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Cross-sectional sampling is often used when investigating inter-event times, resulting in left-
truncated and right-censored data. In this paper we consider a semiparametric truncation model 15

in which the truncating variable is assumed to belong to a certain parametric family. Two methods
to estimate both the truncation and lifetime distributions are considered. Asymptotic representa-
tions of the estimators for the lifetime distribution are obtained, and their weak convergence is
established. One of the conclusions of our research is that both estimators perform in practice
better than Wang’s nonparametric maximum likelihood estimator in the sense of the integrated 20

mean squared error when the parametric family for the truncation is sufficiently close to its true
distribution. Moreover, the full likelihood approach is preferable to the conditional likelihood ap-
proach for the estimation of the lifetime distribution but not necessarily for the estimation of the
truncation distribution. A real data application about Alzheimer’s disease is carried out together
with related bootstrap inference. Hypothesis tests reject the uniform truncation distribution but 25

several other parametric estimations lead to similar behaviors for the distributions of both the
truncation and the lifetime after disease onset.

Some key words: Bootstrap; Cross-sectional sampling; Left truncation; Length bias; Right censoring.

1. INTRODUCTION

Cross-sectional survival data are encountered in many applications in which the variable of 30

interest is an inter-event time. Cross-sectional sampling implies that only individuals who did
not yet experience at a given time point the event of interest, e.g. death, are recruited. In Section
5, we study the time from the onset of the Alzheimer’s disease to death, but the corresponding
sample is constructed at a fixed time point with individuals already suffering from this disease.
In such a sample, the time from the disease onset to death tends to be larger than in the target 35

population. Such an issue is typically referred to as length-biased sampling. This bias is present

C© 2016 Biometrika Trust
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in other settings, like reliability studies (Horváth, 1985) or econometrics (de Uña-Álvarez et al.,
2009) and whenever the observer arrives at the process at a random time point. Under another
viewpoint, cross-sectional sampling introduces some random truncation from the left on the life-
times of interest. By defining T as the time from onset to the cross-section date and Y as the40

total survival time, under cross-sectional sampling only pairs (T, Y ) satisfying T ≤ Y are re-
cruited. This issue has been extensively investigated in the literature. See for example Tsai et
al. (1987), Wang (1991), or Gijbels and Wang (1993), who investigated properties of the con-
ditional nonparametric maximum-likelihood estimator of a survival function with left-truncated
and right-censored data.45

Recently much attention has been paid to the situation in which the distribution of the trun-
cation variable is partially or completely known. For example in the stationary case, when in-
vestigating the survival time for a disease which exhibits a constant incidence rate over a cer-
tain time interval, a uniform distribution is known to hold for the truncation time T . In the
uncensored case, Wang (1989) proposed an estimator of the survival function when the trunca-50

tion distribution belongs to a parametric family, which improves the variance of the conditional
nonparametric maximum likelihood estimator. Gilbert et al. (1999) extended this result to the
case of s selection-biased samples where selection bias is characterized by a finite-dimensional
parameter. With uniform truncation, Asgharian et al. (2002), see also Asgharian and Wolfson
(2005), introduced the nonparametric maximum likelihood estimator of the survival function,55

and demonstrated its superiority compared to the conditional nonparametric maximum likeli-
hood estimator. Luo and Tsai (2009) proposed two explicit-form approximations to the nonpara-
metric maximum likelihood estimator with censored data and arbitrary, albeit known, truncation
distribution; they proved that their estimators have an asymptotic variance smaller than that of
the conditional nonparametric maximum likelihood estimator, and they showed by simulations60

that they are competitive to Asgharian et al. (2002)’s estimator. When the censoring distribution
degenerates and the truncation is uniform, one of Luo and Tsai (2009)’s proposals reduces to the
estimator previously introduced in de Uña-Álvarez (2004). See also Huang and Qin (2011) for
a related estimator. To sum up, estimators which incorporate information about the truncation
time are preferred to Wang (1991)’s conditional nonparametric maximum likelihood estimator,65

and the corresponding theory for known truncation distribution has been fully developed. See
Mandel (2007) and Brunel et al. (2008) for other perspectives on this problem.

The choice of a suitable model for the truncation distribution has been considered by Mandel
and Betensky (2007), who developed goodness-of-fit tests for a fully specified truncation model.
These authors have recognized, however, the lack of testing procedures for a parametric trun-70

cation distribution when there is censored information. Although Wang (1989) considered the
parametric case, she restricted herself to the uncensored setting. To the best of our knowledge,
the problem of fitting a parametric truncation model with left-truncated and right-censored data
has been partially addressed by Shen (2007, 2009). However, the proposed techniques suffer
from both theoretical and practical problems. These articles only provide sketches of the proofs75

and partial sets of assumptions at best. In terms of inference, Shen (2007) suggests to develop
goodness-of-fit testing procedures for the truncation distribution and to construct confidence in-
tervals for the corresponding parameters based on the bootstrap. However, methods are not fully
described and no numerical study is conducted.

In the present paper, we propose a full theoretical framework where relevant inferential tech-80

niques are developed and studied. We also compare the finite-sample performance of our pro-
posed approach to that of Shen (2007).
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2. METHODOLOGY

Let Y be the lifetime of ultimate interest, and let T be the left-truncation time, i.e. pr(Y ≥
T ) > 0. If T ≤ Y then (T,X,∆) is observed, where X = min(Y,C), ∆ = I(Y ≤ C), and C 85

is a potential right-censoring time. If T > Y nothing is observed. We assume that:

Assumption 1. T and Y are independent.

Assumption 2. C − T is independent of (T, Y − T ) conditionally on T ≤ Y.

Assumption 3. pr(C ≥ T ) = 1,

Assumption 1 is typical in left-truncated scenarios. Assumption 2 implicitly states that censor- 90

ing on Y is only possible after the no truncation condition T ≤ Y is satisfied; this is the case for
most applications with cross-sectional sampling. Assumption 2 implies {T ≤ Y } = {T ≤ X}
with probability one. Finally, assumption 3 says that the residual censoring time in the observable
world, i.e. when X ≥ T , is independent of the truncation and the survival times. The residual
censoring time is then also independent of the birth process given X ≥ T , i.e., the process that 95

generates the starting point of the studied time and that can be described by the truncation distri-
bution.

Let (T1, X1,∆1) , . . . , (Tn, Xn,∆n) be n independent observations with the same distribution
as (T,X,∆) given T ≤ X . Under assumptions 1-3, the likelihood L can be decomposed as the
product of the conditional likelihood of the truncation times Ti given the (Xi,∆i), say Lc, and 100

the marginal likelihood of the (Xi,∆i), say Lm: L = Lc × Lm. Straightforward calculations
give

logLc = log

{
n∏
i=1

dFT (Ti)

EFT ,G,1(Xi)∆iEFT ,G,0(Xi)1−∆i

}

+ log

[
n∏
i=1

{1− G([Xi − Ti]−)}∆idG(Xi − Ti)1−∆i

]
≡ Lc,1 + Lc,2,

where FT is the distribution function of T , G is the distribution function of C − T given T ≤ X ,
and

EFT ,G,1(y) = E
[{

1− G([y − T ]−)
}
I(T ≤ y)

]
=

∫
t≤y

{
1− G([y − t]−)

}
dFT (t),

105

EFT ,G,0(y) = E[dG(y − T )I(T ≤ y)] =

∫
t≤y

dG(y − t)dFT (t).

On the other hand,

logLm = log

[
n∏
i=1

EFT ,G,1(Xi)
∆iEFT ,G,0(Xi)

1−∆i∫
FTdF

dF (Xi)
∆i{1− F (Xi)}1−∆i

]
,

where F is the df of Y .
If FT were known, a consistent estimator of F is (cf. Luo and Tsai, 2009)

F̂FT (y) =

∫
x≤y w

−1
FT ,Gn(x)H1

n(dx)∫
w−1
FT ,Gn(x)H1

n(dx)
,
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where H1
n(x) = n−1

∑n
i=1 I(Xi ≤ x,∆i = 1) is the empirical subdistribution function of the

uncensored lifetimes, i.e.H1(z) = pr(X ≤ z,∆ = 1 | X ≥ T ), Gn(·) is the Kaplan–Meier esti-110

mator of the residual censoring distribution,

wFT ,Gn(y) = EFT ,Gn,1(y) =

∫ y

0

{
1− Gn((y − t)− ∧ T )

}
dFT (t), T < τG(·) ∧ τHY−T (·),

where τW (·) = inf{y : W (y) = 1} defines the upper bound of the support of a random variable
following a given cumulative distribution function W (·) andHY−T (·) is the distribution of Y −
T given Y ≥ T . The role of T here is to allow for the application of the asymptotic representation
of the Kaplan–Meier estimator given in Lo and Singh (1986). In practice, this threshold can be115

chosen as the largest residual time Xi − Ti.
The estimator F̂FT is less efficient than the nonparametric maximum likelihood estimator of

F based on a known truncation distribution FT , but the variance increase is typically small and,
unlike the nonparametric maximum likelihood estimator, it has an explicit form which facilitates
its practical implementation and the theoretical analysis (Luo and Tsai, 2009). However, both120

F̂FT and the nonparametric maximum likelihood estimator rely on having a known FT .
In order to introduce a more flexible estimator, let {FT,θ}θ∈Θ be a parametric family which

FT belongs to, i.e., FT = FT,θ0 for some θ0 and a compact subset Θ ∈ IRd, d ≥ 1, including θ0.
Introduce the hereafter named conditional maximum likelihood estimator:

θ̂ = arg max
θ
Lc,1(θ;Gn),

where125

Lc,1(θ;Gn) = n−1 log

(
n∏
i=1

dFT,θ(Ti)

EFT,θ,Gn,1(Xi)∆iEFT,θ,Gn,0(Xi)1−∆i

)
,

where EFT,θ,Gn,1 and EFT,θ,Gn,0 are defined in an obvious way. The estimator θ̂ is a conditional
maximum likelihood estimator of θ0 except for the fact that G is replaced by Gn in Lc,1(θ;G).
We have

Eθ0

{
∂

∂θ
Lc,1(θ;G)|θ=θ0 | Xi,∆i, i = 1, ..., n

}
= 0

and hence usual properties as consistency and asymptotic normality can be established for

θ̂(G) ≡ arg max
θ
Lc,1(θ;G)

and therefore for θ̂ = θ̂(Gn) because of the properties of Kaplan–Meier estimation. See Theorem
1 in Section 3.130

On the basis of θ̂, one may introduce a semiparametric estimator for F as:

F̂
θ̂
(y) ≡ F̂F

T,θ̂
(y) =

∫
x≤y w

−1

θ̂,Gn
(x)H1

n(dx)∫
w−1

θ̂,Gn
(x)H1

n(dx)
,

where

w
θ̂,Gn

(y) ≡ wF
T,θ̂

,Gn(y) = EF
T,θ̂

,Gn,1(y) =

∫ y

0

{
1− Gn((y − t)− ∧ T )

}
dF

T,θ̂
(t).

In the uncensored case, this is the semiparametric estimator in Wang (1989). Under censoring,
however, this is a new estimator which has to be investigated. As in Wang (1989), we expect that
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F̂
θ̂
(y) will be more efficient than the conditional nonparametric maximum likelihood estimator 135

(cfr. e.g. Wang, 1991).
An interesting question is whether the estimation procedure for θ can be improved, in the sense

of obtaining a more acurate estimator for θ0 and also for F . This is irrelevant in the uncensored
case, because (F

T,θ̂
, F̂

θ̂
) maximizes the full likelihood in this case. In the censored setting, note

however that parts of the likelihood other than Lc,1 could contain information on θ. To be more 140

precise, note that Lm includes the truncation distribution FT , and hence in principle one may ask
for the maximizer of the full likelihood, which is proportional to

L(θ, F ) ≡
n∏
i=1

dFT,θ(Ti)∫
FT,θdF

dF (Xi)
∆i(1− F (Xi))

1−∆i .

This suggests a two-step procedure to find estimators
(
θ̃, F̂

θ̃

)
.

Step 1. Plug F̂θ into L(θ, F ) to obtain

L(θ, F̂θ) ≡
n∏
i=1

dFT,θ(Ti)∫
FT,θdF̂θ

dF̂θ(Xi)
∆i(1− F̂θ(Xi))

1−∆i ,

where 145

F̂θ(y) ≡ F̂FT,θ(y) =

∫
x≤y w

−1
θ,Gn(x)H1

n(dx)∫
w−1
θ,Gn(x)H1

n(dx)
,

where

wθ,Gn(y) ≡ wFT,θ,Gn(y) = EFT,θ,Gn,1(y) =

∫
t≤y

{
1− Gn((y − t)− ∧ T )

}
dFT,θ(t).

However, to use the above profile likelihood function in practice, let’s rewrite its log-likelihood
version for some T̃ < τFθ0 (·):

1

n

n∑
i=1

[
∆i

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dF̂θ(t) + log

w−1
θ,Gn(Xi)∫

w−1
θ,Gn(t)H1

n(dt)
− log n

}

+I(Ci ≤ T̃ )(1−∆i)

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dF̂θ(t) + log(1− F̂θ(Xi))

}]
= Lp(θ, F̂θ,Gn,H1

n)− 1

n

n∑
i=1

∆i log n,

where fT,θ stands for the density of the truncation parametric model (assumed to exist). In prac-
tice, the point T̃ can be chosen as the largest uncensored Xi. 150

Step 2. Compute the hereafter named full maximum likelihood estimator

θ̃ = arg max
θ
Lp(θ, F̂θ,Gn,H1

n).

Shen (2007) proposed a method which maximizes iteratively both marginal likelihood func-
tions of {(X1,∆1), . . . , (Xn,∆n)} and {T1, . . . , Tn} given Y ≥ T . The joint full likelihood of
{(X1, T1,∆1), . . . , (Xn, Tn,∆n)} is thus not maximized. The first likelihood function is artifi-
cially transformed into a function that depends on the weights of a specific distribution function. 155
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For a given value of θ, it can then be maximized by another iterative procedure; this begins with
initial not necessarily consistent weights of this specific distribution function. The marginal like-
lihood of {T1, . . . , Tn} is maximized with respect to θ for given weights estimating F (·); these
are initialized with a product-limit estimator. Shen (2009) replaces the initial product-limit esti-
mator of F (·) by another one based on an estimator of θ; this latter is obtained by maximizing a160

preliminary conditional likelihood of the Ti’s given the Xi’s, ∆i = 1 and X ≥ T, while the for-
mer is computed by using the above iterative procedure that maximizes the marginal likelihood
function of {(X1,∆1), . . . , (Xn,∆n)}. In our experience, these two methods are very similar
whatever the initial estimator of F (·) and, interestingly, they are outperformed by our approach
in simulated settings; see Section 4 for details.165

3. MAIN RESULTS

In this section, asymptotic properties of θ̂, θ̃, F̂
θ̂

and F̂θ̃ are established. We show the conver-
gence in probability of both estimators of θ0 and the almost sure consistency of the correspond-
ing conditional and profile log-likelihood functions. For detailed computations, see Lemma 4
in the Supplementary Material of the paper available at Biometrika online. As a byproduct, two
other basic Lemmas (2 and 3) about F̂ (·) used to prove the results of this section are also dis-
played in the Supplementary Material. This allows us to develop asymptotic representations
for θ̂ and θ̃ which in turn give rise to the asymptotic normality of these estimators (Theo-
rems 1 below). Next, asymptotic representations for F̂

θ̂
(y) and F̂θ̃(y) are developed and, for

Fθ(y) =
∫
x≤y w

−1
θ,G(x)dH1(x)/

∫
w−1
θ,G(x)dH1(x), Donsker’s Theorem enables to deduce weak

convergence of the processes

n1/2(F̂
θ̂
(y)− Fθ0,c(y)), n1/2(F̂θ̃(y)− Fθ0,p(y))

to Gaussian processes (see Assumption (A5) below for definitions of θ0,c and θ0,p).
To present these results, we need to use the asymptotic representation of the Kaplan–Meier

estimator given by Lo and Singh (1986):

Gn(t)− G(t) =
1

n

n∑
i=1

ξ(Xi − Ti,∆i, t) + Sn(t),

where sup{|Sn(t)| : −∞ < t < T } = oP (n−1/2), and for H0(z) = pr(X ≤ z,∆ = 0 | X ≥
T ), andH(z) = pr(X ≤ z | X ≥ T ),

ξ(z, δ, t) = (1− G(t))

(
−
∫ z∧t

0

dH0(s)

(1−H(s))2
+
I(z < t, δ = 0)

1−H(z)

)
.

We next describe and comment the set of assumptions needed for the main theorems.

Assumption 4. The distributions G(·) andHY−T (·) are continuous distribution functions.

Assumption 5. Let ρW (·) = sup{y : W (y) = 0} define the lower bound of the support of a170

random variable following a given cumulative distribution function W (·). We have:
(i) τF (·) = τFT (·),
(ii) ρF (·) − ρFT (·) > 0, ρFT (·) = 0 (τF (·) > ρF (·)).

Assumption 6. We have for the truncation distribution:
(i) supθ,t |fT,θ(t)| < +∞, supθ,t |∂fT,θ(t)/∂t| < +∞,175

(ii) infθ FT,θ(ρF (·)) > 0,
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(iii) supθ∈ΘE(| log fT,θ(T )|) < +∞, supθ∈ΘE(|∂ log fT,θ(T )/∂θk|) < +∞ (k = 1, . . . , d;
θ1, . . . , θd denote the components of θ),

(iv) E(|∂2 log fT,θ0(T )/∂θj∂θk|) < +∞, E(supθ∈Θ |∂3 log fT,θ(T )/∂θj∂θk∂θl|) < +∞
(j, k, l = 1, . . . , d). 180

(v) for all t, all derivatives with respect to components of θ of FT,θ(t) up to order three are
bounded uniformly in t and θ.

(vi) for all t, all derivatives with respect to components of θ of fT,θ(t) up to order three are
bounded uniformly in t and θ.

(vii) for all t, all derivatives with respect to components of θ of ∂fT,θ(t)/∂t up to order two 185

are bounded uniformly in t and θ.

Assumption 7. The third moment E(|X|3 | X ≥ T ) < +∞.

Assumption 8. There exists:
(i) θ0,c ∈ Θ such that for all ε > 0, supθ:‖θ−θ0,c‖≥εE(Lc,1(θ,G)) < E(Lc,1(θ0,c,G)), where

‖·‖ denotes the classical Euclidean norm. 190

(ii) θ0,p ∈ Θ such that for all ε > 0, supθ:‖θ−θ0,p‖≥εE(Lp(θ, Fθ,G,H1)) <

E(Lp(θ0,p, Fθ0,p ,G,H1)).

Assumption 9. We have:
(i) For Ω1,θ0,c = −E(∂2Lc,1(θ0,c,G)/∂θ∂θT ), det(Ω1,θ0,c) > 0.

(ii) For Ω2,θ0,p = −E(∂2Lp(θ0,p, Fθ0,p ,G,H1)/∂θ∂θT ), det(Ω2,θ0,p) > 0. 195

Assumption 10. For G(·), we have ρG(·) > 0, infθ∈Θ infρG(·)≤x≤τF (·)

∫ x∧T
0 fT,θ(x−

t)dG(t) > 0.

The above assumptions are very classical. Assumption 4 is used to ensure asymptotic properties
of the Kaplan–Meier estimator (Lo and Singh, 1986). Assumptions 5, 6, 7, 9 and 10 are purely
technical conditions mainly enabling to bound terms that appear in the development of the proofs. 200

Assumption 8 allows identifying a unique maximum for the mean of each likelihood function
(given X ≥ T ). In this assumption, we observe that θ0,c and θ0,p are different since they are
actually solutions of different maximization problems with not necessarily the same maximum
due to T and T̃ . However, T and T̃ can be made arbitrarily close to τG(·) ∧ τHY−T (·) and τF (·)
so that θ0,c and θ0,p become arbitrarily close to the same value θ0. In addition, under this remark, 205

in assumption 8(ii) the likelihood function should actually be

L∗p(θ, Fθ) =
1

n

n∑
i=1

[
∆i

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dFθ(t) + log fθ(Xi)

}
+(1−∆i)I(Ci ≤ T̃ )

{
log fT,θ(Ti)− log

∫ +∞

0
FT,θ(t)dFθ(t) + log(1− Fθ(Xi))

}]
.

However, with h1(t) = ∂H1(t)
∂t ,

E(L∗p(θ, Fθ)) = E(Lp(θ, Fθ,G,H1)) + E(∆1 log h1(X1)),

where the last term does not depend on θ. As a consequence, assumption 8(ii) being true for
E(Lp(θ, Fθ,G,H1)) is equivalent to assumption 8(ii) being true for E(L∗p(θ, Fθ)).

Assumption 9 is impossible to check theoretically. However, it is possible to bring a plau-
sibility argument using Theorem 4 in Asgharian (2016): the set of zeros of the Hessian of the 210
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log-likelihood functions used without any estimator is a nowhere dense set of Lebesgue measure
zero. det(Ω1,θ0,c) > 0 det(Ω2,θ0,p) > 0.∫

t≤y {1− G([y − t]−)} dFT (t)

Finally, we observe that, in practice, due to the unknown forms of H(·) and G(·), it is not
possible to theoretically check several assumptions above. However, this problem is classical215

when some quantities are estimated in a nonparametric way. In the present case, assumptions 8
and 9 cannot be checked theoretically under simple conditions; empirical/numerical check should
be achieved. If there are several possible maxima in assumptions 8(i) or 8(ii), the domain of Θ
should be restricted so that the resulting part only contains one maximum.
We can next display the first theorem that mainly provides tools and arguments to develop further220

statistical inference for θ0,c, θ0,p and the resulting truncation distributions.

THEOREM 1. a. Under assumptions 1− 5, 6(i)-(iv),(vi),(vii), 7, 8(i), 9(i) and 10, n1/2(θ̂ −
θ0,c) converges in law to a zero mean normal random vector with covariance matrix

Σ1 = Ω−1
1,θ0,c

E(η1,θ0,c(T,X,∆)ηT1,θ0,c(T,X,∆) | X ≥ T )Ω−1
1,θ0,c

,

where ηT1,θ0,c(T,X,∆) denotes the transpose of the vector η1,θ0,c(T,X,∆), η1,θ0,c(t, x, δ) =

∂Lc,1(θ0,c,G)/∂θ + η0
1,θ0,c

(t, x, δ) for a function η0
1,θ0,c

(Gn − G) that satisfies the develop-

mentE(∂Lc,1(θ0,c,Gn(·))/∂θ − ∂Lc,1(θ0,c,G(·))/∂θ | Gn) = η0
1,θ0,c

(Gn − G) + oP (n−1/2);

E(· | Gn) is the mean given the data used to construct Gn(·) but not the argument of Gn(·),225

and η0
1,θ0,c

(t, x, δ) is η0
1,θ0,c

(Gn − G) with Gn − G replaced by the main term of its asymptotic
representation.

b. Under assumptions 1− 5, 6(ii)-(vi), 7, 8(ii) and 9(ii), n1/2(θ̃ − θ0,p) converges in law to a
zero mean normal random vector with covariance matrix

Σ2 = Ω−1
2,θ0,p

E(η2,θ0,p(T,X,∆)ηT2,θ0,p(T,X,∆) | X ≥ T )Ω−1
2,θ0,p

,

where η2,θ0,p(t, x, δ) = ∂Lp(θ0,p, Fθ0,p ,G,H1)/∂θ + η0
2,θ0,p

(t, x, δ) for a function
η0

2,θ0,p
(Gn − G,H1

n −H1) that satisfies230

E

(
∂Lp(θ0,p, F̂θ0,p(·),Gn(·),H1

n(·))
∂θ

−
∂Lp(θ0,p, Fθ0,p(·),G(·),H1(·))

∂θ
| H1

n,Gn

)
= η0

2,θ0,p(Gn − G,H
1
n −H1) + oP (n−1/2);

E(· | H1
n,Gn) is the mean given the data used to construct H1

n(·) and Gn(·) but not their ar-
gument, and η0

2,θ0,p
(t, x, δ) is η0

2,θ0,p
(Gn − G,H1

n −H1) with Gn − G andH1
n −H1 replaced

by the main term of their asymptotic representation.

For the next result, we need the following functions

ξ2,θ(y, z, δ, t) =

∫ t

0
w−2
θ,G(x)

∫ x

0
ξ(z, δ, (x− s) ∧ T )dFT,θ(s)dH1(x) + I(y ≤ t)δw−1

θ,G(y)

−
∫ t

0
w−1
θ,G(x)dH1(x)
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and 235

ξ3,θ(y, z, δ, t) =

(∫ +∞

0
w−1
θ,G(x)dH1(x)

)−1

ξ2,θ(y, z, δ, t)

−
∫ t

0 w
−1
θ,G(x)dH1(x)

(
∫ +∞

0 w−1
θ,G(x)dH1(x))2

ξ2,θ(y, z, δ,+∞).

The above results focus on inference about the truncation distribution and its parameters. Since
our aim is also to make inference about the lifetime distribution, the next theorem states main
useful properties to achieve this goal.

THEOREM 2. Under assumptions 1− 5, 6(ii),(iii),(iv),(vi) and 7,

1. If in addition assumptions 6(i),(vii), 8(i), 9(i) and 10 are met, 240

F̂
θ̂
(t)− Fθ0,c(t) =

1

n

n∑
i=1

ν1(Ti, Xi,∆i, t) +Rn(t),

where sup{|Rn(t)| : −∞ < t < +∞} = oP (n−1/2) and

ν1(Ti, Xi,∆i, t) =
∂Fθ0,c(t)

∂θT
Ω−1

1,θ0,c
η1,θ0,c(Ti, Xi,∆i) + ξ3,θ0,c(Xi, Xi − Ti,∆i, t).

Under the same assumptions, the process Z1n(t) = n1/2(F̂
θ̂
(t)− Fθ0,c(t)) converges weakly

to a zero mean Gaussian process Z1(t) with covariance function

cov(Z1(t), Z1(t′)) = E(ν1(T,X,∆, t)ν1(T,X,∆, t′) | X ≥ T ).

2. Alternatively, if in addition assumptions 6(v), 8(ii) and 9(ii) are met, then

F̂θ̃(t)− Fθ0,p(t) =
1

n

n∑
i=1

ν2(Ti, Xi,∆i, t) +Rn(t),

where sup{|Rn(t)| : −∞ < t < +∞} = oP (n−1/2) and

ν2(Ti, Xi,∆i, t) =
∂Fθ0,p(t)

∂θT
Ω−1

2,θ0,p
η2,θ0,p(Ti, Xi,∆i) + ξ3,θ0,p(Xi, Xi − Ti,∆i, t).

Under the same assumptions, the process Z2n(t) = n1/2(F̃θ̃(t)− Fθ0,p(t)) converges weakly
to a zero mean Gaussian process Z2(t) with covariance function

cov(Z2(t), Z2(t′)) = E(ν2(T,X,∆, t)ν2(T,X,∆, t′) | X ≥ T ).

These theorems show that although we use data in which Ti is always smaller or equal to Xi,
i = 1, . . . , n, consistency rates are the same as if data were generated from the true truncation and
lifetime distributions. Beside the above formulas, the explicit expressions of the η1,θ0,c(t, x, δ)
and η2,θ0,p(t, x, δ) are provided in the Appendix while the proofs of the two above theorems are 245

postponed to the Supplementary Material.
In practice, we can compute standard errors and confidence intervals by using the generalized

obvious bootstrap procedure of Wang (1991) with our estimators for the truncation and lifetime
distributions. We can achieve this as follows.

1. for i = 1, . . . , n, 250

Step 1. Generation of Y ∗i,b from F̂θ(·) with θ equal to θ̂ or θ̃
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Step 2. Generation of T ∗i,b,θ from the distribution FT,θ(·) with θ equal to θ̂ or θ̃. If the value
of T ∗i,b,θ is larger than the value of Y ∗i,b, then the pair (Y ∗i,b, T

∗
i,b,θ) is rejected and the algorithm

goes back to Step 1. Otherwise, the pair is kept and the algorithm carries on.
Step 3. Generation of V ∗i,b from the Kaplan–Meier estimator Gn(·).255

Definition of X∗i,b = min(Y ∗i,b, T
∗
i,b,θ + V ∗i,b) and of ∆∗i,b = I(Y ∗i,b ≤ T ∗i,b,θ + V ∗i,b).

2. Computation of parameters estimator θ̂∗b , respectively θ̃∗b , obtained with the bootstrap sam-
ple

{(T ∗i,b,θ, X∗i,b,∆∗i,b) : i = 1, ..., n}

and the conditional, respectively full, log-likelihood method, where the vector of parameters θ is
θ̂, respectively θ̃.

4. SIMULATIONS

In the following settings, the variables T and Y have Weibull densities f(t) =260

αλ(λt)α−1 exp(−(λt)α) with respectively (λ;α) = (λT ;αT ) and (λ;α) = (0.75; 1.25). The
variable C − T follows the same distribution as 5×W, where W ∼ Beta(0·75; γ) for which
the density is f(t) = Γ(0·75 + γ)/(Γ(0·75)Γ(γ))t−0·25(1− t)γ−1I(t ∈ [0; 1]) with γ = 1, 3, 5,
7 or 9. Each simulation result in Tables 1 and 2 below is obtained for samples of size n = 50, 100
or 200. For the purpose of the analysis, theoretical truncation and censoring percentages, respec-265

tively pr(T > Y ) and pr(C − T < Y − T | X ≥ T ) and denoted Trunc. % and Cens. %, are in-
dicated while estimated integrated mean squared errors of the type 1

R

∑R
k=1

∫
(F̂ (y)− F (y))2dy

along R = 1000 Monte Carlo trials are computed for F̂ (·) = F
T,θ̂

(·), FT,θ̃(·) corresponding to
F (·) = FT,θ0(·) and θ0 = (λT ;αT ), F

θ̂
(·), Fθ̃(·) and Fn(·) corresponding to F (·) = Fθ0(·).

Table 1 presents the results for the estimators of FT,θ0 . In general, the integrated mean squared270

error decreases when n increases and the censoring percentage decreases. Whereas the relation
with n is intuitively obvious, an increase of censoring has a positive impact on the quality of
Gn(·). In other simulations not reported here, censoring does not lead to such a clear effect,
especially for the conditional log-likelihood case which does not depend on F̂θ(·). Indeed, this
log-likelihood function provides a solution even though censoring percentage is 100%. Another275

observation is a slight decrease of the ratio of integrated mean squared error of F
T,θ̂

and FT,θ̃
between n = 50 and n = 200, which suggests a possible reduction of the conditional effect of the
log-likelihood with respect to the nonparametric effect in the full log-likelihood. Improvement
of F

T,θ̂
(·) with respect to FT,θ̃(·) seems to occur for smaller truncation percentages as well: in

the simulations presented here, increase of information about T improves globally more F
T,θ̂

(·)280

than FT,θ̃(·).
Both semiparametric estimators F̂

θ̂
(·) and F̂θ̃(·) outperform Fn(·) for all the cases considered

in Table 2. Since the distribution Fθ0(·) to estimate is the same for both couples of truncation
parameters, the integrated mean squared errors can be compared for different truncation per-
centages. As it can be expected in this case, the smaller pr(T > Y ), the larger the available285

information about Y and therefore the better the estimation is if the censoring percentage does
not vary too much. Now, the main observation is that F̂θ̃(·) often outperforms F̂

θ̂
(·), suggesting

a positive impact of the full likelihood method on the estimation of Fθ0(·). Finally, note that an
increase of the censoring percentage does not necessarily lead to an increase of the integrated
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Table 1. Practical performance of FT,θ̂ and FT,θ̃
n (λT ;αT ) Trunc. % γ Cens. % IMSE(FT,θ̂) IMSE(FT,θ̃) RIMSET,θ̂,θ̃
50 (0.5, 3) 72.13 1 26.69 1.68 1.81 0.92

3 49.53 2.44 2.42 1.01
5 61.08 3.04 3.36 0.91
7 68.23 4.57 3.90 1.17
9 73.13 5.84 4.90 1.19

(0.75, 3) 55.66 1 27.61 6.13 6.00 1.02
3 50.81 6.44 6.47 0.99
5 62.37 7.25 8.53 0.85
7 69.46 7.46 8.95 0.83
9 74.28 9.76 11.07 0.88

100 (0.5, 3) 72.13 1 26.69 0.75 0.79 0.95
3 49.53 0.93 0.98 0.95
5 61.08 1.11 1.17 0.95
7 68.23 1.66 1.69 0.98
9 73.13 1.75 2.20 0.80

(0.75, 3) 55.66 1 27.61 2.99 2.88 1.04
3 50.81 3.12 3.11 1.00
5 62.37 3.15 3.52 0.89
7 69.46 3.60 4.44 0.81
9 74.28 4.12 4.61 0.89

200 (0.5, 3) 72.13 1 26.69 0.39 0.41 0.94
3 49.53 0.42 0.43 0.97
5 61.08 0.49 0.55 0.90
7 68.23 0.59 0.61 0.96
9 73.13 0.77 0.85 0.91

(0.75, 3) 55.66 1 27.61 1.46 1.54 0.95
3 50.81 1.52 1.67 0.91
5 62.37 1.61 1.84 0.87
7 69.46 1.75 2.06 0.85
9 74.28 1.91 2.38 0.80

Distributions, Y ∼Weibull(0.75; 1.25), T ∼Weibull(λT ;αT ), C − T ∼ 5×Beta(0.75; γ);
Trunc. % and Cens. %, the truncation and censoring percentages; IMSE, the estimated integrated
mean squared error (×10−2); FT,θ̂ and FT,θ̃ , the truncation distributions based on the conditional
and the full maximum likelihood estimators respectively; RIMSET,θ̂,θ̃ , the ratio of the estimated
integrated mean squared errors of FT,θ̂ and FT,θ̃ based on 1000 replications. The standard errors
for the integrated squared errors in columns 6 and 7 are bounded by 4.4× 10−3 for = 50,
2.2× 10−3 for n = 100 and 8.1× 10−4 for n = 200 for a truncation percentage of 72.13%,
and for a truncation percentage equal to 55.66%, they are bounded by 6.1× 10−4 for n = 50,
2.5× 10−4 for n = 100 and 1.3× 10−4 for n = 200.

mean squared error for given FT,θ0(·) and Fθ0(·), due to the informative character of C. This 290

phenomenon has been observed on other simulations not reported here.
In order to obtain a global study of the proposed semiparametric estimators, the case where the

truncation distribution is misspecified is next considered. We simulated 5 times 1000 samples of
size n = 100 with Y ∼Weibull(0·75; 1·25), T ∼Weibull(0·5, 3) and C − T ∼ 5×Beta(0·75; 1).
On each set of 1000 samples, we applied our methods with a fixed parameter of the truncation dis- 295

tribution, namely α∗T = 1, 2, 2·5, 3·5, 4. In practice, cases where a usual well-known wrong para-
metric family of distributions is chosen to fit the truncation distribution, for example a Weibull
distribution fitted on gamma distributed truncation values, are more often encountered; these are
also illustrated in the Supplementary Material. Table 3 hereunder describes the obtained results.
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Table 2. Practical performance of F̂θ̂, F̂θ̃ and Fn
γ Cens. % IMSE(F̂θ̂) IMSE(F̂θ̃) IMSE(Fn) RIMSEY,θ̂,n RIMSEY,θ̃,n

n = 50 - (λT ;αT ) = (0.5; 3) - Trunc. %= 72.13
1 26.69 9.9 9.8 11.8 0.84 0.83
3 49.53 11.2 10.8 12.4 0.90 0.87
5 61.08 12.1 11.6 13.5 0.90 0.86
7 68.23 12.9 12.6 14.3 0.90 0.88
9 73.13 14.7 13.4 15.5 0.95 0.86

n = 50 - (λT ;αT ) = (0.75; 3) - Trunc. %= 55.66
1 27.61 7.3 7.1 8.7 0.83 0.82
3 50.81 8.2 7.8 9.2 0.89 0.84
5 62.37 9.3 8.3 9.9 0.93 0.83
7 69.46 9.4 9.0 10.4 0.91 0.86
9 74.28 10.1 9.7 11.4 0.88 0.85

n = 100 - (λT ;αT ) = (0.5; 3) - Trunc. %= 72.13
1 26.69 7.2 7.0 9.0 0.80 0.78
3 49.53 7.6 7.2 9.2 0.82 0.78
5 61.08 7.8 7.8 9.8 0.80 0.80
7 68.23 8.7 8.4 10.2 0.84 0.82
9 73.13 9.2 8.7 10.7 0.86 0.82

n = 100 - (λT ;αT ) = (0.75; 3) - Trunc. %= 55.66
1 27.61 5.2 5.1 6.6 0.78 0.77
3 50.81 5.8 5.4 7.2 0.81 0.75
5 62.37 6.2 5.7 7.0 0.88 0.81
7 69.46 6.6 6.3 7.4 0.89 0.85
9 74.28 7.4 7.0 8.3 0.89 0.84

n = 200 - (λT ;αT ) = (0.5; 3) - Trunc. %= 72.13
1 26.69 5.0 4.9 6.8 0.74 0.72
3 49.53 5.4 5.2 7.1 0.75 0.73
5 61.08 5.6 5.6 7.4 0.76 0.75
7 68.23 5.9 5.8 7.7 0.76 0.75
9 73.13 7.2 6.0 7.7 0.94 0.78

n = 200 - (λT ;αT ) = (0.75; 3) - Trunc. %= 55.66
1 27.61 3.7 3.6 4.8 0.77 0.75
3 50.81 3.8 3.6 4.9 0.79 0.74
5 62.37 4.6 3.9 4.6 0.99 0.83
7 69.46 4.5 4.3 5.0 0.89 0.85
9 74.28 5.5 4.8 5.8 0.94 0.83

Distributions, Y ∼Weibull(0.75; 1.25), T ∼Weibull(λT ;αT ), C − T ∼
5×Beta(0.75; γ); Trunc. % and Cens. %, the truncation and censoring percentages;
IMSE, the estimated integrated mean squared error (×10−2); F̂θ̂ and F̂θ̃ , the semi-
parametric estimators of Fθ0 based on the conditional and the full maximum likelihood
estimators respectively; Fn, the product-limit estimator of Fθ0 ; RIMSE

Y,θ̂,n
(respectively

RIMSEY,θ̃,n) the ratio of the estimated integrated mean squared errors of F̂θ̂ (respectively
F̂θ̃) and Fn. The standard errors for the integrated squared errors in columns 3, 4 and 5 are
bounded by 6.2× 10−3.

These are worse and worse when the departure from the true truncation model increases. The es-300

timators for F (·) seem to deteriorate slowly since they stay close to the product-limit estimator,
except for the most distant case α∗T = 1. Next, the following characteristic already slightly ob-
served in the well-specified case seems here more important: the full likelihood method provides
better results for the lifetime distribution and the conditional likelihood method does for the trun-
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Table 3. Misspecified shape α∗T parameter for a fitted Weibull dis-
tribution (n = 100)

α∗T IMSE(FT,θ̂) IMSE(FT,θ̃) IMSE(F̂θ̂) IMSE(F̂θ̃) dist
RIMSET,θ̂,θ̃ RIMSEY,θ̂,n RIMSEY,θ̃,n

3.5 11.2 8.3 4.8 4.8 0.19
1.35 0.54 0.53

2.5 13.6 15.1 8.3 8.2 0.3
0.90 0.92 0.91

4 12.3 12.7 9.5 8.9 0.61
0.97 1.06 0.99

2 84.9 102.9 10.9 10.7 1.6
0.83 1.21 1.19

1 380.6 420.6 21.1 19.8 13.90
0.90 2.34 2.2

Distributions, Y ∼Weibull(0.75; 1.25), T ∼Weibull(0.50; 3), C − T ∼
5×Beta(0.75; 1); IMSE, the estimated integrated mean squared error (×10−3

for FT,θ̂ and FT,θ̃ , and ×10−2 for F̂θ̂ , F̂θ̃ and Fn); FT,θ̂ and FT,θ̃ , the
truncation distributions based on the conditional and full maximum likelihood
estimators; F̂θ̂ and F̂θ̃ , the misspecified semiparametric estimators of F based on
the conditional and full maximum likelihood estimators; Fn, the product-limit
estimator of F ; RIMSET,θ̂,θ̃ , the ratio of the estimated integrated mean squared
errors of FT,θ̂ and FT,θ̃; RIMSE

Y,θ̂,n
(respectively RIMSEY,θ̃,n) the ratio of the

estimated integrated mean squared errors of F̂θ̂ (respectively F̂θ̃) and Fn; dist,
the L2 distance between the true FT,θ0 and the closest distribution constrained
by α∗T (×10−2).

cation distribution. See also Table 1 in the Supplementary Material. On one side, the conditional 305

technique searches for optimal values of parameters of a misspecified truncation distribution to
make it as close as possible to the true FT (·); on the other side, the full likelihood searches for
optimal values of these parameters so as to fit as far as possible both a misspecified truncation
distribution and misspecified nonparametrically estimated lifetime distribution.

Next, we compare our approach to the method of Shen (2007); the alternative procedure in 310

Shen (2009) reported similar results and it will not be considered in the sequel. Table 4 shows
that both our conditional and full likelihood methods outperform the Shen (2007) method in the
simulated settings. Most of the time, the conditional likelihood method provides the best results
for the truncation distribution while the full likelihood method does for the lifetime distribution.
In particular, the Shen (2007) method seems to get worse with respect to the other methods when 315

the censoring percentage increases. Here as well, it is worth mentioning that the conditional
likelihood method delivers results up to 100% censoring; none of the other methods does it,
whether it be the full likelihood method or any of the methods of Shen (2007, 2009). Other
simulations not reported here provided similar results.

In order to investigate the performance of the bootstrap algorithm introduced in Section 320

3, simulations are carried out for n = 50, 100 and 200 and B = 250 bootstrap replications;
the results are obtained for 1000 simulations again. The simulations are restricted to the case
(λT ;αT ) = (0·5; 3). The results corresponding to symmetric two-sided confidence intervals with
confidence level of 95% for the basic bootstrap and the percentile method are provided in the
Supplementary Material. The full log-likelihood method seems to be the best one in most of the 325

situations; in particular, there is only one case where the average length of its confidence interval
is larger. The conditional log-likelihood method is indeed submitted to two penalizing weights:
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Table 4. Comparison with the Shen
(2007) method (n = 100)

γ Cens. % IMSE(FT,θ̂) IMSE(F̂θ̂)
IMSE(FT,θ̃) IMSE(F̂θ̃)

IMSE(Fn)
IMSE(FT,θs ) IMSE(F̂θs )

1 26.69 0.75 7.2
0.79 7.0

9.0
0.77 8.0

3 49.53 0.93 7.6
0.98 7.2

9.2
0.94 8.6

5 61.08 1.11 7.8
1.17 7.8

9.8
1.43 9.4

7 68.23 1.66 8.7
1.69 8.4

10.2
2.12 9.8

9 73.13 1.75 9.2
2.20 8.7

10.7
2.89 10.3

Y ∼Weibull(0.75; 1.25), T ∼Weibull(0.5; 3),
C − T ∼ 5×Beta(0.75; γ); Cens. %, the cen-
soring percentage; IMSE, estimated integrated
mean squared error (×10−2); FT,θ̂ , FT,θ̃ and
FT,θs , the truncation distributions based on
the conditional, the full and the Shen (2007)
maximum likelihood estimators; F̂θ̂, F̂θ̃ and
F̂θs , the semiparametric estimators of Fθ0
based on the conditional, the full and the Shen
(2007) maximum likelihood estimators; Fn, the
product-limit estimator of Fθ0 .

wθ,Gn(·) for uncensored data points and
∫ ·∧T

0 fT,θ(· − t)dGn(t) for censored data points. These
weights can obviously be very small and deteriorate estimation. However, the full log-likelihood
method can only suffer from weights wθ,Gn(·) close to zero. When constructing bootstrap confi-330

dence intervals, this weights effect is present in both estimation and resampling steps. A solution
to partially avoid this problem would be for example to truncate the distribution of T and there-
fore delete some large values of X: in practice, that could be achieved by simply skipping data
points from a given value of T.

Remark 1. As the associate editor of the journal mentioned, giving two-sided intervals con-335

ceals the possibility that the one-sided tail errors could be 0% and 5% rather than 2.5% and
2.5%. We therefore checked the behavior of the bootstrap approximations of the distributions of
the statistics (θ̂ − θ0,c and θ̃ − θ0,p) through Q-Q plots. These can be obtained in Section 2 of the
Supplementary Material.
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5. DATA ANALYSIS 340

The methods discussed in the previous sections are applied to Alzheimer’s disease data. Stern
et al. (1997) reported a cross-sectional prospective cohort study of 236 patients followed up for
up to 7 years to investigate disease progress from onset to death. In 2006, the available data of
this study have up to 16 years of follow-up after the cross section. The lifetime of interest is
the time from the onset of Alzheimer’s disease to death and the truncation time is the time from 345

disease onset to study entry. We removed one patient with zero truncation time, so finally there
were 235 patients and 213 observed deaths among them.

To check the goodness-of-fit of the tested truncation parametric distributions, we used the
nonparametric estimator of Wang (1991). Wang (1991) developed an estimator for the distribu-
tion of T using the same weighting idea as here but inverting the roles of Y and T : this paper 350

therefore estimates the distribution of T with weights using the distribution of Y. We conducted
a hypothesis testing procedure by computing both the Kolmogorov-Smirnov and Cramer-von
Mises statistics based on the difference between Wang’s estimator and our F̂

θ̂
(·) or F̂θ̃(·). The

distribution of these statistics is simply obtained by using the bootstrap samples constructed
with the method proposed in Section 3. At the 5% level, none of the proposed models is re- 355

jected: for the Kolmogorov-Smirnov statistic and the conditional likelihood method, p−values
are 0·773, 0·327 and 0·356 respectively for the gamma, the Weibull and the log-normal distribu-
tions. For the Cramer-von Mises, the p−values are very similar and, for both Cramer-von Mises
and Kolmogorov-Smirnov procedures, they are slightly larger in the conditional likelihood case
than in the full likelihood case. We also tested the uniform distribution with a support equal to 360

the largest observed data. The results clearly reject this distribution, with p−values of 0 for both
statistics.

Figure 1 displays the truncation distribution estimators FT,n(·), i.e. the Wang (1991) estima-
tor, FT,θ̂(·) and FT,θ̃(·). The parameters as well as the confidence intervals for each distribution,
log-normal, Weibull and gamma, are given in Table 5 for each method. On Fig. 1, we also repre- 365

sent confidence bands for the truncation distributions. These are also obtained by our bootstrap
procedure; we add and subtract to F

T,θ̂
(·) (respectively FT,θ̃(·)) the 95% percentile of the em-

pirical distribution of supx |FT,θ̂∗
b

(x)− F
T,θ̂

(x)| (respectively supx |FT,θ̃∗
b
(x)− FT,θ̃(x)|; b =

1, . . . , B). The full likelihood method clearly exhibits more variability than the conditional one.
The values of the estimators F̂θ̃(·) and F̂θ̂(·) for the log-normal, Weibull and gamma truncation 370

distributions as well as the product-limit estimator Fn(·) are represented in Fig. 2. The estimators
seem to roughly report the same behavior for the cumulative lifetime distribution, even though
the fitted truncation models are different from each other. However, the curves obtained with
the full likelihood method seem closer to the completely nonparametric estimator than with the
conditional likelihood method. In addition, the variability obtained with the former is smaller 375

than with the latter.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional analyses of mis-
specified distributions and bootstrap confidence intervals together with the proofs of the theorems
described in Section 3 . 380
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Fig. 1. Alzheimer’s disease data: representation of esti-
mated truncation time (in years) distributions: the left (re-
spectively right) column provides estimations obtained by
the conditional (respectively full) likelihood method; rows
1, 2 and 3 correspond to fitted log-normal, Weibull and
gamma distributions respectively. On each subgraph, the
light-grey stairs function corresponds to the Wang (1991)
truncation distribution estimator; the solid curve corre-
sponds to the parametric truncation distribution while the

dashed curves represent its confidence bands.

APPENDIX

Explicit expressions of η1,θ(t, x, δ) and η2,θ(t, x, δ)
We provide here the explicit expressions of η1,θ(t, x, δ) and η2,θ(t, x, δ) appearing in Theorem 1. The
notation ṁ(θ, x) is used for the column vector of derivatives with respect to each component of θ of any
function m differentiable with respect to each component of θ, depending on θ and other variables. The385

notation ṁ(θ0, x) corresponds to this same function computed at the point θ = θ0. We have
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Fig. 2. Alzheimer’s disease data: representation of esti-
mated lifetime (in years) distributions: the left (respec-
tively right) column provides estimations obtained by the
conditional (respectively full) likelihood method; rows 1, 2
and 3 correspond to fitted log-normal, Weibull and gamma
distributions respectively. In each subgraph, the light-grey
stairs function corresponds to the completely nonparamet-
ric estimator; the solid curve corresponds to the cumulative
distribution function while the dashed curves represent its

confidence bands.

η1,θ(t, x, δ) =
ḟT,θ(t)

fT,θ(t)
+

∫ (∫ z
0
ξ(x− t, δ, (z − s) ∧ T )ḟT,θ(s)ds

wθ,G(z)

−
ẇθ,G(z)

∫ z
0
ξ(x− t, δ, (z − s) ∧ T )fT,θ(s)ds

w2
θ,G(z)

)
dH1(z)

−
∫ (∫ z∧T

0
ḟT,θ(z − s)dξ(x− t, δ, s)∫ z∧T
0

fT,θ(z − s)dG(s)

−
∫ z∧T
0

ḟT,θ(z − s)dG(s)
∫ z∧T
0

fT,θ(z − s)dξ(x− t, δ, s)(∫ z∧T
0

fT,θ(z − s)dG(s)
)2

 dH0(z)

−δ ẇθ,G(x)

wθ,G(x)
− (1− δ)

∫ x∧T
0

ḟT,θ(x− s)dG(s)∫ x∧T
0

fT,θ(x− s)dG(s)
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Table 5. Alzheimer’s disease data : estimations of the truncation distri-
bution parameters

Conditional Boot. Confidence Full Boot. Confidence
MLE method interval MLE method interval

T ∼LogNormal(µT ,σT )
µ̂T = 1.25 Basic [1.15; 1.35] µ̃T = 1.45 Basic [0.95; 1.40]

Perc. [1.15; 1.35] Perc. [1.50; 1.95]
σ̂T = 0.625 Basic [0.550; 0.700] σ̃T = 0.725 Basic [0.475; 0.750]

Perc. [0.550; 0.700] Perc. [0.700; 0.975]
T ∼Weibull(λT ,αT )

λ̂T = 0.200 Basic [0.175; 0.225] λ̃T = 0.175 Basic [0.175; 0.225]
Perc. [0.175; 0.225] Perc. [0.125; 0.175]

α̂T = 1.7 Basic [1.45; 1.85] α̃T = 1.6 Basic [1.40; 1.65]
Perc. [1.55; 1.95] Perc. [1.55; 1.80]

T ∼Gamma(αT ,λT )
α̂T = 2.90 Basic [2.3; 3.4] α̃T = 2.40 Basic [1.6; 2.7]

Perc. [2.4; 3.5] Perc. [2.1; 3.2]

λ̂T = 0.70 Basic [0.55; 0.85] λ̃T = 0.45 Basic [0.20; 0.55]
Perc. [0.55; 0.85] Perc. [0.35; 0.70]

The three left (respectively right) columns correspond to the conditional (respectively
full) likelihood method; the first (respectively fourth) column provides the estimated pa-
rameters according to the assumed truncation distribution; Boot. method, the bootstrap
method; Basic, the basic bootstrap method; Perc., the percentile bootstrap method.

and

η2,θ(t, x, δ) = δ

(
ḟT,θ(t)

fT,θ(t)
− ẇθ,G(x)

wθ,G(x)

)
+ (1− δ)I(x ≤ T̃ )

 ḟT,θ(t)
fT,θ(t)

−

∫∞
x

ẇθ,G(z)

w2
θ,G(z)

dH1(z)∫∞
x
w−1θ,G(z)dH1(z)


+

∫ (∫ z
0
ξ(x− t, δ, (z − s) ∧ T )ḟT,θ(s)ds

wθ,G(z)

−
ẇθ,G(z)

∫ z
0
ξ(x− t, δ, (z − s) ∧ T )fT,θ(s)ds

w2
θ,G(z)

)
dH1(z)

+

∫ T̃
0

 ˙̃
ξ2,θ(x, x− t, δ, z)∫∞
z
w−1θ,G(s)dH1(s)

+

∫∞
z

ẇθ,G(s)

w2
θ,G(s)

dH1(s)ξ̃2,θ(x, x− t, δ, z)(∫∞
z
w−1θ,G(s)dH1(s)

)2
 dH0(z)

−

(
pr(∆ = 1) +

∫ T̃
0

dH0(z)

)(
ξ̇
FT,θ
2,θ (x, x− t, δ,∞)∫ +∞

0
FT,θ(z)w

−1
θ,G(z)dH1(z)

−
ξ
FT,θ
2,θ (x, x− t, δ,∞)

∫ +∞
0

(
ḞT,θ(z)w

−1
θ,G(z)− FT,θ(z) ẇθ,G(z)

w2
θ,G(z)

)
dH1(z)(∫ +∞

0
FT,θ(z)w

−1
θ,G(z)dH1(z)

)2


−

∫ +∞
0

(
ḞT,θ(z)w

−1
θ,G(z)− FT,θ(z) ẇθ,G(z)

w2
θ,G(z)

)
dH1(z)∫ +∞

0
FT,θ(z)w

−1
θ,G(z)dH1(z)

(δ + (1− δ)I(x ≤ T̃ )),
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where

ξ̃2,θ(y, z, δ, t) =

∫ +∞

t

w−2θ,G(x)

∫ x

0

ξ(z, δ, (x− s) ∧ T )dFT,θ(s)dH1(x)

+I(t ≤ y)δw−1θ,G(y)−
∫ ∞
t

w−1θ,G(x)dH1(x)

and

ξf2,θ(y, z, δ, t) =

∫ t

0

f(x)w−2θ,G(x)

∫ x

0

ξ(z, δ, (x− s) ∧ T )dFT,θ(s)dH1(x)

+I(y ≤ t)f(y)δw−1θ,G(y)−
∫ t

0

f(x)w−1θ,G(x)dH1(x).
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