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Abstract—One important problem in spectrum sensing is to
detect a noisy and unknown signal, while keeping the risk of
detection error as low as possible. This problem may increase
in mobile environments due to fast situation changes. In this
paper, we consider a mobile cognitive radio scenario, and try
to evaluate whether some knowledge about the environment
and the mobility parameters of the user can help in improving
the detection of changes in the spectrum occupancy. To do so,
we assume that the mobility parameters can be summarized
in some a priori knowledge on the average time of spectrum
change and we use Bayesian changepoint detection methods.
Considering that the power of the signal to be detected is usually
unknown, a low-complexity algorithm is proposed that does not
rely on this knowledge. It is then compared with the existing
algorithms in the literature. Finally, a new metric is introduced
to jointly evaluate the costs of interference and spectrum waste
induced by the changepoint detection algorithms, in a time-
limited communication context. Results reveal that the derived
algorithm outperforms its non-Bayesian equivalent at low signal
to noise ratio (SNR).

Index Terms—mobile cognitive radio, spectrum sensing,
changepoint detection

I. INTRODUCTION

Cognitive radio (CR) is intended to increase the spectral
efficiency in wireless communication systems, by allowing
opportunistic access to spectrum holes. Spectrum sensing is
a critical step in CR because it directly impacts the amount of
interference caused on the existing primary users (PUs) and
the amount of spectrum that will be available for the secondary
user (SU). In mobile environments, the spectrum occupancy
becomes more dynamic as the SU is moving. One may wonder
if it is possible to use parameters such as speed and mobility
patterns to make better decisions.

Classical detection paradigms are hypotheses tests that try to
know which distribution the observed samples belong to, either
sample by sample (sequential test) or considering a block of
samples. Unlike those paradigms, the sequential changepoint
detection (or quickest detection) wants to detect, as quickly as
possible, a change in the distribution of the observed samples.
It may be a better alternative to classical detection for spectrum
sensing in mobility scenarios because of the need to quickly
detect a PU (or another SU) appearance or disappearance when
moving. Several approaches or frameworks of quickest detec-
tion are found in the literature. On the one hand, the minimax
approach assumes that the changepoint is deterministic and
unknown. On the other hand, the Bayesian approach assumes
that the changepoint is a random variable with a known prior
distribution.

The theory of changepoint detection includes many al-
gorithms such as the cumulative sum (CUSUM) procedure,
which is proved to be optimal in the minimax framework

for independent and identically distributed (i.i.d) observations
[1], [2], and the Shiryaev procedure which is optimal in the
Bayesian framework. Comparing them, it is shown in [3] that
CUSUM loses its asymptotic optimality (in terms of minimum
average detection delay) in the Bayesian framework, when
the changepoint has a prior distribution with exponentially
decreasing tail, but it remains optimal for heavy-tailed priors.
Moreover, authors in [4] showed that Shiryaev algorithm per-
forms much better than CUSUM when the difference between
the pre-change and the post-change distributions – measured
as the Kullback-Leibler divergence – decreases. In the CR
context, this corresponds to a low power signal to detect in
noise, or in other words, a low SNR. In practice, the level of
the signal to detect (or equivalently the SNR) is usually not
known in advance. Various solutions help to deal with this. The
generalized likelihood ratio (GLR) test, for instance, replaces
the unknown parameter of the distribution by its maximum
likelihood estimate [5]. The mixture-based test averages the
decision statistic over the unknown parameter, assuming that
the prior distribution of this one is known. Other approaches
include non-parametric tests, and the interesting M-Shiryaev
algorithm [6], [7], which is used when the unknown post-
change parameter belongs to a discrete set of values.

Many works, in the literature, apply quickest detection to
CR. For example, authors of [8] developed a changepoint de-
tection framework, using CUSUM, GLR-based CUSUM and a
nonparametric test, for different prior information available at
the SU. Wideband quickest spectrum sensing is studied in [9],
for independent channels, and in [10], for correlated channels.
Impact of fading, multiple antennas [11] and collaborative
schemes [12] over CUSUM is also covered.

In this paper, we investigate the possibility of using change-
point detection in mobile cognitive radio. We postulate that
the prior distribution of the changepoint could be, in practice,
inferred from mobility parameters. Therefore, we consider
the Shiryaev algorithm which is optimal in the Bayesian
framework. Given that the SU does not usually know the
signal power of PUs or other SUs using the spectrum, we
use the GLR approach. As the GLR-based Shiryaev involves
a complex optimization problem, we derive a low-complexity
GLR test (termed as LC GLR-Shiryaev) for Shiryaev algo-
rithm. Our goal is to compare the derived algorithm with
other existing algorithms (CUSUM, GLR-CUSUM, Shiryaev,
M-Shiryaev) for realistic CR scenarios, in order to know in
which situations it may offer the best performance. Moreover,
unlike previous works, we consider that both interference
and spectrum waste durations are important to evaluate the
performance of detection algorithms in a CR context. Hence,
we introduce a new metric, called global penalty, which
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considers both aspects. The simulations results show that the
derived LC GLR-Shiryaev algorithm is a good choice for a
practical mobile CR, when the SU does not have any a priori
knowledge about the SNR and could be required to detect very
low SNR signals. A new way of setting the optimal threshold
based on the global penalty is also proposed.

II. SYSTEM MODEL

Let us assume a system with a PU transmitting in a
frequency band and a SU willing to opportunistically use the
same band. It is assumed that a first spectrum sensing has been
performed and that the SU starts using the available band.
However, the SU may experience mobility. While moving,
the spectrum occupancy may thus change, due to getting in
range of a PU or another SU. For simplicity, this potentially
interfering user is called the PU below, but the case of
another SU is completely identical. In order to detect potential
changes in a given band, the SU is continuously measuring
the activity in this band. The observed signal sample at time
m is denoted by y[m]. When there is no PU activity, it is
given by y[m] = w[m], where w[m] is the Additive White
Gaussian Noise (AWGN) sample. When the PU transmits a
signal, the SU observes y[m] = s[m] + w[m], s[m] being
the transmitted signal affected by fading. It is assumed that
s[m] and w[m] are independent circularly symmetric complex
Gaussian, s[m] ∼ CN (0, σ2

s), w[m] ∼ CN (0, σ2
w), and

independent of each other.
We assume that, initially, the PU is not transmitting (or is
not visible) and the observed samples follow a Gaussian
distribution with variance σ2

w. At an unknown time sample τ ,
the PU appears while the SU is moving, and the distribution
changes to a Gaussian distribution with variance σ2

s + σ2
w.

At each time sample n, the SU tries to detect the possible
change in the distribution, based on the received sequence
yn1 = y[1], ..., y[n] up to the current time sample. The SU
should thus distinguish between the following two hypotheses

H0 : y[m] = w[m], m = 1, ..., n
H1 : ∃ τ ∈ [0, n], such that

y[m] = w[m], m = 1, ..., τ
y[m] = s[m] + w[m], m = τ + 1, ..., n

where H0 means there has not been any change in the
received sequence distribution up to now, and H1 means there
has been a change at time sample τ . As we consider the
Bayesian framework, it is assumed that τ is a random variable
independent of the observations, with a geometric prior. This
choice is motivated by the fact that the experience of finding
the changepoint can be viewed as a sequence of trials with a
certain number of failures (no change) before the first success
(changepoint). Furthermore, we postulate that the parameter p
of this geometric prior can be known with a certain degree
of accuracy, if the speed of the SU and its environment are
known. Intuitively, a high speed of the SU may correspond to
a high value of p because the spectrum situation may change
more frequently.

III. CLASSICAL CHANGEPOINT DETECTION ALGORITHMS

In this section, the Bayesian approach of changepoint detec-
tion and the most popular changepoint detection algorithms are
reviewed. In general, the stopping time of an algorithm (time
sample when a change is detected) will be denoted by T .

A. Deterministic approach - CUSUM algorithms
1) CUSUM: At each time sample n, the CUSUM algorithm

compares a decision statistic Cn with a threshold α and an
alarm is raised as soon as Cn exceeds α. Its stopping time is
thus given by [8]
TCUSUM = inf{n ≥ 1 : Cn ≥ α},with Cn = max

k≤n

n∑
m=k+1

lnLm,

(1)
where Lm is the likelihood ratio of the mth observation,
given by Lm =

σ2
w

σ2
s+σ

2
w
exp

(
|y(m)|2 σ2

s

σ2
w (σ2

s+σ
2
w)

)
.

2) GLR-CUSUM: When σ2
s is unknown, it is replaced by

the value that maximizes Cn and the decision statistic becomes

Cn,GLR = max
k≤n

sup
σ2
s

n∑
m=k+1

( |y(m)|2 σ2
s

σ2
w (σ2

s + σ2
w)

+ ln
σ2
w

σ2
s + σ2

w

)
.

(2)

B. Bayesian approach - Shiryaev algorithm
The Bayesian approach [13] assumes that τ follows a

specific prior distribution, and looks for the optimal algorithm
that minimizes the average detection delay ADDl under a
constraint on the false alarm probability PFA. The false alarm
probability is defined as

PFA = P (T ≤ τ) =
∞∑
k=1

p(1− p)kP (T ≤ k). (3)

The average detection delay is defined as

ADDl = E(T − τ | T > τ) =
E(T − τ)+

P (T > τ)
(4)

where x+ = max{0, x}. The optimal algorithm is the
Shiryaev algorithm. As expressed in [13], its stopping time
is

TSh = inf{n ≥ 1 : Cn,p ≥ α},with Cn,p =
n∑
k=1

n∏
m=k

Lm
1− p

(5)
where α is selected in such a way that PFA ≤ ω, ω ∈]0, 1[.

IV. LOW-COMPLEXITY GLR-SHIRYAEV ALGORITHM

In this paragraph, the new LC GLR-Shiryaev algorithm is
introduced. It is obtained by applying the GLR approach to
Shiryaev algorithm, for situations where σ2

s is unknown to
the SU. Similarly to the GLR-CUSUM, the statistic Cn,p has
to be maximized over the set of possible values of σ2

s . The
GLR-Shiryaev statistic is given by
C̃n,p = sup

σ2
s

Cn,p(σ
2
s)

= sup
σ2
s

n∑
k=1

n∏
m=k

( 1

1− p

) σ2
w

σ2
s + σ2

w

exp
( |y(m)|2 σ2

s

σ2
w (σ2

s + σ2
w)

)
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σ2
s≥0

n∑
k=1

1

(1− p)n−k+1

((
σ2
w

σ2
s + σ2

w

)n−k+1

exp

(
σ2
s

σ2
w (σ2

s + σ2
w)
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m=k

|y(m)|2
))

.

The metric Cn,p(σ
2
s) can be shown to be a non-convex

function and its derivative is a nonlinear function whose zeros
are hard to find analytically. To relax the optimization problem,
we make the following approximation. Instead of directly



maximizing the sum Cn,p, each term of the sum is maximized
independently, making the problem easier to solve. In other
words, rather than computing the σ2

s that maximizes Cn,p, we
compute for each term of Cn,p, the σ2

s,k that maximizes this
term. The new decision statistic is thus

C̃n,p '
n∑
k=1

1

(1− p)n−k+1
sup
σ2
s,k

((
σ2
w

σ2
s,k + σ2

w

)n−k+1

exp

(
σ2
s,k

σ2
w (σ2

s,k + σ2
w)

n∑
m=k

|y(m)|2
))

.

(6)

Looking at one term at a time, the logarithm of the kth term is
redefined as gk(σ2

s,k), and the optimization problem that needs
to be solved is the following

max
σ2
s,k≥0

gk(σ
2
s,k) = (n− k + 1) ln(

σ2
w

σ2
s,k+σ

2
w
)

+
σ2
s,k

σ2
w (σ2

s,k+σ
2
w)

∑n
m=k |y(m)|

2

.

(7)

The KKT conditions for this problem are given by
1

(σ2
s,k+σ

2
w)2

∑n
m=k |y(m)|2 − n−k+1

σ2
s,k+σ

2
w
+ λ = 0

σ2
s,k ≥ 0
λ ≥ 0
λ = 0 or σ2

s,k = 0

where λ is the Lagrange multiplier. The solutions can be split
in two cases:
• Case 1: σ2

s,k > 0 =⇒ λ = 0, σ2
s,k =

∑n
m=k |y(m)|2
n−k+1 −σ2

w,
which is obtained if

∑n
m=k |y(m)|2 ≥ (n− k + 1)σ2

w.
• Case 2: σ2

s,k = 0 =⇒ λ =
(n−k+1)σ2

w −
∑n

m=k |y(m)|2
σ4
w

,
which is obtained for the reversed inequality, and thus
satisfies λ ≥ 0.

Consequently, the solution can be compactly written as

σ̃2
s,k =

{∑n
m=k |y(m)|2
n−k+1 − σ2

w

}+

.
Inserting it in (6), the decision statistic of the low-complexity
GLR-Shiryaev algorithm becomes

C̃n,p '
n∑
k=1

1

(1− p)n−k+1

((
σ2
w

σ̃2
s,k + σ2

w

)n−k+1
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(
σ̃2
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|y(m)|2
))

.

(8)

In summary, at each time sample n, the SU just has to compute
the decision statistic C̃n,p in (8) and compare it with the
threshold α, to decide of the PU appearance.

V. NUMERICAL RESULTS

In order to assess the precision of the approximation (6),
done in deriving LC GLR-Shiryaev, the initial optimization
problem could be solved numerically by using a grid search
over a finite set of values for σ2

s . An equivalent method for
doing that is the M-Shiryaev algorithm presented in [6]. M-
Shiryaev consists in running multiple (M ) parallel Shiryaev
procedures for each of the possible values of σ2

s and deciding
the PU appearance when any one of the procedures stops [7].

A. Simulation setup
It is assumed that the SU has a limited amount of time,

defined by the number N of measurement samples, for sec-
ondary communication and τ is geometrically generated with
parameter p. As mentioned in section II, the value of p
could be, in practice, inferred from the SU speed, and other
characteristics of the environment. It should also be mentioned
that it depends on the sampling frequency of the SU. In a
practical mobile CR scenario, the SU is expected to be able
to transmit for some reasonable amount of time, so the value
of p is rather small.

B. Global Penalty
In CR, it is desirable to reduce the interference with the

PU as much as possible but also to maximize the spectrum
usage. For this reason, we define a new criterion that tries to
take both effects into account. The criterion also has to take
into account for how long the interference or spectrum waste
is present with respect to the duration of the communication.
For this reason, the average detection delay, representing the
interference duration, is first redefined as

ADD = E
(
min{T,N} −min{τ,N}

)+
. (9)

This varies from the usual average detection delay definition of
the literature (4) in two ways. First, it is no longer conditional
to the correct detection event {T > τ}, but the average is
done over all cases (correct detection and false alarm) since
the cases with {T < τ} must be counted as creating no
interference penalty. Moreover, it also handles the cases where
there is no detection until the end of the frame (T = N ), and
the cases where the PU does not appear during the frame
(τ > N ). Similarly, the average false alarm duration (AFAD)
is defined as the average time between a false alarm decision
and the changepoint

AFAD = E
(
min{τ,N} −min{T,N}

)+
. (10)

This metric represents the average time of spectrum waste
during the time frame of communication. The penalties in-
duced by interference and waste of spectral opportunity are
respectively denoted by Pint and Pwso. Finally, the overall
global penalty (GP ) induced by the detection algorithm during
the time frame N can be defined as

GP = Pint ADD + Pwso AFAD. (11)

C. Simulations results & Discussion
The simulation parameters are given the following values:

p ∈ {0.005, 0.05}, received SNR =
σ2
s

σ2
w
∈ {−10, 0, 5} dB

when the PU is present, SU’s communication duration N =
1000 samples, penalties1 Pint = 0.5 and Pwso = 0.14.

In order to concurrently visualize the interference and the
spectral opportunity waste induced by each algorithm, the
ADD vsAFAD curve, obtained by varying the threshold, is
represented in Fig. 1. It can be viewed as a kind of com-
plementary receiver operating characteristics (ROC) curve for
changepoint spectrum sensing algorithms. Shiryaev algorithm
has the best performance at every SNR value. CUSUM and
GLR-CUSUM have comparable performance with Shiryaev

1To compute the penalties in this paper, we make a simple assumption of a
multi-band transmission (20 sub-bands at least) with uniform power allocation
and compute the loss in the total channel rate when the SU fails in detecting
the PU activity on a sub-band (interference) and when it releases a sub-band
before the PU appearance (spectrum waste).



(a) p = 0.005, SNR = 5 dB.

(b) p = 0.005, SNR = -10 dB.

Fig. 1: ADD vs AFAD for p = 0.005.

at high SNR values, whereas LC GLR-Shiryaev and M-
Shiryaev outperform them at low SNR values. As it can be
seen, LC GLR-Shiryaev and M-Shiryaev have comparable
performance in every cases, showing that the approximation
(6) is acceptable. It can be shown with further simulations
that when a narrower range of possible values of σ2

s is chosen
around the true value, the M-Shiryaev algorithm approaches
the optimal Shiryaev algorithm. However this requires an
accurate a priori knowledge of the SNR which is usually not
available. LC GLR-Shiryaev has the advantage of not requiring
any a priori knowledge as it uses an analytical form. It also
does not require to compute multiple parallel procedures.

The choice of the threshold α is an important issue and
choosing a specific value will put the algorithm at a specific
operating point on the ADD vsAFAD curve. It is desirable
to choose a threshold that gives a good compromise between
ADD and AFAD. We suggest to fix this threshold with the
help of the GP vs log10(α) curves plotted in Fig. 2 and Fig.
3. First, it can be seen that, for every algorithm, a minimum
global penalty exists, and the corresponding threshold depends
on the SNR and the value of p. By comparing Fig. 2 (a) and

(a) p = 0.005, SNR = 5 dB & 0 dB.

(b) p = 0.005, SNR = -10 dB.

Fig. 2: GP vs log10(α) for p = 0.005.

Fig. 2 (b), the same tendency as before can be noticed: LC
GLR-Shiryaev and M-Shiryaev yield lower minimum global
penalties than CUSUM and GLR-CUSUM at low SNR, for
p = 0.005. The same trend is observed when p is increased
tenfold (p = 0.05) in Fig. 3. Moreover, looking at Fig. 2,
it can be noticed that CUSUM and GLR-CUSUM are more
sensitive to the threshold variation, i.e., small variations of the
threshold around its optimal value can result in high variations
of the global penalty.

These results show that Shiryaev-based algorithms work
better than CUSUM-based algorithms at low SNR. This can
be explained by the fact that at low SNR, the PU’s signal
becomes more difficult to distinguish from noise and the prior
knowledge of the PU appearance can help increasing the
detection performance. These results are consistent with the
literature on changepoint detection theory, since a low value of
the Kullback-Leibler information corresponds to a low value of
the SNR in a CR context [4], [13]. This advantage of Shiryaev-
based algorithms over CUSUM-based algorithms in low SNR
ranges is valuable in practical mobile CR. In fact, multipath
fading and shadowing can happen very frequently and the SU



(a) p = 0.05, SNR = 5 dB.

(b) p = 0.05, SNR = -10 dB.

Fig. 3: GP vs log10(α) for p = 0.05.

could be required to detect primary signals with very low SNR
(low as -20 dB, according to IEEE 802.22 wireless regional
area network standard) [14].
D. Optimal threshold setting

In the literature, the optimal threshold is classically chosen
so that the false alarm probability is below a given value.
In this work, we suggest to choose the optimal threshold as
the one that minimizes the global penalty. We have noticed
that this optimal threshold depends on p and the SNR, but
is approximately independent of the time frame duration N .
If the SNR is known, the optimal thresholds can be pre-
computed offline and recovered from a table during the actual
sensing. Based on simulations, the optimal thresholds have
been computed for a set of given SNR values. The results are
presented in TABLE I below. When the SNR is unknown, the
SNR could be estimated first or a fixed threshold, independent
from the SNR, could be used.

VI. CONCLUSION

In this work, Bayesian changepoint detection is applied to
mobile cognitive radio. A low-complexity algorithm, based on

TABLE I: Optimal thresholds computed through simulations

Algorithm
SNR (dB) -10 -5 0 5

p=0.005
CUS 0.4516 1.8248 4.8819 7.9771
GLR-CUS 1.6521 2.9753 6.3437 7.9771
Shi 52.2811 171.9072 966.7053 4.4367e+03
LC GLR-Shi 117.8190 258.0862 6.0174e+03 3.3839e+04
M-Shi 57.4652 258.0862 3.2712e+03 3.3839e+04

p=0.05
CUS 0.0179 0.1317 0.5987 1.9684
GLR-CUS 0.0179 0.1838 0.6471 1.9684
Shi 5.4419 6.0174 6.7289 22.0537
LC GLR-Shi 6.5786 9.3193 10.3830 70.7107
M-Shi 5.4419 5.3150 9.2552 62.3929

the Shiryaev algorithm and using the GLR test, is introduced.
It shows a reduced complexity, when compared with the
real GLR-based Shiryaev which needs to solve a complex
optimization problem at each time sample. Moreover it gives
better performance than the GLR-based CUSUM in low SNR
situations, thanks to the prior knowledge of the PU appearance.
We assume that the a priori probability of spectrum change
could be inferred from mobility parameters but do not consider
a specific model relating them in this paper. Such a model may
be derived either mathematically, using stochastic geometry, or
experimentally, by means of field measurements. It thus may
be subject for future research. Collaborative schemes of the
proposed LC GLR-Shiryaev are other interesting perspectives
to investigate.
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