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1. ADDITIONAL ANALYSIS OF MISSPECIFIED TRUNCATION DISTRIBUTIONS

In this subsection, we analyze cases where a wrong well-known family of parametric dis- 15

tributions is chosen to fit the truncation distribution. In Table 1, the truncation distribution
is either a log-normal one or a gamma one but it is supposed to be a Weibull one where
its parameters are unknown and estimated with the two proposed methods. The gamma den-
sity is f(t) = (λα/Γ(α))tα−1 exp(−(λt)) and the log-normal one is f(t) = exp(−(ln(x)−
µ)/(2σ2))/(xσ

√
2π). 20

In Table 1, we observe results similar to Section 4. Once again, the full likelihood estimator
FT,θ̃ gets also worse more than FT,θ̂ but leads to better results for F (·). In the proposed sim-
ulations, the impact of choosing the wrong truncation distribution seems very weak (see also
Section 5 where these distributions are chosen); most of the time, the semiparametric estimators
of Fθ0 outperform the product limit estimators. 25

2. ADDITIONAL ANALYSIS OF CONFIDENCE INTERVALS

In Table 2, basic and percentile bootstrap methods have been tested for (symmetric) two-sided
confidence intervals with confidence level of 95%.

In Fig. 1 below, quantile-quantile plots are constructed to better assess the bootstrap approx-
imation for the proposed confidence intervals for θ. The x-axis corresponds to the quantiles of 30

the empirical distribution constructed with the estimations (minus the true value of the con-
sidered parameter) obtained from the R = 1000 samples while the y-axis corresponds to these
quantiles but where the empirical distribution is obtained from the estimations in the bootstrap
samples taken from one particular sample (minus the estimated parameter in this sample). For
the percentile bootstrap case, the opposite of these quantiles are taken due to the symmetry as- 35

sumption of this method. The graphs hereunder show that both distributions are close to each

C© 2016 Biometrika Trust
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Table 1. Misspecification with a fitted Weibull truncation distribution
γ Cens. % IMSE(FT,θ̂) IMSE(FT,θ̃) IMSE(F̂θ̂) IMSE(F̂θ̃) IMSE(Fn)

RIMSET,θ̂,θ̃ RIMSEY,θ̂,n RIMSEY,θ̃,n
n = 100 - T ∼Log-normal(0.50; 0.43) - Trunc. %= 71.35

1 26.67 14.4 15.2 11.3 10.2 10.6
0.95 1.07 0.96

3 49.50 15.7 19.6 12.1 9.9 11.1
0.80 1.09 0.89

5 61.03 16.1 21.6 12.6 10.2 11.9
0.75 1.06 0.86

7 68.17 18.2 25.9 13.6 10.4 12.1
0.70 1.12 0.86

9 73.07 19.6 31.4 14.5 10.6 12.4
0.62 1.17 0.85

n = 100 - T ∼Gamma(6.47; 2.34) - Trunc. %= 71.85
1 25.62 29.7 29.4 15.8 15.2 15.7

1.01 1.01 0.97
3 48.05 35.0 38.5 16.2 15.5 16.2

0.91 1.00 0.96
5 59.58 39.4 46.8 17.8 16.2 17.4

0.84 1.02 0.93
7 66.81 42.2 53.7 17.6 16.5 17.9

0.79 0.99 0.92
9 71.80 45.4 60.5 18.9 17.3 18.7

0.75 1.01 0.92
n = 100 - T ∼Log-normal(0.09; 0.43) - Trunc. %= 54.96

1 27.60 6.8 6.8 5.5 5.1 6.6
0.99 0.83 0.78

3 50.75 7.0 7.9 6.6 5.3 7.1
0.88 0.94 0.74

5 62.16 7.1 8.7 7.6 5.5 7.1
0.82 1.08 0.77

7 69.17 7.9 9.4 8.2 5.7 7.3
0.84 1.12 0.79

9 73.91 8.4 11.6 9.8 6.2 7.9
0.73 1.24 0.79

n = 100 - T ∼Gamma(6.47; 5.55) - Trunc. %= 54.45
1 27.56 4.4 4.5 5.6 4.9 6.8

0.97 0.83 0.73
3 50.64 4.5 4.9 5.2 4.8 7.3

0.92 0.71 0.65
5 62.07 4.6 5.6 7.1 5.5 7.5

0.82 0.96 0.74
7 69.06 5.0 6.0 7.8 6.0 7.8

0.83 1.01 0.78
9 73.79 5.3 6.9 8.1 6.3 8.0

0.77 1.02 0.79

Distributions, Y ∼Weibull(0.75; 1.25) and C − T ∼ 5×Beta(0.75; γ); Trunc. % and Cens.
%, the truncation and censoring percentages; IMSE, the estimated integrated mean squared er-
ror (×10−3 for FT,θ̂ and FT,θ̃ , and ×10−2 for F̂θ̂ , F̂θ̃ and Fn); FT,θ̂ and FT,θ̃ , the truncation

distributions based on the conditional and full maximum likelihood estimators; F̂θ̂ and F̂θ̃ , the
misspecified semiparametric estimators of F based on the conditional and full maximum like-
lihood estimators; Fn, the product-limit estimator of F ; RIMSET,θ̂,θ̃ , the ratio of the estimated
integrated mean squared errors of FT,θ̂ and FT,θ̃; RIMSE

Y,θ̂,n
(respectively RIMSEY,θ̃,n) the

ratio of the estimated integrated mean squared errors of F̂θ̂ (respectively F̂θ̃) and Fn. The
standard errors for the integrated squared errors are bounded by 1.8× 10−3 for the truncation
distributions and 8.0× 10−3 for the estimators of F.
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Table 2. Confidence intervals for the truncation parameters
n γ Boot. Av. Av. Cov. Cov. Av. Av. Cov. Cov.

Method Length Length Length Length
λT λT λT λT αT αT αT αT

Cond. Full Cond. Full Cond. Full Cond. Full
50 3 Basic 0.35 0.34 0.96 0.96 2.07 1.86 0.94 0.95

Perc. 0.35 0.34 0.99 0.98 2.07 1.86 0.97 0.97
5 Basic 0.32 0.31 0.92 0.92 2.12 1.87 0.90 0.93

Perc. 0.32 0.31 0.98 0.96 2.12 1.87 0.97 0.95
7 Basic 0.41 0.41 0.90 0.91 2.28 1.97 0.87 0.90

Perc. 0.41 0.41 0.99 0.97 2.28 1.97 0.97 0.95
9 Basic 0.41 0.40 0.88 0.89 2.35 1.99 0.84 0.90

Perc. 0.41 0.40 1.00 0.96 2.35 1.99 0.96 0.95
100 3 Basic 0.25 0.23 0.95 0.96 1.43 1.30 0.98 0.97

Perc. 0.25 0.23 0.99 0.99 1.43 1.29 0.97 0.98
5 Basic 0.25 0.23 0.94 0.93 1.51 1.32 0.98 0.97

Perc. 0.25 0.23 0.98 0.97 1.51 1.32 0.98 0.97
7 Basic 0.28 0.25 0.92 0.94 1.62 1.40 0.97 0.97

Perc. 0.28 0.25 0.99 0.97 1.62 1.40 0.99 0.97
9 Basic 0.30 0.26 0.91 0.94 1.73 1.46 0.95 0.95

Perc. 0.30 0.26 1.00 0.95 1.73 1.46 0.97 0.96
200 3 Basic 0.11 0.11 0.94 0.93 0.88 0.83 0.99 0.97

Perc. 0.11 0.11 0.99 0.99 0.88 0.83 0.98 0.98
5 Basic 0.18 0.16 0.94 0.90 1.04 0.92 0.99 0.98

Perc. 0.18 0.16 1.00 0.98 1.04 0.92 0.98 0.98
7 Basic 0.23 0.20 0.94 0.90 1.15 0.98 0.98 0.99

Perc. 0.23 0.20 0.99 0.99 1.15 0.98 0.99 0.98
9 Basic 0.26 0.22 0.93 0.90 1.24 1.03 0.97 0.97

Perc. 0.26 0.22 1.00 0.98 1.24 1.03 0.98 0.97

Distributions, Y ∼Weibull(0.75; 1.25), T ∼Weibull(0.5; 3) and C − T ∼ 5×Beta(0.75; γ); Boot.
Method, the bootstrap method; Av. Length, the average length of the 1000 obtained confidence inter-
vals; Cov., the percentage of confidence intervals covering the true values of the parameters (cover-
age); λT (respectively αT ), columns related to confidence intervals for λT (respectively αT ); Cond.
(respectively Full), columns related to confidence intervals constructed with the conditional (respec-
tively full) maximum likelihood method; Basic, the basic bootstrap method; Perc., the percentile
bootstrap method. The standard error is bounded by 1.2× 10−2 for the coverages and 6× 10−3

(respectively 1.1× 10−2) for the average lengths of the confidence intervals for λT (respectively
αT ).

other suggesting that both bootstrap procedures perform reasonably well. In addition, we also
counted how many times the true value of the parameters was observed above the upper bound
of the confidence interval and under its lower bound. If for numerous simulations, we observed
approximately equal percentages on both sides, it is not always the case: percentages may be 40

unbalanced according to the parameter, the basic or percentile bootstrap or the likelihood tech-
nique.

3. PROOFS

To develop the proofs of the results displayed or mentioned in Section 3, we need to introduce
some notations. We use capital letters to denote cumulative distribution functions and lower 45

case letters to denote probability density functions. For FT,θ(·) = prθ(T ≤ ·) a family of dis-
tributions indexed by θ ∈ Θ, a compact subset of IRd, d ≥ 1, including θ0 (FT (·) = FT,θ0(·)),
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Fig. 1. Quantile-quantile plot for the bootstrap distribution
of λ̂T − λT (the 4 upper graphs) and α̂− αT (the 4 lower
graphs); Y ∼Weibull(0.75; 1.25), T ∼Weibull(0.5; 3),
C − T ∼ 5×Beta(0.75; γ); x-axis, distribution based on
the simulated samples; y-axis, bootstrap distribution for
one particular sample; left column, basic bootstrap; right
column, percentile bootstrap; first and third rows, condi-
tional likelihood; second and fourth rows, full likelihood

method.
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θ0,c and θ0,p, we write ḟT,θ(t) = ∂fT,θ(t)/∂θ, f
′
T,θ(t) = ∂fT,θ(t)/∂t and similarly for higher

order derivatives. For the Hessian matrix of any function m(θ, x) depending on θ and other
variables assumed to be two times differentiable with respect to the components of θ, we write 50

∂2m(θ, x)/∂θT∂θ = m̈(θ, x) and m̈(θ0, x) denotes its value at the point θ = θ0. In addition,

ξf3,θ(y, z, δ, t) =

(∫ +∞

0
w−1
θ,G(x)dH1(x)

)−1

ξf2,θ(y, z, δ, t)

−
∫ t

0 f(x)w−1
θ,G(x)dH1(x)

(
∫ +∞

0 w−1
θ,G(x)dH1(x))2

ξ2,θ(y, z, δ,+∞),

Ω1,θ = −E

{
f̈T,θ(T )

fT,θ(T )
−
ḟT,θ(T )

fT,θ(T )

ḟTT,θ(T )

fT,θ(T )
−∆

(
ẅθ,G(X)

wθ,G(X)
−
ẇθ,G(X)

wθ,G(X)

ẇTθ,G(X)

wθ,G(X)

)

−(1−∆)

(∫ X∧T
0 f̈T,θ(X − t)dG(t)∫ X∧T
0 fT,θ(X − t)dG(t)

−

(∫ X∧T
0 ḟT,θ(X − t)dG(t)

)(∫ X∧T
0 ḟTT,θ(X − t)dG(t)

)
(∫ X∧T

0 fT,θ(X − t)dG(t)
)2

 | X ≥ T
 .

To avoid too long expressions, we also denote the vector of first (respectively second) derivatives
of w−1

θ,G(·) by ẇ−1
θ,G(·) (respectively ẅ−1

θ,G(·)). We then finally define 55

DLθ(T )

=
f̈T,θ(T )

fT,θ(T )
−
ḟT,θ(T )

fT,θ(T )

ḟTT,θ(T )

fT,θ(T )

−

∫∞
0

{
F̈T,θ(t)w

−1
θ,G(t) + ḞT,θ(t)ẇ

−1T

θ,G (t) + ẇ−1
θ,G(t)Ḟ TT,θ(t) + ẅ−1

θ,G(t)FT,θ(t)
}
dH1(t)∫∞

0 FT,θ(t)w
−1
θ,G(t)dH1(t)

+

∫∞
0

{
ḞT,θ(t)w

−1
θ,G(t) + FT,θ(t)ẇ

−1
θ,G(t)

}
(∫∞

0 FT,θ(t)w
−1
θ,G(t)dH1(t)

)2

×
∫ ∞

0

{
Ḟ TT,θ(t)w

−1
θ,G(t) + FT,θ(t)ẇ

−1T

θ,G (t)
}
dH1(t)

and

Ω2,θ = −E

[
∆

{
DLθ(T )−

ẅθ,G(X)

wθ,G(X)
+
ẇθ,G(X)

wθ,G(X)

ẇTθ,G(X)

wθ,G(X)

}

+(1−∆)I(X < T̃ )

{
DLθ(T ) +

∫∞
X ẅ−1

θ,G(t)dH1(t)∫∞
X w−1

θ,G(t)dH1(t)

−
∫∞
X ẇ−1

θ,G(t)dH1(t)
∫∞
X ẇ−1T

θ,G (t)dH1(t)(∫∞
X w−1

θ,G(t)dH1(t)
)2

 | X ≥ T
 .
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LEMMA 1. Under assumption 1− 4 , for a given function h(X) such that E[h3(X) | X ≥
T ] < +∞,∫ t

0
h(z)(wθ0,G(z)− wθ0,Gn(z))dH1

n(z)

=
1

n

n∑
i=1

∫ t

0
h(z)

∫ z

0
ξ(Xi − Ti,∆i, (z − s) ∧ T )dFT,θ0(s)dH1(z) + r1,n(t),

where supt |r1,n(t)| = oP (n−1/2). If E
[
ḟ2T,θ0

(T )

f2
T,θ0

(T )

]
< +∞,

∫ t

0
h(z)(ẇθ0,G(z)− ẇθ0,Gn(z))dH1

n(z)

=
1

n

n∑
i=1

∫ t

0
h(z)

∫ z

0
ξ(Xi − Ti,∆i, (z − s) ∧ T )ḟT,θ0(s)dsdH1(z) + r2,n(t),

where supt |r2,n(t)| = oP (n−1/2).60

Proof. Define

I(T ≤ Y )g(Y − T )f(T ),

where f(·) and g(·) : IR+ → [0, 1] are respectively a known and a monotone function. By The-
orem 2.7.5 in van der Vaart and Wellner (1996), the bracketing number of the class Jm of g(·)
functions is mJ = N[](ε,Jm, L6(HY−T )) = exp(Kε−1), for some constant K > 0.
Now define the class65

W =

{
r →

∫ +∞

0
I(0 ≤ r − s)g(r − s)f(s)dFT,θ0(s), r ∈ IR+, t→ g(t) : IR+ → [0, 1] is a

monotone function and s→ f(s) is a known function with E[f2(T )] < +∞
}

(1)

and for i = 1, . . . ,mJ , [g`i , g
u
i ], the mJ brackets for the class Jm. Next, for each i, i =

1, . . . ,mJ , define

wui (Y ) =

∫ Y

0
max(g`i (Y − t)f(t), gui (Y − t)f(t))dFT,θ0(t)

and similarly for w`i (Y ) with a minimum instead of a maximum. Each function ofW for which
g`i (Y − T ) ≤ g(Y − T ) ≤ gui (Y − T ) is included in [w`i (Y ), wui (Y )]. Moreover, it is easily
checked that

∫
(wui (z)− w`i (z))6dHY (z) = O(ε6) such that mJ = N[](ε,W, L6(HY )) brack-

ets suffice to coverW (whereHY (x) = pr(Y ≤ x | X ≥ T )).
Next, for a given function h(X) with E[h3(X) | X ≥ T ] < +∞, we prove that70 ∫ t

0
h(z)(wθ0,G(z)− wθ0,Gn(z))dH1

n(z)

=

∫ t

0
h(z)(wθ0,G(z)− wθ0,Gn(z))dH1(z) + rn(t), (2)
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where supt |rn(t)| = oP (n−1/2). First, we decompose the integral on the left hand side of the
above expression into∫ t

0
h(z)I(h(z) ≤ nδ)(wθ0,G(z)− wθ0,Gn(z))dH1

n(z)

+

∫ t

0
h(z)I(h(z) > nδ)(wθ0,G(z)− wθ0,Gn(z))dH1

n(z),

for a small δ > 0. The second term is simply treated by the Markov inequality to show that it
is oP (n−1/2). Note that this step involves pr(h(X) > nδ | X ≥ T ), that is also treated with the
Markov inequality. Next, with f(s) = 1, wθ0,Gn(X) is a sequence of random functions that take 75

their values in the classW defined in (1). Since I(X ≤ t) is a monotone function and h(X) is
purely random with E[h3(X) | X ≥ T ] < +∞, Lemma 19.36 of van der Vaart (1998) can be
used. Indeed, the class of functions defined by x→ I(x ≤ t)h(x)w(x) is Donsker. We use this
lemma with a restricted class of this type of functions where w(X) = OP (n−1/2(log log n)1/2)
and h(X) < nδ. We therefore obtain 80∫ t

0
h(z)I(h(z) ≤ nδ)(wθ0,G(z)− wθ0,Gn(z))dH1

n(z)

=

∫ t

0
h(z)I(h(z) ≤ nδ)(wθ0,G(z)− wθ0,Gn(z))dH1(z) + r̃n(t),

where supt |r̃n(t)| = oP (n−1/2) and the above result (2) follows. Finally, the asymptotic repre-
sentation of the Kaplan–Meier estimator given by Lo and Singh (1986) provides the first result
in the statement of the lemma.
Now, in the same way,∫ t

0
h(z)(ẇθ0,G(z)− ẇθ0,Gn(z))dH1

n(z) =

∫ t

0
h(z)(ẇθ0,G(z)− ẇθ0,Gn(z))dH1(z) + r∗n(t),

where supt |r∗n(t)| = oP (n−1/2), is obtained following the lines of the above results with f(s) = 85

ḟT,θ0(s)/fT,θ0(s). The asymptotic representation in the second statement of the above lemma is
then deduced and this finishes the proof. �

LEMMA 2. Under assumptions 1− 5,

sup
t
|F̂θ0(t)− Fθ0(t)| = O(n−1/2(log log n)1/2) a.s.

Proof. This result immediately follows from the uniform consistency properties of the
Kaplan–Meier estimator and the empirical distribution function (see for example Cai (1998),
Theorem 1, Lemma 2 and the expression below (15) in this paper). � 90

LEMMA 3. Under assumptions 1− 5, F̂θ0(t)− Fθ0(t) = 1
n

∑n
i=1 ξ3,θ0(Xi, Xi − Ti,∆i, t) +

r3,n(t), where supt |r3,n(t)| = oP (n−1/2) a.s.

Proof. First, rewrite the numerator of F̂θ0(t)− Fθ0(t) as∫ t

0
(w−1

θ0,Gn(x)− w−1
θ0,G(x))dH1

n(x) +

∫ t

0
w−1
θ0,G(x)d(H1

n(x)−H1(x))

= E1,n(t) + E2,n(t).



8 J. DE UÑA-ÁLVAREZ, C. HEUCHENNE AND G. LAURENT

Using Lemma 1 with h(X) = 1/w2
θ0,G(X), the term E1,n(t) can be rewritten∫ t

0

wθ0,G(x)− wθ0,Gn(x)

w2
θ0,G(x)

dH1
n(x) + oP (n−1/2)

=
1

n

n∑
i=1

∫ t

0

∫ x
0 ξ(Xi − Ti,∆i, (x− s) ∧ T )dFT,θ0(s)

w2
θ0,G(x)

dH1(x) + oP (n−1/2), (3)

where the last terms (on both sides of the above expression) are uniform in t.Next, using standard95

arguments about the uniform consistency of Kaplan–Meier estimators and empirical processes,

F̂θ0(t)− Fθ0(t) =
E1,n(t) + E2,n(t)∫ +∞

0 w−1
θ0,G(x)dH1(x)

−
∫ t

0 w
−1
θ0,G(x)dH1(x)(∫ +∞

0 w−1
θ0,G(x)dH1(x)

)2 (E1,n(+∞) + E2,n(+∞)) + oP (n−1/2),

where the last term is uniform in t. Applying the development (3) to E1,n(+∞) finishes the
proof. �

LEMMA 4. Assume that assumptions 1− 5 and 6(ii),(iii) are met, and E[|X| | X ≥ T ] <
+∞. Under assumptions 6(i), 8(i) and 10,

sup
θ∈Θ
|Lc,1(θ,Gn)− E [Lc,1(θ,G)] | → 0 a.s.,

which induces θ̂ − θ0,c = oP (1), and under assumption 8(ii) and supθ,t |∂FT,θ(t)/∂θk| < +∞
(k = 1, . . . , d),

sup
θ∈Θ
|Lp(θ, F̂θ,Gn,H1

n)− E
[
Lp(θ, Fθ,G,H1)

]
| → 0 a.s.,

which induces θ̃ − θ0,p = oP (1).

Proof. To prove this lemma, we will use Theorem 5.7 in van der Vaart (1998, p. 45). First,100

using assumptions 4, 5, 6(i),(ii) and 10

1

n

n∑
i=1

(
log fT,θ(Ti)−∆i logwθ,Gn(Xi)− (1−∆i) log

∫ Xi∧T

0
fT,θ(Xi − t)dGn(t)

)

=
1

n

n∑
i=1

(
log fT,θ(Ti)−∆i logwθ,G(Xi)− (1−∆i) log

∫ Xi∧T

0
fT,θ(Xi − t)dG(t)

)
+o(1) a.s., (4)

where the last term is uniform in θ. Next, under assumption 6(iii) and since in addition
supθ,t |∂fT,θ(t)/∂θk| < +∞ for all k (k = 1, . . . , d), E[|X| | X ≥ T ] < +∞ and the above
function between brackets is parametric, the bracketing number of the class F1 of these func-
tions indexed by θ ∈ Θ ⊂ IRd is

N[](ε,F1, L1(P )) = O(ε−d),

where P stands here for the distribution of X,T,∆ given X ≥ T. As a consequence, the class
F1 is Glivenko–Cantelli, which ensures the uniform consistency in θ.

We first consider Lc,1(θ;G).
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For θ1 6= θ2 and δ = 1, we assume nonidentifiability, i.e.,
fT,θ1 (t)I(t≤y)

wθ1,G(y) and
fT,θ2 (t)I(t≤y)

wθ2,G(y) 105

are equal on all nonzero measure sets. Since fT,θ(t) is an identifiable probability den-
sity function, continuous with respect to t, there are at least two small intervals de-
noted δ1

t,θ1,2
and δ2

t,θ1,2
, of nonzero measure with upper bound smaller than τFT (·) and for

which
∫
δ1
t,θ1,2

(fT,θ1(t)− fT,θ2(t))dt > 0 and
∫
δ2
t,θ1,2

(fT,θ1(t)− fT,θ2(t))dt < 0. Taking y∗, a

point larger than the upper bounds of both δ1
t,θ1,2

and δ2
t,θ1,2

, and smaller than τFT (·), we 110

have
∫
δi
t,θ1,2

fT,θ1(t)dt
∫ τFT (·)
y∗ w−1

θ1,G(y)dy =
∫
δi
t,θ1,2

fT,θ2(t)dt
∫ τFT (·)
y∗ w−1

θ2,G(y)dy, i = 1, 2. This

leads to a ratio
∫ τFT (·)
y∗ w−1

θ2,G(y)dy/
∫ τFT (·)
y∗ w−1

θ1,G(y)dy equal to two different constants (one
smaller and one larger than one), which is impossible.

By assumption 8(i) and Theorem 5.7 in van der Vaart (1998, p. 45), θ̂ − θ0,c = oP (1).
The log-likelihood of the second proposed procedure is 115

Lp(θ, F̂θ,Gn,H1
n)

=
1

n

n∑
i=1

[
∆i

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dFθ(t) + log

w−1
θ,G(Xi)∫

w−1
θ,G(t)dH1(t)

}

+I(Ci ≤ T̃ )(1−∆i)

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dFθ(t) + log(1− Fθ(Xi))

}]
+o(1) a.s., (5)

where T̃ < τF (·) and the last term is uniform in θ. Indeed, by assumptions 4, 5, 6(ii), E[|X| |
X ≥ T ] < +∞ and supθ,t |∂fT,θ(t)/∂θk| < +∞, for all k,

sup
θ,t
|F̂θ(t)− Fθ(t)| → 0, a.s. (6)

This is obtained by the uniform consistency of the Kaplan–Meier estimator combined with the
fact that the class

F2 =
{

(δ, x)→ δI(x ≤ y)w−1
θ (x); θ ∈ Θ, y ∈ IR

}
is Glivenko–Cantelli. Next, using similar arguments and supθ,t |∂FT,θ(t)/∂θk| < +∞, for all k,
enables to obtain the second and fifth terms on the right hand side of (5) while the sixth term is
treated by (6) since it is easily checked that supθ Fθ(T̃ ) < 1. Finally, the full sum in (5) is treated 120

similarly to the sum on the right hand side of (4) such that the uniform consistency in θ to

E

[
∆

{
log fT,θ(T )− log

∫ +∞

0
FT,θ(t)dFθ(t) + log

w−1
θ,G(X)∫

w−1
θ,G(t)dH1(t)

}

+I(C ≤ T̃ )(1−∆)

{
log fT,θ(T )− log

∫ +∞

0
FT,θ(t)dFθ(t) + log(1− Fθ(X))

}
| X ≥ T

]
is obtained. By assumption 8(ii) and Theorem 5.7 in van der Vaart (1998, p. 45), θ̃ − θ0,p =
oP (1) and this finishes the proof. �

To simpify notations, assume in the sequel θ0,c = θ0,p = θ0.
125
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Proof of Theorem 1.a. Straightforward calculations using a first order Taylor expansion
around θ0 of the derivative of Lc,1(θ,Gn) at θ = θ̂ and treating double sums as in Lemma 3
lead to

θ̂ − θ0=−
(
L̈c,1(θ∗,Gn)

)−1 1

n

n∑
i=1

{
ḟT,θ0(Ti)

fT,θ0(Ti)
−∆i

ẇθ0,Gn(Xi)

wθ0,Gn(Xi)

−(1−∆i)

∫ Xi∧T
0 ḟT,θ0(Xi − t)dGn(t)∫ Xi∧T
0 fT,θ0(Xi − t)dGn(t)

}
+ oP (n−1/2)

=
(
L̈c,1(θ∗,Gn)

)−1 1

n2

n∑
i=1

n∑
j=1

[

∆i

{
ẇθ0,G(Xi)

∫ Xi
0 ξ(Xj − Tj ,∆j , (Xi − s) ∧ T )fT,θ0(s)ds

w2
θ0,G(Xi)

−
∫ Xi

0 ξ(Xj − Tj ,∆j , (Xi − s) ∧ T )ḟT,θ0(s)ds

wθ0,G(Xi)

}

+(1−∆i)

{∫ Xi∧T
0 ḟT,θ0(Xi − t)dξ(Xj − Tj ,∆j , t)∫ Xi∧T

0 fT,θ0(Xi − t)dG(t)

−
∫ Xi∧T

0 ḟT,θ0(Xi − t)dG(t)
∫ Xi∧T

0 fT,θ0(Xi − t)dξ(Xj − Tj ,∆j , t)(∫ Xi∧T
0 fT,θ0(Xi − t)dG(t)

)2




−
(
L̈c,1(θ∗,Gn)

)−1 1

n

n∑
i=1

{
ḟT,θ0(Ti)

fT,θ0(Ti)
−∆i

ẇθ0,G(Xi)

wθ0,G(Xi)

−(1−∆i)

∫ Xi∧T
0 ḟT,θ0(Xi − t)dG(t)∫ Xi∧T
0 fT,θ0(Xi − t)dG(t)

}
+ oP (n−1/2),

where each element θ∗ij of θ∗ is between θ0j and θ̂j (θ0j and θ̂j denote the jth element of θ0 and
θ̂ respectively; i, j = 1, . . . , d). Weak consistency of −L̈c,1(θ∗,Gn) as an estimator of Ω1,θ0 is130

obtained using uniform consistency of the Kaplan–Meier estimator, Lemma (4), assumption 6
(iv), (vi), (vii), assumption 7 and infρG(·)≤x≤τF (·)

∫ x∧T
0 fT,θ0(x− t)dG(t) > 0.
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Defining for i 6= j, Vi = (Xi,∆i), Wj = (Xj , Tj ,∆j),

B(Vi,Wj)=∆i

{
ẇθ0,G(Xi)

∫ Xi
0 ξ(Xj − Tj ,∆j , (Xi − s) ∧ T )fT,θ0(s)ds

w2
θ0,G(Xi)

−
∫ Xi

0 ξ(Xj − Tj ,∆j , (Xi − s) ∧ T )ḟT,θ0(s)ds

wθ0,G(Xi)

}

+(1−∆i)

{∫ Xi∧T
0 ḟT,θ0(Xi − t)dξ(Xj − Tj ,∆j , t)∫ Xi∧T

0 fT,θ0(Xi − t)dG(t)

−
∫ Xi∧T

0 ḟT,θ0(Xi − t)dG(t)
∫ Xi∧T

0 fT,θ0(Xi − t)dξ(Xj − Tj ,∆j , t)(∫ Xi∧T
0 fT,θ0(Xi − t)dG(t)

)2



and B∗(Vi,Wj) = B(Vi,Wj)− E(B(Vi,Wj) |Wj), we have

E(B∗(Vi,Wj)) = E(B∗(Vi,Wj) | Vi) = E(B∗(Vi,Wj) |Wj) = 0

and 135

pr(
1

n(n− 1)

∑
i 6=j

B∗(Vi,Wj) > Cn−(1/2+δ))

≤
E2(

∑
i 6=j B

∗(Vi,Wj))

(C2n−(1+2δ))n2(n− 1)2
= O(n−1+2δ),

for any given C > 0 and 0 < δ < 1/2. This latter expression ensures that

1

n(n− 1)

∑
i 6=j

B∗(Vi,Wj) = oP (n−1/2)

and finally, using assumption 9(i), θ̂ − θ0 = Ω−1
1,θ0

1
n

∑n
i=1 η1,θ0(Ti, Xi,∆i) + oP (n−1/2). �
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Proof of Theorem 1.b. In the same way as in Theorem 1.a.,

θ̃ − θ0 = −
(
L̈p(θ̃∗, F̂θ̃∗ ,Gn,H

1
n)
)−1 1

n

n∑
i=1

[
∆i

{
ḟT,θ0(Ti)

fT,θ0(Ti)

+

∫ +∞
0

(
ḟT,θ0(t)F̂θ0(t) + fT,θ0(t)

˙̂
F θ0(t)

)
dt∫ +∞

0 FT,θ0(t)dF̂θ0(t)

−
ẇθ0,Gn(Xi)

∫
w−1
θ0,Gn(t)dH1

n(t) + wθ0,Gn(Xi)
∫
ẇ−1
θ0,Gn(t)dH1

n(t)

wθ0,Gn(Xi)
∫
w−1
θ0,Gn(t)dH1

n(t)

}

+(1−∆i)I(Xi ≤ T̃ )

 ḟT,θ0(Ti)

fT,θ0(Ti)
+

∫ +∞
0

(
ḟT,θ0(t)F̂θ0(t) + fT,θ0(t)

˙̂
F θ0(t)

)
dt∫ +∞

0 FT,θ0(t)dF̂θ0(t)

−
˙̂
F θ0(Xi)

(1− F̂θ0(Xi))

}]

= Ω−1
2,θ0

1

n

n∑
i=1

[{
∆i

(
ḟT,θ0(Ti)

fT,θ0(Ti)
−
ẇθ0,G(Xi)

wθ0,G(Xi)

)

+(1−∆i)I(Xi ≤ T̃ )

(
ḟT,θ0(Ti)

fT,θ0(Ti)
− Ḟθ0(Xi)

(1− Fθ0(Xi))

)}

+

∫ (∫ z
0 ξ(Xi − Ti,∆i, (z − s) ∧ T )ḟT,θ0(s)ds

wθ0,G(z)

−
ẇθ0,G(z)

∫ z
0 ξ(Xi − Ti,∆i, (z − s) ∧ T )fT,θ0(s)ds

w2
θ0,G(z)

)
dH1(z)
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−
∫ T̃

0

(
ξ̇3,θ0(Xi, Xi − Ti,∆i, z)

1− Fθ0(z)
+
Ḟθ0(z)ξ3,θ0(Xi, Xi − Ti,∆i, z)

(1− Fθ0(z))2

)
dH0(z)

+

(
pr(∆ = 1) +

∫ T̃
0
dH0(z)

)

×


∫ +∞

0 fT,θ0(z)ξ̇3,θ0(Xi, Xi − Ti,∆i, z)dz − ξ
ḞT,θ0
3,θ0

(Xi, Xi − Ti,∆i,+∞)∫ +∞
0 FT,θ0(z)dFθ0(z)

−
ξ
FT,θ0
3,θ0

(Xi, Xi − Ti,∆i,+∞)
∫ +∞

0

(
ḟT,θ0(z)Fθ0(z) + fT,θ0(z)Ḟθ0(z)

)
dz(∫ +∞

0 FT,θ0(z)dFθ0(z)
)2


−pr(∆ = 1)

(
ξ̇2,θ0(Xi, Xi − Ti,∆i,∞)∫ +∞

0 w−1
θ0,G(z)dH1(z)

−
∫∞

0 ẇ−1
θ0,G(z)dH1(z)

(
∫ +∞

0 w−1
θ0,G(z)dH1(z))2

ξ2,θ0(Xi, Xi − Ti,∆i,+∞)

)]

+Ω−1
2,θ0


∫ +∞

0

(
ḟT,θ0(z)Fθ0(z) + fT,θ0(z)Ḟθ0(z)

)
dz∫ +∞

0 FT,θ0(z)dFθ0(z)

1

n

n∑
i=1

(∆i + (1−∆i)I(Xi ≤ T̃ ))

−
∫
ẇ−1
θ0,G(z)dH1(z)∫

w−1
θ0,G(z)dH1(z)

1

n

n∑
i=1

∆i

}
+oP (n−1/2),

where each element θ̃∗ij of θ̃∗ is between θ0j and θ̃j (θ0j and θ̃j denote the jth element of θ0 and θ̃
respectively; i, j = 1, . . . , d; ẇ−1

θ0,Gn(z) = −ẇθ0,Gn(z)/w2
θ0,Gn(z) and similarly for G instead of

Gn). Weak consistency of −∂2Lp(θ̃∗, F̂θ̃∗ ,Gn,H
1
n)/∂θT∂θ as an estimator of Ω2,θ0 is obtained

using uniform consistency of the Kaplan–Meier estimator, Lemma 4, assumption 6 (iv), (v), (vi)
and assumption 7. Since supθ,t |ḟT,θ(t)| < +∞, assumption 7 together with Lemma 1 enable to
adapt Lemma 3 to obtain

˙̂
F θ0(t)− Ḟθ0(t) =

1

n

n∑
i=1

ξ̇3,θ0(Xi, Xi − Ti,∆i, t) + oP (n−1/2),

while the asymptotic representation∫ +∞

0
f(t)d(F̂θ0(t)− Fθ0(t)) =

1

n

n∑
i=1

ξf3,θ0(Xi, Xi − Ti,∆i,+∞) + oP (n−1/2)

(also obtained in a similar way as Lemma 3) is applied to f(t) = FT,θ0(t) and f(t) = ḞT,θ0(t)

(since supt |ḞT,θ0(t)| < +∞). Alternatively, under the same assumptions, we can also obtain the
asymptotic representation for θ̃ − θ0,p defined by Ω−1

2,θ0,p
n−1

∑n
i=1 η2,θ0,p(Ti, Xi,∆i),where the 140

remainder term is of order oP (n−1/2) (or we can derive it from the above calculations using basic
arguments). �
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Proof of Theorem 2. Since supt,θ |∂fT,θ(t)/∂θi| < +∞, supt,θ |∂2fT,θ(t)/∂θi∂θj | < +∞
(i, j = 1, . . . , d) and E[|X| | X ≥ T ] < +∞,

F̂θn(t)− Fθ0(t) = F̂θn(t)− F̂θ0(t) + F̂θ0(t)− Fθ0(t)

=
∂Fθ0(t)

∂θT
(θn − θ0) +

1

n

n∑
i=1

ξ3,θ0(Xi, Xi − Ti,∆i, t) + oP (n−1/2).

We treat ξ3,θ0(X,X − T,∆, t) using Theorem 2.5.6 in van der Vaart and Wellner (1996), i.e.,145

we show that ∫ +∞

0

(
logN[](ε,F , L2(P )

)1/2
dε < +∞, (7)

where N[] is the bracketing number, P the probability measure corresponding to the joint distri-
bution of (X,X − T,∆), given X ≥ T, L2(P ) is the L2− norm, and

F = {ξ3,θ0(X,X − T,∆, t),−∞ < t < +∞} .

The function ξ3,θ0(X,X − T,∆, t) can be decomposed into

ξ3,θ0(X,X − T,∆, t) =

(∫ +∞

0
w−1
θ0,G(x)dH1(x)

)−1

ξ2,θ0(X,X − T,∆, t)

−
∫ t

0 w
−1
θ0,G(x)dH1(x)

(
∫ +∞

0 w−1
θ0,G(x)dH1(x))2

ξ2,θ0(X,X − T,∆,+∞)

= B1 ∗ ξ2,θ0(X,X − T,∆, t) +B2(t) ∗ ξ2,θ0(X,X − T,∆,+∞),

where B1 < +∞, B2(t) is a uniformly bounded function of t and ξ2,θ0(X,X − T,∆,+∞)
is a uniformly bounded purely random function. To establish weak convergence of
the process

√
n(F̂θn(t)− Fθ0(t)), we only need to study ξ2,θ0(X,X − T,∆, t). Indeed,150

(∂Fθ0(t)/∂θT )(θn − θ0) is also a product of a vector of uniformly bounded functions (only
depending on t) times a purely random vector for which each component has a bounded second
moment. Let then rewrite

ξ2,θ0(X,X − T,∆, t)

=

∫ t

0

∫ x

0

ξ1a(X − T, (x− s) ∧ T ) + I(X − T ≤ (x− s) ∧ T )ξ1b(X − T,∆)

w2
θ0,G(x)

dFT (s)dH1(x)

+I(X ≤ t)δw−1
θ0,G(X)−

∫ t

0
w−1
θ0,G(x)dH1(x),

where ξ1a(z, u) = −(1− G(u))
∫ z∧u

0 (1−H(s))−2dH0(s), ξ1b(z, δ) = I(z ≤ T , δ = 0)/(1−
H(z)). Since z → ξ1a(z, u) is a decreasing function for all u, the class of bounded func-155

tions z →
∫ t

0

∫ x
0 ξ1a(z, (x− s) ∧ T )/w2

θ0,G(x)dFT (s)dH1(x) is also decreasing in z. Therefore,
its bracketing number is m = O(exp(Kε−1)) by Theorem 2.7.5 in van der Vaart and Well-
ner (1996). The same theorem is applied to the class of bounded functions z →

∫ t
0

∫ x
0 I(z ≤

(x− s) ∧ T )/w2
θ0,G(x)dFT (s)dH1(x), whereas ξ1b(X − T,∆) is a purely random bounded

factor. Finally, the two last terms of ξ2,θ0(X,X − T,∆, t) are treated similarly (a decreasing160

function times a bounded purely random factor and a bounded function only depending on t).
This finishes the proof since each term (except a purely random one) is bounded. That means
that the domain of integration of (7) can be restricted to a finite upper bound. �
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