
Maximal-Sum Submatrix search using a hybrid
Contraint Programming/Linear Programming approach

Guillaume Dervala,∗, Pierre Schausa

aUCLouvain, Belgium

Abstract

A Maximal-Sum Submatrix (MSS) maximizes the sum of the entries corre-
sponding to the Cartesian product of a subset of rows and columns from an
original matrix (with positive and negative entries). Despite being NP-hard,
this recently introduced problem was already proven to be useful for practical
data-mining applications. It was used for identifying bi-clusters in gene expres-
sion data or to extract a submatrix that is then visualized in a circular plot.
The state-of-the-art results for MSS are obtained using an advanced Constraint
Programing approach that combines a custom filtering algorithm with a Large
Neighborhood Search. We improve the state-of-the-art approach by introducing
new upper bounds based on linear and mixed-integer programming formulations,
along with dedicated pruning algorithms. We experiment on both synthetic and
real-life data, and show that our approach outperforms the previous methods.

Keywords: Combinatorial optimization, Maximum-sum submatrix, Linear
relaxation, Constraint programming

1. Introduction

The strengths of the relationships between two sets of objects can be encoded
as a matrix. Such examples are the traffic between two sets of nodes in a
computer network (Medina et al., 2002), the gene expressions for a set of patients
(Van’t Veer et al., 2002), the bilateral migration between two sets of countries
(The World Bank, 2018; Dao et al., 2018), ranked tiling (Le Van et al., 2014),
etc.

When the set of objects is large, mining such matrix manually to understand
the structure of the relations is not an easy task. One important question
is that of summarizing the most important relationships. The Maximal-Sum
Submatrix (MSS) problem has been introduced in (Branders et al., 2017) to
answer this question. A MSS maximizes the sum of the entries corresponding

∗Corresponding author
Email addresses: guillaume.derval@uclouvain.be (Guillaume Derval),

pierre.schaus@uclouvain.be (Pierre Schaus)

Preprint submitted to European Journal of Operational Research March 9, 2021



to the Cartesian product of a subset of rows and columns from an original matrix
(with positive and negative entries). The size of the MSS can be controlled by
a priori subtracting a common constant from all the entries. In this setting the
MSS can be viewed as a (more or less compact) summary of the most important
relations between two subsets of rows and columns. As pointed in Branders
et al. (2017), the MSS problem shares similarities with the biclustering one
(Hartigan, 1972; Madeira & Oliveira, 2004) attempting to discover homogeneous
submatrices rather than heavy ones. Biclustring techniques have been mainly
applied to bioinformatics.

Solving the MSS problem exactly is an NP-Hard problem (Branders et al.,
2017), as it encodes the maximum edge-weighted biclique problem (Peeters,
2003). It is actually a bipartite form of the Quadratic Pseudo-Boolean Opti-
mization problem (QPBO) (Rother et al., 2007). This bipartite form is also
known as BQPBO (Punnen et al., 2015).

The state-of-the-art results for MSS are obtained using an advanced Con-
straint Programming (CP) approach that combines a custom filtering algorithm
with a Large Neighborhood Search (LNS) (Shaw, 1998). We improve and ex-
tend the state-of-the-art approach by introducing two new bounding and search
tree pruning strategies. First, we show how a linear program (LP) relaxation
of a mixed integer linear formulation can be solved in linear time with a ded-
icated algorithm, without using complex algorithms such as the simplex, but
rather by inspection. We then use this linear-programming relaxation as an
upper-bounding procedure to cut off the search tree and derive the exact re-
duced costs to prune the values of the variables in a global constraint following
the reduced-cost based filtering idea of Focacci et al. (1999). Second, we demon-
strate the use of Lagrangian relaxation for this problem, by finding another set
of tighter upper bound, although more costly to compute.

We then experiment on both synthetic and real-life data showing the signif-
icant speedups obtained with the new hybrid LP-CP approach.

2. Definitions and notations

This paper uses multiset notations. Braces {} are used for sets and brackets
[] for multisets. Sets and multisets are both represented as uppercase characters
(S). Vector and matrices are represented as bold characters, respectively low-
ercase and uppercase (x, M). Elements of vectors and matrices, and scalars in
general, are represented as normal italic characters (xi,Mij , i).

Let M ∈ Rm×n be a matrix with both positive and negative real numbers.
The set of rows and columns of the matrix are defined as LR := {1, . . . ,m},
LC := {1, . . . , n}, respectively.

If I ⊆ LR and J ⊆ LC are subsets of the rows and of the columns, respec-
tively, M I,J denotes the submatrix of M that contains only the elements Mij

belonging to the submatrix with set of rows I and set of columns J . Throughout
this paper, i is always an index of a row, and j is always an index of a column.

2



Definition 1. The Maximal-Sum Submatrix Problem. The Maximal-Sum
Submatrix (MSS) is the submatrix MR∗,C∗ , with R∗ ⊆ LR and C∗ ⊆ LC , such
that:

(R∗, C∗) = argmax
I⊆LR,J⊆LC

∑
i∈I,j∈J

Mi,j (1)

Example 1. Given the following matrix:

M ex =

c1 c2 c3 c4 c5 c6 c7



−3 −1 3 −1 2 −3 1 r1

−2 −2 3 −3 3 0 −2 r2

0 2 0 1 −2 2 0 r3

0 0 2 −3 2 −2 1 r4

−3 2 −3 0 0 2 −2 r5

−1 1 −1 2 1 1 −3 r6

−2 1 0 2 −2 2 −2 r7

1 −2 −2 1 −1 −2 −3 r8

The maximal-sum submatrix of M ex is M ex
{3,5,6,7},{2,4,6} (highlighted in black),

its value being 18.

An important property of the MSS identified in (Branders et al., 2017) is
that the search space can be limited to the selection of the subset of columns or
to the subset of rows as stated in the next observation:

Observation 1. Given a fixed subset of columns C ⊆ LC , an optimal subset of
rows for the MSS is the one computed by

R∗ = {i ∈ LR |
∑
j∈C

Mij > 0} (2)

3. Existing work, similar problems and variants

The Maximum-Sum submatrix problem is related to other problems, some
of them being equivalent. This section lists existing work made on similar
problems.

3.1. Maximum Weighted Edge Biclique (MWEB)

The input matrix of the MSS can be seen as an adjacency matrix of a
bipartite weighted graph (which is actually a biclique). In this context, finding
the MSS is equivalent of finding a biclique whose sum of the edges’ weight is
maximum.

Definition 2. Maximum Weighted Edge Biclique (MWEB) problem
(Tan, 2008) Given a complete bipartite graph G = (V1, V2, E), and an edge
weighting function wG : E → R, find a biclique (A ⊆ V1, B ⊆ V2) such that the
sum of the weight of the edges in the biclique is maximal.

3



Tan (2008) discusses this problem and shows that it is inapproximable (for a
problem of size m× n, no polynomial time algorithm can approximate MWEB
within a factor max(m,n)ε for ε > 0, unless RP=NP). This result thus also
holds for MSS. The unweighted version of the problem, the Maximum Edge
Biclique (MEB), is NP-Hard (Peeters, 2003). It has been used to describe many
variants of the biclustering problem (see Tanay et al. (2002) for an example, or
the survey from Madeira & Oliveira (2004)).

3.2. Multiple maximum submatrices

One may want to extract multiple submatrices from a given dataset. Mul-
tiple methods have been introduced to this end, that differ in how they handle
overlaps between found submatrices.

Branders et al. (2019a) introduced the Maximum Weighted Set of Disjoint
Submatrices Problem (MWSDSP), that amounts at finding K disjoint subma-
trices such that the sum of their content is maximized:

argmax
(I1,I2,...,Ik),(J1,J2,...,Jk)

K∑
k=1

∑
i∈Ik,j∈Jk

Mij (3)

subject to (Ik × Jk) ∩ (Ik
′
× Jk

′
) = ∅ ∀k, k′ ∈ [1,K], k 6= k′ (4)

The solving method used in that paper is a column generation (Desaulniers
et al., 2006) one, using an MSS solver as the column generator (columns are, in
the context, actually candidate submatrices) and a MIP to select the optimal
submatrices among the candidate ones.

The disjointedness constraint may be too strong in some context (in pa-
tient/gene matrices, a gene can be involved in multiple illnesses, and a patient
can have multiple illnesses too, for example). Another variation which allows
submatrices to overlap but do not count them multiple times is known as the
Maximum Weighted Submatrix Coverage Problem (MWSCP) (Derval et al.,
2019):

argmax
(I1,I2,...,Ik),(J1,J2,...,Jk)

∑
i,j | ∃k:(i,j)∈Ik×Jk

Mij (5)

that is, the problems amounts at finding K submatrices such that the sum of
the content of their union is maximal.

In another work, Branders et al. (2019b) use a greedy variant of MWSCP
to find biclusters in gene expression data. They use an MSS solver multiple
time, each time removing the newly found submatrix from the main matrix and
replacing it with zeros. They show that the biclusters they found using this
technique (called K-CPGC) are biologically relevant.

3.3. Other biclustering algorithms

Biclustering is a broad subject, and numerous methods have been created.
Most of them attempt to find homogeneous biclusters in some sense. A survey by
Madeira & Oliveira (2004), focusing on biological data, separates the methods
in four families:

4



• Biclusters with constant values

• Biclusters with constant values on rows or columns (each row/column can
have a different, but fixed, value)

• Biclusters with coherent values (additive or multiplicative models, ...)

• Biclusters with coherent evolution (values are evolving inside a row/column
following a given model)

Note that the MSS does not fall into any of these categories. They further subdi-
vide these methods depending on the number of bicluster they find (single, mul-
tiple and disjoint/disjoint per row/disjoint per column/non-overlapping/non-
overlapping with tree structure), and classify 19 different problems and meth-
ods inside these categories. Forty-nine methods are reviewed and classified in
(Pontes et al., 2015). Another survey by Xie et al. (2018) focuses on the appli-
cability of the biclustering algorithms in biological and biomedical data.

Some pattern mining algorithms can also be viewed as biclustering binary
matrices. Frequent Itemset Mining aims at finding frequent itemsets inside a
dataset of transaction. Each transaction contains a list of items. The dataset
can then be represented as a binary matrix, with transactions as rows, items as
columns, and a 1 in cells where the transaction contains a given item. Frequent
itemsets are itemsets that are present as a subset of a given number (given a
priori) of transactions. The task, in biclustering terms, then amounts at finding
large submatrices filled with ones.

Most methods in the literature focus on finding all closed (that cannot
be extended) frequent itemsets (see, for example, (Agrawal et al., 1996; Han
et al., 2004) for dedicated methods, or (Schaus et al., 2017) for a Constraint
Programming-based method).

Tiling (Geerts et al., 2004) aims at finding large tiles inside binary matrices,
i.e. finding large submatrices containing only ones, as previously. Tiling differs
from Frequent Itemset Mining as it focuses on the area of the tiles, not on
frequency (in this context, frequency is equivalent to number of rows, while
the area is the number of rows in the submatrix times the number of columns).
Le Van et al. (2014) introduce an extension to matrices representing ranks (each
row is a permutation of 1 . . . n, giving a rank to each column) and aims at finding
biclusters with similar ranks.

4. An upper bound solvable by inspection

A natural upper bound for this problem without limits on the numbers of
selected rows / columns is the sum of the positive elements in M :∑

i,j

max(Mij , 0). (6)

It was used by Branders et al. (2017) as the cut-off upper bound for their branch-
and-bound algorithm. We present below an upper bounding procedure based

5



on a Big-M formulation of the problem(Griva et al., 2009). We then prove that
this bound is tighter than the upper bound presented by Branders et al. (2017).

Branders et al. (2017) introduced a MIP model for MSS relying on observa-
tion 1 and using Big-M constraints. The main decision variables are the selection
status of the rows/columns with binary variables ri, cj . The contribution of row
i to the objective, pi, is then

pi =

{∑
jMij · cj if ri = 1

0 otherwise.
(7)

This constraint is linearized with the big-M constants upi (resp. loi) being the
positive sum of the positive (resp. negative) contributions of the row i. The
complete model (named FBigM hereafter) is given next.

max
∑
i pi (8a)

pi ≤ ri · upi ∀i (8b)

pi ≤ (
∑
jMij · cj) + (1− ri) · loi ∀i (8c)

ri, cj ∈ {0, 1} ∀i, j (8d)

with upi =
∑
j∈LC

max(Mij , 0) ∀i, and loi = −
∑
j∈LC

min(Mij , 0) ∀i being
respectively the upper bound and the opposite of the lower bound reachable
contribution to the objective, for a given row i. Note that these bounds can be
computed more precisely when we have partial states for the ri and cj variables
(typically, while inside a search tree). We explore later this possibility (we call
this variant of the model the recompute variant). It is however difficult to do in
a MIP solver, as locally modifying the matrix coefficient is complex and costly.

Intuitively, if ri is 0, i.e. the row i is not selected, then pi must be 0; this is
encoded by constraint (8b). The right part of constraint (8c) becomes (

∑
jMij ·

cj)+ loi which is greater than 0 by construction, and thus less constraining than
(8b). If ri = 1, then an upper bound for the contribution pi is upi (thus, in
this case, (8b) is not constraining pi). Constraint (8c) becomes pi ≤

∑
jMij · cj

which is the contribution of the row i when selected.

Linear Programming Relaxation. By relaxing the integrality constraint on the
rows of the MIP model FBigM (8), i.e. using ri ∈ [0, 1] ∀i, we obtain an LP model
whose optimum provides an upper bound for the MSS. We call this particular
version of the model the row-relaxed model, FBigM-linear-rows. It has interesting
properties:

Theorem 4.1. For any row i taken in isolation, and with column variables
already selected (i.e. variables cj fixed ∀j), the value ri maximizing pi in
FBigM-linear-rows is

r∗i :=
loi +

∑
jMij · cj

upi + loi
. (9)

6



Proof. From (8b) and (8c), and as we must maximize pi

pi = min(ri · upi, (
∑
jMij · cj) + (1− ri) · loi). (10)

In this context, ri is a continuous variable, only constrained by this particular
relation. Variable pi in function of ri is a convex function (the minimum of two
linear functions is a convex function), and its maximum is reached when both
components are equal:

ri · upi = (
∑
jMij · cj) + (1− ri) · loi (11)

ri =
loi +

∑
jMij · cj

upi + loi
. (12)

Moreover, the optimal contribution is thus

p∗i = upi · r∗i =
upi · loi + upi ·

∑
jMij · cj

upi + loi
. (13)

These two properties can now be used to derive upper bounds for the MSS
problem. This is our first contribution:

Theorem 4.2. FBigM-linear-rows has an optimal objective of

∑
i

upi · loi
upi + loi

+
∑
j

max

(
0,
∑
i

upi ·Mij

upi + loi

)
. (14)

This value thus provides an upper-bound for FBigM which is equivalent to the
MSS problem.

Proof. The only constraints in the MIP formulation where the variable ri ap-
pears are (8b) and (8c), meaning that rows are effectively independent from
each other: with a given set of selected columns, the optimal value for pa will
not change if rb changes ∀a 6= b ∈ LR. We have thus that for each row i, ri = r∗i
(see Theorem 4.1). The objective becomes

∑
i

pi =
∑
i

upi · loi
upi + loi

+
∑
i

upi ·
∑
jMij · cj

upi + loi
(15)

=
∑
i

upi · loi
upi + loi

+
∑
j

cj · (
∑
i

upi ·Mij

upi + loi
) (16)

By inspection, this expression is maximized with cj = 1 (resp. 0) if
∑
i
upi·Mij

upi+loi
>

0 (resp. < 0).

As stated in the next theorem, this bound is tighter than the sum of the
positive contributions.

7



Theorem 4.3. The bound obtained from the optimal solution of FBigM-linear-rows

is tighter than the simple sum of the positive contributions
∑
i upi.

Proof. From (15).∑
i pi =

∑
i

upi·loi

upi+loi
+
∑
i

upi·
∑

j Mij ·cj
upi+loi

≤
∑
i

upi·loi

upi+loi
+
∑
i

up2
i

upi+loi
=
∑
i upi

It is also non-symmetric, the minimum between the upper bound of the
matrix and of its transpose can thus be taken.

Example 2. Given the matrix M =
(

3 0
−6 6

)
, the sum of the positive contribu-

tions is 9, the upper bound obtained from FBigM-linear-rows is 6, while it is 7 with

MT .

5. A Lagrangian-based upper bounding procedure

The model FBigM-linear-rows is not the only way to model the MSS problem
as a MIP. A more straightforward model Fx which uses more variables (notably
one variable per cell) is presented below:

max
∑

i∈LR,j∈LC

Mij · xij (17a)

xij ≤ ri ∀i, j (17b)

xij ≤ cj ∀i, j (17c)

ri + cj ≤ xij + 1 ∀i, j (17d)

ri, cj , xij ∈ {0, 1} ∀i, j (17e)

Rows and column selection are represented by variables ri and cj . xij indicates
if the cell i, j is selected. Constraints (17b) and (17c) ensure that if a cell is
selected, then the associated row and column are selected. Constraint (17d)
ensures that if both a row and a column are selected, then the cell is selected.

Some constraints in this model are redundant. As it is a maximization
problem, we have two cases:

• Either Mij > 0 and the value xij will be maximized, and thus either
constraint (17b) or (17c) will be tightened for this particular (i, j);

• Or Mij < 0 and the value xij will be minimized, thus tightening constraint
(17d).

Constraints (17b), (17c) and (17d) can thus be rephrased without loss of gen-
erality as

xij ≤ ri ∀i, j : Mij > 0 (18a)

xij ≤ cj ∀i, j : Mij > 0 (18b)

ri + cj ≤ xij + 1 ∀i, j : Mij < 0. (18c)

8



The linear relaxation of Fx (named hereafter Fx-linear) uses more variables
than FBigM-linear-rows (O(|LR| · |LC |) rather than O(|LR| + |LC |)) making this
model more complex to use in an off-the-shelf MIP solver in practice, as running
the simplex or other standard LP-solving algorithm is too slow or uses too much
memory to be run at each node of the search tree on big matrices.

It is however possible to use a Lagrangian relaxation of Fx to obtain good
upper bound of the optimal linear solution. We introduce Lagrange multipliers
αij , βij and γij respectively for constraints (18a), (18b) and (18c). For simplicity
we add each of the three multipliers for each variable, but we set them to zero for
non-existing constraints (i.e. αij = βij = 0 if Mij ≤ 0 and γij = 0 if Mij ≥ 0).
The Lagrangian relaxation leads to the following model, Fx-lrelax-all:

min
αij ,βij ,γij

max
ri,cj ,xij

∑
ij

Mij · xij + αij(ri − xij) + βij(cj − xij) + γij(xij + 1− ri − cj)(19a)

with ri, cj , xij ∈ {0, 1} ∀i, j (19b)

αij , βij , γij ≥ 0 ∀i, j (19c)

αij = βij = 0 ∀i, j : Mij ≤ 0 (19d)

γij = 0 ∀i, j : Mij ≥ 0 (19e)

The constraint (19b) can be changed to a linear version (∈ [0, 1]) without
any modification to the optimal solutions, and is thus equivalent to its linear
relaxation. By the Strong Lagrangian Duality property (Boyd et al., 2004)
(that implies that Lagragian relaxations of convex problems respecting Slater
conditions, which holds in the linear problem Fx-linear, have the same objective
value as the original problem), its optimum is thus the same as Fx-linear.

The maximization part is a convex function on the Lagrangian multipliers
αij , βij , γij : we optimize their values using a sub-gradient algorithm. However
the high number of parameters leads to a slow convergence in practice.

We show below another Lagrangian relaxation, Fx-lrelax-partial, which does
not relax all the constraints and as consequence uses less multipliers. Usually
this prevents a simple, inspection-like solving of the Lagrangian subproblem but
in this particular case we demonstrate it can be solved easily.

min
αij ,βij ,γij

max
ri,cj ,xij

∑
ij

Mij · xij + αij(ri − xij) + γij(xij + 1− ri − cj) (20a)

with xij ≤ cj ∀i, j (20b)

ri, cj , xij ∈ {0, 1} ∀i, j (20c)

αij , γij ≥ 0 ∀i, j (20d)

αij = 0 ∀i, j : Mij ≤ 0 (20e)

γij = 0 ∀i, j : Mij ≥ 0 (20f)

Again it can be shown that the constraint (20c) can be relaxed into a linear
version while not modifying the optimum solutions, and by the same argument

9



as before, is then equivalent to Fx-linear. The same subgradient method can be
used as the Lagrangian subproblem is still convex on the Lagrangian multipliers.
However, for a given set of Lagrangian multiplier, the Lagrangian subproblem
cannot be solved as trivially as before. Let us give a name to the Lagrangian
subproblem, and rearrange its formulation:

f(α,γ) = max
ri,cj ,xij

∑
i,j

Mij · xij + αij(ri − xij) + γij(xij + 1− ri − cj) (21)

= max
ri,cj ,xij

∑
i,j

(
xij · (Mij − αij + γij) + γij

)
+
∑
i

ri · (
∑
j

αij − γij)−
∑
j

cj · (
∑
i

γij) (22)

such that xij ≤ cj ∀i, j

Selecting the optimal rows ri for a given set of multiplier is trivial (ri = 1 if∑
j αij − γij > 0, ri = 0 otherwise). The case for xij and cj is more complex.

Two cases are possible for each specific column j:

• Either cj = 0. In that case, by constraint (23) all cells on this column are
unselected: xij = 0 ∀i. The overall contribution of these variables is thus
0.

• Or cj = 1. In that case, all cells on this column are selected depending on
whether their contributions are positive or not: xij = 1⇐⇒ Mij − αij +
γij > 0. The overall contribution of these variables is then∑

i

max(0,Mij − αij + γij)− γij . (23)

We can thus conclude that in any optimal solution, a column will be selected
(cj = 1) if

∑
i max(0,Mij − αij + γij) − γij > 0, and will not otherwise. This

provides a linear time algorithm (in the size of the matrix) to compute the
Lagrangian subproblem, by directly applying the resulting formula:

f(α,γ) =
∑
i

max(0,
∑
j

αij − γij)+∑
j

max(0,
∑
i

max(0,Mij − αij + γij)− γij) +
∑
i,j

γij (24)

Overall, the subproblem of Fx-lrelax-partial can be solved in the same complexity
as Fx-lrelax-all (i.e. O(|LR| · |LC |)) but with fewer Lagrangian multipliers, en-
suring a faster convergence for the subgradient algorithm, while preserving the
exact same optimal objective value. The algorithm to minimize Fx-lrelax-partial

is given in Algorithm 1.

10



Algorithm 1 Solving Fx-lrelax-partial

function solveSubproblem(α,γ)
ri ← 0 ∀i ∈ LR . indicates if row i is selected or not
cj ← 0 ∀j ∈ LC . indicates if column j is selected or not
xij ← 0 ∀i ∈ LR, j ∈ LC . indicates if cell i, j is selected or not
ub← 0 . The upper bound being computed

for all i ∈ LR, j ∈ LC do . Base cell contribution
ub← ub + γij

for all i ∈ LR do . Select all rows with positive contribution
contribution ←

∑
j αij − γij

if contribution > 0 then
ri ← 1
ub ← ub + contribution

for all j ∈ LC do . Select all columns with positive contribution
contribution ← 0
for all i ∈ LR do . Contribution of a column includes the ones of its cells

contribution ← contribution− γij
cellContribution ←Mij − αij + γij
if cellContribution > 0 then

contribution ← contribution + cellContribution
xij ← 1

if contribution > 0 then
ub ← ub + contribution
cj ← 1

else . If, at the end of the computation, we do not select the
column, we must reset the cells to 0.for all i ∈ LR do

xij ← 0

return ub, r, c,x

function gradientDescent(nIterations)
α,γ ← random initialization (uniform between 0 and 1)
µ← 1
for nIterations iterations do

ub, r, c,x← solveSubproblem(α,γ) . Note that here, at any point of the algorithm,
ub is a valid upper boundµ← 0.95 · µ

for all i ∈ LR do
for all j ∈ LC do

αij ← max(0, αij − µ · (ri − xij))
γij ← max(0, γij − µ · (xij + 1− ri − cj))

return solveSubproblem(α,γ)

The algorithm uses a simple subgradient-descent algorithm with a harmonic
update (Cambazard & Fages, 2015) of step size µ. By default we use a value
of 0.95 for the update, and start with µ0 = 1. The optimality gap between the
optimum of Fx-linear and the one computed by the subgradient algorithm on
random matrices filled with random Gaussian noise is shown in Figure 1. We
experimentally observe on that Figure that we obtain convergence in about 150
iterations even on large matrices, and thus we limit the number of iterations to
this number.

Experiments are also run with 50 and 100 iterations, and with a mechanism
that only update the multipliers each q nodes (details are in the experiment
section). Existing research shows that even poor approximations or non-updated
approximation of the Lagrangian multipliers may be beneficial (Sellmann, 2004).

11



0 50 100 150 200 250 300
Iteration

0

2

4

6

8

10

O
pt

im
al

ity
 g

ap
 (%

)

size
20x20
40x40
60x60
80x80
100x100

Figure 1: Optimality gap between Fx-linear and the value computed by the subgradient on 50
random matrices.

The computed bounds will be used to cut in the branch-and-bound tree.
If by misfortune the upper bound found is not accurate (i.e. is greater than
expected), the tree will simply visit more nodes, but will not give an invalid
result, as the bounds are valid.

6. A note about bounds’ strengths and relations

So far we discussed three different bounding procedure:

• The natural upper bound
∑
i,j max(Mij , 0);

• The FBigM-linear-rows model, presented in section 4, based on a Big-M re-
laxation that uses one variable per row and column. We show above that
it is solvable by inspection in linear time;

• The Fx-linear model presented in section 5, which uses one variable per
cell, row, and column. We show above how to use Lagrange multipliers to
solve it.

These bounds are in fact in increasing order of strength. We showed in
theorem 4.3 that FBigM-linear-rows is a tighter bound than the natural one. The
following theorem shows that Fx-linear is tighter than FBigM-linear-rows.

Theorem 6.1. The optimal objective of Fx-linear is less or equal than the optimal
objective of FBigM-linear-rows.

Proof. Given an optimal solution (ri, cj∀i, j) of Fx-linear, we show that using the
same values for ri and cj for all rows and columns gives a greater solution in
FBigM-linear-rows, which implies its optimum is greater.

The optimal variables xij for Fx-linear can be inferred from the row/column
variables. From equations (17b), (17c) and (17d) we have the following con-
straints on xij :

max(0, ri + cj − 1) ≤ xij ≤ min(ri, cj) (25)

12



As the objective maximizes
∑
ijMij · xij , we have the following:

• xij = min(ri, cj) if Mij > 0

• xij = max(0, ri + cj − 1) if Mij < 0

The optimal objective for Fx-linear is then

objx-linear =
∑
i

( ∑
j|Mij>0

min(ri, cj) ·Mij +
∑

j|Mij<0

max(0, ri + cj − 1) ·Mij

)
(26)

We can insert this solution (ri, cj) inside FBigM-linear (note that FBigM-linear

and FBigM-linear-rows have the same solutions).
From equations (8a), (8b) and (8c), we have that the solution is

objBigM-linear =
∑
i

min(ri · upi, (
∑
j

Mij · cj) + (1− ri) · loi) (27)

If we take individually each row from objx-linear:∑
j|Mij>0

min(ri, cj) ·Mij +
∑

j|Mij<0

max(0, ri + cj − 1) ·Mij (28)

≤
∑

j|Mij>0

min(ri, cj) ·Mij (29)

≤
∑

j|Mij>0

ri ·Mij = ri · upi (30)

Moreover,∑
j|Mij>0

min(ri, cj) ·Mij +
∑

j|Mij<0

max(0, ri + cj − 1) ·Mij (31)

≤
∑

j|Mij>0

cj ·Mij +
∑

j|Mij<0

(ri + cj − 1) ·Mij (32)

≤
∑

j|Mij>0

cj ·Mij +
∑

j|Mij<0

cj ·Mij +
∑

j|Mij<0

(ri − 1) ·Mij (33)

≤
∑
j

cj ·Mij +
∑

j|Mij<0

(ri − 1) ·Mij =
∑
j

cj ·Mij + (1− ri)loi (34)

All of this for any row i. We thus have that for each row, the contribution of
the row in objx-linear is less or equal than in objBigM-linear. From equations (30)

13



Natural bound FBigM-linear

FBigM-linear-rows

Fx-linear

Fx-lrelax-all

Fx-lrelax-partial

MSS

FBigM

Fx

Figure 2: Summary of all the models used in this paper. A gray rectangle means that enclosed
methods are equivalent (have the same optimum objective). An arrow from A to B indicates
that B has a lower optimum than A. This relation is transitive.

and (34): ∑
j|Mij>0

min(ri, cj) ·Mij +
∑

j|Mij<0

max(0, ri + cj − 1) ·Mij

≤ min(ri · upi,
∑
j

cj ·Mij + (1− ri)loi) ∀i (35)

=⇒
∑
i

∑
j|Mij>0

min(ri, cj) ·Mij +
∑

j|Mij<0

max(0, ri + cj − 1) ·Mij

≤
∑
i

min(ri · upi,
∑
j

cj ·Mij + (1− ri)loi) (36)

=⇒ objx-linear ≤ objBigM-linear (37)

It is thus expected that bounding and filtering based on Fx-linear will prune
the search space more than ones based on FBigM-linear. Figure 2 gives a visual
representation of all the bounds used in this paper.

It is possible to show that all these linear bounds can be arbitrarily distant
from the discrete problem’s optimal solution.

Example 3. Let M ex2 be an n× n matrix with positive values in the diagonal
but negative ones everywhere else:

M ex2 =


a −b −b . . . −b
−b a −b . . . −b
−b −b a −b
...

...
. . .

...
−b −b −b . . . a


with a, b ∈ R+. The optimal MSS objective value is a by construction. Table 1
shows the bounds obtained by all linear bounding methods presented above.

As an admissible solution is to select all the cells in the best row/column
and leave the rest unselected, we have that the bounds found by these linear

14



Table 1: Bounds obtained for example 3

Value for (n, a, b)
Method (20, 1, 1000) (20, 19, 1)

Natural bound 20 380

FBigM-linear ' 19.9989 190

Fx-linear 10 190

Optimum MSS 1 19

relaxations can be at most min(m,n) times greater than the optimum discrete
objective in an m× n matrix.

Moreover, the bound found by all the linear relaxations above will be at

least
∑

i,j max(Mij ,0)

2 as the solution ri = cj = 1
2 is always admissible in Fx-linear,

and produce the aforementioned objective value. This can be at most min(m,n)
2

times greater than the actual discrete optimum.

7. Using the bounds in a CP framework

We reuse the framework introduced by (Branders et al., 2017). It is based on
Constraint Programming which, in this particular case, summarizes to a Depth
First Search using Branch-and-Bound on the space of the possible assignment
of the variables (rows and columns to select).

We use one binary variable per row (r1, . . . , rm) and per column (c1, . . . , cn).
These binary variables can either be assigned (v = 1), unassigned (v = 0) or
undecided yet (v = ⊥). At each DFS iteration, an undecided variable is selected
(according to a search strategy, described in the following subsections), and the
DFS branches on the left by assigning this variable to 1, and on the right to 0.
The various bounds are then computed, and the filtering rules are applied, that
is the removal of impossible values from the domains of the variables. It is, of
course, possible that a domain becomes empty, making the solver backtrack in
the search tree.

Let us define Rs = {i ∈ LR | ri = s} and Cs = {j ∈ LC | cj = s}, the
sets of variable currently having a given status s ∈ {⊥, 0, 1}. Note that the sets
R0, R1, R⊥ are disjoint and that their union equals LR, the same being true for
columns. We thus omit most of the time one of these three sets, mainly R0, as
its value can be computed intuitively as LR \ (R1 ∪ R⊥). We also denote from
this point R and C as any choice of rows and columns (respectively) that can
be an improving solution.

7.1. Dealing with partial solutions

Without loss of generality, all partial assignments of variables for any matrix
M can be reduced to a partial solution with |R1| = |C1| = 1 and |R0| = |C0| = 0
on a transformed matrix M s. Let γ1, . . . , γ|R⊥| be any ordering of rows ∈ R⊥,

15



and θ an ordering of the columns ∈ C⊥. We can construct the matrix M s ∈
R(|R⊥|+1)×(|C⊥|+1) such that:

Ms,ij =



∑
a∈R1

∑
b∈C1 Mab if i = j = 1∑

a∈R1 Maθj+1
if i = 1 and j > 1∑

b∈C1 Mγi+1b if j = 1 and i > 1

Mγi+1θj+1
otherwise

C1 θ1 θ2 ··· θ|C⊥|


∑
of sel. rows R1∑

Remaining γ1

of cells γ2

sel. of old ···

cols matrix γ|R⊥|

i.e. we merge selected rows into a single one by summing them, remove the
excluded ones from the matrix, and keep all the other ones as they are, and do
the same with the columns.

One of our contributions is the usage of this simplification trick during the
search. As we use a Large Neighborhood Search Strategy (Shaw, 1998), most
of the variables are decided during the search.

7.2. Update of the incumbent solution

As observed in (Branders et al., 2017), it is not necessary to wait until all the
decision variables are decided in order to update the incumbent (best so far)
solution and the lower-bound. By construction, each node of the search tree
can be transformed greedily in linear time into an admissible partial solution to
possibly become the incumbent solution of the branch and bound.

C = C1 is a partial solution with R ⊆ R1 ∪ R⊥ such that the objective is
maximum. Such R can be computed easily using Observation 1. Precisely, the
objective value for this solution is∑

i∈R1

∑
j∈C1

Mij +
∑
i∈R⊥

max(0,
∑
j∈C1

Mij) (38)

The selected columns are thus only composed of the ones already selected,
discarding the undecided ones to build the optimal solution. The transpose
reasoning is also true1.

The algorithm used to maintain the incumbent solution is below. It main-
tains for each column the sum of the already-selected entries

∑
i∈R1 Mij (and

similarly for each row the sum of the selected entries), and use these caches to
compute the possible new solution objective value faster.

The whole update needed to find a possible new incumbent solution is in
O(n+m).

7.3. Upper bounding

The upper bounds introduced earlier must be adapted to take into account
partial assignments of decision variables.

1Note that (Branders et al., 2017) did not consider this transpose reasoning (for the un-
constrained cardinality case) in the update rule for the incumbent, and that the two solutions
are in general different.

16



Algorithm 2 Maintain incumbent solution

rowVal[i] =
∑

j∈C1 Mij ∀i ∈ LC \ C0

colVal[j] =
∑

i∈R1 Mij ∀j ∈ LR \ R0

function onRowModified(i) . Called when a row is selected/unselected (⊥ →
0/1)if row becomes selected then

for all j ∈ LC \ C0 do . No need to do it for non-selectable columns
colVal[j]← colVal[j] +Mij

updateIncumbentSolution()

function onColumnModified(j) . Called when a column is selected/unselected
(⊥ → 0/1)if column becomes selected then

for all i ∈ LR \ R0 do . No need to do it for non-selectable rows
rowVal[i]← rowVal[i] +Mij

updateIncumbentSolution()

function updateIncumbentSolution()
solR← 0
solC← 0
for all i ∈ R1 do

solR← solR + rowVal[i]

for all j ∈ C1 do
solC← solC + colVal[j]

for all i ∈ R⊥ do
solR← solR + max(0, rowVal[i])

for all j ∈ C⊥ do
solC← solC + max(0, colVal[j])

incumbentSolution← max(incumbentSolution, solR, solC)

7.3.1. FBigM-linear-rows

Equation (14), providing the optimal solution for FBigM-linear-rows and thus
a valid upper bound for the MSS problem, can be adapted to the following:∑
i∈R⊥

upi·loi

upi+loi
+
∑
j∈C1

(
∑
i∈R1

Mij +
∑
i∈R⊥

upi·Mij

upi+loi
) +

∑
j∈C⊥

max(0,
∑
i∈R1

Mij +
∑
i∈R⊥

upi·Mij

upi+loi
) (39)

upi and loi can also be adapted, as they need to be respectively the upper
and minus the lower bound of the contribution of a row. Then, this definition
is also valid:

upi :=
∑
j∈C1

Mij +
∑
j∈C⊥

max(0,Mij) (40)

loi := −
∑
j∈C1

Mij +
∑
j∈C⊥

max(0,−Mij) (41)

Recomputing upi, loi for all rows along with the upper bound at each node
of the search tree has a runtime of O(mn) per node (which, over a full branch,
amounts to O(mn2)). This version of the upper-bounding procedure is shown
below in the experiments as ”FBigM-linear-rows (recompute)”.

A computational speed-up can be obtained by using caching and fixing upi
and loi before starting the computation (typically to

∑
j∈LC

max(0,Mij) and∑
j∈LC

max(0,−Mij)). While this reduces the pruning power of the bound
(which will be less tight as a consequence), the increase in visited nodes (due to

17



a faster computation) can be worth the trade-off. In this case, the computation
can be made in O(∆r · n + ∆c) at each node, where ∆r is the number of
modified row variables in the current tree node (and similarly for ∆c). Over a
full branch of the tree search, this sums up to O(mn). The algorithm is shown
in Algorithm 3. The name of this upper bounding procedure is ”FBigM-linear-rows

(fixed)” in the experiments presented in the last section.

Algorithm 3 Implementation of FBigM-linear-rows (fixed) with caching
. Initialization

curBound← 0 . Reversible (i.e. reverted to previous value when a backtrack occurs)
curColBound[j]← 0 ∀j . Reversible

for all i ∈ LR do
upi ←

∑
j∈LC

max(0,Mij)

loi ←
∑

j∈LC
max(0,−Mij)

rowContribution[i]← upi·loi
upi+loi

for all j ∈ LC do

cellContribution[i, j]←
Mij ·loi
upi+loi

curColBound[j]← curColBound[j] + cellContribution[i, j]

curBound← curBound + rowContribution[i]

for all j ∈ LC do
if curColBound[j] > 0 then

curBound← curBound + curColBound[j]

function onColModified(i) . Called when a column is selected/unselected
(⊥ → 0/1)if j ∈ C1 ∧ curColBound[j] < 0 then

. If the column is now selected, but was not as its contribution is negative, add it.
curBound← curBound + curColBound[j]

else if j ∈ C0 ∧ curColBound[j] > 0 then
. If the column is now unselected, but had a positive contribution, remove it.
curBound← curBound− curColBound[j]

function onRowModified(i) . Called when a row is selected/unselected(⊥ →
0/1)curBound← curBound− rowContribution[i]

delta← 0
for all j ∈ C1 ∪ C⊥ do

oldValue← curColBound[j]
cdelta← cellContribution[i, j] . the delta between the current
if i ∈ R1 then . and new contribution of the cell

cdelta← cdelta +Mij

curColBound[j]← curColBound[j] + cdelta

if j ∈ C1 then
. If the column is selected, then its contribution is updated.
delta← delta + cdelta

else if oldValue <= 0 ∧ curColBound[j] > 0 then
. If the column was not selected, but should be now, add its contribution.
delta← delta + curColBound[j]

else if oldValue > 0 ∧ curColBound[j] <= 0 then
. If the column was selected, but is not anymore, remove its old contribution.
delta← delta− oldValue

else if oldValue > 0 ∧ curColBound[j] > 0 then
. If the column was selected, and still is, update the contribution.
delta← delta + cdelta

curBound← curBound + delta

18



7.3.2. Fx-lrelax-partial

The model presented at equation (20) can be reused as-is, simply by adding
additional constraints to include/exclude rows/columns (ri = 1 ∀i ∈ R1, ri =
0 ∀i ∈ R0, ...). This requires a small adaptation to subproblem solving in
Algorithm 1, shown in Algorithm 4. The algorithm runs in O(kmn) at each
node of the tree, where k is the number of subgradient descent steps.

Algorithm 4 Solving Fx-lrelax-partial, with partial solution support (differences
underlined)

function solveSubproblem(α,γ)
ri ← 0 ∀i ∈ LR . indicates if row i is selected or not
cj ← 0 ∀j ∈ LC . indicates if column j is selected or not
xij ← 0 ∀i ∈ LR, j ∈ LC . indicates if cell i, j is selected or not
ub← 0 . The upper bound being computed

for all i ∈ R1 ∪ R⊥, j ∈ C1 ∪ C⊥ do . Base cell contribution
ub← ub + γij

for all i ∈ R1 ∪ R⊥ do . Select all rows with positive contribution
contribution ←

∑
j αij − γij

if contribution > 0 ∨i ∈ R1 then
ri ← 1
ub ← ub + contribution

for all j ∈ C1 ∪ C⊥ do . Select all columns with positive contribution
contribution ← 0
for all i ∈ R1 ∪ R⊥ do . Contribution of a column includes the ones of its cells

contribution ← contribution− γij
cellContribution ←Mij − αij + γij
if cellContribution > 0 ∨i ∈ R1 then

contribution ← contribution + cellContribution
xij ← 1

if contribution > 0 ∨j ∈ C1 then
ub ← ub + contribution
cj ← 1

else . If, at the end of the computation, we do not select the
column, we must reset the cells to 0.for all i ∈ LR do

xij ← 0

return ub, r, c,x

7.4. Reduced-Cost-based filtering

7.4.1. Upper bound filtering

Given a current state (R1, R⊥, C1, C⊥), we can compute for each row i ∈ R⊥

its upper bound when selected or unselected (namely ubR
1∪{i},R⊥\{i},C1,C⊥ and

ubR
1,R⊥\{i},C1,C⊥).
We then have these filtering rules:

ubR
1∪{i},R⊥\{i},C1,C⊥ < best⇒ i 6∈ R (42)

ubR
1,R⊥\{i},C1,C⊥ < best⇒ i ∈ R (43)

i.e. if the upper bound for a particular assignment of a row is worse than
the current best solution found, then this assignment is not part of any better

19



solution. The same is done for columns. The method is called cost-based domain
filtering (Focacci et al., 1999).

Reusing at each node the upper bounding algorithm presented in the previ-
ous sections would require a too consequent increase in complexity; however, it
is possible to do this pruning efficiently at no additional (asymptotic) cost.

This involves maintaining during the computation of the main upper bound
the delta that would occur if the row/column variable is assigned to a specific
value. While this is straightforward in practice, we do not include the code in
the text of this paper for the sake of conciseness. The reference implementation
is however available.

In practice, all pruning algorithms run in O(nm) (which is equivalent to the
running time of the associated-bounding procedure), but for the fixed version of
FBigM-linear-rows (see Section 7.3.1). For this particular constraint, the column
filtering occurs in O(m) (which is the running time of the upper bounding
procedure) while the row filtering is in O(nm) (so, greater than the upper
bounding procedure running time). We thus propose two versions of this pruning
while associated with FBigM-linear-rows: one with the row filtering, one without.

7.4.2. Lower bound filtering

upi and loi are, for a given row i, the upper bound and the opposite of
the lower bound of its contribution. A version of these bounds which supports
partial solutions is presented in equations (40) and (41).

The following filtering rules always apply2:

upi < 0⇒ i 6∈ R∗ (44)

loi < 0⇒ i ∈ R∗ (45)

where R∗ is the set of rows of one of the optimum solutions reachable from the
current partial solution.

That is, if the maximum contribution of a row is negative, it will never
be part of any (locally) optimal solution (reachable from this partial solution).
Similarly, if the minimum contribution of a row is positive, then it will always
be part of the best solution reachable from the current partial solution.

The rule (44) was introduced by (Branders et al., 2017), while (45) is a new
contribution. This is straightforward, but was not possible in the implementa-
tion of (Branders et al., 2017) as it was not able to force rows to be in solution.
As their constraint is included in all our experiments, we implemented the lower-
bound filtering inside their constraint, with the option of being deactivable.

7.5. Methods and complexities summary

Table 2 provides a summary of all the methods and their complexities. Table
3 shows all the combinations of methods used in the experiments.

2Recall that loi is the opposite of the lower bound, hence the <.

20



Table 2: Methods and complexities (computed at each node, non-symmetric)

Upper Filtering

Model Type bounding LB-Low Row UB Column UB

Base (Branders et al., 2017) O(n∆r + ∆c) O(∆r + ∆c) O(mn∆) N/A
FBigM-linear-rows fixed O(n∆r + ∆c) N/A O(mn∆) O(n∆)

recompute O(mn∆) N/A O(m∆) O(n∆)
Fx-lrelax-partial O(kmn∆) N/A O(n∆) O(m∆)

∆r and ∆c are the number of modified rows/columns in the node. ∆ = ∆r + ∆c. Matrices
are of size m× n and the Lagragian based method makes k steps. The complexities of the

filtering operations are given after the upper bounding has been done, as it fills
memoization arrays, allowing faster filtering.

Table 3: Combinations of methods used in the experiments

Overall Applied Enabled filtering

Name complexity models LB-Low Row UB Col UB

Natural O(mn∆) Base 7 3 -

Natural+LB+fast O((m+ n)∆) Base 3 7 -

Natural+LB O(mn∆) Base 3 3 -

Fixed-BigM O((m+ n)∆) Base 3 7 -
FBigM-linear-rows (fixed) - 7 3

Recompute-BigM O(mn∆) Base 3 3 -
FBigM-linear-rows (recompute) - 3 3

Lagrangian (k, skip s%) O(kmn∆) Base 3 3 -
Fx-lrelax-partial - 3 3

3: activated, 7: disabled, -: non-applicable. Note that the models are always also applied in a
symmetrical way (on the transpose matrix), but the table shows the enabled features for the

non-symmetric case.

These combinations are chosen to show the relative improvement of each
of our contributions, compared to the existing techniques. The pair (Natu-
ral, Natural+LB) aims at comparing the addition of the additional lower bound
procedure introduced in Section 7.4.2. Natural+LB+fast provides a counterpart
to Fixed-BigM as they have the same overall complexity. The same goes for
Natural+LB and Recompute-BigM. We test the Lagrangian-based method pre-
sented earlier with various parameters for the number of iterations (k) and the
probably of skipping an update at each node of the search tree (s%). The cho-
sen pairs (k, s) are (50, 100%), (100, 100%), (150, 100%), (150, 30%), (150, 60%),
(150, 90%), (150, 95%).

8. Experiments

We first experiment on synthetic data, showing differences in efficiency be-
tween all the methods presented, and then experiment with real-life data. We
compare against a MIP solver (Gurobi) when appropriate. The MIP solver is
run with the BigM model from equation (8).

8.1. Complete search

We generated small instances (square matrices from size 10× 10 to 30× 30)
that can be solved to optimality, and compare the number of nodes explored

21



by each method by computing the ratio between this number of nodes and the
one visited by the Natural method (see table 3), our baseline, along with the
runtime ratio. We generated two datasets, the first being square matrices filled
with a Gaussian noise N (0.2, 1), the other with N (0, 1).

There is a phase transition when the expected value of any row/column is 0,
as this is the tipping point between selection and non-selection of a row/column.
Moreover, the expected value of any submatrix in a matrix filled with noise
N (0, 1) is 0, and all solutions are similar and close to 0. This makes the N (0, 1)
case particularly difficult. On the other hand, N (0.2, 1) is comparatively sim-
pler as the expected size for the MSS is the whole matrix. This kind of matrix
appears when using LNS to solve the instances, as when the search progresses,
we refine the main matrix by removing some columns with a negative contri-
bution, increasing the mean value in the row/column/matrix. This choice of
dataset thus shows the two phases possible in the problem, both being relevant.

Table 4 shows the ratio for all datasets and matrix sizes. As can be seen,
the various methods proposed all improve over the state-of-the-art, but in the
single case where only the new lower-bound filtering is activated. Fixed-BigM
improves over the Natural method as they share complexities but the former
prunes more heavily the search tree. More complex models, such as Recompute-
BigM and Lagrangian, can visit up to five orders of magnitude less nodes than
the existing method; this ratio increasing rapidly with the size of the matrices.

These results must be compared to the mean runtime ratio, as shown in
the table. While the Lagrangian method variants provide the best pruning,
its running time increases more rapidly. Experiments thus tend to show that
Fixed-BigM and Recompute-BigM are generally the best choices.

The various parameters tested for the Lagrangian shows that using fewer
gradient descent iterations worsen the computed upper bounds and thus in-
creases the number of visited nodes, but it is counterweighted by the decrease
in computation time, leading to very small differences in running time. Skipping
multipliers updates does not seem to help, either.

8.2. Large neighborhood search on bigger instances

We now show the results on bigger matrices. These synthetic instances are
filled by a Gaussian noise of parameters (µ = −0.01, σ = 1). We then inject
a submatrix with Gaussian noise (µ = 0.01, σ = 1), the size of the submatrix
depending on a parameter p being the ratio of the main matrix being filled with
the submatrix. We generated 30 matrices for each (size, p) pair. All methods run
a Large Neighborhood Search (LNS, (Shaw, 1998)) with an adaptive relaxation
rate. The additional constraint (maximum running time and timeout per LNS
iteration) and results are shown in Table 5 and Figure 3, which shows the average
solution quality at any point in time for all the different methods. The average
solution quality is defined as the mean of the ratios between the current solution
for a method/instance and the best seen solution at timeout for all the methods.

In practice, the quality of the solution is more dependent on the diversifica-

22



T
a
b

le
4
:

A
v
er

a
g
e

ra
ti

o
b

et
w

ee
n

th
e

n
u

m
b

er
o
f

v
is

it
ed

n
o
d

es
b
y
N
a
tu
ra
l

a
n

d
th

e
n
u

m
b

er
o
f

n
o
d

es
v
is

it
ed

b
y

th
e

o
th

er
m

et
h

o
d

s,
a
lo

n
g

w
it

h
th

e
ti

m
e

ra
ti

o
,

o
n

sq
u

a
re

m
a
tr

ic
es

fi
ll
ed

w
it

h
a
N

(·
,1

)
n

o
is

e.
F

if
ty

d
iff

er
en

t
m

a
tr

ic
es

p
er

si
ze

.
S

ta
ti

c
b

ra
n

ch
in

g
.

S
iz

e
-
N

(0
,1

)
S

iz
e

-
N

(0
.2
,1

)

M
et

h
o
d

1
0

1
4

1
8

2
2

2
6

3
0

1
0

1
4

1
8

2
2

2
6

3
0

N
a
tu

ra
l

(B
a
se

fo
r

ra
ti

o
s)

A
v
g
.

v
is

it
ed

n
o
d

es
8
3

6
8
9

8
7
0
9

8
2
k

9
1
8
k

1
0
4
6
1
k

7
7

6
1
3

6
k

4
8
k

4
1
6
k

3
4
1
0
k

T
im

e
(s

)
0
.0

2
s

0
.0

4
s

0
.1

5
s

1
.0

1
s

1
4
.0

s
1
6
2
s

0
.0

2
s

0
.0

4
s

0
.1

2
s

0
.5

1
s

3
.5

6
s

4
0
.8

s

N
a
tu

ra
l+

L
B

+
fa

st
N

o
d

e
ra

ti
o

0
.9

0
.5

9
0
.5

7
0
.5

1
0
.4

6
0
.4

8
2
.9

6
2
.1

8
3
.0

2
.7

5
2
.4

9
3
.0

9
T

im
e

ra
ti

o
1
.1

8
1
.0

8
1
.0

9
0
.8

4
1
.0

2
1
.1

2
1
.4

9
1
.4

9
1
.9

2
1
.9

5
2
.0

8
3
.4

9

N
a
tu

ra
l+

L
B

N
o
d

e
ra

ti
o

2
.1

8
1
.4

4
1
.3

6
1
.2

6
1
.1

9
1
.2

6
.1

4
.1

5
.4

4
.7

5
4
.4

5
.4

1
T

im
e

ra
ti

o
1
.1

9
1
.0

9
1
.0

4
0
.8

1
0
.9

2
0
.9

3
1
.4

7
1
.4

5
1
.7

1
1
.6

8
1
.7

2
2
.5

7

F
ix

ed
-B

ig
M

N
o
d

e
ra

ti
o

2
.3

9
2
.2

2
.2

7
2
.0

3
2
.0

3
2
.5

9
.7

1
1
3
.7

5
2
7
.9

4
3
8
.6

7
5
0
.3

9
1
0
4
.3

2
T

im
e

ra
ti

o
1
.1

7
1
.1

2
1
.3

2
1
.1

9
1
.2

4
1
.6

9
1
.4

3
1
.6

3
2
.6

7
4
.3

9
7
.5

2
1
7
.8

7

R
ec

o
m

p
u

te
-B

ig
M

N
o
d

e
ra

ti
o

6
.3

6
1
1
.7

2
5
.1

7
3
4
.0

3
5
1
.5

8
9
6
.2

1
1
2
.7

8
3
5
.3

5
1
1
7
.9

4
2
8
2
.1

3
6
7
6
.6

4
2
0
3
3
.6

T
im

e
ra

ti
o

1
.2
5

1
.2
1

1
.6
2

2
.7
3

4
.2
9

9
.4
3

1
.5
5

1
.7
3

2
.7
4

5
.3
7

1
3
.3
3

4
8
.5
2

L
a
g
ra

n
g
ia

n
(5

0
,

a
ll
)

N
o
d

e
ra

ti
o

5
.7

7
1
2
.3

4
3
1
.0

8
4
6
.6

7
7
2
.0

7
1
3
6
.1

6
1
2
.5

6
3
8
.4

2
1
8
2
.7

4
8
2
5
.0

2
3
4
9
0
.7

7
2
0
7
4
6
.9

4
T

im
e

ra
ti

o
0
.5

6
0
.2

2
0
.1

7
0
.1

7
0
.2

7
0
.4

0
.7

1
0
.4

7
0
.3

8
0
.7

2
2
.1

2
1
2
.9

1

L
a
g
ra

n
g
ia

n
(1

0
0
,

a
ll
)

N
o
d

e
ra

ti
o

5
.9

9
1
4
.7

8
4
6
.9

7
8
3
.3

1
4
0
.2

7
2
9
1
.9

3
1
2
.6

5
3
9
.7

4
2
0
6
.3

5
1
0
2
7
.7

7
5
3
8
7
.5

4
3
5
6
7
9
.8

9
T

im
e

ra
ti

o
0
.3

6
0
.1

3
0
.1

5
0
.1

8
0
.3

1
0
.5

1
0
.4

7
0
.2

5
0
.2

8
0
.6

2
1
.9

5
1
2
.1

2

L
a
g
ra

n
g
ia

n
(1

5
0
,

a
ll
)

N
o
d

e
ra

ti
o

6
.0

1
4
.9

4
4
8
.0

8
6
.2

9
1
4
5
.9

7
3
0
6
.4

6
1
2
.6

5
4
0
.2

2
0
9
.1

5
1
0
3
6
.1

5
5
0
6
.0

3
6
5
9
8
.4

4
T

im
e

ra
ti

o
0
.2

3
0
.1

0
.1

3
0
.1

5
0
.2

5
0
.4

0
.3

5
0
.1

6
0
.2

2
0
.5

1
1
.6

1
0
.0

5

L
a
g
ra

n
g
ia

n
(1

5
0
,

sk
ip

3
0
%

)
N

o
d

e
ra

ti
o

5
.8

5
1
4
.5

8
4
6
.4

1
8
2
.8

2
1
4
0
.5

7
2
9
4
.4

1
2
.6

2
3
9
.5

2
2
0
5
.0

1
0
0
5
.7

7
5
3
9
2
.6

4
3
5
3
0
9
.3

4
T

im
e

ra
ti

o
0
.3

5
0
.1

3
0
.1

4
0
.1

8
0
.3

2
0
.5

3
0
.4

9
0
.2

8
0
.2

5
0
.6

5
2
.0

3
1
2
.7

2

L
a
g
ra

n
g
ia

n
(1

5
0
,

sk
ip

6
0
%

)
N

o
d

e
ra

ti
o

5
.2

6
1
3
.0

3
4
0
.9

7
0
.1

8
1
1
3
.9

9
2
3
3
.5

9
1
2
.4

8
3
8
.0

1
9
3
.7

7
9
5
4
.9

2
4
8
3
9
.9

7
3
1
3
7
3
.4

4
T

im
e

ra
ti

o
0
.6

0
.2

8
0
.1

9
0
.2

3
0
.4

5
0
.7

6
0
.8

1
0
.6

0
.5

3
0
.9

5
2
.5

4
1
4
.2

7

L
a
g
ra

n
g
ia

n
(1

5
0
,

sk
ip

9
0
%

)
N

o
d

e
ra

ti
o

4
.7

4
8
.0

7
1
8
.4

2
2
7
.9

8
4
3
.0

4
8
3
.3

6
1
2
.2

9
3
4
.8

1
1
4
2
.7

2
5
7
0
.7

5
1
9
6
6
.9

5
1
0
7
2
7
.5

3
T

im
e

ra
ti

o
1
.1

4
0
.6

8
0
.3

6
0
.3

9
0
.7

8
1
.2

1
1
.4

4
1
.6

3
2
.1

9
3
.0

5
5
.9

4
2
5
.6

7

L
a
g
ra

n
g
ia

n
(1

5
0
,

sk
ip

9
5
%

)
N

o
d

e
ra

ti
o

4
.7

1
6
.7

2
1
4
.0

9
1
9
.4

6
3
1
.4

3
5
9
.6

2
1
2
.2

6
3
4
.4

4
1
3
1
.0

5
4
6
1
.5

4
1
2
7
7
.8

6
5
4
1
2
.7

4
T

im
e

ra
ti

o
1
.1

5
0
.7

3
0
.3

8
0
.4

5
0
.9

1
.4

6
1
.4

4
1
.6

6
2
.0

4
2
.9

1
5
.0

3
2
3
.5

8

23



Table 5: Solution quality (average ratio of objective value found by a method divided by the
best objective found by any method) using Large Neighborhood Search. All numbers are in
percentages. Best methods (less than 0.05% wrt the best method) are in bold. Average of 30
different instances per type of instance.

Matrix size 1000 2000 3000

p 5% 30% 50% 5% 30% 50% 5% 30% 50%

CP-based

Natural 99.31 99.17 99.53 99.2 99.3 99.55 98.54 98.67 99.38
Natural+LB+fast 99.5 99.39 99.6 99.49 99.63 99.81 99.49 99.57 99.75
Natural+LB 99.44 99.42 99.6 99.45 99.49 99.64 99.63 99.46 99.85
Fixed-BigM 99.39 99.51 99.54 99.46 99.49 99.61 99.51 99.66 99.79
Recompute-BigM 99.37 99.4 99.56 99.5 99.51 99.77 99.55 99.57 99.73
Lagrangian (50, all) 99.13 99.29 99.46 98.18 98.49 99.04 93.74 94.45 96.9
Lagrangian (100, all) 99.3 99.27 99.42 97.73 98.08 98.78 91.12 91.07 94.84
Lagrangian (150, all) 99.24 99.2 99.42 97.22 97.59 98.45 88.61 88.86 92.49
Lagrangian (150, skip 30%) 99.2 99.29 99.44 97.89 98.24 98.8 92.54 93.59 96.33
Lagrangian (150, skip 60%) 99.23 99.27 99.53 98.65 98.64 99.19 95.32 95.89 97.87
Lagrangian (150, skip 90%) 99.29 99.26 99.57 99.3 99.09 99.4 97.36 97.62 98.78
Lagrangian (150, skip 95%) 99.27 99.45 99.59 99.1 99.15 99.42 97.31 97.68 98.8
MIP-BigM 85.06 85.71 89.41 83.07 84.71 88.95 80.19 82.03 89.16
MIP-Strong* 0.0 0.0 2.98 0.0 0.0 2.22 OOM OOM OOM

* in practice, MIP-Strong cannot solve the first LP relaxation in 60 seconds on most instances.

tion method3 than on the intensification method (the bound used). The new
bounds produce only a small difference in terms of results after 60 seconds, as
seen in Table 5. Figure 3 shows, however, that the convergence rate is higher for
some methods. The group of methods that performs better can be summarized
as follows:

3here, a part of the best current solution is randomly kept, and the remaining columns are
aggregated until the matrix is small enough, these parameters being computed at runtime

Figure 3: Average solution quality w.r.t. time for all methods. (MIP-Strong is ommited due
to poor performance)

24



Table 6: Average of ratios between the UB found by the upper bounding procedure and the
best found solution, on 50 instances for each type of instance. Lower is better.

n=50, N (0, 1) n=50, N (0.2, 1) n=100, N (0, 1) n=100, N (0.2, 1)

Natural 2.82 1.62 6.03 2.14
Natural+LB 2.83 1.63 6.03 2.14
Natural+LB+Fast 2.70 1.59 5.85 2.09
Fixed-BigM 1.82 1.16 3.38 1.38
Recompute-BigM 1.71 1.04 3.39 1.35
Lagrange (50) 1.93 1.05 3.50 1.22
Lagrange (100) 1.85 1.02 3.36 1.16
Lagrange (150) 1.86 1.02 3.37 1.16

• They all use the lower bound for pruning the domain;

• They use a moderate amount of computational time (i.e. they are not
based on a gradient descent).

The gradient descent needed to run the Lagrangian-based methods appears too
costly.

8.3. Upper bounding

We use the new bounds to attempt to close the gap between the incumbent
solution (which is effectively a lower bound for the optimum) and the upper
bound. To this end, we use the following algorithm, based on a priority queue
which always has as first item the node with the highest UB:

1. Dequeue the node

2. Expand it using the static branching presented earlier, creating two new
nodes

3. Put the two new nodes in the priority queue.

We let this algorithm run for a 600 seconds, with the various bounds, on
various relatively large matrices. We provide a lower bound to the algorithm
(enhancing its pruning ability) which is the best found solution by the Fixed-
BigM method after 300 seconds.

The results are presented in Table 6, which shows the average ratio between
the best found solution and the UB obtained by the algorithm above.

Despite their slowness, the Lagrangian-based method provides the best bounds
for simpler instances (filled with a N (0.2, 1)), while for instances filled with
N (0, 1) the methods based on the BigM formulation work best.

8.4. Real-life data

Table 7 shows runtime, reached objective value, and runtime at which the
best objective value was reached, from multiple real-life datasets (Le Van et al.,
2014; Branders et al., 2019a).

25



Table 7: Results of a complete search on real-life data. All methods had 1 hour of maximum
runtime.

Method Best solution (time) Total runtime Total #nodes Optimum proven

bc 030.tsv (2211× 94)

Natural 4052763 (2.5s) 1h (TO) 1099464 7
Natural+LB 4052763 (1.2s) 1h (TO) 599436 7
Natural+LB+Fast 4052763 (1.5s) 26m 1095513 3
Fixed-BigM 4052763 (0.7s) 2s 95 3
Recompute-BigM 4052763 (1s) 1.6s 25 3
Lagrange (50, all) 4052763 (45s) 61s 23 3
Lagrange (100, all) 4052763 (83s) 108s 23 3
Lagrange (150, all) 4052763 (121s) 160s 23 3
Lagrange (150, skip 30%) 4052763 (73s) 100s 23 3
Lagrange (150, skip 60%) 4052763 (35s) 47s 23 3
Lagrange (150, skip 90%) 4052763 (3.7s) 8.1s 33 3
Lagrange (150, skip 95%) 4052763 (3.2s) 7.2s 33 3
MIP-BigM 4052763 (0.0s) 1.0s 3
MIP-Strong OOM OOM 7

ijcai small 0.075.tsv (100× 100)

Natural 209.35 (0.1s) 106s 742703 3
Natural+LB 209.35 (0.07s) 110s 742703 3
Natural+LB+Fast 209.35 (0.06s) 62s 5124739 3
Fixed-BigM 209.35 (0.06s) 121s 5100199 3
Recompute-BigM 209.35 (0.1s) 367s 733563 3
Lagrange (50, all) 209.35 (1.2s) 1h (TO) 65457 7
Lagrange (100, all) 209.35 (1.7s) 1h (TO) 7921 7
Lagrange (150, all) 209.35 (3.1s) 1033s 7873 3
Lagrange (150, skip 30%) 209.35 (2.1s) 776s 8217 3
Lagrange (150, skip 60%) 209.35 (0.7s) 531s 9889 3
Lagrange (150, skip 90%) 209.35 (0.2s) 485s 51365 3
Lagrange (150, skip 95%) 209.35 (0.2s) 608s 114299 3
MIP-BigM 209.35 (0.03s) 1h (TO) 7
MIP-Strong 209.35 (355s) 1226s 3

olympic 0.02.tsv (74× 151)

Natural 28.955 (0.16s) 1h (TO) 259652006 7
Natural+LB 29.128 (0.07s) 953s 30626451 3
Natural+LB+Fast 29.128 (0.04s) 556s 41019839 3
Fixed-BigM 29.128 (0.07s) 475s 11472295 3
Recompute-BigM 29.128 (0.09s) 13s 17241 3
Lagrange (50, all) 29.128 (3.8s) 1h (TO) 14658 7
Lagrange (100, all) 29.128 (7.1s) 29s 163 3
Lagrange (150, all) 29.128 (8.9s) 10s 23 3
Lagrange (150, skip 30%) 29.128 (6.2s) 8.2s 23 3
Lagrange (150, skip 60%) 29.128 (4.0s) 5.9s 25 3
Lagrange (150, skip 90%) 29.128 (1.0s) 2.3s 27 3
Lagrange (150, skip 95%) 29.128 (1.0s) 3.2s 171 3
MIP-BigM 29.128 (0.03s) 0.44s 3
MIP-Strong 29.128 (1.56s) 1.56s 3

26



The result on these medium-sized instance, combined with the ones pre-
sented in the previous sections, shows that there is no silver bullet.

On bc 030.tsv (breast cancer dataset (Le Van et al., 2014)), the best meth-
ods are based on the BigM formulation (fixed, recompute, and MIP), visiting
significantly fewer nodes. Lagrangian methods are penalized due to their com-
plexity on this matrix with 2211 rows.

On ijcai small 0.075.tsv (graph of the 100 most prolific authors at 2019’s
IJCAI and the 100 venues to which they publish the most), the BigM and La-
grangian formulations seem to give bound marginally equivalent to the natural
bound, and so are not able to perform well, with the MIP even reaching timeout.

On olympic 0.02.tsv (Number of medals won per sport and per country in
all olympic games, (Branders et al., 2019a)) we observe a significant difference
(3 orders of magnitude) between Fixed-BigM and Recompute-BigM, and again
3 orders of magnitude with Lagrangian-based methods, which prove useful on
this particular instance.

9. Conclusion

We presented three new methods for computing upper bounds for the Maximum-
Sum Submatrix (MSS) problem. The first two methods (Fixed-BigM and
Recompute-BigM) are based on a Big M reformulation of the problem; Fixed-
BigM is shown to be computable in linear time (depending on the number of
rows or columns), while Recompute-BigM, which is more tight, can be com-
puted in quadratic time (depending on the number of cells in the matrix). A
third method, based on a Lagragian relaxation of the MSS, is also presented.

We show the Lagrangian method gives the best bound, both theoretically
and experimentally, but suffers from its complexity (quadratic, with an addi-
tional gradient descent). Fixed-BigM and Recompute-BigM are shown to pro-
duce tighter bounds, as they provide a middle ground between more tight but
slower Lagrangian-based methods and the less precise but faster natural bound.

Source code and raw experiment results

The source code is available on Zenodo(Derval & Schaus, 2020a), along with
the experiments code and results (Derval & Schaus, 2020b). The experiment
were run on the OscaR CP solver (OscaR Team, 2012).

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1996).
Fast discovery of association rules. In Advances in knowledge discovery and
data mining (pp. 307–328). USA: American Association for Artificial Intelli-
gence.

Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cam-
bridge university press.

27



Branders, V., Derval, G., Schaus, P., & Dupont, P. (2019a). Mining a Max-
imum Weighted Set of Disjoint Submatrices. In P. Kralj Novak, T. muc,
& S. Deroski (Eds.), Discovery Science Lecture Notes in Computer Sci-
ence (pp. 18–28). Cham: Springer International Publishing. doi:10.1007/
978-3-030-33778-0_2.

Branders, V., Schaus, P., & Dupont, P. (2017). Mining a sub-matrix of maximal
sum. In Proceedings of the 6th International Workshop on New Frontiers in
Mining Complex Patterns in conjunction with ECML-PKDD 2017 .

Branders, V., Schaus, P., & Dupont, P. (2019b). Identifying gene-specific
subgroups: an alternative to biclustering. BMC Bioinformatics, 20 ,
625. URL: https://doi.org/10.1186/s12859-019-3289-0. doi:10.1186/
s12859-019-3289-0.

Cambazard, H., & Fages, J.-G. (2015). New filtering for AtMostNValue and
its weighted variant: A Lagrangian approach. Constraints, 20 , 362–380.
URL: http://link.springer.com/10.1007/s10601-015-9191-0. doi:10.
1007/s10601-015-9191-0.

Dao, T. H., Docquier, F., Maurel, M., & Schaus, P. (2018). Global Migration in
the 20th and 21st Centuries: the Unstoppable Force of Demography. URL:
https://hal.archives-ouvertes.fr/hal-01743799 fERDI Working paper
P223.

Derval, G., Branders, V., Dupont, P., & Schaus, P. (2019). The maximum
weighted submatrix coverage problem: A cp approach. In International Con-
ference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (pp. 258–274). Springer.

Derval, G., & Schaus, P. (2020a). Maximal-Sum Submatrix search using
a hybrid Contraint Programming/Linear Programming approach: source
code. URL: https://doi.org/10.5281/zenodo.3992317. doi:10.5281/
zenodo.3992317.

Derval, G., & Schaus, P. (2020b). Software Open Access Maximal-Sum Sub-
matrix search using a hybrid Contraint Programming/Linear Programming
approach: experiment code and results. URL: https://doi.org/10.5281/
zenodo.3992324. doi:10.5281/zenodo.3992324.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2006). Column Generation.
Springer Science & Business Media.

Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In
International Conference on Principles and Practice of Constraint Program-
ming (pp. 189–203). Springer.

Geerts, F., Goethals, B., & Mielikinen, T. (2004). Tiling Databases. In
E. Suzuki, & S. Arikawa (Eds.), Discovery Science Lecture Notes in Com-
puter Science (pp. 278–289). Berlin, Heidelberg: Springer. doi:10.1007/
978-3-540-30214-8_22.

28

http://dx.doi.org/10.1007/978-3-030-33778-0_2
http://dx.doi.org/10.1007/978-3-030-33778-0_2
https://doi.org/10.1186/s12859-019-3289-0
http://dx.doi.org/10.1186/s12859-019-3289-0
http://dx.doi.org/10.1186/s12859-019-3289-0
http://link.springer.com/10.1007/s10601-015-9191-0
http://dx.doi.org/10.1007/s10601-015-9191-0
http://dx.doi.org/10.1007/s10601-015-9191-0
https://hal.archives-ouvertes.fr/hal-01743799
https://doi.org/10.5281/zenodo.3992317
http://dx.doi.org/10.5281/zenodo.3992317
http://dx.doi.org/10.5281/zenodo.3992317
https://doi.org/10.5281/zenodo.3992324
https://doi.org/10.5281/zenodo.3992324
http://dx.doi.org/10.5281/zenodo.3992324
http://dx.doi.org/10.1007/978-3-540-30214-8_22
http://dx.doi.org/10.1007/978-3-540-30214-8_22


Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear optimization
volume 108. Siam.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining
and Knowledge Discovery , 8 , 53–87. URL: https://doi.org/10.1023/B:

DAMI.0000005258.31418.83. doi:10.1023/B:DAMI.0000005258.31418.83.

Hartigan, J. A. (1972). Direct Clustering of a Data Matrix. Journal of the Amer-
ican Statistical Association, 67 , 123–129. URL: https://www.tandfonline.
com/doi/abs/10.1080/01621459.1972.10481214. doi:10.1080/01621459.
1972.10481214.

Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A. C., Marchal, K., &
De Raedt, L. (2014). Ranked Tiling. In T. Calders, F. Esposito, E. Hller-
meier, & R. Meo (Eds.), Machine Learning and Knowledge Discovery in
Databases Lecture Notes in Computer Science (pp. 98–113). Berlin, Hei-
delberg: Springer. doi:10.1007/978-3-662-44851-9_7.

Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological
data analysis: a survey. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 1 , 24–45.

Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., & Diot, C. (2002).
Traffic matrix estimation: Existing techniques and new directions. In ACM
SIGCOMM Computer Communication Review (pp. 161–174). ACM vol-
ume 32.

OscaR Team (2012). OscaR: Scala in OR. Available from
https://bitbucket.org/oscarlib/oscar.

Peeters, R. (2003). The maximum edge biclique problem is NP-
complete. Discrete Applied Mathematics, 131 , 651–654. URL: http:

//www.sciencedirect.com/science/article/pii/S0166218X03003330.
doi:10.1016/S0166-218X(03)00333-0.

Pontes, B., Girldez, R., & Aguilar-Ruiz, J. S. (2015). Biclustering on
expression data: A review. Journal of Biomedical Informatics, 57 ,
163–180. URL: http://www.sciencedirect.com/science/article/pii/

S1532046415001380. doi:10.1016/j.jbi.2015.06.028.

Punnen, A. P., Sripratak, P., & Karapetyan, D. (2015). The bipartite
unconstrained 01 quadratic programming problem: Polynomially solv-
able cases. Discrete Applied Mathematics, 193 , 1–10. URL: http:

//www.sciencedirect.com/science/article/pii/S0166218X15001742.
doi:10.1016/j.dam.2015.04.004.

Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007). Optimiz-
ing Binary MRFs via Extended Roof Duality. In 2007 IEEE Conference on

29

https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
https://www.tandfonline.com/doi/abs/10.1080/01621459.1972.10481214
https://www.tandfonline.com/doi/abs/10.1080/01621459.1972.10481214
http://dx.doi.org/10.1080/01621459.1972.10481214
http://dx.doi.org/10.1080/01621459.1972.10481214
http://dx.doi.org/10.1007/978-3-662-44851-9_7
http://www.sciencedirect.com/science/article/pii/S0166218X03003330
http://www.sciencedirect.com/science/article/pii/S0166218X03003330
http://dx.doi.org/10.1016/S0166-218X(03)00333-0
http://www.sciencedirect.com/science/article/pii/S1532046415001380
http://www.sciencedirect.com/science/article/pii/S1532046415001380
http://dx.doi.org/10.1016/j.jbi.2015.06.028
http://www.sciencedirect.com/science/article/pii/S0166218X15001742
http://www.sciencedirect.com/science/article/pii/S0166218X15001742
http://dx.doi.org/10.1016/j.dam.2015.04.004


Computer Vision and Pattern Recognition (pp. 1–8). Minneapolis, MN, USA:
IEEE. URL: http://ieeexplore.ieee.org/document/4270228/. doi:10.
1109/CVPR.2007.383203.

Schaus, P., Aoga, J. O. R., & Guns, T. (2017). CoverSize: A Global Con-
straint for Frequency-Based Itemset Mining. In J. C. Beck (Ed.), Prin-
ciples and Practice of Constraint Programming Lecture Notes in Com-
puter Science (pp. 529–546). Cham: Springer International Publishing.
doi:10.1007/978-3-319-66158-2_34.

Sellmann, M. (2004). Theoretical Foundations of CP-Based Lagrangian Relax-
ation. In M. Wallace (Ed.), Principles and Practice of Constraint Program-
ming CP 2004 Lecture Notes in Computer Science (pp. 634–647). Berlin,
Heidelberg: Springer. doi:10.1007/978-3-540-30201-8_46.

Shaw, P. (1998). Using constraint programming and local search methods to
solve vehicle routing problems. In International conference on principles and
practice of constraint programming (pp. 417–431). Springer.

Tan, J. (2008). Inapproximability of Maximum Weighted Edge Biclique and Its
Applications. In M. Agrawal, D. Du, Z. Duan, & A. Li (Eds.), Theory and Ap-
plications of Models of Computation Lecture Notes in Computer Science (pp.
282–293). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-79228-4_
25.

Tanay, A., Sharan, R., & Shamir, R. (2002). Discovering statisti-
cally significant biclusters in gene expression data. Bioinformatics,
18 , S136–S144. URL: https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/18.suppl_1.S136.
doi:10.1093/bioinformatics/18.suppl_1.S136.

The World Bank (2018). Migration and remittances data. Data
retrieved from ”Bilateral Migration Matrix 2018”, http://www.

worldbank.org/en/topic/migrationremittancesdiasporaissues/

brief/migration-remittances-data.

Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao,
M., Peterse, H. L., Van Der Kooy, K., Marton, M. J., Witteveen, A. T. et al.
(2002). Gene expression profiling predicts clinical outcome of breast cancer.
nature, 415 , 530.

Xie, J., Ma, A., Fennell, A., Ma, Q., & Zhao, J. (2018). It is time to
apply biclustering: a comprehensive review of biclustering applications in
biological and biomedical data. Briefings in Bioinformatics, 20 , 1450–
1465. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931057/.
doi:10.1093/bib/bby014.

30

http://ieeexplore.ieee.org/document/4270228/
http://dx.doi.org/10.1109/CVPR.2007.383203
http://dx.doi.org/10.1109/CVPR.2007.383203
http://dx.doi.org/10.1007/978-3-319-66158-2_34
http://dx.doi.org/10.1007/978-3-540-30201-8_46
http://dx.doi.org/10.1007/978-3-540-79228-4_25
http://dx.doi.org/10.1007/978-3-540-79228-4_25
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.suppl_1.S136
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.suppl_1.S136
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S136
http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931057/
http://dx.doi.org/10.1093/bib/bby014

	Introduction
	Definitions and notations
	Existing work, similar problems and variants
	Maximum Weighted Edge Biclique (MWEB)
	Multiple maximum submatrices
	Other biclustering algorithms

	An upper bound solvable by inspection
	A Lagrangian-based upper bounding procedure
	A note about bounds' strengths and relations
	Using the bounds in a CP framework
	Dealing with partial solutions
	Update of the incumbent solution
	Upper bounding
	FBigM-linear-rows
	Fx-lrelax-partial

	Reduced-Cost-based filtering
	Upper bound filtering
	Lower bound filtering

	Methods and complexities summary

	Experiments
	Complete search
	Large neighborhood search on bigger instances
	Upper bounding
	Real-life data

	Conclusion

