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Abstract 
The `depmap` package facilitates access in the R environment to the 
data from the DepMap project, a multi-year collaborative effort by the 
Broad Institute and Wellcome Sanger Institute, mapping genetic and 
chemical dependencies and other molecular biological measurements 
of over 1700 cancer cell lines. The 'depmap' package formats this data 
to simply the use of popular R data analysis and visualizing tools such 
as 'dplyr' and 'ggplot2'. In addition, the 'depmap' package utilizes 
'ExperimentHub', storing versions of the DepMap data accessible from 
the Cloud, which may be selectively downloaded, providing a 
reproducible research framework to support exploiting this data. This 
paper describes a workflow demonstrating how to access and 
visualize the DepMap data in R using this package.
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Introduction
The consequences of genomic alterations of cancer cells on the molecular biological landscape of the cell may result in
differential vulnerabilities, or “dependencies” compared to those of healthy cells. An example of genetic dependency is a
gene not necessary for the survival in healthy cells, but due to perturbations of the metabolic networks caused by cancer
mutations, such a gene becomes essential for the vitality of a particular cancer cell line. However, due to the complex
nature of metabolic networks, the exact mechanistic nature of many genetic dependencies of cancer are not completely
understood.1 Amap illustrating the relationships between the genetic features of cancer and those of cancer dependencies
is therefore desirable. The Cancer Dependency Map or “DepMap”, a collaborative initiative between the Broad Institute
and the Wellcome Sanger Institute, aims to map genetic dependencies in a broad range of cancer cell lines. Over 1700
cancer cell lines have been selected to be tested in this effort, intended to reflect the overall distribution of various cancer
diseases in the general population. The stated aim of the DepMap Project is developing a better understanding of the
molecular biology of cancer and the exploiting of this knowledge to develop new therapies in precision cancer medicine.2

The DepMap initiative is, as of the date of this publication, an ongoing project, with new data releases of select datasets
every 90 days. As of the 20Q4 DepMap release, 1812 human cancer cell lines have been mapped for dependencies.2

The DepMap project utilizes CRISPR gene knockout as the primary method to map genomic dependencies in cancer cell
lines.2-5 The resulting genetic dependency score displayed in the DepMap data is calculated from the observed log
fold change in the amount of shRNA detected in pooled cancer cell lines after gene knockout.6,7 To correct for potential
off-target effects of gene knockout in overestimating dependency with CRISPR, the DepMap initiative utilized the
CERES algorithm tomoderate the final dependency score estimation.3 It should be noted that due to improvements in the
CERES algorithm to estimate genetic dependency while accounting for CRISPR seed effects, the RNAi dependency
measurements have been rendered redundant, and further data releases for RNAi dependency measurement have been
discontinued as of the 19Q3 release.2,4 In addition to genomic dependency measurements of cancer cell lines, chemical
dependencies were also measured by the DepMap PRISM viability screens that as of the 20Q4 release, tested 4,518
compounds against 578 cancer cell lines.2,8 A new protemic dataset was added with the 20Q2 release, providing
normalized quantitative profiling of proteins of 375 cancer cell lines by mass spectrometry.9 The DepMap project has
also compiled additional datasets detailing molecular biological characterization of cancer cell lines, including WES
genomic copy number, Reverse Phase Protein Array (RPPA) data, TPM gene expression data for protein coding genes
and genomic mutation call data. Core datasets such as CRISPR viability screens, TPM gene expression, WES copy
number and genomic mutation calls are updated quarterly on a release schedule. All datasets are made publicly available
under CC BY 4.0 licence.2

A table of the datasets available for the depmap package (as of 20Q4 release) is displayed in Table 1.

ThedepmapBioconductor packagewas created in order to efficiently exploit these rich datasets and to promote reproducible
research, facilitated by importing the data into the R environment. The value added by the depmap Bioconductor package
includes cleaning and converting all datasets to long format tibbles,10 as well as adding the unique key depmap_id for all
datasets. The addition of the the unique key depmap_id aides the comparison and benchmarking of multiple molecular
features and streamlines the datasets for usage of common R packages such as dplyr11 and ggplot2.12

As new DepMap datasets are continuously released on a quarterly basis, it is not feasible to include all dataset files in
binary directly within the directory of the depmap R package. To keep the package lightweight, the depmap package
utilizes and fully depends on theExperimentHub package13 to store and retrieve all versions of theDepMap data (as of
this publication, starting from version 19Q1 through 20Q4) in the Cloud using AWS. The depmap package contains
accessor functions to directly download and cache the most current datasets from the Cloud into the local R environment.
Specific datasets (such as datasets from older releases), which can be downloaded separately, if desired. The depmap
package was designed to enhance reproducible research by ensuring datasets from all releases will remain available to
researchers. The depmap R package is available as part of Bioconductor at: https://bioconductor.org/packages/depmap.

Use cases
Dependency scores are the features of primary interest in the DepMap Project datasets. These measurements can be
found in datasets crispr and rnai, which contain information on genetic dependency, as well as the dataset drug_
sensitivity, which contains information pertaining to chemical dependency. The genetic dependency can be
interpreted as an expression of how vital a particular gene for a given cancer cell line. For example, a highly negative
dependency score is derived from a large negative log fold change in the population of cancer cells after gene knockout or
knockdown, implying that a given cell line is highly dependent on that gene inmaintainingmetabolic function. Genes that
are not essential for non-cancerous cells but display highly negative dependency scores for cancer cell lines, may be
interesting candidates for research in targeted cancer medicine. In this workflow, we will describe exploring and
visualizing several DepMap datasets, including those that contain information on genetic dependency.
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Below, we start by loading the packages need to run this workflow.

library("depmap")
library("ExperimentHub")
library("dplyr")
library("ggplot2")
library("stringr")

The depmap datasets are too large to be included into a typical package, therefore these data are stored in the Cloud.
There are two ways to access the depmap datasets. The first such way calls on dedicated accessor functions that
download, cache and load the latest available dataset into the R workspace. Examples for all available data are shown
below:

rnai <- depmap_rnai()
crispr <- depmap_crispr()
copyNumber <- depmap_copyNumber()
TPM <- depmap_RPPA()
RPPA <- depmap_TPM()
metadata <- depmap_metadata()
mutationCalls <- depmap_mutationCalls()
drug_sensitivity <- depmap_drug_sensitivity()
proteomic <- depmap_proteomic()

Table 1.Datasets available thedepmappackage. The ‘Release’ column indicates themost recent available release.

Dataset Description EH_Number Dimensions Coverage Release

rnai (DEMETER2) Batch and off-target
corrected RNAi gene knockdown
dependency data

EH3080 17309genes,
712 cancer
cell lines

31 primary
diseases
and 31
lineages

Aug 7
2019

drug Drug sensitivity data for cancer
cell lines derived from logfold
change values relative to DMSO

EH3087 4686
compounds,
578 cell lines

23 primary
diseases
and 25
lineages

Aug 7
2019

proteomic Normalized quantitative
profiling of proteins by mass
spectrometry

EH3459 12399
proteins, 375
cancer cell
lines

24 primary
diseases
and 27
lineages

May 20
2020

crispr (CERES) Batch and off-target
corrected CRISPR-Cas9 gene
knockdout dependency data

EH3960 18119genes,
808 cell lines

31 primary
diseases
and 29
lineages

Nov 20
2020

copyNumber WES log copy number data EH3961 27562genes,
1753 cell
lines

35 primary
diseases
and 38
lineages

Nov 20
2020

TPM CCLE TPM RNAseq gene
expression data for protein
coding genes

EH3962 19182genes,
1376 cancer
cell lines

33 primary
diseases
and 37
lineages

Nov 20
2020

mutationCalls Merged mutation calls (for
coding region, germline filtered)

EH3963 18789genes,
1749 cell
lines

35 primary
diseases
and 38
lineages

Nov 20
2020

metadata Metadata for cell lines in the
20Q4 DepMap release

EH3964 1812 cell
lines

35 primary
diseases
and 39
lineages

Nov 20
2020

Page 4 of 17

F1000Research 2021, 10:416 Last updated: 04 AUG 2021



Alternatively, a specific dataset (from any available release) can be accessed through Bioconductor’s ExperimentHub.
TheExperimentHub() function creates anExperimentHubobject,which can be queried for specific terms of interest.
The list of datasets available that correspond to the query, depmap are shown below:

## create ExperimentHub query object
eh <- ExperimentHub()
query(eh, "depmap")

## ExperimentHub with 48 records
## # snapshotDate(): 2020-10-27
## # $dataprovider: Broad Institute
## # $species: Homo sapiens
## # $rdataclass: tibble
## # additional mcols(): taxonomyid, genome, description,
## # coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
## # rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["EH2260"]]'
##
## title
## EH2260 | rnai_19Q1
## EH2261 | crispr_19Q1
## EH2262 | copyNumber_19Q1
## EH2263 | RPPA_19Q1
## EH2264 | TPM_19Q1
## ... ...
## EH5358 | crispr_21Q1
## EH5359 | copyNumber_21Q1
## EH5360 | TPM_21Q1
## EH5361 | mutationCalls_21Q1
## EH5362 | metadata_21Q1

Specific datasets can be downloaded, cached and loaded into the workspace as tibbles by selecting each dataset by their
unique EH numbers. Shown below, datasets from the 20_Q3 release are downloaded in this way.

## download and cache required datasets
crispr <- eh[["EH3797"]]
copyNumber <- eh[["EH3798"]]
TPM <- eh[["EH3799"]]
mutationCalls <- eh[["EH3800"]]
metadata <- eh[["EH3801"]]
proteomic <- eh[["EH3459"]]

By importing the depmap data into the R environment, the data may be mined more effectively utilzing R data
manipulation tools. For example, molecular dependency for all cell lines pertaining to soft tissue sarcomas, sorted by
genes with the greatest dependency, can be accomplished with the following code, using functions from the dplyr
package. Below, thecrispr dataset is selected for cell lines with “SOFT_TISSUE” in the CCLE name, and displaying a
list of the highest dependency scores.

## list of dependency scores
crispr %>%

dplyr::select(cell_line, gene_name, dependency) %>%
dplyr::filter(stringr::str_detect(cell_line, "SOFT_TISSUE")) %>%
dplyr::arrange(dependency)
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## # A tibble: 815,355 x 3
## cell_line gene_name dependency
## <chr> <chr> <dbl>
## 1 RH18DM_SOFT_TISSUE RAN -4.36
## 2 RH18DM_SOFT_TISSUE PSMB6 -3.82
## 3 RH18DM_SOFT_TISSUE C1orf109 -3.67
## 4 RH30_SOFT_TISSUE RAN -3.20
## 5 RH18DM_SOFT_TISSUE SNU13 -3.07
## 6 RH18DM_SOFT_TISSUE SPATA5L1 -3.04
## 7 RH18DM_SOFT_TISSUE HSPE1 -3.03
## 8 RH18DM_SOFT_TISSUE POLR1C -2.96
## 9 RH18DM_SOFT_TISSUE CDC16 -2.84
## 10 RH30_SOFT_TISSUE BUB3 -2.83
## # ... with 815,345 more rows

Abrief survey of the top dependency scores identifies the geneC1orf109 among themost dependent genes found in the
selected list of dependencies scores for soft tissue cancer cell lines. This gene, also known by the alias Chromosome 1
Open Reading Frame 109, codes for a poorly characterized protein which is theorized to promote cancer cell proliferation
by controlling the G1 to S phase transition.14 This protein is selected as an interesting candidate target to explore and
visualize the depmap data. Figure 1 displays the crispr data as a histogram showing the distribution of dependency
scores for gene C1orf109. The red dotted line signifies the mean dependency score for that gene, while the blue dotted
line signifies the global mean dependency score for all crispr measurements.
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Figure 1. Histogram of CRISPR dependency scores for gene C1orf109.
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mean_crispr_dep <- crispr %>%
dplyr::select(gene_name, dependency) %>%
dplyr::filter(gene_name == "C1orf109")

crispr %>%
dplyr::select(gene, gene_name, dependency) %>%
dplyr::filter(gene_name == "C1orf109") %>%
ggplot(aes(x = dependency)) + geom_histogram() +
geom_vline(xintercept = mean(mean_crispr_dep$dependency, na.rm = TRUE),

linetype = "dotted", color = "red") +
geom_vline(xintercept = mean(crispr$dependency, na.rm = TRUE),

linetype = "dotted", color = "blue")

A more complex plot of the crispr dependency data, is shown in Figure 2. Visualizing this data involves plotting
the distribution of dependency scores for gene C1orf109 for each major type of cancer, while highlighting the
qualitative nature of mutations of this gene in such cancer cell lines (e.g. if such mutations are damaging or conserved,
etc.). Genes known to be damaging mutations for a given cancer cell line are highlighted in red, while other non-
conserving mutations are highlighted in blue. Notice that the plot in Figure 1 reflects the same overall distribution in two
dimensions.
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Figure 2. Plot of CRISPR dependency scores for gene C1orf109 by lineage.
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meta_crispr <- metadata %>%
dplyr::select(depmap_id, lineage) %>%
dplyr::full_join(crispr, by = "depmap_id") %>%
dplyr::filter(gene_name == "C1orf109") %>%
dplyr::full_join((mutationCalls %>%

dplyr::select(depmap_id, entrez_id,
is_cosmic_hotspot,
var_annotation)),

by = c("depmap_id", "entrez_id"))

meta_crispr %>%
ggplot(aes(x = dependency, y = lineage)) +
geom_point(alpha = 0.4, size = 0.5) +
geom_point(data = subset(meta_crispr,

var_annotation == "damaging"),
color = "red") +

geom_point(data = subset(meta_crispr,
var_annotation == "other non-conserving"),

color = "blue") +
geom_vline(xintercept = mean(meta_crispr$dependency, na.rm = TRUE),

linetype = "dotted", color = "red") +
geom_vline(xintercept = mean(crispr$dependency, na.rm = TRUE),

linetype = "dotted", color = "blue")

Many cancer phenotypes may be the result of changes in gene expression.15-17 The extensive coverage of the depmap
data affords visualization of genetic expression patterns across many major types of cancer. Elevated expression of gene
C1orf109 in lung cancer tissue has been reported in literature.14 Figure 3 below shows a boxplot illustrating expression
values for gene C1orf109 by lineage:

metadata %>%
dplyr::select(depmap_id, lineage) %>%
dplyr::full_join(TPM, by = "depmap_id") %>%
dplyr::filter(gene_name == "C1orf109") %>%
ggplot(aes(x = lineage, y = rna_expression, fill = lineage)) +
geom_boxplot(outlier.alpha = 0.1) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
theme(legend.position = "none")

A relationship between elevated gene expression and genetic dependency in cancer cell lines has been reported in
literature.1,7 Therefore, genes with elevated gene expression and high genetic dependency may present especially
interesting research targets which may be explored through the DepMap datasets. Figure 4 shows a plot of expression
versus CRISPR gene dependency for Rhabdomyosarcoma. The red vertical line represents the average gene expression
for this form of cancer, while the horizontal line represents the average dependency for this cancer type.

sarcoma <- metadata %>%
dplyr::select(depmap_id, cell_line, primary_disease, subtype_disease) %>%
dplyr::filter(primary_disease == "Sarcoma",

subtype_disease == "Rhabdomyosarcoma")

crispr_sub <- crispr %>%
dplyr::select(depmap_id, gene, gene_name, dependency)

tpm_sub <- TPM %>%
dplyr::select(depmap_id, gene, gene_name, rna_expression)
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sarcoma_dep <- sarcoma %>%
dplyr::left_join(crispr_sub, by = "depmap_id") %>%
dplyr::select(-cell_line, -primary_disease,

-subtype_disease, -gene_name)

sarcoma_exp <- sarcoma %>%
dplyr::left_join(tpm_sub, by = "depmap_id")

sarcoma_dat_exp <- dplyr::full_join(sarcoma_dep, sarcoma_exp,
by = c("depmap_id", "gene")) %>%

dplyr::filter!is.na(rna_expression))
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Figure 3. Boxplot of TPM expression values for gene C1orf109 by lineage.
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sarcoma_dat_exp %>%
ggplot(aes(x = dependency, y = rna_expression)) +
geom_point(alpha = 0.4, size = 0.5) +
geom_vline(xintercept = mean(sarcoma_dat_exp$dependency, na.rm = TRUE),

linetype = "dotted", color = "red") +
geom_hline(yintercept = mean(sarcoma_dat_exp$rna_expression, na.rm = TRUE),

linetype = "dotted", color = "red") +
theme(axis.text.x = element_text(angle = 45))

Genes with the highest depenency scores and highest TPM gene expression are found in the upper left section of the plot
in Figure 4. Almost all of the genes with the highest dependency scores display above average expression.

sarcoma_dat_exp %>%
dplyr::select(cell_line, gene_name, dependency, rna_expression) %>%
dplyr::arrange(dependency, rna_expression)

Figure 4. Expression vs crispr gene dependency for Rhabdomyosarcoma.
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## # A tibble: 95,720 x 4
## cell_line gene_name dependency rna_expression
## <chr> <chr> <dbl> <dbl>
## 1 JR_SOFT_TISSUE RAN -2.49 9.51
## 2 SCMCRM2_SOFT_TISSUE RAN -2.43 9.89
## 3 SCMCRM2_SOFT_TISSUE SNRPD1 -2.31 7.99
## 4 JR_SOFT_TISSUE C1orf109 -2.28 4.56
## 5 SCMCRM2_SOFT_TISSUE ATP6V1B2 -2.23 5.44
## 6 SCMCRM2_SOFT_TISSUE POLR2L -2.21 6.09
## 7 SCMCRM2_SOFT_TISSUE PSMA3 -2.20 7.58
## 8 JR_SOFT_TISSUE TXNL4A -2.19 5.53
## 9 SCMCRM2_SOFT_TISSUE POLR2I -2.19 6.51
## 10 JR_SOFT_TISSUE SNRPD1 -2.19 8.28
## # ... with 95,710 more rows

Evidence that changes in genomic copy number may also play a role in some cancer phenotypes has also been
described in literature.3,18,19 This information can also be explored through the depmap datasets displaying the log
genomic copy number across cancer lineages. Figure 5 shows such a plot for gene C1orf109 for each major type of
cancer lineage:
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Figure 5. Boxplot of log copy number for gene C1orf109 by lineage.
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metadata %>%
dplyr::select(depmap_id, lineage) %>%
dplyr::full_join(copyNumber, by = "depmap_id") %>%
dplyr::filter(gene_name == "C1orf109") %>%
ggplot(aes(x = lineage, y = log_copy_number, fill = lineage)) +
geom_boxplot(outlier.alpha = 0.1) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
theme(legend.position = "none")

Discussion and outlook
We hope that this package will be used by cancer researchers to dig deeper into the DepMap data and to support their
research in precision oncology and developing targeted cancer therapies. Additionally, we highly encourage current and
future depmap users to combine depmap data with other datasets, such as those found through the The Cancer Genome
Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE).

The depmap R package will continue to be maintained in line with the biannual Bioconductor release schedule, in
addition to quarterly releases of DepMap data.

We welcome feedback and questions from the community. We also highly appreciate contributions to the code in the
form of pull requests on github.

Data availability
The depmap datasets are available through ExperimentHub. To install the depmap package, start a recent version of
R and execute:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("depmap")

Software availability
The depmap package is available from: https://doi.org/doi:10.18129/B9.bioc.depmap Source code available from:
https://github.com/UCLouvain-CBIO/depmap Archived source code as at time of publication: http://doi.org/10.5281/
zenodo.473994920 License: Artistic-2.

All packages used in this workflow are available from the Comprehensive RArchive Network (https://cran.r-project.org)
or Bioconductor (http://bioconductor.org). The specific version numbers of R and the packages used are shown below.

## R version 4.0.3 Patched (2021-01-18 r79847)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Manjaro Linux
##
## Matrix products: default
## BLAS: /usr/lib/libblas.so.3.9.0
## LAPACK: /usr/lib/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
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## [8] base
##
## other attached packages:
## [1] stringr_1.4.0 ggplot2_3.3.3 ExperimentHub_1.16.0
## [4] AnnotationHub_2.22.0 BiocFileCache_1.14.0 dbplyr_2.1.1
## [7] BiocGenerics_0.36.0 depmap_1.4.0 dplyr_1.0.5
## [10] kableExtra_1.3.4
##
## loaded via a namespace (and not attached):
## [1] Biobase_2.50.0 httr_1.4.2
## [3] bit64_4.0.5 viridisLite_0.3.0
## [5] shiny_1.6.0 assertthat_0.2.1
## [7] interactiveDisplayBase_1.28.0 BiocManager_1.30.12
## [9] stats4_4.0.3 blob_1.2.1
## [11] yaml_2.2.1 BiocWorkflowTools_1.16.0
## [13] BiocVersion_3.12.0 pillar_1.5.1
## [15] RSQLite_2.2.5 glue_1.4.2
## [17] digest_0.6.27 promises_1.2.0.1
## [19] rvest_1.0.0 colorspace_2.0-0
## [21] htmltools_0.5.1.1 httpuv_1.5.5
## [23] pkgconfig_2.0.3 bookdown_0.21.6
## [25] purrr_0.3.4 xtable_1.8-4
## [27] scales_1.1.1 webshot_0.5.2
## [29] svglite_2.0.0 later_1.1.0.1
## [31] git2r_0.28.0 tibble_3.1.0
## [33] farver_2.1.0 generics_0.1.0
## [35] IRanges_2.24.1 usethis_2.0.1
## [37] ellipsis_0.3.1 cachem_1.0.4
## [39] withr_2.4.1 cli_2.4.0
## [41] magrittr_2.0.1 crayon_1.4.1
## [43] mime_0.10 ps_1.6.0
## [45] memoise_2.0.0 evaluate_0.14
## [47] fs_1.5.0 fansi_0.4.2
## [49] xml2_1.3.2 tools_4.0.3
## [51] lifecycle_1.0.0 S4Vectors_0.28.1
## [53] munsell_0.5.0 AnnotationDbi_1.52.0
## [55] compiler_4.0.3 systemfonts_1.0.1
## [57] rlang_0.4.10 grid_4.0.3
## [59] rstudioapi_0.13 rappdirs_0.3.3
## [61] labeling_0.4.2 rmarkdown_2.7
## [63] gtable_0.3.0 DBI_1.1.1
## [65] curl_4.3 R6_2.5.0
## [67] knitr_1.31.3 fastmap_1.1.0
## [69] bit_4.0.4 utf8_1.2.1
## [71] stringi_1.5.3 Rcpp_1.0.6
## [73] vctrs_0.3.7 tidyselect_1.1.0
## [75] xfun_0.22
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The article introduces the depmap package that allows rapid access to the different datasets of 
the Cancer Dependency Map project. This Bioconductor package is easy to use, the code is well 
written and documented. Issues related to the package raised on github are addressed by the 
authors and the data is regularly updated. Overall this is a very useful resource for the cancer 
dependency research community. 
 
I have a few suggestions that in my opinion would improve the article and help the package 
become even more popular.

In the introduction, 2nd paragraph, the authors introduce the different types of data 
provided in depmap. The difference between RNAi and CRISPR screens is not clear enough. 
In the sentence starting with "The resulting genetic dependency...", shRNA should be 
replaced by sgRNA (single guide RNA) or gRNA (guide RNA). Also, please explain how the 
genetic dependency in shRNA/RNAi screens is calculated (DEMETER algorithm?). It is not 
clear to me what the expression "CRISPR seed effect" is referring to (sentence starting with 
"It should be noted..."). 
 

1. 

I am wondering why the authors chose C1orf109 as an example for one of the use cases. It 
could be more interesting for the typical reader/user if the article illustrated another gene, 
for which differential genetic dependency in combination with somatic mutation can 
actually be observed. KRAS could be such a gene, but there are many more examples. 
 

2. 

The figures are sometimes displayed above the code chunk that is used to generate them, 
which makes it difficult to follow, especially if the reader is used to Rmarkdown style. Maybe 
the authors could add a comment line in the respective chunks indicating "used to generate 
Figure X". 
 

3. 

Some sections of the article are difficult to read and could be easily improved by a few small 4. 
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modifications. I list a few examples here (not exhaustive):
 
Abstract:

Replace the '' and `` signs.○

simply -> simplify○

Reformulate the sentence starting with "In addition", because it is difficult to understand.○

 
Introduction:

exploiting -> exploitation/utilisation/application ? (paragraph 1).○

protemic -> proteomic (paragraph 2).○

aides -> aids (paragraph 4).○

reformulate sentence starting with "Specific datasets ..." (paragraph 5).○

 
Use cases:

reformulate sentence starting with "The genetic dependency ..." (paragraph 1).○

cancer medicine -> cancer therapy (paragraph 1). 
 

○

Discussion:
replace "dig deeper into" ? (paragraph 1).○

Part of the data in depmap is already derived from CCLE. Maybe specify what additional 
data type is available from CCLE (paragraph 1).

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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