic. They thus used a videoconferencing tool
provided by the company. It has been challenging for them to work from home
and their goals were therefore to have good communication, be self-motivated,
be self-organizing and be punctual. At the same time, they hoped to have a
high success rate by clearly understanding what the client needs. To achieve
these goals, they believed they also needed to have a clear and realistic task
planning which was completely transparent to all team members and the client.
The agile value they wanted to achieve by adopting agile practices was to make

132

8.4 Feasibility Study

individuals and interactions more important than processes and tools. For the
principle, they wanted to deliver working software frequently, from a couple of
weeks to a couple of months, with a preference for the shorter timescale. We
present the application of our framework in this context hereafter.

8.4.1 Defining Goals

To find the practices that can achieve their goals, practitioners can get the
information from three concerns in our tool: (1) the team’s goal can be achieved
by adopting a practice, (2) the agile value can be achieved by adopting a practice
and (3) the agile principle can be achieved by adopting a practice.

By choosing a concern in our tool, the information will be displayed in a
table format as shown in Figure 8.7, where the number of columns varies based
on the concern. In this figure, it is a list of goals achieved by adopting agile
practices, where the blue rectangles highlight the information related to the
case study. The practitioners can also find the practice to achieve the agile
values and principle by selecting them in the Input page 1 as shown Figure 8.8
to get the results as shown in Figure 8.9.

Fig. 8.7 Relationship between goals and agile practices listed by OBAMA-Tool

Based on the results of these three concerns, practitioners can build an iStar
2.0 model as shown in Figure 8.10. In this diagram, we can easily see that
three practices contribute to the defined goals and respect the Agile Manifesto.
Among these practices, Daily Meeting and Short Iteration allow achieving the
highest number of goals while spring planning allows achieving the least. Based
on this diagram, practitioners can decide what practice they should adopt

133

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

Fig. 8.8 Input page 1 of OBAMA-Tool for agile values and Principle

Fig. 8.9 Practices suggested by OBAMA-Tool to achieve selected Value

accordingly. For instance, they can decide to adopt Daily Meeting and Short
Iteration as they allow achieving most goals, or Sprint Planning if the goals
achieved by this practice are more prioritized, or all together if the situations
of the team are suitable.

In the following steps, Daily meeting will be used to present our framework.
This practice is chosen because it is the most popular practice and it can achieve
the most defined goals. The visualizations in iStar 2.0 of another practice, Short
Iteration, as another example can be found in Appendix D.

134

8.4 Feasibility Study

Daily meeting

Realistic task
planning

Good success
rate

Improve self-
motivation

Good
transparency

Good
communication

Better
understanding
client's needs

self-organize

Clear plan

Improve
punctuality

H
el

p

H
el

p

Help

H
el

p

Help

H
el

p

H
el

p

H
el

p

Hel
p

Help

Sprint planningShort iteration

Help Hel
p

H
el

p

H
el

p H
el

p

H
el

p

H
el

p

H
el

p

Hel
p

Individuals and interactions
over processes and tools

Deliver working software frequently from a
couple of weeks to a couple of months with a

preference to the shorter timescale

Help

H
el

p

Help

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

Fig. 8.10 Relationship between agile values, principles, goals and agile practices
represented in iStar 2.0

8.4.2 Checking Suitability

To analyze the suitability of the team, practitioners need to describe their
situations and choose the relevant practice in “Input Page 2” in our tool. Figure
8.11 is an example of how to describe the above case study, where Daily Meeting
is the practice the team wanted to adopt. After that, by clicking on the button
Calculate Result, practitioners can find the relevant information on the page
Information related to practice based on input. Figure 8.12 is a list of team’s
situations that have a good impact on Daily Meeting, whereas Figure 8.13 is a
list of team’s situations that have a bad impact.

Fig. 8.11 Describing team’s situations by using Input page 2 of OBAMA-Tool

Based on the information provided by the tool about the impact of the
team’s situations, we can visualize the team’s suitability for adopting Daily

135

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

Fig. 8.12 Result of team’s situations which is good for practice listed by OBAMA-
Tool

Fig. 8.13 Result of team’s situations which is bad for practice listed by OBAMA-
Tool

Meeting as shown in Figure 8.14. In this figure, the contribution relation
between situations and requisites [(), weakly satisfied (), weakly denied (),
or denied ()] are also denoted. Based on Figure 8.14, though Daily Meeting is
not entirely suitable for the team as two situational factors Hurt the requisites,
it is still highly possible for the team to adopt it since other situational factors
help to satisfy and weakly satisfies many others requisites. While our tool and
diagrams allow practitioners to analyze the suitability of a practice based on
their situations, the final decision is on the practitioners themselves. They can
still choose to adopt a practice that is not entirely suitable by improving their
situations or find alternative practices to achieve their goal.

136

8.4 Feasibility Study

Daily meeting

Ability to adapt
working practices

An environment that
facilitates rapid

communication between
team members

Capable
Team

Face-to-face
Communication

Effective
Meeting

Everyone
Participation

Ease of
Communication

Good
Estimation
Potential

Qualified
Team

Members

Self-
management

Shared
knowledge or
expertise level

Skilled
Leadership

Trust &
Mutual

Respect

Virtual
communication

Stable
requirement

Experience
in domain
knowledge

User highly
available

No agile
experience

High
management

support
Same site

Experience in
technology
knowledge

Concrete
tangible goal

Training for
meeting

H
ur

t

H
ur

t

H
ur

t

H
ur

tH
ur

t

H
ur

t

H
ur

t

H
el

p

H
el

p

H
el

p H
el

p

H
el

p

Help H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

Help

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
ur

t

Fig. 8.14 Relationship between Daily meeting, the requisites for its success and
team’s situation visualized in iStar 2.0

8.4.3 Checking Vulnerability

8.4.3.1 Dependency between roles to perform the activities

It is important for a team to accomplish all the activities and avoid all possible
risks or failures. On the page Information related to practice based on input,
three concerns allow practitioners to find the information about the activity,
role, and artifact corresponding to the team’s situations: (1) the activity a team
should perform as part of a practice, (2) the roles or responsibility distribution
needed for a practice and (3) the artifact required for adopting a practice.

Figure 8.16 shows the list of activities as part of the Daily Meeting, whereas
Figure 8.16 shows the list of roles in charge. Based on the information provided
by our tool, there are four roles required. However, since neither the team in
our case has Project manager or this role is in charge of many activities, we
thus keep only three roles to take charge of the activities.

• Product Owner: the role who clearly knows about the requirement of the
software;

• Scrum Master: the role who coordinates the different activities and other
members to ensure that development is running smoothly and all the
activities are performed correctly;

• Development Team: the group of people who perform a set of activities
to successfully build software.

Based on the information within these three concerns, practitioners can
visualize the dependencies, back and forth, between roles as shown in Figure
8.17. This diagram allows us to easily see that both the Scrum Master and
the Development Team are responsible for almost the same number of tasks.

137

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

Fig. 8.15 Activities as part of Daily meeting listed by OBAMA-Tool

Fig. 8.16 Role required to adopting Daily meeting listed by OBAMA-Tool

However, if we go through each task, we can see that the vulnerabilities most
likely to happen on the Development Team side. One of the reasons is because
the Scrum Master is experienced with agile which means he already knows
how to accomplish his tasks. Besides, the tasks under the Scrum Master ’s
responsibility are practical and easily achievable. On the other hand, the
Development Team is responsible for the tasks which can be seen as difficult, for
instance the task “Stand-up voluntarily” and “Developers usually coordinate

138

8.4 Feasibility Study

Arrange A 15 minute
stand-up every

morning

All team members from
every location participate

Scrum
master

Development
team

Stand-up volunterily

Anyone who is blocked report
their problems and appropriate

action is then decided

Discussing and making
decisions together with the
team during the meeting

Members are encouraged to
suggest the solution for any

posted problem
Facilitator role is

rotated

Everyone checks to ensure their
work status is correctly displayed

Team members volunteer for
tasks that will be worked on

today

What blocked are noted as are
logged or reported or followed-up

after the meeting

Work is reviewed to see if
priorities have changed or if the

work flow can be improved

Developers usually
coordinated themselves for

the meeting

Conduct Daily meeting at a
convenient time

Meeting should be held
frequency but not necessary

to be every day

Scrum master logs completed
tasks and sends out immediately

Clusters of cards indicating a
bottleneck are noted and the

people reorganize

The ScrumMaster may help
bring focus to appropriate tasks

Ask three
questions

Self-motivated
team

Effective
meeting

Everyone
participant

Good awareness
about task

Remove
obstacle

D

Conduct a meeting

D

Keep team
updated

about tasks

Good work
progress

Self- organizing
team

Improve team
self-organizing

D

D

Product
ownerProduct

owner
participation

D

Internet

Facilitate the communication
between all the member by e-

mail and telephone

Video
call

D

User
stories

White
board

Good work
progress

D

Self-
motivated

teamD

Self-
organizing

team

D

Good
awareness
about task

D

White
board

D
Improve team’s

self-motivation

Effective
meeting

D

Fig. 8.17 Dependencies between roles to perform activities of Daily meeting
visualized in iStar 2.0.

themselves for the meeting”. These tasks require courage, motivation, and
leadership which are difficult to achieve for a new team with no agile experience.
These are thus the vulnerabilities that the development team must avoid. It
is also important to notice that the resources required such as the “Internet”
and “video call” can also be vulnerabilities. For a team whose communication
is mostly virtual, failing to provide these resources means failing to conduct a
meeting effectively.

8.4.3.2 Problems team may encounter

The practitioners can find the filtered information about the causes and
problems by choosing the concern the problem a team may encounter while
adopting a practice in the page Information related to practice based on input.
Figure 8.18 list the information about the causes and problems.

The information about the causes and problems can be visualized as shown
in Figure 8.19. The relationships between causes and problems are visualized by
the new concepts which have been introduced in Section 8.2.1.3. In this figure,
many problems have been identified in the previous experiences of adopting
Daily Meeting, where most of them happened for no specific reason. It can be
due to the impossibility to identify the specific reason that causes the problems.
For instance “Hold meeting too frequently” and “Board meeting attitude” can
always happen when we do not pay attention to how we conduct the meeting.
Even though the cause is not identified, these problems are still vulnerabilities
that need to be prevented.

139

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

Fig. 8.18 Cause, Problems in Daily meeting listed by OBAMA-Tool

Poor
Information

flow

Poor
Information
distribution

Team has bad
meeting
attitudes

Tension between
the PO and the

Team

Inadequate
equipment

Undefined
cause

Virtual
communcation

Meetings
without a clear

agenda

Comment from external member
can be inappropriate as they don't

know anything about the task

Developers often reporting working
on issues other than those that it

had been initially planned to work on

Topics discussed
exclude developers in

meetings

Hold meeting
too Frequent

Hold meeting in
inadequate

length

New item is
introduced in the

middle of the Sprint

Make

Team lack of
discipline

M
ake

M
ake

Make

Make

Make

Make

M
ak

e

Make

Make

M
ak

e

M
ak

e

Make

Fig. 8.19 Causes and Problems in Daily meeting visualized in iStar 2.0

8.4.4 Solving vulnerabilities

After identifying the vulnerabilities, we need to define necessary tasks that team
members need to perform to avoid or solve them.

To avoid the vulnerabilities that may happen while performing Daily Meet-
ing, the Scrum Master needs to help the Development Team understand its
responsibilities and how to perform the tasks correctly. Development Team
needs to take its responsibilities seriously and accomplish the assigned tasks.

140

8.4 Feasibility Study

Fig. 8.20 Problems in Daily meeting, Solution and Role listed by OBAMA-Tool

To avoid the vulnerabilities found in the literature, practitioners can use
the solutions provided by our tool, in the concern the solution a team may
use to solve the problem. Figure 8.20 shows a list of the solutions to solve
the problems. Based on this information, we add solutions to the previous
diagram Figure 8.21 visualizes the causes, problems, and solutions. Some
given solutions are however excluded as they are not applicable in the team’s
situation. For instance, the solution “Pass token” cannot be used to solve the
“Poor information flow” problem in a team that communicates virtually. This
diagram allows practitioners to brainstorm easily and identify what needs to
be done to avoid or to solve the problems. For instance, we propose “Define
clear rules for the meeting”, where we represent in a gray hexagon, as a new
solution to solve some problems as in Figure 8.19. Within the same concern,
the solution a team may use to solve the problem, practitioners can also find the
roles in charge for each proposed solution.

After identifying all the extra tasks to avoid the vulnerabilities, we can
visualize the dependencies between roles as shown in Figure 8.22. As most of
the problems are related to the organization of the meeting, the Scrum Master
is responsible for most of the tasks while the Development Team is responsible
for only a few of them. One task must be undertaken by both the Scrum Master
and the Development Team together, also known as the Scrum team: find the
suitable sprint length for the development. At the same time, the Product
Owner must be responsible for handling conflicts and expectations to avoid
tension for the team.

8.4.5 Implementing Agile Practice

After all the analysis done in the previous steps, practitioners can start imple-
menting the practices into their development process. During the implementa-
tion, practitioners can use the diagrams created in the previous steps to keep
track of things to be done for successful adoption. For instance, Figure 8.14

141

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

Connect with
disctributed people in

advance

Individuals in the PO role must be able to
handle conflict and manage the
expectations of all stakeholders

Experiment to find an
appropriate time-slot for

the meeting

Agree on purpose
of meeting

Do not meet as
frequently

Letting any employee attend and observe the
meeting but restrict comments

Experiment with different Sprint
lengths to find a suitable length

and stick to it

Rotate scrum master role
among the team members

Solve

Solve

Solve

Solve

Solve

Solve

S
o
lv

e

S
ol

ve

Solve

Poor
Information

flow

Poor
Information
distribution

Team has bad
meeting
attitudes

Tension between
the PO and the

Team

Solve

Use visual aid for
the meeting Use high quality

equipement

S
ol

ve

S
o
lv

e

Inadequate
equipment

Undefined

cause

Virtual

communcation

S
o
lv

e

Define clear rules
for the meeting Solve

Solve

S
o
lve

Meetings
without a clear

agenda

Comment from external member
can be inappropriate as they don't

know anything about the task

Developers often reporting working
on issues other than those that it

had been initially planned to work on

Topics discussed
exclude developers in

meetings

Hold meeting
too Frequent

Hold meeting in
inadequate

length

New item is
introduced in the

middle of the Sprint

M
ake

Team lack of
discipline

M
ake

M
a
ke

M
ake

Make

Make

Make

M
ak

e

Make

Make

M
ak

e

M
a

k
e

S
o
lve

M
ake

Freshen our retrospectives by
leveraging collaborative games

Solve

Fig. 8.21 Cause, Problems in Daily meeting and Solutions visualized in iStar 2.0

Handle conflict and manage the expectations
of all stakeholders

Experiment to find a suitable length

Agree on purpose of meeting

Rotate scrum master role
among the team members

Set the meeting when most
members arrive at work

Restrict comments from
employee

Find an appropriate time-slot
for the meeting

Do not meet as frequently

Use high quality equipement

Development
team

Scrum
master

Product
owner

D D

D
D

D
D

D D

D

D

D

D
D

DD

Help team understanding
their responsibilities

Help team perform their
tasks correctly

Accomplish their own tasks

Take their responsibility
seriously

D
D

D
D

D
D

D

D

D

D

Freshen our retrospectives by
collaborative gamesD

D

Define clear rules for the
meeting

D
D

D

Scrum
Team

Partic
ipates-in

P
ar

tic
ip

at
es

-in

Fig. 8.22 Dependencies between roles to avoid vulnerabilities in Daily meeting
visualized in iStar 2.0.

denotes what are the good situational factors to keep and what needs to be

142

8.5 Conclusion

improved. Each role in the team needs to accomplish the activities they are
in charge of, as shown in Figure 8.17. The same diagram can also be used to
trace and identify what activities the team may have failed to perform when
confronted with problems and vice versa. Figure 8.21 is used to brainstorm for
the possible problems and solutions. Finally, in addition to the activities which
are parts of the practice, the team needs to perform some extra tasks to avoid
the vulnerabilities as shown in Figure 8.22.

8.5 Conclusion

This chapter introduced a new framework for tailoring agile methods for adoption
through the lens of socio-intentional dimensions. The first contribution in this
chapter is the use of modeling techniques iStar 2.0 to ease the analysis process.
Modeling allows visualizing relevant information altogether and allows team
members to communicate, discuss and understand better how they should
work together to successfully adopt agile practices. The second contribution
is the methodology for tailoring agile methods that focuses on the why and
who dimensions. With the help of OBAMA-Tool and iStar 2.0, our framework
provides a methodology to analyze agile practices prior to the adoption in two
levels: Tactical and Operational. By following our approach, practitioners can
define the right strategies to achieve their goal, check their suitability for the
adoption, define how to coordinate the activities of the various actors and how
they depend on each other. In addition, each role can also understand the
motivations and rationale behind the activities it has to perform. In the last
contribution, to show how the framework works, we took an example of a real
software Development Team. In step 1, we identified that “Daily Meeting”,
“Short Iteration” and “Sprint Planning” are the practices the team should adopt
to achieve their goals. By choosing to focus on “Daily Meeting”, in step 2, we
emphasized that some situational factors have negative impacts on adoption.
It is however still possible to adopt this practice since many other situational
factors have positive impacts. In step 3, we identified how team members should
perform their activities and depend on each other as they adopt a practice. At
the same time, we identified vulnerabilities during the adoption caused by some
roles and some possible problems found in the literature. In step 4, we pointed
out the solutions to avoid the vulnerabilities. Finally, in step 5, we concluded
what team members should do to successfully implement the practice in the
development process.

The framework presents some limitations. First, the information provided
by the tool is still limited. For instance, in step 3, as no information about the
purpose of each activity is available, practitioners are required to understand
it themselves to build the dependency diagram. In addition, some problems
and solutions are not applicable to team’s situations. Although our tool was
built based on reliable evidence collected from empirical studies that had been
reviewed and published, the underlying premise for this framework is however
to focus on the methodology rather than the information provided by the
tool. By this means, practitioners can customize the information or/and use
other reliable and applicable sources of information accordingly. Second, this

143

Towards a Systematic Socio-Intentional Framework for Agile Methods Tailoring

framework is only dedicated to the planning part by focusing on how to prepare
a team prior to agile practice adoption and a small part of the implementation.
A complete framework should also include the evaluation process to further
check the adoption success. Finally, it lacks an evaluation of how helpful this
framework is in adopting the agile practice.

144

Part IV

Conclusion

145

Chapter 9

Conclusions

In this thesis, we studied the problem of Agile methods tailoring from a socio-
intentional perspective. The purpose is to propose a framework that focuses
on both social and intentional aspects in the agile methods tailoring process.
We started by providing a general literature review of agile methodologies,
and approaches of agile methods tailoring. Then, we reviewed some modeling
frameworks related to the goal and social dimensions. This literature review
provides us a general overview and a solid understanding of the subject. We then
continued to find the concepts related to agile methods tailoring and understand
their relationships based on the literature. In addition to a social-intentional
conceptual model, we created an ontology and a supporting tool that make
the information about agile methods adoption systematically reusable. Finally,
we proposed a socio-intentional framework for agile methods tailoring which
can guide practitioners to find the right practice to achieve their goals and to
successfully integrate it into their development process.

In the intentional perspective, agile values and principles are known to be the
core mindset or philosophy behind the creation of agile methodologies. These
values and principles that were defined during the Agile Manifesto should be
used as one of the main criteria for agile practices selection. However, we have
observed that agile practitioners have been ignoring the Agile Manifesto and
none of the agile values or principles is counted as selection criteria. To study and
verify the relationships between the Agile Manifesto (value and principle) and
agile practices selection, we conducted an SLR to extract problems, expectations,
and the benefits behind agile methods or practice selection and compared them
with agile values and principles. Our findings suggest that they are highly
relevant. These correlations allow us to validate that the Agile Manifesto is
highly relevant to agile method tailoring and it should be a criterion for agile
practice selection.

Information and feedback on how agile practices have been adopted can
vastly be found in academia and industrial knowledge bases. Such a collective
experience allows the development of many approaches to simplify the adoption
process and maximize the chances of success. With many approaches which
have been proposed to guide and to help practitioners find the right practice
that suits their team, none of them is systematic. Even though the knowledge is
helpful for practitioners in tailoring agile practices fitting their team’s situations,

147

Conclusions

it takes time and effort to find and locate relevant information as the data is
unstructured and hardly exploitable. To make the knowledge of the previous
empirical studies easily accessible, we conducted another SLR and exhaustively
extracted 86 case studies on agile practice adoption. Using these case studies,
we created an ontology to support knowledge representation about agile practice
adoption. We then built a user-friendly prototype-tool, named OBAMA - an
Ontology-Based tool for Agile Methods Adoption, that allows practitioners to
efficiently retrieve the information.

In the social aspect, people, interactions and collaborations are known as
one of the foundations of agile methods. In many case studies relating to agile
practice adoption, they usually describe how to customize the agile practice
in a given situation so that team members can work collaboratively. Even
though many researches have shown that social is an important factor in the
success of agile methods adoption, there are not many tailoring approaches
that focus on this aspect. To address the lack of the social aspect in agile
methods tailoring and to make the most of the existing knowledge, we proposed
a socio-intentional framework. In our framework, we propose a methodology to
analyze the suitability and vulnerability of agile practices and guide them on
what they should do to successfully adopt the agile practice. Every step in the
process of analyzing agile practice is done with the help of our prototype-tool
and modeling techniques. Our tool is used to easily get useful information
needed for analyzing agile practices based on real-life experiences while iStar
2.0 is used to visualize the information for a better understanding and to ease
the analyzing process.

Hereafter, we summarize our contribution, limitations and some propositions
for future works.

9.1 Summary of contributions

9.1.1 Validation of the Relationship between Agile Manifesto and
Agile Practice Selection

The first contribution of this thesis is the validation of the relationship between
the Agile Manifesto and agile practice selection. The result of this finding
allows us to clarify another important factor that affects agile practice selection
from a goal perspective. To this end, a systematic literature review (SLR) has
been carried out to answer two research questions including: how has the Agile
Manifesto and its importance been discussed in tailored agile methods adoption?
and is the Agile Manifesto related to agile practices selection? In our SLR,
we only consider formal data sources including IEEEXplorer, ScienceDirect,
SpringerLink, and ACM Digital Library. The paper selection was done in 3
steps (early selection, abstract-based selection, and full-text screening selection)
where each step has well-defined selection criteria. As result, 51 papers were
selected for data extraction. Each paper was read carefully before we extracted
relevant information.

Based on the results, we can conclude that the Agile Manifesto has really
lost attention from the development teams. There are 51% of the selected

148

9.1 Summary of contributions

papers that talk about the Agile Manifesto while only 21% acknowledge its
influence. On the contrary, by comparing the 4 values and 12 principles of the
Agile Manifesto with the team’s problems, expectations, and benefits extracted
from the literature, at least 80% of them can be mapped to each other. This
result allows us to conclude the second question that the Agile Manifesto is
highly relevant to the reasons behind the agile practice adoption. As it still
covers fundamental aspects of any agile method, it is important for the team
to understand the Agile Manifesto before adopting any agile method and it
should thus be a criterion for agile practice selection. For instance, starting
from the team’s problems, we can identify the relevant agile values/principles,
and subsequently which agile practices to adopt. We hope our findings will
encourage practitioners to give more attention to the Agile Manifesto before
their adoption. For the research community, these results provide a clear-cut
validation on the relation between the Agile Manifesto and agile practices,
instead of being just an assumption or belief. This validation can be used as
evidence to propose any approach or framework that can help improve agile
practice adoption.

9.1.2 Ontology to Systematically Recycle Agile Practice Adoption
Experiences

The second contribution of this thesis is an ontology that makes the existing
knowledge about agile practices adoption reusable in a systematic manner.
The procedure of ontology creation and validation requires a large data set to
ensure that the ontology can represent the knowledge that will serve our future
needs. We thus started by conducting another SLR to collect the knowledge and
experience on agile practice adoption reported in the literature. We followed
the same procedure we had used to conduct the previous SLR. As result, we
exhaustively extracted 86 case studies on agile practice adoption experience
from 79 individual selected papers. These case studies were then split into two
sets: 10 studies were used as the training set while the other 76 studies were
used as the validation set. Based on the knowledge from two main resources
[84, 58] and data extracted from 10 case studies, we created an ontology to
represent the knowledge about agile practice adoption. Next, we added seventeen
inference rules to systematically discover more relationships among concepts in
the ontology. Finally, we theoretically validated our ontology by following the
corpus-based approach [21] and empirically validated it by using a survey with
agile experts.

The result of the theoretical validation shows that our ontology represents
very well the information related to the agile practice adoption with minimum
refinement for the unseen knowledge in the future. The results from the survey
with agile experts have shown that our ontology can provide information effi-
ciently and effectively. In addition, it helps a team decide if they should adopt a
practice or not. Based on these validation results, we can confidently say that
we have built an ontology to recycle the useful knowledge about agile practice
adoption. Our ontology model alone allows practitioners to quickly discover the
useful concepts related to agile practices and their relationships. Practitioners
can also use it to gain knowledge about agile practices in dept, to find the right

149

Conclusions

practice for their team, and to avoid the risk of failure in adoption. Researchers
can use it to discover or/and understand different aspects of agile practice. This
work has also shown how to use an ontology as an effective solution to recycle
and to share knowledge among practitioners in a structured and exploitable
way.

9.1.3 Evidence-based Tool

The third contribution of the thesis is a user-friendly tool that allows practi-
tioners to retrieve the information from the ontology without any experience
or knowledge required. Our prototype-tool, named OBAMA - Ontology-Based
tool for Agile Methods Adoption, was written in Python programming language.
Besides Python, there are three other main components needed for the de-
velopment of our prototype-tool. That includes ontology file, owlready2, and
wxPython. Our tool was created in a notebook-style where each page serves for
a functionality. Using our tool, users can easily access all the information that
we have inserted. By simply choosing one of the concerns from the combo-box
list, the relevant information will be displayed underneath the list in a table
format. Users can also filter for more specific information by providing their
goals and team’s situations in our input pages. To understand the advan-
tages/disadvantages of our tool, we gathered expert’s opinions through the same
survey we used to validate the ontology.

The results show that our tool can provide the information efficiently, effec-
tively and it helps a team decide if they should adopt a practice. Even though
our tool is not fully satisfying for experts, they agree that it is good enough to
serve our purpose. These results allow us to know that our tool is efficient for
the users and we achieve our objective by using the tool to help practitioners
understand agile practices.

9.1.4 Socio-intentional Framework for Agile Methods Tailoring

In the last contribution of this thesis, we proposed a socio-intentional framework
that focuses on the intentional (why?) and social (who?) dimensions. In
this framework, we propose a methodology to analyze agile practices and to
define the strategies the team members should work together to successfully
adopt a practice based on the team’s goals, their situations, and dependencies
between team members. In addition to the intentional and social dimensions,
the proposed methodology also addresses most of the important concerns related
to agile practice adoption found in the literature. In other words, in every step
in the process of analyzing agile practice, practitioners can use our OBAMA-tool
to easily get the needed information. As it is hard to analyze the information
listed by the tool in textual format, we proposed to represent the information
in graphical models before the analysis. To do that, we identified suitable
modeling language and notions by mapping the concepts and relationships in
our ontology model with the notions of different modeling frameworks that can
represent either goal or social dimension. As result, iStar 2.0 was chosen to use
in our framework as its notions match best with our agile elements. For the
agile concepts that cannot be mapped, we propose extended notions for the

150

9.2 Limitations and Future Works

representation. Finally, we demonstrated how to use our framework by applying
our framework to a case of a real software development project.

The result of our framework allows practitioners to customize agile methods
to fit their goals and situations. It provides a methodology to analyze agile
practitioners in two levels. Tactical level allows practitioners to (1) identify the
right practices to adopt based on their goals and (2) check the suitability of a
team based on their situations. Operational level allows the team to identify
(1) the vulnerabilities during the practice adoption caused by team members,
(2) possible problems based on the experiences, and (3) solutions to avoid the
vulnerabilities and solve the problems. In the whole analyzing process, every
step is done more efficiently with the help of our tool and modeling techniques.
Using the tool can help practitioners get the needed information easily and
also make the most out of the existing experiences. The analysis by means of
graphical models helps practitioners to communicate, discuss and understand
better how they should work together to successfully adopt agile practices.

9.2 Limitations and Future Works

9.2.1 Ontology Model and Knowledge

Our ontology model and knowledge always need to be expanded using data
from both the literature and real-life case studies. The currently available
knowledge in our ontology is only related to the five most commonly-used
practices collected from formal resources through an SLR approach. This
amount is still small compared to the number of existing agile practices. There
are four main approaches we can do to expand its knowledge.

• We continue our SLR to collect the knowledge related to other commonly-
used practices such as release planning, planning poker, kanban, pair
programming, etc;

• We collect the knowledge from informal sources such as websites, blogs,
forums. The reason is the fact that it is more practical to share knowledge
on such platforms. Many famous authors including the Agile Manifesto
authors have been sharing their knowledge through informal platforms.
To do that, we need to have well-defined criteria for selection that can
ensure that the extracted knowledge is reliable, e.g., the credibility of the
platform, author, article, etc;

• Apart from the literature, we need to extract data through empirical
research such as observation or in-depth interviews with the members
of real software development teams. We believe that there is valuable
knowledge that cannot be textually described but perceived by observation;

• We put our ontology as open-source so that it can be reused, improved,
and expanded by the agile community.

151

Conclusions

9.2.2 Evidence-based Tool

Our tool is at the prototype stage and it only means to simplify the information
retrieval process. There are parts of it that need to be improved and developed
in both usability and functionality.

• In the current version of our tool, the only way practitioners can get
the information is by selecting the concerns from a combo-box list. A
more sophisticated tool would allow users to access more easily from one
concept or concern to another. For instance, when the users right-click on
a problem, they should be able to choose what other related concern they
want to access next, such as causes or solutions;

• The information is listed in a table format with a fixed row side. To
display long information, the users need to manually expand the column
size. It would be more convenient for users to read if the information is
wrapped into multiple lines to fit the column size;

• The information listed by the tool was cut short and straight to the
point while the users sometimes need context to fully understand it. The
tool thus needs to have a functionality that allows users to find further
information or the original sources;

• In addition to retrieving and displaying the information, the tool also needs
to have a functionality that allows the users to encode new knowledge
easily. To facilitate the encoding process, our tool should suggest step by
step the classes of the instance that users need to add and then how to
build the relationship between instances;

• The tool should also include the functionality that allows users to eval-
uate the credibility of the existing knowledge for instance by rating or
commenting.

9.2.3 Socio-intentional Framework for Agile Methods Tailoring

Our framework presents some limitations related to the methodology for tailor-
ing, the usage of the tool, and the modeling techniques.

• The knowledge provided by the tool is still limited. Practitioners cannot
always count on our tool to get all the information needed for the analysis.
At some steps, practitioners are required to analyze the practice based on
their understanding;

• As there is no information that can be one-size-fits-all, there can be some
conflicts between the information provided in the tool. In such case,
practitioners need to decide which piece of information suits best to their
needs and situations;

• The explanation on how to model the information provided by the tool
in iStar 2.0 can help practitioners to build a model even without any
knowledge of this modeling language. It however still takes time and

152

9.2 Limitations and Future Works

effort to do it. This process could be simpler if the tool can automatically
generate the selected information in the tool into iStar 2.0 elements;

• We have applied a case of a real software development team but there is
no evaluation on this framework. To fully understand the usefulness of the
framework, we need to conduct more sophisticated empirical research with
a real software development team. The research method is observation
and it aims at evaluating two points: (1) the behavior of the team
members during agile practice adoption while following our framework
and (2) the effectiveness of the framework. The former aims at evaluating
if team members improve the understanding of the agile practice and
their roles during the agile practice implementation. The latter aims at
evaluating if the suggestions of our framework are correct and if it can help
the practitioners to successfully adopt the agile practice and eventually
achieve their goals;

• Our framework has not been designed for practice adoption in the context
of scaled agile methods adoption (like the Scaled Agile Framework (SAFe)
[95] for example). Even though our tool contains information about how
to adopt agile practices within the context of large and distributed teams,
scaled agile methods do use a completely different approach including a
heavy and complex hierarchy. We could however extend our framework
to deal with such methods. To achieve that, we first need to extract the
important concepts and relationships architecting scaled agile frameworks.
Based on these, we need to identify the necessary extra steps for our
framework to fit with scalable agility. For instance, at the tactical level,
we need to propose how to build a strategic plan that covers the goals in
different layers, how to align these goals, and what are the right practices
to achieve them. At the operational level, we need to address how to
manage multiple teams to work in parallel on the parts of the same project,
how to align schedules and avoid conflicts, how to integrate the results,
etc;

• This framework is dedicated mostly to the pre-adoption stage of agile
methods adoption. 4 among 5 steps of our methodology focus on how to
prepare a team prior to agile practice adoption where one last part focuses
on the implementation. To make the framework complete, we need to
also include the post-adoption and evaluation process to further check the
adoption success and measure the agile maturity level of the team.

153

References

[1] (2004). Daml ontology library. http://www.daml.org/ontologies.

[2] (2018). Protege ontology library. https://protegewiki.stanford.edu/wiki/
Protege_Ontology_Library.

[3] (2019). Inference. https://www.w3.org/standards/semanticweb/inference.

[4] Abbas, N., Gravell, A. M., and Wills, G. B. (2008). Historical roots of agile
methods: Where did “agile thinking” come from? In International conference
on agile processes and extreme programming in software engineering, pages
94–103. Springer.

[5] Abbas, N., Gravell, A. M., and Wills, G. B. (2010). Using factor analysis to
generate clusters of agile practices (a guide for agile process improvement).
In AGILE Conference, 2010, pages 11–20. IEEE.

[6] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2017). Ag-
ile software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439.

[7] AgileAlliance (2005a). Kanban. https://www.agilealliance.org/glossary/
kanban.

[8] AgileAlliance (2005b). Scrum. https://www.agilealliance.org/glossary/
scrum.

[9] Ahmed, E.-M. and Sidky, A. (2009). 25 percent ahead of schedule and just
at “step 2” of the sami. In Agile Conference, 2009. AGILE’09., pages 162–169.
IEEE.

[10] Ambler, S. (2005). The Agile Unified Process (AUP). Ambysoft, http://www.
agilealliance. hu/materials/books/SWA-AUP. pdf.

[11] Ambler, S. W. and Lines, M. (2016). The disciplined agile process decision
framework. In International Conference on Software Quality, pages 3–14.
Springer.

[12] Auvinen, J., Back, R., Heidenberg, J., Hirkman, P., and Milovanov, L.
(2006). Software process improvement with agile practices in a large telecom
company. In International Conference on Product Focused Software Process
Improvement, pages 79–93. Springer.

[13] Avison, D. E. and Wood-Harper, A. T. (1991). Information systems
development research: an exploration of ideas in practice. The Computer
Journal, 34(2):98–112.

155

References

[14] Ayed, H., Vanderose, B., and Habra, N. (2012). A metamodel-based ap-
proach for customizing and assessing agile methods. In Quality of Information
and Communications Technology (QUATIC), pages 66–74. IEEE.

[15] Baleviciute, G. (2014). Whitepaper–scrum vs kanban vs. scrumban. Re-
trieved September, 10:2016.

[16] Bass, J. M. (2014). Scrum master activities: process tailoring in large
enterprise projects. In Global Software Engineering (ICGSE), 2014 IEEE 9th
International Conference on, pages 6–15. IEEE.

[17] Beck, K. (2000). Extreme Programming Explained: Embrace Change.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[18] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001).
Manifesto for agile software development.

[19] Benyon, D. and Skidmore, S. (1987). Towards a tool kit for the systems
analyst. The computer journal, 30(1):2–7.

[20] Berteig, M. (2008). Experience report: Extremely short iterations as
a catalyst for effective prioritization of work. In Agile, 2008. AGILE’08.
Conference, pages 265–268. IEEE.

[21] Bishop, C. M. (2007). Pattern recognition and machine learning, 5th
Edition. Information science and statistics. Springer.

[22] Boehm, B. W. (1988). A spiral model of software development and en-
hancement. Computer, 21(5):61–72.

[23] Bogojević, P. (2017). Comparative analysis of agile methods for managing
software projects. European Project Management Journal, 7(1):58–74.

[24] Booch, G., Rumbaugh, J., and Jacobson, I. (2005). Unified modeling
language user guide,(the 2nd edition).

[25] Boone, H. N. and Boone, D. A. (2012). Analyzing likert data. Journal of
extension, 50(2):1–5. https://www.joe.org/joe/2012april/tt2.php.

[26] Bowers, J., May, J., Melander, E., Baarman, M., and Ayoob, A. (2002).
Tailoring xp for large system mission critical software development. In
Conference on Extreme Programming and Agile Methods, pages 100–111.
Springer.

[27] Brank, J., Grobelnik, M., and Mladenic, D. (2005). A survey of ontology
evaluation techniques. In Proceedings of the conference on data mining and
data warehouses (SiKDD 2005), pages 166–170. Citeseer Ljubljana, Slovenia.

[28] Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data
driven ontology evaluation.

[29] Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: un-
derstanding aic and bic in model selection. Sociological methods & research,
33(2):261–304.

[30] Burrows, M. (2014). Kanban from the Inside. Sequim, WA: Blue Hole
Press.

156

References

[31] Campanelli, A. S. (2014). A model for agile method tailoring. Projetos e
Dissertações em Sistemas de Informação e Gestão do Conhecimento, 3(2).

[32] Campanelli, A. S. and Parreiras, F. S. (2015). Agile methods tailoring–a
systematic literature review. Journal of Systems and Software, 110:85–100.

[33] Castro, J., Kolp, M., and Mylopoulos, J. (2001). A requirements-driven
development methodology. In International Conference on Advanced Infor-
mation Systems Engineering, pages 108–123. Springer.

[34] Chandra, C. and Tumanyan, A. (2007). Organization and problem ontology
for supply chain information support system. Data & Knowledge Engineering,
61(2):263–280.

[35] Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R. (1999). What
are ontologies, and why do we need them? IEEE Intelligent Systems and
their applications, 14(1):20–26.

[36] Chen, Y.-J. (2010). Development of a method for ontology-based empirical
knowledge representation and reasoning. Decision Support Systems, 50(1):1–
20.

[37] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (2000). The nfr
framework in action. In Non-Functional Requirements in software engineering,
pages 15–45. Springer.

[38] Cockburn, A. (1998). Surviving Object-oriented Projects: A Manager’s
Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[39] Cockburn, A. (2004). Crystal clear: a human-powered methodology for
small teams. Pearson Education.

[40] Cohen, D., Lindvall, M., and Costa, P. (2004). An introduction to agile
methods. Advances in computers, 62(03):1–66.

[41] Conboy, K. and Fitzgerald, B. (2010). Method and developer characteristics
for effective agile method tailoring: A study of xp expert opinion. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(1):1–30.

[42] Dalpiaz, F., Franch, X., and Horkoff, J. (2016). istar 2.0 language guide.
arXiv preprint arXiv:1605.07767.

[43] Damiani, E., Colombo, A., Frati, F., and Bellettini, C. (2007). A meta-
model for modeling and measuring scrum development process. In Agile
Processes in Software Engineering and Extreme Programming, 8th Interna-
tional Conference, XP 2007, Proceedings, pages 74–83.

[44] Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993). Goal-directed
requirements acquisition. Science of computer programming, 20(1-2):3–50.

[45] Davis, G. B. (1982). Strategies for information requirements determination.
IBM systems journal, 21(1):4–30.

[46] de Azevedo Santos, M., de Souza Bermejo, P. H., de Oliveira, M. S., Tonelli,
A. O., et al. (2011). Agile practices: An assessment of perception of value of
professionals on the quality criteria in performance of projects. Journal of
Software Engineering and Applications, 4(12):700.

157

References

[47] Denning, P. J. (1997). A new social contract for research. Communications
of the ACM, 40(2):132–134.

[48] Derbier, G. (2003). Agile development in the old economy. In Agile
Development Conference, 2003. ADC 2003. Proceedings of the, pages 125–131.
IEEE.

[49] Diebold, P. and Zehler, T. (2016). The right degree of agility in rich
processes. In Managing Software Process Evolution, pages 15–37. Springer.

[50] Eckstein, J. (2013). Agile software development in the large: Diving into
the deep. Addison-Wesley.

[51] Eilers, K., Simmert, B., and Peters, C. (2020). Doing agile vs. being
agile-understanding their effects to improve agile work.

[52] Ejigu, D., Scuturici, M., and Brunie, L. (2007). An ontology-based approach
to context modeling and reasoning in pervasive computing. In Fifth Annual
IEEE International Conference on Pervasive Computing and Communications
Workshops (PerComW’07), pages 14–19. IEEE.

[53] Eloranta, V.-P., Koskimies, K., and Mikkonen, T. (2016). Exploring
scrumbut—an empirical study of scrum anti-patterns. Information and
Software Technology, 74:194–203.

[54] Eric, S. Y. (2009). Social modeling and i. In Conceptual Modeling: Foun-
dations and Applications, pages 99–121. Springer.

[55] Erickson, J., Lyytinen, K., and Siau, K. (2005). Agile modeling, agile
software development, and extreme programming: the state of research.
Journal of database Management, 16(4):88.

[56] Esfahani, H. C., Cabot, J., and Yu, E. (2010a). Adopting agile meth-
ods: Can goal-oriented social modeling help? In Research Challenges in
Information Science (RCIS), 2010 Fourth International Conference on, pages
223–234. IEEE.

[57] Esfahani, H. C., Eric, S., and Annosi, M. C. (2011). Towards the strategic
analysis of agile practices. In CAiSE Forum, pages 155–162.

[58] Esfahani, H. C. and Yu, E. (2010). A repository of agile method fragments.
In International Conference on Software Process, pages 163–174. Springer.

[59] Esfahani, H. C., Yu, E., and Cabot, J. (2010b). Situational evaluation
of method fragments: An evidence-based goal-oriented approach. In Inter-
national Conference on Advanced Information Systems Engineering, pages
424–438. Springer.

[60] Fitzgerald, B., Hartnett, G., and Conboy, K. (2006). Customising ag-
ile methods to software practices at intel shannon. European Journal of
Information Systems, 15(2):200–213.

[61] Fitzgerald, B., Russo, N., and O’Kane, T. (2000). An empirical study of
system development method tailoring in practice. ECIS 2000 Proceedings,
page 4.

158

References

[62] Flora, H. K. and Chande, S. V. (2014). A systematic study on agile software
development methodologies and practices. International Journal of Computer
Science and Information Technologies, 5(3):3626–3637.

[63] Florac, W. A. and Carleton, A. D. (1999). Measuring the software process:
statistical process control for software process improvement. Addison-Wesley
Professional.

[64] Forsberg, K. and Mooz, H. (1991). The relationship of system engineering
to the project cycle. In INCOSE International Symposium, volume 1, pages
57–65. Wiley Online Library.

[65] Forte, F. and Kloppenborg, T. (2018). The agile mindset for project
management. In International Research Network on Organizing by Projects
(IRNOP) 2017, pages 1–15. UTS ePRESS, Sydney.

[66] Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software
Development, 9(8):28–35.

[67] Franch, X., López, L., Cares, C., and Colomer, D. (2016). The i* framework
for goal-oriented modeling. In Domain-specific conceptual modeling, pages
485–506. Springer.

[68] Gregorio, D. D. (2012). How the business analyst supports and encourages
collaboration on agile projects. In Systems Conference (SysCon), 2012 IEEE
International, pages 1–4. IEEE.

[69] Gremillion, L. and Pyburn, P. (1986). Breaking the systems development
bottleneck. Harvard Business Review (March/April 1983).

[70] Harmsen, A. F., Brinkkemper, J. N., and Oei, J. H. (1994). Situational
method engineering for information system project approaches. Citeseer.

[71] Henderson-Sellers, B. and Gonzalez-Perez, C. (2005). A comparison of four
process metamodels and the creation of a new generic standard. Information
and software technology, 47(1):49–65.

[72] Henderson-Sellers, B. and Ralyté, J. (2010). Situational method engineering:
state-of-the-art review. Journal of Universal Computer Science.

[73] Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science
in information systems research. MIS quarterly, pages 75–105.

[74] Highsmith, J. (2013). Adaptive software development: a collaborative
approach to managing complex systems. Addison-Wesley.

[75] Hummel, M. (2014). State-of-the-art: A systematic literature review on
agile information systems development. In System Sciences (HICSS), 2014
47th Hawaii International Conference on, pages 4712–4721. IEEE.

[76] Jalali, S. and Wohlin, C. (2010). Agile practices in global software
engineering-a systematic map. In Global Software Engineering (ICGSE),
2010 5th IEEE International Conference on, pages 45–54. IEEE.

[77] Jalali, S. and Wohlin, C. (2012). Global software engineering and agile
practices: a systematic review. Journal of software: Evolution and Process,
24(6):643–659.

159

References

[78] Kalus, G. and Kuhrmann, M. (2013). Criteria for software process tailoring:
a systematic review. In Proceedings of the 2013 International Conference on
Software and System Process, pages 171–180.

[79] Karlström, D. and Runeson, P. (2006). Integrating agile software devel-
opment into stage-gate managed product development. Empirical Software
Engineering, 11(2):203–225.

[80] Kitchenham, B. (2004). Procedures for performing systematic reviews.
Keele, UK, Keele University, 33(2004):1–26.

[81] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and
Linkman, S. (2009). Systematic literature reviews in software engineering–a
systematic literature review. Information and software technology, 51(1):7–15.

[82] Kitchenham, B. and Charters, S. (2007). Guidelines for performing sys-
tematic literature reviews in software engineering.

[83] Kiv, S., Heng, S., Kolp, M., and Wautelet, Y. (2017a). An intentional
perspective on partial agile adoption. In Proceedings of the 12th International
Conference on Software Technologies - Volume 1: ICSOFT,, pages 116–127.
INSTICC, SciTePress.

[84] Kiv, S., Heng, S., Kolp, M., and Wautelet, Y. (2018). Agile manifesto and
practices selection for tailoring software development: A systematic literature
review. In International Conference on Product-Focused Software Process
Improvement, pages 12–30. Springer.

[85] Kiv, S., Heng, S., Kolp, M., and Wautelet, Y. (2019). Agile methods
knowledge representation for systematic practices adoption. In International
Conference on Agile Software Development, pages 19–34. Springer.

[86] Kiv, S., Heng, S., Wautelet, Y., and Kolp, M. (2017b). Towards a goal-
oriented framework for partial agile adoption. In Software Technologies -
12th International Joint Conference, ICSOFT 2017, Revised Selected Papers,
pages 69–90.

[87] Kniberg, H. and Skarin, M. (2010). Kanban and Scrum-making the most
of both. Lulu. com.

[88] Kruchten, P. (2004). The rational unified process: an introduction. Addison-
Wesley Professional.

[89] Kumar, K. and Welke, R. J. (1992). Methodology engineeringr: a proposal
for situation-specific methodology construction. In Challenges and strategies
for research in systems development, pages 257–269.

[90] Kurapati, N., Manyam, V. S. C., and Petersen, K. (2012). Agile software
development practice adoption survey. In International Conference on Agile
Software Development, pages 16–30. Springer.

[91] Lamy, J.-B. (2017). Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical ontolo-
gies. Artificial intelligence in medicine, 80:11–28.

[92] Larman, C. and Basili, V. R. (2003). Iterative and incremental develop-
ments. a brief history. Computer, 36(6):47–56.

160

References

[93] Lawshe, C. H. (1975). A quantitative approach to content validity 1.
Personnel psychology, 28(4):563–575.

[94] Lee, S. and Yong, H.-S. (2013). Agile software development framework
in a small project environment. Journal of Information Processing Systems,
9(1):69–88.

[95] Leffingwell, D., Jemilo, D., Zamora, M., ONeill, C., and Yakuma, A.
(2014). Scaled agile framework (safe). Haettu, 27:2014. https://www.
scaledagileframework.com/.

[96] Lin, J., Miao, C., Shen, Z., and Sun, W. (2013). Goal oriented agile unified
process (goaup): An educational case study. In 2013 International Conference
on Software Engineering and Computer Science, pages 36–44. Atlantis Press.

[97] Lin, J., Yu, H., Shen, Z., and Miao, C. (2014). Using goal net to model
user stories in agile software development. In Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2014
15th IEEE/ACIS International Conference on, pages 1–6. IEEE.

[98] Lycett, M., Patel, C., Merico, A., Iacovelli, N., and de Cesare, S. (2008).
Tailoring software development methodologies in practice: A case study.
Journal of computing and information technology, 16(3):157–168.

[99] Madeyski, L. (2010). Test-Driven Development: An Empirical Evaluation
of Agile Practice. Springer Publishing Company, Incorporated, 1st edition.

[100] Madi, T., Dahalin, Z., and Baharom, F. (2011). Content analysis on agile
values: A perception from software practitioners. In Software Engineering
(MySEC), 2011 5th Malaysian Conference in, pages 423–428. IEEE.

[101] Maham, M. (2008). Planning and facilitating release retrospectives. In
Agile 2008 Conference, pages 176–180. IEEE.

[102] March, S. T. and Smith, G. F. (1995). Design and natural science research
on information technology. Decision support systems, 15(4):251–266.

[103] Martin, J. (1991). Rapid application development. Macmillan Publishing
Co., Inc.

[104] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology
language overview. W3C recommendation, 10(10):2004.

[105] Mikulėnas, G., Butleris, R., and Nemuraitė, L. (2011). An approach
for the metamodel of the framework for a partial agile method adaptation.
Information Technology And Control, 40(1):71–82.

[106] Moe, N. B. and Aurum, A. (2008). Understanding decision-making in agile
software development: a case-study. In Software Engineering and Advanced
Applications, 2008. SEAA’08. 34th Euromicro Conference, pages 216–223.
IEEE.

[107] Moe, N. B., Aurum, A., and Dybå, T. (2012). Challenges of shared decision-
making: A multiple case study of agile software development. Information
and Software Technology, 54(8):853–865.

161

References

[108] Noy, N. F. and Hafner, C. D. (1997). The state of the art in ontology
design: A survey and comparative review. AI magazine, 18(3):53–53.

[109] Noy, N. F. and McGuinness, D. L. (2001). Ontology development
101: A guide to creating your first ontology. https://protege.stanford.edu/
publications/ontology_development/ontology101.pdf.

[110] Object Managment Group (2008). Software systems process engineering
metamodel. https://www.omg.org/spec/SPEM.

[111] Ochodek, M. and Kopczyńska, S. (2018). Perceived importance of agile
requirements engineering practices–a survey. Journal of Systems and Software,
143:29–43.

[112] Paasivaara, M. and Lassenius, C. (2016). Scaling scrum in a large globally
distributed organization: a case study. In Global Software Engineering
(ICGSE), 2016 IEEE 11th International Conference on, pages 74–83. IEEE.

[113] Palmer, S. R. and Felsing, M. (2001a). A Practical Guide to Feature-Driven
Development. Pearson Education, 1st edition.

[114] Palmer, S. R. and Felsing, M. (2001b). A practical guide to feature-driven
development. Pearson Education.

[115] Pereira, T., Alencar, F. M., and Castro, J. (2016). Bvccon-tool: A
modeling tool to support dynamic business process configuration approach.
In CIbSE, pages 39–52.

[116] Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development:
An Agile Toolkit: An Agile Toolkit. Addison-Wesley.

[117] Potoniec, J., Wiśniewski, D., Ławrynowicz, A., and Keet, C. M. (2020).
Dataset of ontology competency questions to sparql-owl queries translations.
Data in Brief, page 105098.

[118] Precord, C. (2015). WxPython Application Development Cookbook. Packt
Publishing Ltd.

[119] Pressman, R. S. (2005). Software engineering: a practitioner’s approach.
Palgrave Macmillan.

[120] Prud’hommeaux, E. and Seaborne, A. (2005). Sparql query language
for rdf http://www.w3.org. Technical report, TR/rdf-sparql-query. https:
//www.w3.org/TR/rdf-sparql-query/.

[121] Qumer, A. and Henderson-Sellers, B. (2008). A framework to support the
evaluation, adoption and improvement of agile methods in practice. Journal
of Systems and Software, 81(11):1899–1919.

[122] Raad, J. and Cruz, C. (2015). A survey on ontology evaluation methods.

[123] Rahman, A., Agrawal, A., Krishna, R., Sobran, A., and Menzies, T.
(2018). “doing” agile versus “being” agile.

[124] Rao, L., Mansingh, G., and Osei-Bryson, K.-M. (2012). Building ontology
based knowledge maps to assist business process re-engineering. Decision
Support Systems, 52(3):577–589.

162

References

[125] Rao, L., Reichgelt, H., and Osei-Bryson, K.-M. (2009). An approach for
ontology development and assessment using a quality framework. Knowledge
Management Research & Practice, 7(3):260–276.

[126] Reddy, A. (2015). The Scrumban [r] evolution: getting the most out of
Agile, Scrum, and lean Kanban. Addison-Wesley Professional.

[127] Respect, I. (2007). A kaos tutorial.

[128] Royce, W. (1970). The software lifecycle model (waterfall model). In
Proc. Westcon, volume 314.

[129] Saleh, M. H. (2013). Methodology for selection of agile practices. PhD
thesis.

[130] Santos, R., Flentge, F., Begin, M.-E., and Navarro, V. (2011). Agile
technical management of industrial contracts: Scrum development of ground
segment software at the european space agency. In International Conference
on Agile Software Development, pages 290–305. Springer.

[131] Schmidt, M., Meier, M., and Lausen, G. (2010). Foundations of sparql
query optimization. In Proceedings of the 13th International Conference on
Database Theory, pages 4–33.

[132] Schön, E.-M., Thomaschewski, J., and Escalona, M. J. (2017). Agile
requirements engineering: A systematic literature review. Computer Standards
& Interfaces, 49:79–91.

[133] Schuppenies, R. and Steinhauer, S. (2002). Software process engineering
metamodel. OMG group, November.

[134] Schwaber, K. (1996). Controlled chaos: Living on the edge. American
Programmer, 9:10–16.

[135] Schwaber, K. (2004). Agile project management with Scrum. Microsoft
press.

[136] Schwaber, K. and Beedle, M. (2002). Agile software development with
Scrum, volume 1. Prentice Hall.

[137] Scrum study (2017). Why scrum - scrum principles. https://www.
scrumstudy.com/whyscrum/scrum-principles.

[138] Séguin, N., Tremblay, G., and Bagane, H. (2012). Agile principles as
software engineering principles: An analysis. In International Conference on
Agile Software Development, pages 1–15. Springer.

[139] Shen, Z., Miao, C., Tao, X., and Gay, R. (2004). Goal oriented modeling
for intelligent software agents. In Intelligent Agent Technology, 2004.(IAT
2004). Proceedings. IEEE/WIC/ACM International Conference on, pages
540–543. IEEE.

[140] Shu, X., Turinsky, A., Sensen, C., and Maurer, F. (2007). A case study
of the implementation of agile methods in a bioinformatics project. In
Proceedings of the 8th international conference on Agile processes in software
engineering and extreme programming, pages 169–170. Springer-Verlag.

163

References

[141] Sidky, A. S., Arthur, J. D., and Bohner, S. A. (2007). A disciplined
approach to adopting agile practices: the agile adoption framework. ISSE,
3(3):203–216.

[142] Söderström, E., Andersson, B., Johannesson, P., Perjons, E., and Wangler,
B. (2002). Towards a framework for comparing process modelling languages.
In International Conference on Advanced Information Systems Engineering,
pages 600–611. Springer.

[143] Sommerville, I. (2011). Software engineering 9th edition. ISBN-10,
137035152:18.

[144] Stapleton, J. (1997a). DSDM, dynamic systems development method: the
method in practice. Cambridge University Press.

[145] Stapleton, J. (1997b). Dsdm: The Method in Practice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[146] StateOfAgile (2019). The 13th Annual State of Agile Report. https:
//www.stateofagile.com.

[147] Straub, D., Boudreau, M.-C., and Gefen, D. (2004). Validation guidelines
for is positivist research. Communications of the Association for Information
systems, 13(1):24.

[148] Stray, V. G., Lindsjorn, Y., and Sjoberg, D. I. (2013). Obstacles to efficient
daily meetings in agile development projects: A case study. In Empirical
Software Engineering and Measurement, 2013 ACM/IEEE International
Symposium on, pages 95–102. IEEE.

[149] Susi, A., Perini, A., Mylopoulos, J., and Gi, P. (2005). The tropos
metamodel and its use. Informatica, 29(4).

[150] Sutherland, J. (2010). Agile principles and values. Recuperado de:
http://msdn. microsoft. com/en-us/library/dd997578. aspx.

[151] Sutherland, J. and Schwaber, K. (2013). The scrum guide. The definitive
guide to scrum: The rules of the game. Scrum. org, 268.

[152] Taherdoost, H. (2016). Validity and reliability of the research instrument;
how to test the validation of a questionnaire/survey in a research.

[153] Thomas, D. (2005). Programming Ruby The Pragmatic Programmers’
Guide. he Pragmatic Bookshelf.

[154] Thomas, D. (2014). Agile is dead,
https://pragdave.me/blog/2014/03/04/time-to-kill-agile.html.

[155] Tolvanen, J.-P. (1998). Incremental method engineering with modeling
tools. Jyväskylä Studies in Computer Science, Economics and Statistics, 47.

[156] Tripp, J. F. and Armstrong, D. J. (2014). Exploring the relationship
between organizational adoption motives and the tailoring of agile methods.
In 47th Hawaii International Conference on System Sciences (HICSS), pages
4799–4806. IEEE.

[157] Tsichritzis, D. (1998). The dynamics of innovation in beyond calculation:
The next fifty years of computing, pj denning and rm metcalfe. pages 259–265.

164

References

[158] Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods
and applications. The knowledge engineering review, 11(2):93–136.

[159] Van Kelle, E., Visser, J., Plaat, A., and van der Wijst, P. (2015). An
empirical study into social success factors for agile software development. In
2015 IEEE/ACM 8th International Workshop on Cooperative and Human
Aspects of Software Engineering, pages 77–80. IEEE.

[160] VersionOne (2017). 11th annual state of agile development survey. https:
//stateofagile.com/#ufh-i-613554036-11th-annual-state-of-agile-report/
7027494.

[161] VersionOne (2019). 13th annual state of agile survey. https://www.
stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/
473508.

[162] Wautelet, Y., Heng, S., Kiv, S., and Kolp, M. (2017). User-story driven
development of multi-agent systems: A process fragment for agile methods.
Computer Languages, Systems & Structures, 50:159–176.

[163] Wautelet, Y., Heng, S., Kolp, M., and Mirbel, I. (2014). Unifying and
extending user story models. In Advanced Information Systems Engineering
- 26th International Conference, CAiSE 2014. Proceedings, pages 211–225.

[164] Yu, E. (2011). Modeling strategic relationships for process reengineering.
Social Modeling for Requirements Engineering, 11(2011):66–87.

[165] Yu, E. and Mylopoulos, J. (1994). Understanding “why” in software
process modelling, analysis, and design. In Proc. of the 16th Int. Conf. on
Software Engineering, pages 159–168. IEEE Computer Society Press.

165

Appendix A

Ontology Model Validation: Survey Ques-
tions

167

Appendix B

Ontology Model Validation: Survey Re-
sults

Following tables present the complete results of the four survey questions with
the same data structure to Table 7.2.

Concern Never Rare Sometimes Often Always Median
C1 2 3 7 3 8 3
C2 5 5 8 3 2 3
C3 5 6 9 2 1 3
C4 4 2 4 10 3 4
C5 2 5 4 6 6 4
C6 3 2 6 4 8 4
C7 4 1 5 5 8 4
C8 4 4 5 6 4 3
C9 4 3 7 6 3 3
C10 5 4 3 8 3 4
C11 6 5 4 3 5 3
C12 4 5 7 3 4 3
C13 1 4 7 6 5 3
C14 2 5 4 7 5 4
C15 6 5 5 5 2 3

Table B.1 Results of Question 1.1. Consider your own experience with agile,
how often do you need the information related to each concern before you start
adopting each agile practice?

185

Ontology Model Validation: Survey Results

Concern Irrelevant Useful Important Necessary Median
C1 1 4 8 10 3
C2 3 10 4 6 2
C3 3 12 1 7 2
C4 3 3 9 8 3
C5 1 7 7 8 3
C6 2 5 11 5 3
C7 2 7 8 6 3
C8 2 7 8 6 3
C9 2 7 8 6 3
C10 2 8 8 5 3
C11 4 6 7 6 3
C12 2 7 6 7 3
C13 2 8 6 8 3
C14 2 9 2 10 3
C15 2 12 4 5 2

Table B.2 Results of Question 1.2. How would you rate the relevancy level of
each concern to the agile practice adoption?

Concern S Disagree Disagree Sw Agree Agree S Agree Median
C1 2 1 8 10 2 4
C2 0 3 9 9 2 3
C3 1 3 9 9 1 3
C4 0 2 7 12 2 4
C5 0 2 8 9 4 4
C6 1 1 11 8 2 3
C7 1 1 12 7 2 3
C8 1 1 9 9 3 4
C9 1 1 9 10 2 4
C10 0 2 8 9 4 4
C11 0 2 8 10 3 4
C12 0 1 9 10 3 4
C13 2 3 8 7 3 3
C14 1 4 7 9 2 3
C15 0 4 9 6 4 3

Table B.3 Results of Question 2.1. To what extent do you agree that information
provided by the tool related to each concern is correct?

186

Concern S Disagree Disagree Sw Agree Agree S Agree Median
C1 2 3 10 7 1 3
C2 1 2 9 8 3 3
C3 1 3 11 7 1 3
C4 1 1 11 9 1 3
C5 1 2 12 6 2 3
C6 1 2 10 9 1 3
C7 1 2 10 9 1 3
C8 1 2 10 9 1 3
C9 1 2 10 10 0 3
C10 1 2 7 10 3 4
C11 1 1 9 9 3 4
C12 1 1 10 9 2 3
C13 2 6 8 7 0 3
C14 3 4 7 9 0 3
C15 1 3 10 7 2 3

Table B.4 Results of Question 2.2.To what extent do you agree that the amount
of information, provided by the tool, related to each concern is good enough to
satisfy your needs?

187

Ontology Model Validation: Survey Results

Q4.2 Q4.3 Q4.4
P1 (1) Agile ways of

working require first
and foremost a change
in mindset and in
management culture.
(2) Focus more on
how to improve in-
dividual mindset, be-
haviour, interaction
inside and outside of
the team

P2 Take into account the
external parameters
which are influencing
the team behaviour

Take a bit of distance
from the agile mani-
festo, which is a bit
outdated.

Congrats. Huge job. I
see the potential, pro-
viding that the under-
lying cause/effect cor-
relations are taken to
the next level.

P3 (1)Relationships and
trust between people
(2) Context is Key (3)
Support of Leadership
influences adoption
(4) Change of habit
that requires adapted
mindset and mindset
is non-observable,
only behaviours.

Keep on experiment-
ing ! Congrats for
the efforts already
achieved.

188

P4 It’s not up to a tool
to let me decide what
practice is suitable to
my team. The idea
of agile is to check
with the team how
THEY would like to
improve. What’s the
next step THEY are
ready to experiment
with.my primary con-
cern with the tool is
that I can’t see how
this tool fosters team
experimentation in a
safe way.

Thanks for your
time... I’d encourage
you to spend a few
weeks with teams
working on an agile
journey to get a
feeling of their real
needs. I’m not sure
this tool is the right
answer to the biggest
issue they face during
agile adoption

P5 It might be a ben-
efit for the tool to
propose other kinds
of views (hyperlinked,
multi-concepts tables,
...) in order not
to constraint the user
in "one" unique mode
for gathering informa-
tion.

P6 As a researcher or a
developer, we are not
in charge of adopting
a practice. So all
the concerns are some-
how irrelevant to us.
What is important to
us is why we need to
practice it and what
are the activities we
should follow.

Table B.5 Result of Question.4

189

Appendix C

Supporting Tool

191

Supporting Tool

Fig. C.1 Welcome page

Fig. C.2 The goal a team can achieve by adopting an agile practice

192

Fig. C.3 The agile value a team can achieve by adopting a practice

Fig. C.4 The agile principle a team can achieve by adopting a practice

193

Supporting Tool

Fig. C.5 The activity a team should perform as part of a practice

Fig. C.6 The problem a team may encounter while adopting a practice

194

Fig. C.7 The situation of the team or the activity that they perform which is
bad for adopting a practice

Fig. C.8 The situation of the team or the activity that they perform which is
good for adopting a practice

195

Supporting Tool

Fig. C.9 The artifact required for adopting a practice

Fig. C.10 The role required for adopting a practice

196

Fig. C.11 The requisites a team should prepare in order to successfully adopt a
practice

Fig. C.12 The cause of the problem team may encounter

197

Supporting Tool

Fig. C.13 The solution a team may use to solve the problem

Fig. C.14 The general knowledge based on experiences related to agile practice
a team should learn

198

Fig. C.15 Input page 1- For selecting agile values and principles

Fig. C.16 Input page 2 - For describing team’s situations

199

Supporting Tool

Fig. C.17 The situation of the team or the activity that they perform which is
bad for adopting a practice based on inputs

200

Appendix D

Socio-intentional diagrams for agile meth-
ods tailoring

Sprint Planning

Capable
Team

Good
Estimation
Potential

Customer
Representative
be competent

Customer
Representative

be credible

Customer
Representative be

knowledgeable

Customer
Representative has

management
support

Good
Collaboration

Iteration Plan
be Realistic

Collaborations
Be explicit

H
el

p

Good Task
Break- down

Potential

H
el

p

Customer
Representative

be Effective

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

Experience in
domain

knowledge

Experience in
technology
knowledge

High
management

support
Stable

requirement

Help

Same site
User highly
available

Short Iteration

Components be broken down as
being implementable during short

cycles

Loosely coupled
design

H
el

p

H
el

p

H
el

p

H
el

p

H
el

p

Fig. D.1 Relationship between Short Iteration and the requisites for their success
and team’s situation visualized in iStar 2.0

201

Socio-intentional diagrams for agile methods tailoring

Let the length of the
short cycle be flexible

Scrum
master

Whole
team

Use first iteration to
warm up the team

Define first iteration
shorter than others

Finish all the
defined tasks with

an iteration

Whatever is planned to every
iteration must be completed within

the ones next to it

Define an appropriate
iteration length

Protect team from
changing increment scope

after it is agreed upon

Conduct an
effective short

iteration

Conduct short
iteration with

success

Effective short
iterationD

Keep iteration length short to
continually collect feedback

Negotiate iteration
scope with customer

The team use the
proposed tool name

SPLICE

Sprint
backlog

D

Product
owner

D

Effective short
iteration

D

Conduct short
iteration with

success
D

D

Fig. D.2 Activities of Short iteration visualized in Star 2.0

Allow differentiated lead-times towards Start of
Production depending on the size or complexity of the

wanted software features

S
olve

Team spend effort to align the internal
team practices to the overall product
development and release processes

Investments and lead-times are
difficult to do short iteration

Undefined
cause

Make

M
ak

e

M
ak

eFinal verification of the software/
mechanics interface cannot take

place until much later

Make

Use an iteration length of
two days

S
olve

Stakeholders continually had
emergency changes in scope or

problems from the field.

Fig. D.3 Cause, Problems in Short iteration and Solution visualized in iStar 2.0

202

