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ARTICLE

Monitoring Coefficient of Variation using One-Sided Run Rules
control charts in the presence of Measurement Errors

ABSTRACT

We investigate in this paper the effect of the measurement error (ME) on the
performance of Run Rules control charts monitoring the coefficient of variation (CV)
squared. The previous Run Rules CV chart in the literature is improved slightly
by monitoring the CV squared using two one-sided Run Rules charts instead of
monitoring the CV itself using a two-sided chart. The numerical results show that
this improvement gives better performance in detecting process shifts. Moreover,
we will show through simulation that the precision and accuracy errors do have
negative effect on the performance of the proposed Run Rules charts. We also find
out that taking multiple measurements per item is not an effective way to reduce
these negative effects. The proposed Run Rules control charts can be applied in the
anomaly detection area.

KEYWORDS
Run Rules chart, Markov chain, Coefficient of Variation, Measurement Errors,
Anomaly Detection.

1. Introduction

Among important statistical characteristics of a variable, the coefficient of variation
(CV) is widely used to evaluate the stability or concentration of the random variable
around the mean. It is defined as the ratio between the standard deviation to the
mean, v = o/p. In many industrial processes, keeping the value of this coefficient of
a characteristic of interest within the permissible range means assuring the quality
of products. A number of examples have been illustrated in the literature for the
applications of the CV in industry. [5] presented an example where the quality
of interest is the pressure test drop time from a sintering process manufacturing
mechanical parts. In this example, the presence of a constant proportionality between
the standard deviation of the pressure drop time and its mean was confirmed. The CV
was then monitored to detect changes in the process variability. [22] showed that it is
useful to monitor the CV in detecting the presence of chatter, a severe form of self-
excited vibration in the machining process which leads to many machining problems.
More examples about the need of using the CV as a measure of interest has been
discussed in [10]. Because of its wide range of applications, monitoring the CV has
been a major objective in many studies in statistical process control, see, for example,
3], [26], [4], [23], [21], [8], [13] and [12].

Along with the development of the advanced control charts monitoring the CV
with improved performance, recent researches are paying attention to the effect of the
measurement error on the CV control chart. This makes these researches become more
in touch reality since the measurement error is often present in practice. A Shewhart
control chart monitoring the CV under the presence of measurement error (ME) was
suggested by [24]. [18] improved the linear covariate error model for the CV in [24]



and then proposed the EWMA CV control chart with ME. Also, researchers studied
the effect of ME on the variable sampling interval control chart [11], the cumulative
sum control chart monitoring the CV [19], and the hotelling T2 control chart[25]. Very
recently, [14] proposed a combined mixed-s-skip sampling strategy to reduce the effect
of autocorrelation on the X-bar in the presence of measurement errors.

One of the reasons leads to the introduction of many advanced control charts
monitoring the CV is to overcome a drawback of the Shewhart CV chart which is
only sensitive to the large shifts. However, the Shewhart chart is still popularly used
thanks to its simplicity in implementation. From this point of view, the Run Rules
charts are advantageous: they are easy to implement (compared to, for example, the
EWMA control chart or the CUSUM control chart, even these charts may bring better
performance) and they can improve remarkably the performance of the Shewhart chart
in detecting small or moderate process shifts. The aim of this paper is to investigate
the performance of Run Rules CV control chart under the presence of ME. In fact,
the Run Rules chart monitoring the CV has been studied in [2]. However, the ME
has not been considered. Moreover, in this study the authors only focused on the
two-sided charts (the one-sided chart has been mentioned, but quite sketchily without
explanation for the design) with the CV monitored directly. We improve this design
by monitoring the CV squared and presenting the design of the two one-sided Run
Rules charts in detail.

The paper proposes new advanced control charts that can be applied for anomaly
detection. This issue has scored a blooming in science community recently. It has
been seen a connection between control chart and anomaly detection to improve the
quality of credit card management|[20] or process in various areas[27], and to track
the behaviour of emergency department[7]. Anomaly detection is defined as a notion
of finding instances in data that are difference in compare with expected behavior.
Approaches based on anomaly detection perspective have contributed to increased
efficiency in decision making process. This paper consists of eight sections and is
organized as follows. Followed by the introduction in Section 1, Section 2 presents a
brief review of the distribution of the sample coefficient of variation. The design and
the implementation of two one-sided Run Rules control charts monitoring the CV
squared (denoted as RR, s — 2 charts) are presented in section 3. Section 4 is for the
performance of these charts. A linear covariate error model for the CV is reintroduced
in section 5. The design of control charts in the presence of measurement errors and
the effect of the measurement error on the RR, s — 4% charts are displayed in section
6. Section 7 is devoted to an illustrative example. Some concluding remarks are given
in section 8 to conclude.

2. A brief review of distribution of the sample coefficient of variation

In this section, the distribution of the CV is briefly presented. The CV of a random
variable X, say «, is defined as the ratio of the standard deviation o = o(X) to the
mean p = F(X); ie.,

o
=
i

Suppose that a sample of size n of normal i.i.d. random variables {X1,..., X, } is
collected. Let X and S be the sample mean and the sample standard deviation of



these variables, i.e.,
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Then the sample coefficient of variation 4 of these variables is defined as
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The probability distribution of the sample CV 4 has been studied in the literature
by many authors. However, the exact distribution of 4 has a complicated form. The
approximate distribution is then widely used as an alternative. The approximation of
F3(x|n, ), the c.d.f (cumulative distribution function) of 4, which is suggested by [5]:

(1)

et~ (L] 1,75),

where Fi ( ‘n -1, 4) is the c.d.f. of the noncentral ¢ distribution with n — 1 degrees

of freedom and noncentrality parameter. This approximation is only sufficiently precise
when v < 0.5. This condition is in general satisfied in our case as it is very frequent
that the CV takes small values to ensure the stability of a process. More details on
this problem have been discussed in [18].

For the case of the sample CV squared (§2), Castagliola et al. [5] showed that =
follows a noncentral F' distribution with (1,72 —1) degrees of freedom and noncentrality

parameter % Then, they deduced the c.d.f Fsz(z|n,~) of 42 as

n n
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where Fp ( 1,n—1,7"2> is the c.d.f of the noncentral F distribution. The
corresponding density function of 42 is then
n n n
a(zn,y) = - fr [ —|Ln—1,—=), 3
ptn = o (20-1.2) ”

where fr <

Figure 1 presents the density distribution of 42 for n = 5 and some different values
of ~.

1,n—1, %) is the density function of the noncentral F' distribution

PLEASE INSERT FIGURE 1 HERE



3. Design and implementation of the RR, s — ~? control chart

In the literature, the Run Rules control charts monitoring the CV have been
investigated in [2] with two-sided charts. However, since the distribution of 42 is
asymmetric (as can be seen from the Equation (2) and also from Figure 1), these two-
sided charts lead to the problem of ARL-biased (Average Run Length) performance,
i.e. the out-of-control ARL, values are larger than the in-control values ARLq. This
problem was also pointed out in [2]. It is important to note that ARL is defined as
the average number of samples before the first out-of-control point is plotted in the
control chart with a given specific shift 7 [17]. ARL is concerned at the zero-state of
the investigated statistical measure of performance. ARLg and ARL are denoted for
the value of ARL when a process is in-control and out-of-control, respectively. It is
expected that the control chart has the smallest ARL; value at a specific shift 7 and
when ARLg is the same for all the charts. Therefore, we overcome the ARL-biased
property by designing simultaneously two one-sided charts to detect both the increase
and decrease of the CV squared. In particular, we suggest defining two one-sided Run
Rules control charts monitoring the CV squared, involving;:

e alower-sided r-out-of-s Run Rules control chart (denoted as RR,,—7?) to detect
a decrease in vy with a lower control limit LOL™ = puo(5?) — kq.00(%?) and an
upper control limit UCL™ = +oo,

e an upper-sided r-out-of-s Run Rules control chart (denoted as RR;C s —7%) to
detect an increase in v with a lower control limit UCLT = po(%?) + ky.00(5?)
and a corresponding lower control limit LOL™ = 0,

where kg > 0 and k, > 0 are the chart parameters of the RR, ; — 72 and RR;f, — 72
charts, respectively.

The closed forms of 1o(%%) and o¢(5%) have not been presented in the literature.
We apply in this study the accurate approximations provided by Breunig [1] for both
po(4?) and og(5?) as follows:

wii) = a3(1-20), (@
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Given the value of the control limit for each chart, an out-of-control signal is given
at time ¢ if r-out-of-s consecutive 4; values are plotted outside the control interval,
i.e. 42 < LOL™ in the lower-sided chart and 47 > UCL" in the upper-sided chart.
The control charts designed above are called pure Run Rules type chart. In this
study, we only consider the 2-out-of-3, 3-out-of-4 and 4-out-of-5 Run Rules charts.
The performance of the proposed charts is measured by the ARL which is calculated
by using Markov chain as follows.

Firstly, we define the matrix P of the embedded Markov chain. For the two one-sided
RRy 3 — 72 control charts, P is defined by




where Q is a (3,3) matrix of transient probabilities, r is a (3,1) vector satisfied r =
1 - Q1 with 1 = (1,1,1)7 and 0 = (0,0,0)”, p is the probability that a sample
drops into the control interval. The corresponding (3, 1) vector q of initial probabilities
associated with the transient states is q = (0,0, 1)T7 i.e. the third state is the initial
state.

For the case of RR3 4 — 7% control charts, the transient probability matrix Q7x7) 18
given by

0 0O p O 0 0 0
0 0 0 0O p O 0
0 0 0 0 0 1—p p
Q=|p O 0 0 0 0 0 (7)
0 1—-p p 0 0 0 0
0 0 0 1—-p p 0 0
0 0 0 0 0 1—p p

In this case, the seventh state in the vector q = (0,0,0,0,0,0,1)” is the initial state.
Extended to “longer” (4,5) Run Rules, the (15,15) matrix Q of transient
probabilities for the two one-sided RRy 5 — 2 control charts is

l1-=p p O 0 0 0 0 p 0 0 00 0 0 0
0 0 p l—p 0 0 0 0O 0 0 00 0 0 0

0 00 0 pl—p O 0O 0 0 00 0 0 0

o 00 0O 0O 0 1-p p 0O 0 00 0 0 0
0O 00 0 0 0 0 0O 0 0 00 0 0 1-p

0 00 0 0 0 0 O 0 0 00 p 1—p 0O

0 00 0 0 0 0 0 0 0 0 pl—-p O 0

Q= 0O 00 0 0 0 0 1-p p 0 00 O 0 0
o 00 0 0 0 1-p p 0 0 00 0 0 0

0 00 0 pl—p O 0O 0 0 00 0 0 0

0 0 p l—p 0 0 0 0O 0 0 00 0 0 0
l-=p p 0 0 0 0 0 0O 0 0 00 0 0 0

0O 00 0 0 0 0 0 0 1-p p 0 0 0 0

0O 00 0 0 0 0 0 0 0 0 pl—-p O 0

0O 00 0 0 0 0 0O 0 0 00 0 p  1-p

(8)

that corresponds to the (15,1) initial probabilites vector q = (0,...,0,1)7 (i.e. the
initial state is the 15th one). These transient probability matrices has been presented
in, for example, [17], [15], [16].

Let us now suppose that the occurrence of an unexpected condition shifts the in-
control CV value vy to the out-of-control value v; = 7 X g, where 7 > 0 is the shift
size. Values of 7 € (0,1) correspond to a decrease of the 7, while values of 7 > 1
correspond to an increase of 7y. Then, the probability p is defined by

e for the RR, ; — 42 chart:
p= P > LCL™) =1 - Fp(LCL™ |n, ), 9)
e for the RR;\, —~? chart:

p=P(¥; <UCL") = F:(UCL"|n,m), (10)




where Fj» is defined in (2).
Once the matrix Q and the vector q have been determined, the ARL and the SDRL
(standard deviation of run length) are calculated by

ARL = q"1-Q)™'1, (11)
SDRL = /2q"(I-Q)~2Q1 - ARL? + ARL. (12)

It is customary that a control chart is considered to be better than its competitors
if it gives a smaller value of the ARLy while the ARLg is the same. Therefore, the
parameters of the RR,.s — 72 control charts should be the solution of the following
equations:

e for the RR, ; — 7?2 chart:

ARL(kq,m,p,v,7 =1) = ARLy, (13)
e for the RR, —~? chart:

ARL(ky,n,p,v,T7 =1) = ARLy, (14)

where ARLy is predefined.

4. Performance of RR,. ; — ~2 control charts

Assigning the in-control value ARLy at ARLy = 370.4, the parameters kg and
k, of the lower-sided and upper-sided RR;, s — ~% charts for some combinations
of n € {5,15},7 € {0.05,0.1,0.2} are presented in Table 1. Table 2 shows the
corresponding ARLq values of the proposed charts for various situations of the shift
size 7. The obtained results show that the two one-sided RR, s — ¥* charts not only
overcome the ARL-biased problem (as the ARL; values are always smaller than
the ARLg) but also outperform the two-sided RR-vy charts investigated in [2]. For
example, with 79 = 0.05,7 = 1.10 and n = 5 in the RRa3 — 72 chart, we have
ARLy = 95.9 ( Table 2 in this study), which is smaller than ARL; = 101.6 (Table 2
in [2]).

INSERT TABLE 1 ABOUT HERE

INSERT TABLE 2 ABOUT HERE
INSERT TABLE 3 ABOUT HERE

5. Linear covariate error model for the coefficient of variation

The previous design for the RR, s —+? control charts is based on a latent assumption
that the values in the collected sample are measured exactly without the measurement
error. This assumption, however, is usually not reached in practice and it is difficult
to avoid the measurement error. In this section, we suppose a linear covariate error
model to the measurement error, which is suggested by [9].



Suppose that the quality characteristic X of n consecutive items at step it" is
(Xi1, Xi2,.., Xin), where X; ; ~ N(po+aoo, b?03) where pp and og are the in-control
mean and standard deviation of X, a and b represent the standardized mean and the
standardized deviation shifts, respectively. The process has shifted if the process mean
po and/or the process standard deviation op have changed (a # 0 and/or b # 1).
Due to the measurement error, we only observe the values (XZ* it ...,Xl-*,j’m) of a set
of m measurement operations instead the true values X; ;. According to the linear
covariate error model, we assume Xz k= A+ BX;j +¢;jk where A and B are two
known constants and €; j ; is a normal random error term with parameters (0, 57) and
independent of X; ;. Note that A is the constant bias component and B represents the
parameter modeling the linearity error. The bias and linearity errors are monitored
and possibly eliminated by means of a gauge calibration, see the ATAG manual [6] for
further details.

Let X;‘j denote the mean of m observed quantities of the same item j at the it

samplingi It is straightforward to show that
_ 2
Xij ~ N o®)=N (A + B(uo + aoy), B*b%03 + Tﬁ\f) .

[18] showed that the CV of the quantity Xi*, ;s

o YBReE

==Y " <. 15
7 w6+ B(1+ayo) 0 (15)
where g = %, n = %l and 0 = % are the in-control value of CV, the precision and

the accuracy error ratios, respectively. The sample coefficient of variation 4 is defined

by 4 = )‘% where X J and S are the sample mean and the sample standard deviation

of Xf,j, . ,X';;’j Xij’ ca Xy Le,
= 1 n . . 1 n . _
R O e
Jj=1 j=1

The c.d.f of 4% can be obtained from (2) by simply replacing v by 7*, i.e., the c.d.f
Fie2(z|n,v*) of 42 is given by

* n n
F:Y*Q(.Z‘|7’L,’y):1—FF <x'1,n—1,7*2> (16)

6. Implementation and the performance of the RR,.; — ~2 charts with
measurement errors

Under the presence of measurement errors, the values po(§*?) and oo(9*2) are

calculated as in (4) and (5), where 7 is replaced by =, which is defined from (15)



with ¢ =0 and b = 1:

B2+ L

f=2 X . 17

o0 arg X0 (17)

Suppose that the in-control value g is shifted to the out-of-control value v; with

the size 7, we can represent 7 according to a and b as 7 = b/(1 + aro). Therefore, the
out-of-control CV of the observed quantity X ; can be expressed by

\/ B2+ L
(18)

= X
T 0_'_% Yo

In the implementation of RR, , — 72 control charts, the control limits, UCL*t =
o (3*2) + k.o0(7*%) and LCL*™ = po(§*%) — kiy.o0(4*?), are also found by solving the
chart parameters k; and k, as the solution of the following equations

e for the RR, ; — 4?2 chart:

ARL(k4,n,p,%,0,n,m,B,b) = ARLy, (19)
e for the RR;\, —~? chart:

ARL(ky,m,p,v0,0,n,m, B,b) = ARLy. (20)

The ARL in (19) and (20) should be calculated with the transition probability matrix
Q where the transition probability p is defined from (9) and (10) but with the c.d.f
Fse2(z|n,~v*) of #*? in (16) instead of c.d.f Fs2 in (2).

To investigate the performance of the RR, s —~? charts under the appearance of the
measurement error, we consider several possible values of the parameters: n € {5,15},
v € {0.05,0.1,0.2}, n € {0,0.1,0.2,0.3,0.5,1}, 6 € {0,0.01,0.02,0.03,0.04,0.05},
m € {1,3,5,7,10} and B € {0.8,0.9,1,1.1,1.2}. The value of B is considered within
the range [0.8,1.2] according to the guidelines for measurement system acceptability
presented in manual of ATA Group [6] for measurement system analysis. Without loss
of generality, we assume in the remaining that b = 1. The in-control value CV is also
set at ARLy = 370.4.

The control limits of the proposed charts for some specific values of these parameters
have been presented in Table 3. The other values of the control limits for other
situations of these parameters are not presented here but are available upon request
from authors.

Tables 4-7 show the corresponding values of the ARL1 under different effects of the
parameters 7,0, m and B of the linear covariate model. Some simple conclusions can
be drawn from these tables as follows.

e The increase of the precision error ratio n leads to an increase of the ARL;.
However, this increase in the ARL; following the change of 1 is not significant,
especially when 1 < 0.3. For example, for the RRg 3 — 72 chart with n =5,y =
0.05,B=1,m=1,0 =0.05 and 7 = 0.8, we have ARL; = 93.12 when n = 0.0
and ARL; = 93.20 when 1 = 0.3 (Table 4). That means the precision error ratio
does not affect much the performance of the proposed charts.



e The accuracy error 6 has a negative impact on the RR,. s—7? charts’ performance:
the larger the accuracy error 6 is, the larger the value ARL; is, i.e. the lower
of the control chart is in detecting the out-of-control condition. For example, in
the RR34 — 72 chart with n = 5,790 =0.1,B=1,m = 1,7 = 0.28 and 7 = 1.3,
we have ARL; = 26.56 when 6 = 0.0 and ARL; = 29.19 when 6 = 0.5 (Table 5)

e Given the value of other parameters, the variation of B significantly affects the
performance of the RR,. s —+? charts. For instance, in Table 6 with the RRy ;5 —~?
control chart and n = 5,m = 1,79 = 0.2,7 = 0.28,0 = 0.05,7 = 0.7 we have
ARL; =14.43 when B = 0.8 and ARL; = 13.93 when B = 1.2.

e In many situations, taking multiple measurements per item in each sample is an
alternative to compensate for the effect of the measurement error. However, the
obtained results in this study show that this is not an effective way to reduce
the impact of measurement errors on the proposed control charts performance.
This is because, according to the results of the numerical analysis, the ARLq
decreases trivially or is almost unchanged when m increases from m = 1 to
m = 10. For example, with n =5, B = 1,79 = 0.05,n = 0.28,0 = 0.05,7 = 0.8
in the RR;?) — 2, we have ARL; = 9.07 for both m = 1 and m = 10 (Table
7). Hence, in order to reduce the impact of ME on the proposed control charts
performance, we can improve the measurement system to reduce the values of 6
and 7.

e In general, the RR; s — 72 control charts give better performance in detecting the
small process shifts compared to the VSI-y? control chart investigated in [11],
under the same condition of measurement errors. For example, with the same
values of n = 5,v9 = 0.05,7 = 0.28,6 = 0.05, 7 = 0.8, we have ARL1 = 46.80 for
the RRy5 — 42 (Table 5 in this study), which is smaller than ARL; = 61.99 for
the VSI +2 control chart with (hg, hz) = 0.1,4.0 (Table 10 in [11]).

INSERT TABLE 4 ABOUT HERE
INSERT TABLE 5 ABOUT HERE
INSERT TABLE 6 ABOUT HERE
INSERT TABLE 7 ABOUT HERE

In practice, quality practitioners often prefer detecting a range of shifts Q = [a; b]
since it is difficult to guess an exact value for the process shift. In such situations,
the statistical performance of the control chart can be evaluated through the FARL
(expected average run length) defined as

EARL = / ARL x f.(7)dr, (21)
Q

where f(7) is the distribution of process shift 7 and ARL is defined in (11). Without
any information about 7, one can choose the uniform distribution in , i.e, f-(7) = ;=.
The chart parameters are now defined as

e for the RR, ; — 42 chart:

EARL(LCL* ,n,p,v0,0,n,m,B) = ARLy, (22)



e for the RR\, —~? chart:
EARL(UCL*J'_,?’L,]Q,’Y(),H,n,m,B) = ARLy. (23)

In the following simulation, we consider a specific range of decreasing shifts Qp =
[0.5,1) and increasing shifts Q; = (1,2]. Figure 2 and 3show the change of EARL of
the RR-v? control charts when 7 varies in [0, 1] and @ varies in [0,0.05] for 7o = 0.05
and 7y = 0.2, respectively. The slope of the plane which represents the EARL values
from right to left and from outside to inside shows that the larger the values of n and 0,
the larger the value of EARL. That is to say, these errors have negative effects on the
performance of the RR-y? charts. For example, in Figure 2 when n = 5,B =m = 1,
and v = 0.05, we have EARL = 82.27 for § = n = 0 (corresponding to no measurement
errors), but FARL = 82.81 for n = 0,0 = 0.05 (corresponding to the negative effect
of accuracy error), FARL = 83.42 for § = 0,7 = 0.3 (corresponding to the negative
effect of precision error), and FARL = 84.49 for § = 0.05,7 = 0.5 (corresponding to
the negative effect of both precision and accuracy error). The effect of B and m on the
FEARL is displayed in Figures 4-7 for both 79 = 0.05 and g = 0.2. We obtain a similar
trend as the case of the specific shift size: When B increases, the EARL decreases and
the EARL does not change significantly when m increases. The almost constant FARL
line shows that the effect of m on these chart performance is insignificant. That is to
say, increasing the value of m does not reduce the negative effect of measurement errors
on the charts. In contrast, the plot of the FARL corresponding to n = 15 is always
below the plot of the FARL corresponding to n = 5. That means, the sample size has
a great impact on the RR, s — 42 charts’ performance regardless of the measurement
error.

PLEASE INSERT FIGURE 2 HERE
PLEASE INSERT FIGURE 3 HERE
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7. Illustrative example

In this section, we present an illustrative example of the implementation of the RR, s —
~2 control charts in the presence of the measurement error. The real industrial data
from a sintering process in an Italian company that manufactures sintered mechanical
parts, which were introduced in [5], are considered.

The process manufactures parts guarantee a pressure test by dropping time T4
from 2 bar to 1.5 bar larger than 30 sec as a quality characteristic related to the pore
shrinkage. Since the presence of a constant proportionality 0,q = Ypa X fpd between
the standard deviation of the pressure drop time and its mean had been demonstrated
by the preliminary regression study relating 7,4 to the quantity ()¢ of molten copper,
the quality practitioners decide to monitor the CV 7,q = 0pq/pipd to detect changes in
the process variability. According to the description in [5], an estimate §9 = 0.417 is
calculated from a Phase I dataset based on a root mean square computation. Phase
IT data are reproduced in Table 8.

According to [18] under the presence of the measurement error, we suppose that

10



the parameters of the linear covariate error model are n = 0.28, § = 0.05, B = 1,
and m = 1. Based on the process engineer’s experience, a specific shift size 7 =
1.25 was expected to detect from the process. Therefore, we apply the upper-sided
RR, s—~2 control chart to monitor the CV squared. The control limits of the RR{3 —~2,
RR;, —~* and RRy5 — 7? chart are found to be UCLT = 0.5567, UCL*t = 0.3821
and UCL" = 0.2972, respectively. The values of 2 are then plotted in these charts
(Figure 8) long with the control limit UCL™. For purpose of comparison, we also
draw the control limit (UCLT = 1.1913)of the original Shewhart control chart with
the same parameters.

As can be seen from the Figure 8, the RRy 5 — 7%, RR4, — 7% and RRy;5 — +*
chart signal the occurrence of the out-of-control ‘condition by7tvvo—out—of—thlree7 three-
out-of-four, and four-out-of-five (respectively) successive plotting points above the
corresponding control limits from the sample #12. Meanwhile, the Shewhart chart
fails to detect this out-of-control condition.

PLEASE INSERT TABLE 8 HERE
PLEASE INSERT FIGURE 8 HERE

8. Concluding remarks

In this paper, the performance of Run Rules control charts is improved slightly by
monitoring the CV squared with the two one-sided charts rather than monitoring
directly the CV with a two-sided chart as in a previous study in the literature. The
effect of measurement errors on the performance of the RR,, — +?% control charts
using a linear covariate error model is also investigated. We have pointed out the
negative effect of measurement errors on the proposed charts: the increase of n and 6
leads to the increase of FARL. Moreover, the obtained results show that measuring
repeatedly is not an efficient method for limiting these unexpected effects. Extension
to Run Rules EWMA and Run Rules CUSUM 4?2 type charts and the effect of
the parameters estimation on their statistical properties are suggested as further
important topics of research.
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Charts

Y0 = 0.05

Yo = 0.1

Y% =02

n=>5

n =15

n=>5

n=15

n=>5

n =15

RRy3 — 7
RR34 —~*
RRaj5 — 72

(1.194,2.167)
(1.023,1.293)
(0.866,0.801)

(1.487,2.010)
(1.159,1.298)
(0.915,0.872)

(1.170,2.183)
(1.003,1.301)
(0.849, 0.808)

(1.464,2.023)
(1.143,1.306)
(0.902,0.878)

(1.088,2.245)
(0.930,1.331)
(0.785,0.832)

(1.407, 2.069)
(1.098,1.333)
(0.865, 0.899)

Table 1. Values of the parameters kg (left side) and k, (right side) of the downward chart and the upward
RRy s — 2 charts for o = {0.05,0.1,0.2} and n = {5,15} when ARLy = 370.4.

=0.05 0=0.1 0=0.2
Charts T n:go n=15 n:5’V n =15 77/:57 n=15
RR; ;5 —7° (8.1,6.6) (2.1,0.3) (8.1,6.5) (2.1,0.3) (8.2,6.7) (2.1,0.3)
RR3, —+%| 05 (5.6,3.3) (3.0,0.1) (5.6,3.3) (3.0,0.1) (5.7,3.4) (3.0,0.1)
RR;; —+* (5.4,2.1) (4.0,0.1) (5.4,2.1) (4.0,0.1) (5.4,2.2) (4.0,0.1)
RR; 3 —9° (26.9,25.2) | (3.8,2.3) | (26.6,25.0) | (3.8,2.2) | (27.1,25.5) | (3.9,2.4)
RRy,—7% | 065 | ((16.2,13.7) | (3.8,1.4) | (16.2,13.8) | (3.8,1.4) | (16.6,14.1) | (3.9,1.5)
RR,; —7° (12.6,9.5) (4.5,1.0) (12.7,9.6) (4.5,1.0) (13.0,9.9) (4.5,1.0)
RR;; — 12 (87.9,86.1) | (17.9,16.2) | (87.2,85.4) | (17.5,15.9) | (88.4,86.6) | (18.2,16.5)
RR;, —~2 | 0.8 | (59.8,57.1) | (12.6,10.2) | (59.9,57.2) | (12.7,10.3) | (61.1,58.4) | (13.2,10.8)
RR;; — 2 (46.8,43.4) | (11.1,8.0) | (47.0,43.6) | (11.2,8.0) | (48.1,44.7) | (11.6,8.4)
RRy 4 — 72 (184.4,182.5) | (75.4,73.7) | (183.7,181.9) | (73.9,72.2) | (185.2,183.4) | (75.7,73.9)
RR;, —1%| 0.9 | (149.3,146.5) | (55.4,52.7) | (149.5,146.7) | (55.3,52.6) | (151.3,148.5) | (57.1,54.5)
RR;; — 2 (128.7,125.1) | (46.5,43.1) | (129.1,125.4) | (46.7,43.3) | (130.9,127.3) | (48.3,44.9)
RR3 4 — 7 (95.9,94.1) | (45.8,44.1) | (96.5,94.7) | (46.4,44.6) | (98.7,96.9) | (48.5,46.8)
RRi, —~% | 1.10 | (94.2,91.5) | (42.3,39.7) | (94.8,92.0) | (42.8,40.1) | (97.0,94.2) | (44.7,42.1)
RR}; —~2 (94.9,91.4) | (41.3,37.9) | (95.4,91.9) | (41.7,38.3) | (97.6,94.0) | (43.6,40.2)
RRj 3 — 97 (25.8,24.2) | (8.7,7.1) | (26.1,24.4) | (88,7.2) | (27.2,25.6) | (9.4,7.8)
RRi, —+% | 1.25 | (26.3,23.8) | (8.9,6.5) | (26.524.0) | (9.0,6.6) | (27.6,25.1) | (9.5,7.1)
RRf, —+? (27.5,24.2) | (9.5,6.4) | (27.8,24.5) | (9.6,6.5) | (28.9,25.5) | (10.1,7.0)
RRj; —7° (8.1,6.6) (3.1,1.5) (8.2,6.7) (3.1,1.6) (8.6,7.1) (3.3,1.7)
RRi, —+%| 1.5 (9.1,6.7) (3.9,1.4) (9.2,6.8) (3.9,1.5) (9.6,7.2) (4.0,1.6)
RR}, —+? (10.2,7.1) (4.8,1.4) (10.3,7.2) (4.8,1.4) (10.7,7.6) (4.9,1.6)
RRj; —7° (3.4,1.9) (2.1,0.3) (3.4,1.9) (2.1,0.3) (3.6,2.1) (2.1,0.4)
RRi, —+% | 2.0 (4.3,2.0) (3.1,0.3) (4.4,2.0) (3.1,0.3) (4.6,2.2) (3.1,0.3)
RR}5 —7* (5.3,2.1) (4.0,0.2) (5.4,2.1) (4.0,0.2) (5.6,2.3) (4.1,0.3)

Table 2. Values of (ARL1,SDRL1) of RR; s — 2 charts corresponding to the chart parameters in Table 1
for various situations of 7.
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2 2 2
RRg3 — 7 RRgq4 —7 RRy5 —
Y = 0.05; n = 0.028; § = 0.05; Qp = [0.5;1)
EARL FEARL EARL
90 70 4 60
B--E--8--8--8--a--4@9- -9 - @ B--8--8--8--8--8--4--@ -3 B--B--8--8--8--8--4--8 -3
65 55
80
60 50
70 55 4
45
50 4
60 40
45 4
35
50 40 1
354 30
40
304 X—--—B-—E— - -—%— - -—W-—E—-&
—--8%-—1—- % -—% —-B—-—&-—§—-u —-—%-—8— - % -—% —-—-—8%-—§—-a
30 T T T T T T T ] 25 T T T T T T T ] 20 T T T T T T T ]
0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2 0.8 0.85 0.9 0.95 1 1.05 11 1.15 12 0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2
B B B
o = 0.05; n = 0.028; 6 = 0.05; Q7 = (1;2]
EARL FEARL FEARL
28 BE--g--g._._ 30
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B B B
Figure 4. The effect of B on the performance of the RR; s —~2 control charts in the presence of measurement
errors for v0 = 0.05; n =5 (-0-) and n = 15 (—H—).
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Y = 0.2; n = 0.028; § = 0.05; Qp = [0.5;1)
EARL EARL FEARL
90 708 _ _ 0@ - -@--g--g8-
B--B--8B--8--8--8--8--8 -4 B--8--8--8--8--49--@4 -3 cE--8--a--o -3
65 55
80
60 50
70 55
45
50
60 40
454
35
50 401
354 30
© 30 4 5W— - —E— - B —— BN —E—- &
— - %-—§1—-%-—%— - -—u-—u—-4a —-—%-—8— - % -—% —-—-—8%-—0—-4
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B B B
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R R R

Figure 5. The effect of B on the performance of the RR; s 772 control charts in the presence of measurement
error for v0 = 0.2, n =5 (-0-) and n = 15 (—H—).
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2 2 2
RRa3 — RR3 4 — RRys5 — v
~ = 0.05; n = 0.028; = 0.05; Qp = [0.5;1)
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YARL EARL EARL
28 4 28 304
B--0--8--8--B--3-89--8--G-43
ol H-8--B--B-@-E--B--E-4 gl - -8--8--B--0F-48--8--6-0
241 24 261
244
22 4 22
22 4
20 1 20
20 A
184 18
184
16 4 16 164
Y - —E— N —Em—n— . 14|—--.--—.-—l—-l—--I--—I-—l—-I—--l g m-—a —a— - —a—a— -
12 12 12
2 3 4 5 6 7 8 9 10 1t 2 3 4 5 & 7 8 9 10 12 3 4 5 6 7 8 9 10
m m m
Figure 6. The effect of m on the performance of the RR; s —2 control charts in the presence of measurement
errors for v = 0.05; n =5 (-0-) and n = 15 (—H-).
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Figure 7. The effect of m on the performance of the RR, s —~2 control charts in the presence of measurement
error for v0 = 0.2, n =5 (-0-) and n = 15 (—H-).
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Figure 8. The upward CUSUM-~2 control chart in the presence of the measurement error corresponding to
the Phase II data in Table 8.
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n 0 Y |[n=10 n=15|n=10 n=15|n=10 n=15
RRy3 — 7 RR34 — 7 RR34 — 7

0.1 0.01 0.05| 0.0004 0.0011 | 0.0007 0.0014 | 0.0009 0.0016

0.0063 0.0044 | 0.0047 0.0037 | 0.0039 0.0033

0.10 | 0.0015 0.0043 | 0.0027 0.0055 | 0.0038 0.0065

0.0254 0.0175 | 0.0191 0.0148 | 0.0156 0.0132

0.0582  0.0399 | 0.0435 0.0336 | 0.0354 0.0299

0.20 | 0.0059 0.0172 | 0.0107 0.0220 | 0.0151 0.0257

0.1061  0.0718 | 0.0786 0.0602 | 0.0636 0.0534

0.28 0.05 0.05 | 0.0004 0.0011 | 0.0007 0.0014 | 0.0009 0.0016

0.0062 0.0043 | 0.0047 0.0036 | 0.0038 0.0033

0.10 | 0.0015 0.0043 | 0.0027 0.0055 | 0.0037 0.0064

0.0251 0.0173 | 0.0189 0.0146 | 0.0154 0.0130

0.0575 0.0394 | 0.0430 0.0332 | 0.0350 0.0295

0.20 | 0.0059 0.0170 | 0.0106 0.0218 | 0.0149 0.0254

0.1047 0.0709 | 0.0776 0.0595 | 0.0629 0.0528

Table 3. Values of LOL (first row) and UCL (second row) for the RR s — 2 control charts in the presence
of measurement errors, for different values of 7, 6, n, v0, B =1 and m = 1.

Charts T n=0 n=0.1 n=02 n=0.3 n=0.5 n=1
n=>5

0.5 (8.92,8.85,8.98) (8.94,8.85,8.99) (8.92,8.84,8.99) (8.92,8.86,9.01) (8.90,8.84,9.06) (8.87,8.87,9.24)
0.7 (29.38,29.11,29.54) (29.45,29.14,29.58) (29.35,29.06,29.57) (29.40,29.13,29.65) (29.29,29.09,29.80) (29.19,29.18,30.42)
RRy5 — 2 0.8 (93.12,92.52,93.41) (93.28,92.44,93.58) (93.15,92.24,93.38) (93.20,92.54,93.68) (92.90,92.39,93.98) (92.74,92.60, 95.22)
- 1.3 (28.57,28.83,29.93) (28.57,28.84,29.94) (28.57,28.85,29.99) (28.58,28.87,30.06) (28.59,28.92,30.30) (28.66,29.19,31.45)

1.5 (9.07,9.17,9.62) (9.07,9.17,9.62) (9.07,9.18,9.64) (9.07,9.19,9.67) (9.07,9.21,9.77) (9.10,9.32,10.24)

2.0 (3.70,3.74,3.92) (3.70,3.74,3.92) (3.70,3.74,3.92) (3.70,3.75,3.94) (3.70,3.76, 3.98) (3.71,3.80,4.16)

0.5 (6.01,6.02,6.11) (6.02,6.02,6.12) (6.02,6.02,6.12) (6.01,6.02,6.13) (6.01,6.02,6.15) (6.01,6.05,6.26)
0.7 (17.69,17.71,18.09) (17.71,17.71,18.11) (17.71,17.71,18.11) (17.70,17.73,18.15) (17.71,17.73,18.25) (17.68,17.82,18.68)
RRu s — 2 0.8 (64.10,64.21,65.33) (64.20,64.19,65.35) (64.22,64.17,65.37) (64.13,64.24,65.47) (64.22,64.25,65.78) (64.07,64.48,67.06)
AT 13 (28.92,29.17,30.21) (28.92,29.17,30.22) (28.92,29.18,30.26) (28.93,29.20,30.34) (28.93,29.25,30.56) (29.00,29.51,31.63)
1.5 (10.01,10.12,10.55) (10.01,10.12,10.55) (10.01,10.12,10.57) (10.02,10.13,10.60) (10.02,10.15,10.69) (10.05,10.26,11.14)

2.0 (4.67,4.71,4.89) (4.67,4.71,4.89) (4.67,4.72,4.90) (4.67,4.72,4.91) (4.68,4.73,4.95) (4.69,4.77,5.13)

0.5 (5.64,5.65,5.71) (5.64,5.65,5.71) (5.64,5.65,5.72) (5.64,5.65,5.72) (5.64,5.65,5.74) (5.64,5.67,5.81)
0.7 (13.75,13.79,14.09) (13.76,13.80,14.10) (13.76,13.81,14.12) (13.75,13.81,14.13) (13.76,13.81,14.20) (13.76,13.89,14.52)
RRys — 42 0.8 (50.44,50.60,51.63) (50.49,50.63,51.67) (50.51,50.66,51.74) (50.45,50.66,51.78) (50.46,50.67,52.03) (50.48,50.96, 53.14)
B 1.3 (30.17,30.42,31.45) (30.18,30.43,31.46) (30.19,30.43,31.51) (30.18,30.45,31.57) (30.20,30.51,31.80) (30.25,30.76, 32.85)
1.5 (11.17,11.27,11.70) (11.17,11.27,11.71) (11.17,11.27,11.73) (11.17,11.28,11.76) (11.17,11.30,11.85) (11.20,11.41,12.30)

2.0 (5.68,5.72,5.90) (5.68,5.72,5.90) (5.68,5.72,5.91) (5.68,5.72,5.92) (5.68,5.73,5.96) (5.69,5.78,6.14)

n =15

0.5 (2.12,2.12,2.13) (2.12,2.12,2.13) (2.12,2.12,2.13) (2.12,2.12,2.13) (2.12,2.12,2.14) (2.12,2.12,2.15)

0.7 (4.12,4.08,4.18) (4.12,4.08,4.18) (4.12,4.08,4.18) (4.11,4.08,4.19) (4.11,4.08,4.22) (4.09,4.10,4.35)
RRy5 — 2 0.8 (19.86,19.42,19.97) (19.83,19.43,20.02) (19.83,19.45,20.02) (19.80,19.45,20.06) (19.73,19.43,20.20) (19.56,19.55,21.01)
- 1.3 (9.68,9.81,10.41) (9.68,9.82,10.41) (9.68,9.82,10.44) (9.68,9.83,10.48) (9.69,9.86,10.61) (9.72,10.01,11.22)

1.5 (3.32,3.36,3.52) (3.32,3.36,3.52) (3.32,3.36,3.53) (3.32,3.36,3.54) (3.32,3.37,3.58) (3.33,3.41,3.75)

2.0 (2.13,2.14,2.17) (2.13,2.14,2.17) (2.13,2.14,2.18) (2.13,2.14,2.18) (2.13,2.14,2.19) (2.13,2.15,2.23)

0.5 (3.02,3.02,3.03) (3.02,3.02,3.03) (3.02,3.02,3.03) (3.02,3.02,3.03) (3.02,3.02,3.03) (3.02,3.03,3.03)

0.7 (4.02,4.02,4.09) (4.02,4.02,4.09) (4.01,4.02,4.10) (4.01,4.02,4.10) (4.01,4.03,4.12) (4.01,4.04,4.20)
RRu s — 2 0.8 (13.91,13.92,14.41) (13.92,13.91,14.42) (13.90,13.91,14.44) (13.90,13.92,14.48) (13.89,13.95,14.59) (13.87,14.06,15.13)
AT 13 (9.77,9.89,10.42) (9.77,9.90,10.42) (9.78,9.90,10.44) (9.78,9.91,10.48) (9.78,9.94,10.59) (9.81,10.07,11.13)

1.5 (4.10,4.13,4.28) (4.10,4.13,4.28) (4.10,4.14,4.29) (4.10,4.14,4.30) (4.10,4.14,4.33) (4.11,4.18,4.48)

2.0 (3.09,3.10,3.12) (3.09,3.10,3.13) (3.09,3.10,3.13) (3.09,3.10,3.13) (3.09,3.10,3.14) (3.09,3.11,3.17)

0.5 (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01)

0.7 (4.58,4.59,4.64) (4.58,4.59,4.64) (4.58,4.59,4.64) (4.58,4.59,4.65) (4.58,4.59,4.66) (4.58,4.60,4.71)
RRu+s — 2 0.8 (12.09,12.14,12.55) (12.09,12.14,12.56) (12.09,12.14,12.58) (12.09,12.15,12.61) (12.09,12.17,12.70) (12.09,12.27,13.15)
A (10.37,10.48,10.97)  (10.37,10.48,10.98) (10.37,10.49,11.00) (10.37,10.49,11.03) (10.38,10.52,11.14) (10.40,10.64,11.64)

1.5 (4.97,5.00,5.13) (4.97,5.00,5.13) (4.97,5.00,5.14) (4.97,5.00,5.15) (4.97,5.01,5.18) (4.98,5.04,5.32)

2.0 (4.07,4.08,4.10) (4.07,4.08,4.10) (4.07,4.08,4.10) (4.07,4.08,4.10) (4.07,4.08,4.11) (4.07,4.08,4.13)

Table 4. The ARL values of the RR, s —2 control charts in the presence of measurement errors for vo = 0.05

(left side),

m = 1.
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Y0 = 0.1 (middle) and v9 = 0.2 (right side), and for different values of n, § = 0.05, 7, n, B = 1,



Charts T 0=0 0 =0.01 0 =0.02 0 =0.03 0 =0.04 0 = 0.05
n=>5
0.5 (8.11,8.06,8.22) (8.28,8.21,8.38) (8.43,8.35,8.53) (8.59,8.52,8.69) (8.75,8.69,8.84) (8.93,8.85,9.01)
0.7 (26.88,26.65,27.19) (27.38,27.15,27.71) (27.87,27.55,28.15) (28.36,28.10,28.66) (28.87,28.62,29.12) (29.42,29.13,29.64)
RRb « — +2 0.8 (87.72,87.23,88.36) (88.96,88.30,89.56) (89.94,89.12,90.51) (90.85,90.33,91.69) (91.95,91.30,92.44) (93.24,92.53,93.63)
23777 13 (25.84,26.13,27.35)  (26.38,26.67,27.88) (26.93,27.21,28.42) (27.47,27.76,28.96) (28.02,28.31,29.50) (28.58,28.86,30.04)
1.5 (8.09,8.20, 8.68) (8.28,8.39,8.87) (8.47,8.59,9.07) (8.67,8.78,9.26) (8.87,8.98,9.46) (9.07,9.18,9.66)
2.0 (3.38,3.42,3.61) (3.44,3.48,3.67) (3.50,3.55,3.73) (3.57,3.61,3.80) (3.63,3.68, 3.87) (3.70,3.75,3.93)
0.5 (5.60,5.61,5.71) (5.68,5.69,5.80) (5.76,5.77,5.88) (5.84,5.85,5.96) (5.93,5.93,6.04) (6.01,6.02,6.12)
0.7 (16.15,16.20,16.62) (16.47,16.50,16.93) (16.76,16.78,17.24) (17.07,17.10,17.53) (17.38,17.40,17.84) (17.70,17.72,18.14)
RRy 4 — 2 0.8 (59.75,59.92,61.22) (60.70,60.79,62.12) (61.56,61.53,63.02) (62.38,62.49,63.79) (63.26,63.35,64.67) (64.20,64.24,65.45)
i 1.3 (26.28,26.56,27.72) (26.80,27.08,28.23) (27.33,27.60,28.75) (27.86,28.13,29.27) (28.39,28.66,29.79) (28.92,29.19,30.31)
1.5 (9.05,9.16,9.63) (9.24,9.35,9.82) (9.43,9.54,10.01) (9.62,9.73,10.20) (9.82,9.93,10.39)  (10.02,10.13,10.59)
2.0 (4.35,4.39,4.58) (4.41,4.46,4.64) (4.48,4.52,4.70) (4.54,4.58,4.77) (4.61,4.65,4.84) (4.67,4.72,4.91)
0.5 (5.37,5.39,5.46) (5.43,5.44,5.51) (5.48,5.49,5.56) (5.53,5.54,5.61) (5.58,5.59,5.67) (5.64,5.65,5.72)
0.7 (12.65,12.70,13.04) (12.87,12.92,13.25) (13.09,13.14,13.47) (13.31,13.35,13.68) (13.53,13.58,13.90) (13.76,13.80,14.13)
RRy - — 2 0.8 (46.80,47.00,48.23) (47.56,47.75,48.90) (48.26,48.47,49.65) (49.00,49.14,50.35) (49.70,49.91,51.07) (50.47,50.63,51.74)
577 3 (27.55,27.82,28.97) (28.07,28.34,29.48) (28.60,28.86,29.99) (29.13,29.39,30.51) (29.65,29.92,31.04) (30.19,30.44, 31.56)
1.5 (10.18,10.30,10.77) (10.38,10.49,10.96) (10.57,10.68,11.15) (10.77,10.88,11.35) (10.97,11.08,11.55) (11.17,11.28,11.75)
2.0 (5.34,5.39,5.58) (5.41,5.45,5.64) (5.47,5.52,5.71) (5.54,5.58,5.77) (5.61,5.65,5.84) (5.68,5.72,5.91)
n =15
0.5 (2.09,2.09,2.10) (2.09,2.09,2.10) (2.10,2.10,2.11) (2.11,2.11,2.12) (2.11,2.11,2.13) (2.12,2.12,2.13)
0.7 (3.79,3.76,3.87) (3.85,3.82,3.94) (3.92,3.89,4.00) (3.98,3.95,4.06) (4.04,4.02,4.12) (4.12,4.08,4.19)
RRb « — +2 0.8 (17.85,17.59,18.24) (18.22,17.94,18.60) (18.65,18.32,18.96) (19.00,18.68,19.31) (19.39,19.08,19.68) (19.82,19.40,20.05)
237 13 (8.66,8.81,9.44) (8.86,9.01,9.64) (9.06,9.21,9.84) (9.26,9.41,10.05) (9.47,9.62,10.26) (9.68,9.83,10.47)
1.5 (3.07,3.11, 3.28) (3.12,3.16,3.33) (3.17,3.21,3.38) (3.22,3.26,3.43) (3.27,3.31,3.48) (3.32,3.36,3.54)
2.0 (2.08,2.09,2.13) (2.09,2.10,2.14) (2.10,2.11,2.15) (2.11,2.12,2.16) (2.12,2.13,2.17) (2.13,2.14,2.18)
0.5 (3.01,3.02,3.02) (3.02,3.02,3.02) (3.02,3.02,3.02) (3.02,3.02,3.02) (3.02,3.02,3.03) (3.02,3.02,3.03)
0.7 (3.83,3.84,3.91) (3.87,3.87,3.95) (3.90,3.91,3.99) (3.94,3.95,4.02) (3.98,3.98,4.06) (4.02,4.02,4.10)
RRua s — 2 0.8 (12.64,12.68,13.22) (12.89,12.92,13.47) (13.14,13.16,13.71) (13.38,13.41,13.97) (13.64,13.67,14.22) (13.91,13.92,14.46)
347 13 (8.87,9.00,9.56) (9.04,9.18,9.74) (9.22,9.36,9.92) (9.41,9.54,10.10) (9.59,9.72,10.28) (9.78,9.91,10.47)
1.5 (3.88,3.91,4.06) (3.92,3.96,4.11) (3.97,4.00,4.15) (4.01,4.04,4.20) (4.06,4.09,4.25) (4.10,4.14,4.29)
2.0 (3.06, 3.06, 3.09) (3.07,3.07,3.10) (3.07,3.08,3.10) (3.08,3.08,3.11) (3.09,3.09,3.12) (3.09,3.10,3.13)
0.5 (4.00,4.00,4.00) (4.00,4.00,4.01) (4.00,4.00,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01)
0.7 (4.46,4.47,4.52) (4.48,4.49,4.54) (4.51,4.51,4.57) (4.53,4.54,4.59) (4.55,4.56,4.62) (4.58,4.59,4.64)
RRu - — 2 0.8 (11.10,11.17,11.62) (11.29,11.36,11.82) (11.48,11.55,12.01) (11.69,11.75,12.21) (11.89,11.94,12.40) (12.09,12.14,12.60)
4577 13 (9.50,9.63,10.15) (9.67,9.79,10.32) (9.84,9.97,10.49)  (10.02,10.14,10.67) (10.19,10.31,10.85) (10.37,10.49,11.02)
1.5 (4.77,4.80,4.93) (4.81,4.84,4.97) (4.85,4.88,5.02) (4.89,4.92,5.06) (4.93,4.96,5.10) (4.97,5.00,5.15)
2.0 (4.05,4.05,4.07) (4.05,4.05,4.07) (4.06,4.06,4.08) (4.06,4.06,4.09) (4.07,4.07,4.09) (4.07,4.08,4.10)

Table 5. The ARL values of the RR,, s —2 control charts in the presence of measurement errors for vo = 0.05
(left side), vo = 0.1 (middle) and vo = 0.2 (right side), and for different values of 8, n = 0.28, 7, n, B = 1,

m = 1.
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Charts T B=0.8 B=0.9 B=1.0 B=1.1 B=1.2
n=>5
0.5 (9.13,9.05,9.22) (9.03,8.93,9.11) (8.93,8.85,9.01) (8.84,8.76,8.94) (8.79,8.72,8.87)
0.7 (30.00,29.74,30.26) (29.73,29.33,29.95) (29.42,29.13,29.64) (29.10,28.82,29.42) (28.99,28.71,29.24)
RRo « — ~2 0.8 (94.27,93.68,94.95) (93.89,92.84,94.31) (93.24,92.53,93.63) (92.45,91.72,93.28) (92.23,91.63,92.81)
2377 13 (29.28,29.57,30.79) (28.89,29.17,30.37) (28.58,28.86,30.04) (28.33,28.60,29.77) (28.11,28.39,29.55)
1.5 (9.33,9.44,9.95) (9.18,9.30,9.79) (9.07,9.18,9.66) (8.98,9.09,9.56) (8.90,9.01,9.48)
2.0 (3.79,3.83,4.03) (3.74,3.78,3.98) (3.70,3.75,3.93) (3.67,3.71,3.90) (3.64,3.69, 3.87)
0.5 (6.12,6.13,6.24) (6.06,6.06,6.18) (6.01,6.02,6.12) (5.98,5.98,6.09) (5.94,5.95,6.05)
0.7 (18.08,18.11,18.55) (17.89,17.88,18.33) (17.70,17.72,18.14) (17.57,17.58,18.00) (17.44,17.46,17.88)
RRa s — ~2 0.8 (65.22,65.28,66.56) (64.70,64.64,66.01) (64.20,64.24,65.45) (63.85,63.84,65.08) (63.43,63.53,64.76)
3477 13 (29.60,29.88,31.04) (29.22,29.50,30.63) (28.92,29.19,30.31) (28.68,28.94,30.06) (28.48,28.74,29.84)
1.5 (10.27,10.38,10.87) (10.13,10.24,10.71) (10.02,10.13,10.59)  (9.93,10.03,10.49) (9.85,9.96,10.41)
2.0 (4.76,4.81,5.00) (4.71,4.76,4.95) (4.67,4.72,4.91) (4.64,4.69,4.87) (4.62,4.66,4.84)
0.5 (5.71,5.72,5.79) (5.67,5.68,5.75) (5.64,5.65,5.72) (5.61,5.62,5.69) (5.59,5.60,5.67)
0.7 (14.04,14.08,14.43) (13.88,13.93,14.26) (13.76,13.80,14.13) (13.66,13.70,14.02) (13.57,13.61,13.93)
RRy - — ~2 0.8 (51.38,51.54,52.76) (50.91,51.07,52.19) (50.47,50.63,51.74) (50.18,50.32,51.43) (49.86,50.02,51.15)
R (30.85,31.13,32.28)  (30.48,30.75,31.88) (30.19,30.44,31.56) (29.94,30.20,31.30) (29.74,30.00, 31.09)
1.5 (11.42,11.54,12.03) (11.28,11.40,11.87) (11.17,11.28,11.75) (11.08,11.19,11.65) (11.00,11.11,11.57)
2.0 (5.77,5.81,6.01) (5.72,5.76,5.96) (5.68,5.72,5.91) (5.65,5.69,5.88) (5.62,5.66,5.85)
n =15
0.5 (2.13,2.13,2.14) (2.13,2.13,2.14) (2.12,2.12,2.13) (2.12,2.12,2.13) (2.12,2.11,2.13)
0.7 (4.20,4.17,4.29) (4.15,4.12,4.23) (4.12,4.08,4.19) (4.08,4.05,4.16) (4.06,4.02,4.13)
RRys — 2 0.8 (20.29,19.95,20.61) (20.05,19.69,20.26) (19.82,19.40,20.05) (19.64,19.25,19.86) (19.50,19.11,19.73)
’ 1.3 (9.95,10.11,10.77) (9.80,9.95,10.60) (9.68,9.83,10.47) (9.58,9.73,10.36) (9.50,9.65,10.28)
1.5 (3.39,3.43,3.62) (3.35,3.39,3.57) (3.32,3.36,3.54) (3.30,3.34,3.51) (3.28,3.31,3.49)
2.0 (2.14,2.15,2.19) (2.13,2.14,2.18) (2.13,2.14,2.18) (2.12,2.13,2.17) (2.12,2.13,2.17)
0.5 (3.03,3.03,3.03) (3.03,3.03,3.03) (3.02,3.02,3.03) (3.02,3.02,3.03) (3.02,3.02,3.03)
0.7 (4.06,4.07,4.15) (4.04,4.04,4.12) (4.02,4.02,4.10) (4.00,4.00,4.08) (3.98,3.99,4.06)
RRa s — ~2 0.8 (14.22,14.25,14.82) (14.05,14.07,14.62) (13.91,13.92,14.46) (13.78,13.81,14.34) (13.68,13.71,14.23)
3477 13 (10.02,10.15,10.74)  (9.88,10.02,10.59) (9.78,9.91,10.47) (9.69,9.82,10.38) (9.62,9.75,10.30)
1.5 (4.16,4.20,4.36) (4.13,4.16,4.32) (4.10,4.14,4.29) (4.08,4.12,4.27) (4.06,4.10,4.25)
2.0 (3.10,3.11,3.14) (3.10,3.10,3.13) (3.09,3.10,3.13) (3.09,3.09,3.12) (3.09,3.09,3.12)
0.5 (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01) (4.01,4.01,4.01)
0.7 (4.61,4.62,4.68) (4.59,4.60, 4.66) (4.58,4.59,4.64) (4.57,4.58,4.63) (4.56,4.57,4.62)
RRy - — ~2 0.8 (12.34,12.40,12.88) (12.20,12.26,12.72) (12.09,12.14,12.60) (12.00,12.05,12.50) (11.92,11.98,12.42)
R (10.60,10.72,11.28) (10.47,10.60,11.14) (10.37,10.49,11.02) (10.29,10.41,10.93) (10.22,10.34,10.86)
1.5 (5.03,5.06,5.21) (5.00,5.03,5.18) (4.97,5.00,5.15) (4.95,4.98,5.12) (4.94,4.97,5.11)
2.0 (4.08,4.08,4.11) (4.08,4.08,4.11) (4.07,4.08,4.10) (4.07,4.07,4.10) (4.07,4.07,4.09)

Table 6. The ARL values of the RR, s —72 control charts in the presence of measurement errors for v9 = 0.05
(left side), v0 = 0.1 (middle) and o = 0.2 (right side), and for different values of B, 7, n, n = 0.28, 6 = 0.05,

m = 1.
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n=>5

Charts

T

m=1

m=3

m=>5

m="7

m =10

RRa3 — 72

0.5
0.7
0.8
1.3
1.5
2.0

(8.93,8.85,9.01)
(29.42,29.13, 29.64)
(93.24, 92.53,93.63)
(28.58, 28.86, 30.04)

(9.07,9.18,9.66)

(3.70,3.75,3.93)

n=>5

(8.92,8.84,8.99)
(29.39, 29.06, 29.56)
(93.00, 92.20, 93.47)
(28.57,28.84, 29.96)

(9.07,9.18,9.63)

(3.70,3.74,3.92)

(8.93,8.84, 8.99)
(29.41, 29.09, 29.56)
(93.22,92.44, 93.43)
(28.57,28.84, 29.95)

(9.07,9.17,9.62)

(3.70,3.74,3.92)

(8.94, 8.85, 8.99)
(29.42,29.11, 29.58)
(93.20,92.50, 93.57)
(28.57,28.83,29.95)

(9.07,9.17,9.62)

(3.70,3.74,3.92)

(8.93,8.84,8.99)
(29.39,29.07, 29.58)
(93.12,92.23,93.52)
(28.57,28.83,29.94)

(9.07,9.17,9.62)

(3.70,3.74,3.92)

RRy4 —+2

0.5
0.7
0.8
1.3
1.5
2.0

(6.01,6.02,6.12)
(17.70,17.72,18.14)
(64.20, 64.24, 65.45)
(28.92,29.19,30.31)
(10.02,10.13,10.59)

(4.67,4.72,4.91)

(6.02,6.02,6.12)
(17.72,17.70,18.11)
(64.26,64.15, 65.33)
(28.92,29.17, 30.25)
(10.01,10.12, 10.56)

(4.67,4.72, 4.89)

(6.01,6.01,6.12)
(17.70,17.69,18.11)
(64.18,64.15, 65.36)
(28.92,29.17, 30.23)
(10.01,10.12, 10.55)

(4.67,4.71, 4.89)

(6.02,6.02,6.12)
(17.71,17.71,18.10)
(64.18,64.21, 65.35)
(28.92,29.17, 30.22)
(10.01,10.12,10.55)

(4.67,4.71, 4.89)

(6.01,6.02,6.12)
(17.69,17.71,18.11)
(64.15,64.15, 65.39)
(28.92,29.17, 30.22)
(10.01,10.12,10.55)

(4.67,4.71,4.89)

RRy5 —7*

0.5
0.7
0.8
1.3
1.5
2.0

(5.64,5.65,5.72)
(13.76,13.80, 14.13)
(50.47,50.63,51.74)
(30.19, 30.44, 31.56)
(11.17,11.28,11.75)

(5.68,5.72,5.91)

(5.64,5.65,5.71)
13.76,13.80, 14.10
50.50, 50.65, 51.67
30.18,30.43,31.49
11.17,11.27,11.72

(5.68,5.72,5.90)

A/_\AA
—_—

(5.64,5.65,5.71)
(13.75,13.80,14.10
(50.46,50.62, 51.68
(30.18,30.43, 31.47
(11.17,11.27,11.71

(5.68,5.72,5.90)

NN N Nl

(5.64,5.65,5.71)
13.76,13.79, 14.10
50.48, 50.58, 51.67
30.18,30.42, 31.46
11.17,11.27,11.71

(5.68,5.72,5.90)

A~ S~
_ o=

(5.64,5.65,5.71)
13.75,13.79, 14.10
50.47,50.60, 51.67
30.17,30.42, 31.46
11.17,11.27,11.71

(5.68,5.72,5.90)

/-\/\/-\/\
NN )

RRy 3 — 7

0.5
0.7
0.8
1.3
1.5
2.0

(2.12,2.12,2.13)
(4.12,4.08,4.19)
(19.82,19.40, 20.05)
(9.68,9.83,10.47)
(3.32,3.36, 3.54)
(2.13,2.14,2.18)

n =15

(2.12,2.12,2.13)
(4.12,4.08,4.18)
(19.83,19.41, 19.99)
(9.68,9.82,10.43)
(3.32,3.36, 3.53)
(2.13,2.14,2.17)

(2.12,2.12,2.13)
(4.12,4.08,4.18)
(19.86, 19.45, 20.00)
(9.68,9.82,10.42)
(3.32,3.36, 3.52)
(2.13,2.14,2.17)

(2.12,2.12,2.13)
(4.12,4.08,4.18)
(19.85,19.45, 20.00)
(9.68,9.82,10.42)
(3.32, 3.36, 3.52)
(2.13,2.14,2.17)

(2.12,2.12,2.13)
(4.12,4.08,4.18)
(19.84,19.43,19.98)
(9.68,9.82,10.41)
(3.32,3.36, 3.52)
(2.13,2.14,2.17)

RRy4 —+2

0.5
0.7
0.8
1.3
1.5
2.0

(3.02,3.02,3.03)
(4.02,4.02, 4.10)
(13.91,13.92,14.46)
(9.78,9.91,10.47)
(4.10,4.14, 4.29)
(3.09,3.10,3.13)

(3.02,3.02,3.03)
(4.02,4.02, 4.10)
(13.90,13.92, 14.44)
(9.78,9.90, 10.44)
(4.10,4.13, 4.28)
(3.09,3.10,3.13)

(3.02,3.02,3.03)
(4.01,4.02, 4.09)
(13.90, 13.91, 14.42)
(9.78,9.90, 10.43)
(4.10,4.13, 4.28)
(3.09,3.10,3.13)

(3.02,3.02,3.03)
(4.02,4.02, 4.09)
(13.92,13.90, 14.42)
(9.78,9.90, 10.42)
(4.10,4.13,4.28)
(3.09,3.10,3.13)

(3.02,3.02,3.03)
(4.01, 4.02, 4.09)
(13.91,13.90, 14.42)
(9.78,9.90,10.42)
(4.10,4.13,4.28)
(3.09,3.10,3.13)

RRyj5 —+2

0.5
0.7
0.8
1.3
1.5
2.0

(4.01,4.01,4.01)
(4.58,4.59, 4.64)
(12.09, 12.14,12.60)
(10.37,10.49,11.02)
(4.97,5.00,5.15)
(4.07,4.08,4.10)

(4.01,4.01,4.01)
(4.58,4.59, 4.64)
(12.09,12.14,12.57)
(10.37,10.48,10.99)
(4.97,5.00,5.14)
(4.07,4.08, 4.10)

(4.01,4.01, 4.01)
(4.58,4.59, 4.64)
(12.09,12.14,12.57)
(10.37,10.48,10.98)
(4.97,5.00,5.14)
(4.07,4.08, 4.10)

(4.01,4.01, 4.01)
(4.58,4.59, 4.64)
(12.09,12.14, 12.56)
(10.37,10.48,10.98)
(4.97,5.00,5.13)
(4.07,4.08,4.10)

(4.01,4.01,4.01)
(4.58,4.59,4.64)
(12.09,12.14,12.56)
(10.37,10.48,10.98)
(4.97,5.00,5.13)
(4.07,4.08,4.10)

Table 7. The ARL values of the RR, s —72 control charts in the presence of measurement errors for v9 = 0.05
(left side), v0 = 0.1 (middle) and o = 0.2 (right side), and for different values of m, 7, n, n = 0.28, 6 = 0.05,

B=1.
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=3

X,

A~

2 %2

i i Si gl y

1 906.4 476.0 0.525 0.27563
2 805.1 4939 0.614 0.37700
3 1187.2 1105.9 0.932 0.86862
4 663.4 304.8 0.459 0.21068
5 1012.1 3674 0.363 0.13177
6 863.2 3504 0.406 0.16484
7 1561.0 1562.2 1.058 1.11936
8 697.1 253.2 0.363 0.13177
9 1024.6 1209 0.118 0.01392
10 355.3 235.2 0.662 0.43824
11 485.6 106.5 0.219 0.04796
12 1224.3 915.4 0.748 0.55950
13 1365.0 1051.6 0.770 0.59290
14  704.0 449.7 0.639 0.40832
15 1584.7 1050.8 0.663 0.43957
16 1130.0 680.6 0.602 0.36240
17 824.7 393.5 0477 0.22753
18 921.2 391.6 0.425 0.18062
19 870.3 730.0 0.839 0.70392
20 1068.3 150.8 0.141 0.01988

Table 8. Illustrative example of Phase II dataset.
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