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Abstract

Background: As in other fields of medicine, development of new medications for
management of neuropathic pain has been difficult since preclinical rodent models
do not necessarily translate to the clinics. Aside from ongoing pain with burning or
shock-like qualities, neuropathic pain is often characterized by pain hypersensitiv-
ity (hyperalgesia and allodynia), most often towards mechanical stimuli, reflecting
sensitization of neural transmission.

Data treatment: We therefore performed a systematic literature review (PubMed-
Medline, Cochrane, WoS, ClinicalTrials) and semi-quantitative meta-analysis of
human pain models that aim to induce central sensitization, and generate hyperalge-
sia surrounding a real or simulated injury.

Results: From an initial set of 1569 reports, we identified and analysed 269 stud-
ies using more than a dozen human models of sensitization. Five of these models
(intradermal or topical capsaicin, low- or high-frequency electrical stimulation,
thermode-induced heat-injury) were found to reliably induce secondary hyperalgesia
to pinprick and have been implemented in multiple laboratories. The ability of these
models to induce dynamic mechanical allodynia was however substantially lower.
The proportion of subjects who developed hypersensitivity was rarely provided, giv-
ing rise to significant reporting bias. In four of these models pharmacological profiles
allowed to verify similarity to some clinical conditions, and therefore may inform
basic research for new drug development.

Conclusions: While there is no single “optimal”” model of central sensitization, the
range of validated and easy-to-use procedures in humans should be able to inform
preclinical researchers on helpful potential biomarkers, thereby narrowing the trans-
lation gap between basic and clinical data.

Significance: Being able to mimic aspects of pathological pain directly in humans
has a huge potential to understand pathophysiology and provide animal research

with translatable biomarkers for drug development. One group of human surrogate
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models has proven to have excellent predictive validity: they respond to clinically

active medications and do not respond to clinically inactive medications, including

some that worked in animals but failed in the clinics. They should therefore inform

basic research for new drug development.

1 |

INTRODUCTION

Human experimental pain models play an important role in
understanding physiological and pathological aspects of pain.
They allow inducing temporarily a painful state in healthy
subjects and thus offer an interim stage between animal
models and clinical trials. This intermediate stage is criti-
cal, as human and rodent nociceptive systems show signif-
icant differences at peripheral (Schmelz & Petersen, 2001),
thalamic (Barbaresi et al., 1986) and cortical levels (Evrard
et al., 2014; van Heukelum et al., 2020), so that the data are
often not transferable across species. Despite large preclinical
investments, the overall clinical success of drugs for chronic
pain remains low. Early phases of drug development routinely
generate promises that are not confirmed in subsequent trials
(London & Kimmelman, 2020), one prominent explanation
being lack of cross-species translation (Denayer et al., 2014).
Being able to mimic aspects of pathological pain directly in
humans has a huge potential not only to understand its physi-
opathology, but also to feed-back animal research with trans-
latable biomarkers for drug development.

While acute pain models are easy to produce using elec-
tric or thermal stimulation (Di Stefano et al., 2012), such
acute stimuli have proved of little value to model neuropathic
symptoms or signs in healthy humans, or to predict the ef-
fect of analgesic procedures (Bradley et al., 2016; Chapman
et al., 1965; Weyer-Menkhoff & Lotsch, 2018). Chronic neu-
ropathic pain is characterized by a continuous or recurrent
background component (ongoing or paroxysmal pain), asso-
ciated in a variable proportion of cases with over-reactivity to
external stimuli reflecting peripheral or central sensitization
mechanisms (Jensen & Finnerup, 2014). Reproducing ongo-
ing neuropathic pain in healthy humans is challenging, be-
cause the initiating clinical event is damage to neural tissue,
and there is no current human surrogate model that is able to
produce continuous neuropathic pain without inducing un-
acceptable harm (Petersen et al., 2014; Schmelz, 2009). An
alternative approach uses models that induce facilitation of
nociceptive processing, and trigger central hyperexcitable
states of which secondary mechanical hyperalgesia and dy-
namic mechanical allodynia are the measurable effects. The
term ‘hyperalgesia’ denotes increased pain to stimuli that are
normally painful (hence transmitted peripherally by nocicep-
tive afferents), while ‘allodynia’ refers to pain elicited by a
stimulus that normally does not cause pain, hence activating
non-nociceptive fibres. These two abnormal percepts occur

in 20%-50% of patients with neuropathic pain (Jensen &
Finnerup, 2014; Maier et al., 2010), and up to 70% in par-
ticular conditions such as post-herpetic neuralgia (Johnson
et al., 2010). Experimentally induced focal secondary hyper-
algesia (2HA) and dynamic mechanical allodynia (DMA) are
considered surrogates of neuropathic pain hypersensitivity:
they are perceptually similar and share pain descriptors with
their neuropathic counterparts, suggesting a commonal-
ity of underlying mechanisms (Gottrup et al., 2003; Jensen
& Finnerup, 2014; Koltzenburg et al.,, 1994; Samuelsson
et al., 2011), and sensory profiles observed in neuro-
pathic pain can be mimicked by human surrogate models
(Baumgirtner et al., 2002; Vollert et al., 2018). 2HA/DMA
are defined as hypersensitive areas in non-injured skin sur-
rounding a real or simulated cutaneous injury, and there is
ample consensus that they reflect central sensitization mech-
anisms (Arendt-Nielsen et al., 2018; Klede et al., 2003;
Koltzenburg et al. 1994; LaMotte et al., 1991; Rossler, 2013;
Samuelsson et al., 2011; Schmelz, 2009; Simone et al., 1991;
Torebjork et al., 1992; Treede et al., 1992).

Some aspects of human surrogate models have been
reviewed recently (van Amerongen et al., 2016; Vollert
et al., 2018). The aims of the present systematic literature re-
view were (1) to verify their ability to induce clinically rel-
evant phenotypes of 2HA/DMA consistent with neuropathic
central sensitization; (2) to analyse their success rate, spatial
and temporal amplification; (3) to compare practical character-
istics, reliability across studies and feasibility of these models
for use in clinical trials, and (4) to compare their sensitivity to
drugs. Our general objective is therefore to provide pain sci-
entists with an updated analysis of the different possibilities to
induce clinically relevant phenomena of central sensitization
in humans, according to their experimental needs.

2 | MATERIALS AND METHODS
2.1 | Systematic search, data extraction and
analysis

The review is an outcome of IMI-PainCare (BioPain) initia-
tive. and was conducted according to PRISM A with the follow-
ing limitations: quantitative meta-analysis was only possible
for success rate and spatial amplification, while temporal am-
plification admitted semi-quantitative analysis (see below).
The remaining parameters were analysed qualitatively;
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bias reduction was only analysed for drug-related RCTs.
We searched from PubMed-Medline, Cochrane, Google
Scholar, WoS, Clinicaltrials.gov, using the terms “[hyper-
algesia OR allodynia] AND [human] AND [model]”,
limited to human models by introducing restricting terms
“INOT [rat OR mouse OR rodent OR murine OR nonhu-
man]”. Complementary searches were performed later in the
process to tag electrical models: “[(high frequency) AND
(electrical) AND (stimulation) AND (hyperalgesia OR
allodynia)]”, as well as wind-up ([(Wind-up OR Windup)
AND (capsaicin OR HFS OR LFS OR electric* OR freeze
OR menthol OR “heat injury” OR “central sensitization” OR
“human model”)], always with the above restricting terms.
Iteratively, manual searches were conducted for reports not
detected by automatic modes but available from the reference
lists in literature. Searches were limited to English language,
since database inception to March 31, 2020.

Three investigators (C.Q, A.K and L.G-L) selected for
further analysis publications reporting secondary hyperal-
gesia and/or allodynia in human surrogate pain models, and
excluded papers reporting exclusively animal data, or exclu-
sively primary hyperalgesia (i.e. within the area of induction
only), or duplicate work. Work-in-progress was discussed
during IMI PainCare-BioPain meetings, then consecutive
drafts were circulated among all co-authors until a consen-
sus was obtained on selected references, items to prioritize,
conclusions and iconography. From each study, we extracted
and summarized data on the characteristics of the sensitiz-
ing stimulus, the mode of assessment, details on outcome
measures, consistency of responses across subjects, and —in
studies on drug effects— whether blinding, randomization and
placebo-control were respected. These data are summarized
in Tables 1-6, and Supporting Information tables A&B.

We focused on mechanical hypersensitivity to gentle
brushing (DMA: dynamic mechanical allodynia) and to
punctate stimuli (pinprick hyperalgesia) since they are prev-
alent in neuropathic pain (Jensen & Finnerup, 2014; Maier
et al., 2010), have long been recognized as hallmark signs
of central sensitization (Treede et al., 1992), and were tested
in a vast majority of published studies. Other mechanical
stimuli (blunt pressure, impact stimuli) were not included
because they are not unanimously acknowledged to reflect
central sensitization (Gottrup et al., 2000; Kilo et al., 1994).
Although more controversial, we included occasional re-
ports describing changes in temporal summation of pain
(“wind-up”), either as signs of central sensitization or as
models of central hypersensitivity (Andersen et al., 1996;
Enggaard et al., 2001; Hughes et al., 2002).

Except for the rare cases where neurophysiological read-
outs were available, the methods used to assess “success”
or “failure” of models were based on subjective reports of a
“change in perception”. While we had to accept assessment
as face value from each report, inconsistencies across studies

were detected and discussed. As a quantitative measure of
sensory amplification, we calculated the ratio between the
area of secondary hyperalgesia and the area where the sen-
sitizing stimulus was applied (“spatial amplification index”).
When outcomes were measured repeatedly, we chose for sta-
tistics the time point showing highest area. A symmetrical
measure of “temporal amplification” (duration of hypersensi-
tivity relative to duration of the conditioning stimulus) could
only be estimated semi-quantitatively due to lack of data.
Temporal amplification was therefore stratified on 3 levels,
depending on whether hypersensitivity duration was less than
2-times, 2—10 fold or >10 fold the conditioning time.

To avoid ambiguities in definitions, unless stated otherwise
the term “‘allodynia” will be restricted here to dynamic me-
chanical allodynia (DMA), tested using brush stroke, and the
term “secondary hyperalgesia” (2HA) will refer to responses to
pinprick, even when pinprick force was not painful.

Hypothesis-testing was used to compare 2HA induction ra-
tios for different concentrations, thermode surfaces, duration
of irradiation, etc. Relations between the areas of secondary
hyperalgesia and areas of sensitizing stimuli were tested by lin-
ear or polynomial correlation models. Chi-2 and confidence in-
terval analyses were used to test possible associations between
type of drugs tested and anti-hyperalgesic effects.

Methodological quality of studies dealing with drug ef-
fects was assessed using the 5-point Oxford Quality Scale
(Jadad et al., 1996). A minimum of 10 subjects and score
of 2B was required for inclusion. Risk of bias (Higgins
et al.,, 2011) including no allocation concealment, lack of
blinding (performance or detection bias), lack of control con-
dition and reporting bias, was checked, and unless explicitly
stated all included studies on drug effects were randomized
and placebo-controlled (Table 6). Absence of blinding was
allowed if considered unavoidable (e.g. because of drug ef-
fects) and it did not decrease the level of evidence. Given
the extreme heterogeneity in test stimulus, timing of assess-
ment, specific readouts, etc., the evaluation of drug efficacy
could not be expressed as VAS changes with confidence in-
tervals but only in binary form (significant success/failure vs.
placebo). When essential data were missing, we contacted
authors to request additional information, and if these data
could not be obtained we excluded those studies from further
analysis.

3 | RESULTS

Initial electronic search from databases identified n = 1569
publications, of which 719 were considered potentially eligi-
ble after a first analysis of title and abstract. Exclusion of du-
plicates, of studies limited to primary hyperalgesia and/or to
animal models constrained the sample to n = 173 papers. Full
text analysis of these (C.Q., L.G-L.) led to exclusion of 81
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QUESADA ET AL.

(Continued)

TABLE 2

Spatial

Delay of

Appli.

Dur. of

Amplif.
index*

Pin-prick Resp.

max effect
area (cmz) (min)

2HA area DMA

(em?)

VAS

application Area

Mode of
appli.

First author and

year

Pharma intervention

(%)

force (g)

(app)

(em?)

[C] (%) (mins)

Kindling

N

Lidocaine (+)

8.88

21.5
21

92

111

12.5

30
30

0.075

cream Heat

25

Dirks (2000)

5.26

118

176

1.5

22.8

0.075

cream Heat

10

Petersen (1999)

Note: Studies with and without heat-kindling are presented separately. Please note that some of the studies in this table also dealt with other models and are therefore presented in other tables too. Pinprick force is given in grams

(g

9.8 mN). Values of VAS, delay of effects and 2HA/DMA surface areas are given as within-study averages. *Spatial amplification index refers to the ratio [2HA area/Application area]. Symbols in the last column indicate

the efficacy of the drug [+/—] to significantly abate hypersensitivity versus control/placebo in a given study.

reports due to (1) lack of enough information on methods or
outcomes, (2) lack of adequate control in drug studies, or (3)
anecdotal data or single case reports. This list was completed
with articles identified from the reference lists in literature
and other sources, yielding a final dataset of n = 269 papers.
The selection flowchart and the number of papers by type of
model are detailed in Figure 1.

We identified 108 studies reporting on the capsaicin mod-
els (61 intradermal, 47 topical); 72 on thermal or inflam-
matory injury models (44 heat, 28 UVB); 36 on electrically
induced models (21 low and 15 high-frequency stimulation),
and 40 reports on less prevalent models, including menthol/
freeze (n = 10); nerve growth factor (NGF; n = 8), mustard
oil or cinnamaldehyde (n = 6), hypertonic and acidic saline
injections (n = 5), incisional models (n = 5), glutamate, en-
dothelin-1, lauryl sulphate or ciguatoxin (n = 6). In addition,
13 review papers on different aspects of models were also
analysed.

3.1 | Capsaicin-based models

Capsaicin  (8-methyl-N-vanillyl-6-nonenamide) is an al-
kaloid found naturally in pepper (Nelson, 1919), which in-
duces intense sensations of burn by its agonist effect on the
transient receptor potential vanilloid-1 (TRPV1) ion chan-
nel receptors (Bautista & Julius, 2008; Caterina et al., 1997;
Gannon et al., 2016; Schmelz et al., 2000). The use of capsai-
cin as a surrogate model inducing secondary hyperalgesia is
very common, with more than 100 original studies reported
so far. Capsaicin delivery can be topical (Jancso, 1960) or via
intra-dermal injection (Simone et al., 1989); these modes of
application lead to different patterns of effects at the applica-
tion site and around it.

3.1.1 | Intradermal (ID) capsaicin

Secondary hyperalgesia surrounding an intradermal capsaicin
injection is the only model where central sensitization has been
conclusively shown to be the underlying mechanism in trans-
lational studies in humans and animals (Baumann et al., 1991;
LaMotte etal., 1991; Simone et al., 1991; Torebjork et al., 1992)
(Table 1). A solution of capsaicin is injected intradermally, gen-
erally through a 30-gauge needle, which is painful and techni-
cally more demanding than a simple subcutaneous injection.
Previously suggested differences in 2HA area depending on
injection site (Gazerani et al., 2007; Liu et al., 1998) could not
be confirmed in this review. The quantity of injected capsaicin
ranged from 0.01 pg to 300 pg, with preference for 50-100 pg
(Table 1). A dose-response relationship was demonstrated re-
peatedly (Gustafsson et al., 2009; Scanlon et al., 2006; Simone
et al., 1989), with 1 pg being the lowest dose producing a
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measurable hyperalgesic area. Due to capsaicin saturation prop-
erties, the gain of injecting more than 50 ug may be minimal,
such doses yielding inconsistent results (Gustafsson et al., 2009;
Figure 2). Responder rates (reported in 28/61 studies) were in
most cases 75%—100% for 2HA, without significant difference
between doses of 40-60, 100-120 or 250-300 pg of capsaicin
(Table 1). Lower responder rates were reported for DMA at

"high frequency™ AND stimulation AND OR

+
“((hyperalgesia OR allodynia) AND human AND model) NOT (rat OR mouse OR rodent OR
murine OR nonhuman))”

+
“(hyperalgesia OR allodynia) AND human AND model)”

(n=1569)

Discarded :
non relevant
(n=850)

| Final automatic search
9)

Discarded (abstract) :
Duplicates, onl

Discarded (full text) :
Lack of enough info on methods, lack of control
group, n<10 subjects, no 2HA assessment
(n=81)

Manual Search
reference lists, reviews
(n=177)

Accepted

(n=92) +
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Heat Other
(n=44) (n=30)
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FIGURE 1
and final number of articles retained according to specific models.

Flow Chart illustrating the paper selection procedure,

Initial electronic search from databases (uppermost box) identified

n = 1569 publications, of which 719 were potentially eligible from
title/abstract. Exclusion of non-human studies, studies limited to
primary hyperalgesia and duplicates constrained the sample to n = 173
papers. A further 81 reports were excluded due to lack of enough
information on methods/outcomes, lack of adequate control group or
low sample size. The list was then completed by manual search with
articles identified from reference lists and other sources, yielding a
final dataset of n = 269 papers
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all the doses tested (Liu et al., 1998; Poyhia & Vainio, 2006;
Samuelsson et al., 2011). Geber et al. (2007) reported excellent
test—retest reproducibility (r = 0.77) of stimulus-response func-
tions over two consecutive days.

The latency to develop 2HA/DMA after intradermal cap-
saicin is very short, from virtually no latency to a few min-
utes (Nilsson et al., 2014). Duration of effects increase with
dose, from a few minutes for 1 pg to about 2 hr for 50-100 pg
(Geber et al., 2007; Gottrup et al., 2004; Simone et al., 1989).
No gender effects were reported in the limbs (Eisenach
et al., 1997), but larger hyperalgesic areas in women relative
to men, and in Indians relative to Caucasians were found in
the forehead (Gazerani et al., 2005a,2005b, 2007).

Gabapentinoids decreased ID capsaicin hyperalgesic and/
or allodynic area and pain intensity in five controlled studies
on healthy subjects (Table 6). Subcutaneous or intravenous
opioids also abated ID capsaicin hyperalgesia versus placebo
in five studies (Table 6), while results were inconsistent for the
transdermal route: positive for methadone/diclofenac (Larsen
et al., 2018) but not for buprenorphine or fentanyl (Andresen,
Staahl, et al., 2011). Intravenous NMDA receptor antago-
nists, including intravenous ketamine and intravenous ethanol
decreased 2HA versus placebo (Arout et al., 2016; Gottrup
et al., 2000; Park et al., 1995; Poyhid & Vainio, 2006), while
oral naramexane decreased DMA but not pinprick hyperalge-
sia (Klein et al., 2008). Lidocaine inconsistently affected 2HA,
both by intravenous route (decreased for Gottrup et al., 2000,
Koppert et al., 2000; unchanged for Wallace et al., 1997) and
by topical/regional routes (decreased for Zheng et al., 2009,
Gustorff et al 2011a; unchanged for Koppert et al., 2000, Lam
et al., 2011). Other sodium channel blockers such as lamotrig-
ine, mexiletine and 4030W92 had little or no effect on 2HA
(Ando et al., 2000; Wallace et al., 2004). Non-replicated stud-
ies reported positive results with hydrocortisone (Michaux
et al., 2012), intrathecal adenosine (Eisenach et al., 2002),
and epidural or intrathecal clonidine (Eisenach et al., ,1998,
2000). Inconsistent results were observed with botulinum

10 30 100
Dose (ig)

FIGURE 2 Dose-response graphs
for intradermal capsaicin, as reported in
three independent studies. Note the lack of

10 30 100
Dose (ig)

significant effects of doses lower than 1 g,
and the inconsistent results of the 100 pg
dosage, especially at 60 min
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toxin (Diener et al., 2017; Gazerani et al., 2006). The tricy-
clic antidepressants amitriptyline and desipramine failed to
modify 2HA in two studies (Eisenach et al., 1997; Wallace
et al.,, 2002). No anti-hyperalgesic effect was reported with
oral minocycline (Sumracki et al., 2012), topical ibuprofen
(Morris et al., 1997), T-type calcium channels blockers
(Wallace et al., 2016) or cannabinoid receptors (Kalliomiki
et al., 2013; Kraft et al., 2008; Wallace et al., 2007). One study
reported that unpleasantness, but not intensity, of capsaicin-
induced hyperalgesia was attenuated by THC (Lee et al., 2013).

No serious adverse effects have been reported so far. The
main qualities of ID capsaicin are the short latency of 2HA
and allodynia allowing rapid testing after injection, the sizeable
duration and consistency of the effects, the minimal size of pri-
mary hyperalgesia and the high rate of responders. Such advan-
tages may be offset by limitations such as the slightly invasive
nature of the technique, the higher discomfort upon injection
relative to its topical counterpart (e.g. Kraft et al., 2008), the
difficulty to prepare lipophilic capsaicin in aqueous solution
and target injections to the dermis layer (similar to tuberculine
injection). Changes in blood pressure and heart rate have been
documented, which may vary with injection at different depths
in the skin (Silberberg et al., 2015).

3.1.2 | Topical capsaicin
We identified 47 studies using capsaicin applied topically
in form of cream, solution-soaked gauze or patch, generally
during 30 min, on either the upper or the lower limb. Since
the effects tend to be briefer than those of intradermal injec-
tion, most studies employed a heat sensitization procedure
by applying a thermode at 40—45°C on the site of capsaicin
application, which improves the stability of secondary hy-
peralgesia (Dirks & Petersen, 2003; Linde & Srbely, 2019;
Petersen & Rowbotham, 1999) (Table 2). The duration of
hyperalgesia was rarely indicated, but iterative application
of cutaneous heat every 45 min proved useful to sustain the
hypersensitivity during several hours in some studies (Dirks,
et al., 2002; Modir & Wallace, 2010a; Petersen et al., 2001;
Petersen & Rowbotham, 1999), although exceptions exists
(e.g. Cavallone et al., 2013). Responder rate was 80%—100%,
but information was provided in 11/47 studies only (Table 2).

A 2-way factorial ANOVA with “mode of application”
(solution vs. cream/patch) and “kindling” (yes/no) as factors,
showed a significant enhancement of allodynic area for heat-
kindling (F(1,15) = 7.05; p =0.018) but no effect of appli-
cation mode (F(1,15) = 0.19; p =0.6), and no interaction.
Neither mode of application nor kindling influenced signifi-
cantly the area of 2HA (Table 2).

No correlation was found between the concentration of
topical capsaicin and 2HA/DMA areas (R = 0.04; p =0.15;
Table 2). Conversely, the application surface, which varied

from 1 to 100 cm?, was positively correlated with the area
of secondary hyperalgesia (Figure 3a), while the spatial am-
plification ratio (relation between 2HA area and surface of
capsaicin application) declined exponentially with increased
application surfaces (Figure 3b).

The hyperalgesic effects of topical capsaicin were atten-
uated by gabapentin 1200-1800 mg, versus placebo in 4
out of 5 studies (Cavallone et al., 2013; Dirks et al., 2002;
lannetti et al., 2005; Mathiesen et al., 2006; Wanigasekera
etal., 2016). The opioids morphine, fentanyl and remifentanil
decreased 2HA in one open and 3 placebo-controlled studies
(Frymoyer et al., 2007; Hood et al., 2003; Petersen et al., 2001,
2003). While opioids reduced both 2HA and physiological
nociception, gabapentin did not affect nociceptive thresholds
in normal skin. One study found the N-methyl-D-aspartate
(NMDA) receptor antagonist ketamine to decrease heat/
capsaicin-induced 2HA, nociceptive reflexes and wind-up re-
sponses versus placebo (Andersen et al., 1996). Other NMDA
antagonists such as dextromethorphan reduced 2HA when
applied intravenously (0.5 mg/kg) (Duedahl et al., 2005)
but not by oral route (30—100 mg; Kawamata, et al., 2002;
Frymoyer et al., 2007). Intrathecal adenosine reduced 2HA
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FIGURE 3 Relations between area of application and area of
hyperalgesia in the topical capsaicin model. Data from the 31 studies
providing enough data to compute correlations (see Table 2). Top:
Positive correlation between the surface of topical application and the
secondary hyperalgesic area. Bottom: Inverse exponential correlation
between area of application and spatial amplification ratio of
hyperalgesia: the ratio of surface amplification (2HA area / application
area) decreases steeply with increasing surface of application
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and DMA areas (Eisenach et al., 2002), but was ineffective
by systemic route (Dirks et al., 2001). Topical cannabinoid
agonists gave inconsistent results, positive versus placebo for
Rukwied et al., (2003) but not for Kalliomiki et al., (2013).
Nonsteroidal anti-inflammatory drugs (NSAIDs) were in-
active on 2HA/DMA when administered systemically (Kilo
et al., 1995; Wanigasekera et al., 2016) or intrathecally
(Eisenach et al., 2010), but reduced DMA if administered
topically (McCormack et al., 2000). Capsaicin-induced 2HA
was not attenuated beyond placebo by the sodium channel
blocker lamotrigine (Petersen et al., 2003), the TRPV1 an-
tagonist V116517 (Arendt-Nielsen et al., 2016) or intrave-
nous magnesium (Mikkelsen et al., 2001).

Topical capsaicin is a safe and easy-to-use model of hy-
peralgesia. No serious adverse effects have been reported.
Main qualities are ease of handling and very moderate pain at
induction relative to ID capsaicin. Limitations may be the un-
favourable ratio between the duration of application and the
duration of hyperalgesia, as well as the relatively low spatial
amplification factor. These difficulties can be improved by
heat-kindling, which is the recommended procedure to en-
hance stability and duration of hypersensitivity.

3.2 | Heatinjury models
Initial techniques using small skin spots at >50°C on gla-
brous skin were instrumental in clarifying many aspects of
peripheral encoding of heat pain (Meyer & Campbell, 1981;
Raja et al., 1984) (Table 3), but produced second degree
burns, blisters and visible oedema, and have been replaced
by techniques using lower temperatures on hairy skin.
Prolonged thermal stimulation at non-painful levels (40—
42°C) can also trigger secondary hyperalgesia; however,
the stimulus has to be maintained for long periods, and hy-
peralgesia is extremely short-lived (Cervero et al., 1993;
Schifftner et al., 2017). Therefore, most studies used
thermodes at higher temperatures (~47°C) applied during
5-7 min to a 9-16 cm? hairy skin contact area (Table 3).
This results in a first-degree burn injury (redness without
blistering) for less than one day, primary hyperalgesia on
the site of exposure and 2HA/DMA in adjacent tissue.
Areas of 2HA were quite variable (95% CI: 53-111), with
average surface amplification index ~9 (95% CI15.59-11.7).
Maximum effect is reached at about 75 min [95% CI 54—
93] and the duration of hyperalgesia (reported in very few
studies) could range from 3 to 72 hr. Most studies reported
high 2HA response rates (80%—100%), while the incidence
of allodynia was only ~60% (Hammer et al., 1999; Werner
et al., 2001). (all calculations from data in Table 3).

The “brief thermal stimuli” variant (Dirks et al., 2002,
2003), uses 1°C/sec temperature increase from 32°C to
45°C, and tests hyperalgesia after 3 min at 45°C. Although

this procedure provides large areas of hypersensitivity and
high responder rates (200-300 cmz, 100%), the duration of
hyperalgesia is very short, and assessment has to be per-
formed with the thermode still in place (Dirks et al., 2003;
Hansen et al., 2017). Using a different approach (60 heat-
pulses at 48°C for 6 s) Jurgens et al., (2014) reported
large areas of 2HA/DMA (80 cm?) with maximal effect at
60 min and 8-hr duration, but the procedure has not been
replicated.

Thermode-induced 2HA was decreased by systemic opi-
oids including morphine, buprenorphine and alfentanil in
seven studies (six controlled; Table 6), but failed to over-
power placebo in four controlled trials (Lillesg et al., 2000;
Ravn et al.,, 2014; Schifftner et al., 2017; Warncke
et al., 1997). Gabapentin decreased 2HA in two controlled
studies (Dirks et al., 2002; Petersen et al., 2014) and showed
a trend in a third one (p =.06; Werner et al., 2001). The
NMDA receptor antagonist ketamine had consistent effects
on 2HA when administered intravenously (Hughes, Rhodes,
et al., 2002; Ilkjaer et al., 1996; Mikkelsen et al., 1999;
Warncke et al., 1997, 2000), but not via subcutaneous or oral
routes (Mikkelsen et al., 2000; Pedersen et al., 1998). Oral
dextromethorphan did not modify brush-evoked allodynia,
barely decreased pinprick hyperalgesia (Ilkjaer et al., 1997),
had inconsistent results on temporal summation (wind-up)
(Hugues, Rhodes, et al., 2002; Staud et al., 2005), and added
to morphine did not modify results relative to morphine alone
(Frymoyer et al., 2007). Non-replicated reports described
efficacy of acetaminophen (Jiirgens et al., 2014), intrave-
nous adenosine (Sjolund et al., 1999), glutamate receptor
antagonist LY545694 (Petersen et al., 2014) and hyperbaric
oxygen (Rasmussen et al., 2015). Pre-emptive local infiltra-
tion of lidocaine postponed but not prevented 2HA (Dahl
et al., 1993), and steroids yielded conflicting results, neg-
ative for topical clobetasol and iv dexamethasone (Pedersen
et al., 1994; Werner et al., 2002) but positive for iv meth-
ylprednisolone (Stubhaug et al., 2007). NSAIDs did not re-
duce heat-injury 2HA (Moiniche et al., 1993, 1994; Petersen
et al., 1997; Warncke et al., 1996) except when administered
intravenously (Stubhaug et al., 2007). Intravenous mela-
tonin 10-100mg and the cannabinoid analogue nabilone
(tetrahydrocannabinol-THC) were ineffective (Andersen,
Poulsen, et al., 2015; Redmond et al., 2008).

Merits of classical thermode-based procedures (47°C,
7 min) are the ease and speed of the technique, long dura-
tion of 2HA and relatively good consistency across studies.
Disadvantages are the high cost of the thermode, the potential
epidermal injuries if applied for long, and the inter-subject
variability of 2HA surface. The ‘brief induction’ techniques
might be less prone to induce epidermal lesions. Late hyper-
pigmentation in the area may occur in 1%—2% of participants,
and blistering in up to 25% when using thermodes 12.5 cm?
or larger (Dahl et al., 1993; Pedersen et al., 1998; Sjolund
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et al., 1999; Dirks et al., 2003), and even with smaller ther-
modes if temperature is pushed to 50°C (Dahl et al., 1993).
Although very rare, severe thermal injury has been described
following the use of malfunctioning, overheating contact
thermodes (Springborg et al., 2016).

3.3 | Ultraviolet-induced inflammation
techniques (Supporting Information Table A)

These models were developed in the mid-1990s to induce
inflammation-related hyperalgesia in animals, then in hu-
mans (Benrath et al., 1995; Bickel et al., 1998). The tech-
nique is based on skin irradiation with a source of ultraviolet
type B (UVB) at 290-320nm. All protocols use the notion of
“Minimal Erythema Dose” (MED), which is the minimal dose
of irradiation to induce a visibly irritated red area (Hoffmann
& Schmelz, 1999). MEDs are generally determined 1-7 days
before the experiments, using five circular spots of 1.5cm
with growing duration of irradiation from a calibrated UVB
source (Modir & Wallace, 2010b). On the experimental day a
single spot of 1.5-5 cm diameter is irradiated, in general at 3
MED, which provides better reliability than 1-2 MED (Bickel
et al., 1998; Siebenga et al., 2019). Skin areas show no altera-
tions immediately after UVB exposure, and neither spontane-
ous pain nor allodynia are described. An erythema develops at
about 6 hr after irradiation and reaches maximum intensity after
12-36 hr. At this point primary hyperalgesia is a constant fea-
ture, while 2HA/DMA are inconsistent, with large variations in
published reports (0—137 cm?, Supporting Information Table
A). When they develop, 2HA/DMA attain their maximum 16—
24 hr after irradiation and may last up to 4 days. Spatial ampli-
fication index in 13 papers providing quantitative data was 5.1
[95%CI 3-7.5]; however, at least seven studies failed to detect
any significant 2HA outside the irradiated spot, and in two it
was obtained only after heat rekindling (Eisenach et al., 2010;
O’Neill et al., 2015) (Supporting Information Table A). Intra-
and inter-individual variation coefficients of 2HA area were re-
ported to be 23% and 46%, respectively (Lorenzini et al., 2012).
The rate of 2HA induction, when reported, ranged from 0% to
100% (Supporting Information Table A).

Drugs found effective to decrease UVB-induced 2HA
in controlled studies (Table 6) included NSAIDs (Eisenach
et al., 2010; Maihofner et al., 2007; Sycha et al., 2005),
paracetamol/tramadol (Ortner et al., 2012) and systemic
opioids (Gustorff, Hoechtl, et al., 2004). Topical lidocaine
was effective if applied within the irradiated spot, but not
when infused just outside it (Gustorff, et al., 2011; Rossler
et al.,, 2013). Regional/transdermal opioids (Andresen,
Staahl, et al., 2011), paracetamol/ketorolac (Lorenzini
et al., 2011) and botulinum toxin (Sycha et al., 2006) failed
to modify 2HA.

Gabapentin 600 mg (Gustorff, Hoechtl, et al., 2004)
and Tetrahydrocannabinol/cannabidiol (THC/CBD) (Kraft
et al., 2008), did not modify UVB-related 2HA. One single
study found a significant effect of benzodiazepines cloba-
zam and clonazepam on UVB-induced secondary hyperalge-
sia (Besson et al., 2015), but a nonspecific effect on vigilance
could not be excluded.

The main qualities of UV-B sensitization are the long du-
ration of effects and the absence of ongoing pain. Limitations
are the need to calibrate the MED at least 24 hr before sen-
sitization, the long time needed for induction of symptoms,
the possibility of hyperpigmentation in the irradiated spot
in >50% of subjects, and even up to 3 years after exposure
(Siebenga et al., 2019), and the inconsistent development of
secondary hyperalgesia.

3.4 | Models based on electrical stimulation
Nociceptive long-term potentiation (LTP) leads to amplifi-
cation of synaptic signals and is thought to be at the basis
of central sensitization (Klein et al., 2004; Sandkiihler
etal.,2012) (Table 4). Spinal LTP can be induced in rodents
by repeated high-frequency bursts of electrical stimulation
(~100 Hz: Liu & Sandkiihler, 1997; Benrath et al., 2005),
but also using lower frequencies at 1-10 Hz (Drdla &
Sandkiihler, 2008; Ikeda et al., 2006; Kim et al., 2015;
Terman et al., 2001). Such intense input induces NMDA-
dependent intracellular Ca*" increase in second-order
neurons and astrocytes, with release of brain-derived
neurotrophic factor (BDNF), and activation of puriner-
gic glial receptors (Kim et al., 2015; Retamal et al., 2018;
Sandkiihler & Gruber-Schoffnegger, 2012). All these
mechanisms can entail signal amplification, but their rela-
tion with hyperalgesia remains imperfectly known. Here,
we will distinguish studies using low-frequency stimula-
tion, typically with intradermal electrodes, and studies
using high-frequency stimuli via surface electrodes.

3.4.1 |
(LFS)

Percutaneous low frequency stimulation

Originally described by Koppert et al., (2001), 21 studies
used low-frequency electric stimulation to elicit second-
ary hyperalgesia. A majority of studies used micro-dialysis
catheters or micro-neurography needles with 4 mm anode-
cathode distance, stimulating at 0.5-5 Hz. No significant dif-
ference was detected when comparing 0.5-1 Hz versus 2Hz
versus SHz in terms of area, duration or maintenance of 2HA
(data from Table 4). LFS intensity is gradually increased dur-
ing the first 15 min to reach pain intensity reports at 5-6/10,
and then kept constant until the end of the experiment. This
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generally allows maintaining a continuous ongoing pain,
upon which secondary hyperalgesia may be assessed. The
average hyperalgesic area reported was 39.7 cm? [95% CI:
30-49]. Higher ongoing pain was associated to larger 2HA
areas (Table 4), which were in general similar to those under
intradermal capsaicin (Geber et al., 2007). The delay to max-
imal effect was quite variable (range 2—40 min) and 2HA
could be maintained for 1.5-5 hr if the stimulation was con-
tinuously applied during this period. Both hyperalgesia and
allodynia abate in a few minutes after discontinuation of the
inducing stimulus (Klede et al., 2003; Koppert et al., 2001).
Six of 21 studies reported success rates in inducing 2HA, al-
ways at 95%—100%. Excellent test-retest reproducibility of
stimulus—response functions (» = 0.7) was reported by Geber
et al., (2007).

LFS-induced hyperalgesia was significantly abated by
systemic opioids including fentanyl, alfentanil, remifen-
tanil and buprenorphine in eight controlled studies
(Table 6). Remifentanil lessened 2HA during infusion but
generated late hyperalgesia on the post-infusion period
(Lenz et al., 2011; Chu et al., 2012). Gabapentin 1200—
2600 mg (Boyle et al., 2014; Segerdahl, 2006) and pregab-
alin 300 mg (Chizh et al., 2007) also decreased 2HA/DMA
areas and intensities in this model, and one further study
reported that 600 mg gabapentin increased the threshold
for wind-up to repetitive electrical stimulation (Enggaard
et al., 2010). Systemic lidocaine was efficacious in two
studies (Koppert et al., 2001; Seifert et al., 2009), as
were the NSAIDs ketorolac and parecoxib in one single
report (Lenz et al., 2001). Modest but significant effects
of propofol, alone or in combination with remifentanil/
ketamine, were also observed (Bandschapp et al., 2010;
Nickel et al., 2016). Transcutaneous nerve stimulation
(TENS-like) at 20 Hz reduced LFS-induced hyperalgesia
in upper limbs (Nickel et al., 2011), but not at cranial sites
(Reindl et al., 2016). LFS-induced wind-up was abated
by the tricyclic antidepressant imipramine in one single
study (Enggaard et al., 2001). Neither cholecystokinin
(Pahl et al., 2003) nor the anti-neurokinin-1 drug aprepitant
(Chizh et al., 2007) modified LFS-hyperalgesia.

The low-frequency electric model is easy to implement,
well-controlled and provides a large hyperalgesic area with
an excellent rate of induction and without serious adverse
events. Since this model entails both ongoing pain and 2HA,
it may adequately mimic some clinical neuropathic condi-
tions; however, the continuous background pain might hinder
the specific assessment of hypersensitivity. Limitations are
the slightly invasive nature of electrode placement, discom-
fort during induction, rapid fall of 2HA/DMA if the elec-
trical stimulus is discontinued (Klede et al., 2003; Koppert
et al., 2001), and the need to continuously adjust the stim-
ulation intensity to maintain stable pain ratings (e.g. Boyle
etal., 2014).

3.4.2 | Cutaneous high-frequency electrical
stimulation (HFS)

High-frequency stimuli via surface electrodes mimic injury-
induced high-frequency discharge in altered axons, and are
expected to induce central synaptic changes similar to those
of real injury (Table 4). The concept was derived from re-
sults in animal recordings in nerve and spinal cord (see
above), thus enhancing back-translability. HFS shares many
properties with the ID capsaicin model in terms of afferents
activated, pain on induction and duration of effect (Henrich
et al., 2015). Stimuli are usually delivered through a circular
array of 10—16 pin electrodes with array diameter of 6—45 mm
(0.3-16 cm? area) designed to activate preferentially superfi-
cial nociceptive afferents. Possible influences of application
surface and other parameters could not be estimated because
of lack of data. Most studies used high-frequency trains
(100 Hz) of 1 s duration, repeated five times at 10-s intervals,
with intensity 10-20 times the electrical detection thresh-
old to single pulses (EDT). One study (Klein et al., 2004)
reported larger 2HA areas for 20 versus 10 EDT (56 cm’
versus. 38 cmz). Xia et al., (2016) reported similar pain am-
plification induced by 10, 100 and 200 Hz, but higher pain at
induction for the 100 Hz model, while Van den Broeke et al.,
(2019) reported larger hyperalgesic areas to 42 Hz, relative
to 100 Hz (80 cm? vs. 50 cm?). Hyperalgesia starts rapidly,
with maximum effect in 15-60 min, stable for 1-5 hr (Klein
et al., 2004, 2006; Pfau et al., 2011; Xia et al., 2016). Two
studies using a longer follow-up reported recovery to base-
line in ~24 hr (Klein, et al., 2008; Pfau et al., 2011). When
available, responder rates were 80%—100% (Biurrun-Manresa
et al. 2018; ; Pfau et al., 2011). One open label, unblinded
study failed to show significant effects of ketamine (0.25 mg/
kg) on HFS-induced 2HA/DMA (Klein et al., 2007).

The main qualities of the HFS model are rapidity and ease
of induction and maintenance of 2HA for several hours, the
relatively inexpensive equipment and ease of handling. No
serious adverse events have been reported. Its main limita-
tion is the unpleasantness of the stimulation (4-8/10) (Magerl
et al., 2018; Pfau et al., 2011; Reitz et al., 2016). Because of
the relative paucity of information on the behaviour of this
model, including to medications, it is likely that our knowl-
edge on its effects will evolve in the next years.

3.5 | Less prevalent techniques to induce
secondary hyperalgesia

Many other pain models have been described that are able to
induce secondary hyperalgesia. They are less prevalent than
those described above, for reasons including methodological
difficulties, inconsistency of results or recent development.
Here, we describe models that have provided sufficient data
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to allow at least a summary of their characteristics and pos-
sible practicality.

3.5.1 | Procedures activating cold receptors
(Supporting Information Table B)

Although cold hypersensitivity is a frequent symptom in pa-
tients with neuropathic pain, validated experimental models
in humans are scarce. Two main experimental modalities of
hyperalgesia induced by cold stimuli have been described,
namely the topical application of menthol and the freeze in-
jury model (the latter sharing also properties with burn-injury
and UVB models). Other substances such as mustard's oil
and cinnamaldehyde also activate cold-related receptors such
as transient receptor potential ankyrin 1 (TRPA1) (Bandell
et al., 2004).

The topical menthol hyperalgesia model
Menthol (C10 H20 O) is a cyclic terpene alcohol widely
used in anti-pruritic creams and nasal decongesting for-
mulae, and has been employed as topical application to
provoke cold hyperalgesia. Low concentrations (5%—10%)
do not produce consistent pain changes (Green, 1992;
Yosipovitch et al., 1996), but concentrations of 40% pro-
duce pain and local thermo-mechanical primary hyperal-
gesia when applied topically (Wasner et al., 2004, Forster
et al., 2016). Typical protocols use a 3 X 3 cm soaked
gaze with a solution of 30%—40% menthol in 90% etha-
nol, covered by an adhesive film and applied to the skin
during 20 min. Eleven reports using menthol were identi-
fied, but only six explicitly tested central sensitization via
mechanical 2HA/DMA, and only three provided enough
quantitative data. The average area of hyperalgesia was
34.91 cm? [95% CI 18-51] with amplification ratio 3.88
[95% CI 2.04-5.7] (Suppl Table B). Response rates var-
ied from nil to 100%. When 2HA developed, maximum ef-
fects were reached immediately and lasted up to 135 min.
Sensitization could be prolonged by repeated kindling with
cold stimuli (Andersen, Poulsen, et al., 2015).
Menthol-induced 2HA developed inconsistently: it was sys-
tematic in two studies (Andersen, Poulsen, et al., 2015; Binder,
et al., 2011); in the others, it developed in a subset of subjects
(Namer et al., 2005; Wasner et al., 2004) or could not be mea-
sured at all (Hatem et al., 2006; Helfert et al., 2018). Changes
in pain thresholds were found reproducible one week apart, but
areas of pinprick hyperalgesia were not, and those of DMA
could not be determined (Mahn et al., 2014). No controlled
studies were identified on the effect of analgesics on menthol-
induced 2HA. Topical menthol was, on the contrary, able to
reduce 2HA from cinnamaldehyde (Andersen, et al., 2015).
The main qualities of the menthol model are low dis-
comfort, absence of adverse effects and the fact that cold
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hypersensitivity may mimic some clinical conditions such
as oxaliplatin-induced neuropathies (Forstenpointner
et al. 2018). These advantages may be outweighed by the low
success rate and the limited spatio-temporal amplification.

The freeze injury hyperalgesia model

Freezing as a human pain model was first reported one
Century ago (Lewis & Love, 1926), but its detailed assess-
ment developed in the 1990s. Beise and colleagues (1998)
used a small thermode frozen at —11°C through temperature
separation in a Ranque—Hilsch tube. A simpler technique uti-
lizes a copper cylinder of ~2 cm” frozen at —28°C, applied
on the anterior part of the forearm for §-10 s (Chassaing
et al., 2006; Kilo et al., 1994; Martin et al., 2019). This
procedure was reported to produce a mean 2HA area of
26.85 cm’ [95% CI: 13.8-39.9] a surface amplification ratio
of 15.23 [95% CI: 7.8-22.7], and a maximum effect 20 hr
after application. Secondary hypearalgesia was systematic
in three studies; it persisted up to 72 hr in one (Chassaing
et al., 2006), and decreased or disappeared after 24h in the
other two (Supporting Information Table B). DMA was ab-
sent in the two reports that tested it (Kilo et al., 1994; Lotsch
& Angst, 2003). Freeze-induced 2HA was half the size of
that obtained with topical capsaicin, in the only study that
contrasted both techniques (Kilo et al., 1994).

Three reports examined drug effects on freeze-induced
hyperalgesia. Dextromethorphan 30 mg exerted a signif-
icant effect on the change of mechanical thresholds within
the 2HA region, without modifying the 2HA surface, pain
thresholds or pupillary reactions (Martin et al., 2019). Oral
ibuprofen (400 mg) increased pain thresholds within the
2HA area in one study (Chassaing et al., 2006), while acet-
aminophen (1,000 mg) had no effect on freeze-induced pin-
prick hyperalgesia (Chassaing et al., 2006).

The main qualities of the freeze injury are ease of applica-
tion, low discomfort and long duration of secondary hyperal-
gesia, making of it a promising technique for drug evaluation
needing several testing days. Limitations are the slow devel-
opment of hyperalgesia, which forces the experimenter to
wait one full day between freeze application and testing, as
well as the lack of brush-induced allodynia and the tendency
of 2HA to shrink toward the injured area. Serious adverse
events have not been described.

Activation of TRPAI receptors: Mustard oil and
Cinnamaldehyde

TRPAL receptors are activated at low temperatures close to
cold pain (<17°C) but also by topical application of natu-
ral oils such as cinnamaldehyde and mustard oil (Bandell
et al., 2004). The specificity of these receptors for cold
stimuli remains debated (Weyer-Menkhoff & Lotsch, 2018,
2019), as they have been also implicated in the perception of
heat (e.g. Moparthi et al., 2016).
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Mustard oil (Allyl isothiocyanate or AITC) has been ex-
tensively used in preclinical studies but only rarely as human
model, and only five reports were identified. Topical applica-
tion for 4-5 min induces strong pain almost immediately, and
subsequent 2HA/DMA development was consistently ob-
tained in the few reports available. Koltzenburg et al., (1992),
Koltzenburg et al., (1994) induced DMA with mustard oil in
100% of 29 subjects, and could abolish it by blocking large
myelinated afferents. 2HA developed inconstantly and was
not systematically investigated. Highly variable areas of
hypersensitivity across subjects were reported by Sjolund
et al., (1999) who also showed reduction of 2HA area (but
not DMA) by intravenous adenosine, and a more pronounced,
but shorter lasting, 2HA to mustard oil relative to a ‘classical’
thermal-induced model (47°C, 7 min). Andersen, Elberling,
et al., (2017) reported enhanced 2HA/DMA with increasing
concentrations from 10% to 50%, without further change at
90%.

Cinnamaldehyde, another powerful activator of TRPA1
receptors, was reported to induce 2HA in two studies
(Andersen, et al., 2015; Namer et al., 2005), the latter with av-
erage area of pinprick hyperalgesia threefold the application
surface (29.43 cm? versus. 9 cm?). Co-application of menthol
significantly decreased intensity and 2HA area, which was
attributed to a possible combination of segmental spinal inhi-
bition and peripheral receptor-mediated antagonism between
TRPAT1 and TRPMS8 (Andersen, et al., 2015).

3.5.2 | Incisional and pre-incisional models
Following the description of a plantar incision model in
rodents (Brennan et al., 1996), the procedure was trans-
lated to humans (Kawamata, Watanabe, et al., 2002). A
4-mm-long incision through skin, fascia and muscle in the
volar forearm consistently entails 10—12 cm?® of pinprick
hyperalgesia after 5-15 min, which becomes maximal
at 1-2 hr and disappears over the next 6-72 hr (Filmer
etal., 2011; Kawamata, Takahashi, et al., 2002; Kawamata,
Watanabe, et al., 2002). The model did not entail brush
allodynia. In women, both the intensity and extent of hy-
peralgesia were found sensitive to the hormonal phases
(Pogatzki-Zahn et al., 2019). Systemic lidocaine previous
to incision prevented 2HA, while neither subcutaneous nor
systemic lidocaine reverted hyperalgesia once it was fully
developed (Kawamata, Takahashi, et al., 2002; Kawamata,
Watanabe, et al., 2002).

The incision model appears as a reliable method to induce
central sensitization, but its invasive nature represents an
obvious disadvantage towards other procedures. A model of
non-injurious sharp mechanical pain using a blade pressing
on, but not entering the skin, was proposed to mimic incision-
induced hyperalgesia (Shabes et al., 2016). Although blade

and incision-induced pain descriptors were similar, the size,
reproducibility and duration of 2HA to non-invasive blade
were not prominent compared with invasive models.

3.6 | Models with inconsistent 2HA-
inducing properties

A number of other models with potential to induce 2HA/
DMA have received less support from published evidence, or
have not been reproduced after their initial description.

3.6.1 | Nerve growth factor (NGF) injection
Nerve growth factor (NGF) is a neurotrophin with biologi-
cal role in the development of small sensory neurons, and
participates to the cascade of events leading to lesion-related
neuropathic pain (Khan & Smith, 2015). When injected in-
tradermally, NGF evokes a long-lasting sensitization of
nociceptors with initial heat hypersensitivity, and delayed
mechanical hyperalgesia peaking around 3 weeks later
(Dyck et al., 1997; Petty et al. 1994; Rukwied et al., ,2010,
2013). Although 2HA and DMA have been occasionally de-
scribed (Andresen, et al., 2011), in most studies hypersen-
sitivity was primary, i.e. restricted to the application area
(Dyck et al.,, 1997; Munkholm & Arendt-Nielsen, 2017;
Petty et al., 1994; Rukwied et al., 2010, 2013). Adding NGF
to previous UVB irradiation did not influence the hyperal-
gesic effects (Vecchio, Finocchietti, et al., 2014; Vecchio,
Petersen, et al., 2014), while UVB applied three weeks after
NGF enhanced the hypersensitivity. NGF has been essen-
tially used to assess muscle hypersensitivity without induc-
ing inflammation.

3.6.2 | Injection of hypertonic or acid saline

Injecting hypertonic saline into musculoskeletal structures
induces neural firing in A-delta and C-nociceptive afferents
(Graven-Nielsen, 2006; Oda et al., 2018). This model is es-
sentially used to mimic muscular or tendon-related pain, but
it has also been shown to induce superficial allodynia to brush
or cold stimuli over skin regions surrounding the injection,
and might reflect central sensitization (Nagi & Mahns, 2013;
Oda et al., 2018; Samour et al., 2017). However, low consist-
ency and concomitant muscle pain greatly decrease the pos-
sible impact of this procedure as a convenient 2HA model.
A variant of the above considers muscle injection of acidic
saline. The acid-sensing ion channels (ASICs) activate no-
ciceptors in low pH conditions, and acid infusion entails
sustained pain behaviour without significant tissue dam-
age (Sluka et al., 2001). Although repeated injections were
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reported to induce 2HA in animal models (Sluka et al., 2001,
2003) this has not been reproduced with repeated injections
in humans (Ernberg et al., 2013; Wang et al., 2017).

3.6.3 | Skin irritants, endotoxemia, ciguatoxin

Topical application of sodium lauryl sulphate, a skin irri-
tant that releases pro-inflammatory mediators, was reported
to induce both primary and secondary hyperalgesia (Petersen
et al., 2010). More robust secondary hyperalgesia to mechan-
ical and cold stimuli was obtained through intradermal injec-
tion of endothelin-1 (Hans et al., 2007), but neither of the
two models has been consistently replicated. Endotoxemia
via i.v. injection of Escherichia coli lipopolysaccharides
induce robust visceral and musculoskeletal hyperalgesia
(Benson et al., 2012; Wegner et al., 2014), and may have
the potentiality of inducing cutaneous 2HA too (de Goeij
et al., 2013), but this has not been specifically explored.
Ciguatoxins that cause the ‘ciguatera’ condition produce a
painful neuropathy characterized by strong cold allodynia
(Zimmerman et al., 2013). Experimental injection of cigua-
toxin has been used as a surrogate model of cold allodynia
in humans (Eisenblitter et al., 2017) but its ability to induce
reproducible central sensitization has not been established.

4 | DISCUSSION

Although more than 15 different human models of sec-
ondary hyperalgesia have been described, four classes ac-
counted for more than 90% of published reports. They were
based on (1) capsaicin application or injection (reported in
>2000 subjects); (2) thermal heat injury (~850 subjects);
(3) ultraviolet-B irradiation (~500 subjects), and (4) repeti-
tive electrical stimuli (~550 subjects). As summarized in
Table 5 and Supporting Information Fig. A, these models
have different profiles in regard of timing of effects, pain
intensity during induction, spatiotemporal amplification
and proportion of responding subjects. This latter point
was reported in less than 50% of studies, giving rise to a
high reporting bias.

4.1 | Differences, strengths and
drawbacks of different models

Rather than absolute advantages or disadvantages, each of the
principal models appears more or less adapted to different re-
search questions and experimental designs. In what follows,
models are discussed in terms of their success rate, timing,
spatial and temporal amplification, pain during induction and
response to drugs (Table 5).

4.1.1 | Success rate

Albeit reported in a minority of studies, success in obtaining
hyperalgesia reached 85%-90% for all principal models save
the UVB procedure, where half of the accounts either failed
to obtain sizeable 2HA areas, or defined them as “barely ex-
ceeding the irradiated spot” (Eisenach et al., 2010; Harrison
et al., 2004; Morch et al., 2013; Seifert et al., 2008). This
model has the particularity of not inducing pain on applica-
tion. Since nociceptor activity is critical to initiate and main-
tain central sensitization from peripheral injury (LaMotte
et al., 1991; Schmelz et al., 2000, 2009), failure to induce a
sustained nociceptive barrage is a likely explanation of the
difficulties to obtain 2HA/DMA in the UVB model (Bishop
et al., 2009; O’Neill et al., 2015), which remains a robust
human model of inflammatory pain, but appears of limited
value for the specific study of central sensitization mecha-
nisms (Gustorff et al., 2013).

4.12 | Spatial and temporal amplification

In order to be useful in pharmacological studies, a model
needs (1) to provide an area of 2HA large enough for repeated
application of test stimuli, and (2) to induce effects that last
long enough to cover peak plasma concentrations. Spatial
amplification is obviously highest in models applied to small
skin areas (ID-capsaicin, LFS, HFS). Among the others, am-
plification ratios were double in topical heat/capsaicin (~18)
than thermal injury models (~9), themselves being twice
those from UVB models (~4) (Supporting Information Fig.
A).

Temporal amplification (ratio between the duration of
effect and of conditioning stimulus) is negligible for the
“brief thermal” and LFS models, whose effects disappear a
few minutes after discontinuation of the inducing stimulus,
(Dirks et al., 2003; Hansen et al., 2017; Klede et al., 2003;
Koppert et al., 2001). It is also minimal for isolated (non-
kindled) topical capsaicin, but reaches 2—10 fold induction
times for ID capsaicin and heat-injury models (Rasmussen
et al., 2015; Simone et al., 1989). Maximal temporal ampli-
fication (>10-fold conditioning times) is attained for intra-
dermal and heat-kindled capsaicin, UVB, freeze and HFS
electric models (Table 5). Temporal amplification, however,
cannot be dissociated from the time needed to develop 2HA
symptoms, which separates ‘rapid’ from slow-inducting
models. Thus, intradermal capsaicin and HFS provide both a
sizeable duration of hyperalgesia and an immediate onset of
effects. Conversely, UVB and freeze-injury models, although
able to generate long hyperalgesic periods, only do so after a
latent interval that may last one full day.

A brief duration of hypersensitivity may be especially
bothersome when testing DMA, which has intrinsically
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shorter duration than pinprick hyperalgesia in all models
(Geber et al., 2007; Gottrup et al., 2000; LaMotte et al., 1991;
Magerl et al. 1998; Pfau et al. 2011; Warnacke et al. 1997).
Providing new peripheral input by heating iteratively the skin
allows obtaining stable 2HA/DMA during extended periods
of time (Dirks et al., 2003; Modir & Wallace, 2010a; Petersen
& Rowbotham, 1999). LFS electrical models (0.5-5 Hz) can
maintain hyperalgesia for as long as the duration of electri-
cal input; however, the duration of experiments is limited by
painfulness of the background stimulus. On the other hand,
models allowing a protracted hypersensitivity without pain at
induction (UVB, freeze) have the lowest prevalence of 2HA/
DMA, most probably because of the limited nociceptive acti-
vation they entail (see above).

4.1.3 | Pain provoked during induction

Pain provoked during induction may influence subjects’
compliance and attrition rate. Intradermal capsaicin and elec-
trical HFS models induce a very unpleasant stinging sensa-
tion, which may reach 7-9/10 on VAS but rapidly abates after
stimulus application. On the other hand, the low-frequency
(LES) electrical models use repetitive noxious stimuli dur-
ing all the duration of the experiment, and necessarily induce
a combination of ongoing pain and secondary hyperalgesia
during minutes to hours (Bandschapp et al., 2010; Koppert
et al.,, 2001; Nickel et al., 2011; Wehrfritz et al., 2016).
Topical capsaicin and contact-heat models produce second-
ary hyperalgesia with only moderate pain on application,
which makes them attractive on the condition that the ex-
periments do not exceed several hours. Although no pain at
all is induced by freeze and UVB models, this advantage is
mitigated by the difficulty to evoke hyperalgesia beyond the
territory treated (Harrison et al. 2004; Koppert et al., 1999;
O’Neill et al. 2015) and its tendency to shrink towards the
irradiated or freezed skin (Chassaing et al., 2006; Eisenach
et al., 2010).

4.2 | Are human models useful surrogates of
clinical hyperalgesia?

Human 2HA models can generate an enhanced nociceptive
barrage and central sensitization symptoms that are similar
to those of neuropathic pain. They cannot mimic the exten-
sive metabolic changes due to neural lesions, nor are they
able to model primary central damage responsible for spinal
injury or post-stroke pain. Their translational capacities are
indirect, and their value as surrogate models of neuropathic
hyperalgesia subject to debate (Van Amerongen et al., 2016;
Aykanat et al., 2012; Samuelsson et al. 2011). The quality of
models must therefore be validated not only by their capacity

to reproduce clinical symptoms, but also by their response
to drugs —i.e. they should be responsive to medications ac-
tive on neuropathic hyperalgesia, and remain insensitive to
those without clinical effect (predictive validity). The reverse
translation potential of human procedures, i.e. their capac-
ity to inform preclinical models on the adequate endopoints/
biomarkers to be used confidently, depends on their ability to
respond to pain-relieving methods that are clinically useful.

42.1 | Effects of drugs
As summarized in Table 6 and Figure 4, topical and i.d. cap-
saicin, heat-injury and LFS electrical models consistently
responded to classes of drugs that are clinically valuable
for neuropathic pain while remaining largely insensitive to
clinically ineffective approaches to central sensitization, in-
cluding oral NMDA receptor antagonists and NSAIDs. For
instance, capsaicin hyperalgesia responded in 73% of reports
to drugs clinically accepted for neuropathic pain (gabapenti-
noids, TCAs, iv ketamine, iv lidocaine) and did not respond
in 27% (d = 46; 95% CI 5-85; p < 0.05). Although with lower
amount of evidence, the capsaicin model also responded to
different formulations of clonidine (Eisenach, et al., 2002;
Ragavendran et al., 2016), an alpha-2 agonist used with
success in refractory cases of neuropathic pain (Campbell
et al., 2012; Schechtmann et al. 2010; Wrzosek et al., 2015).
Drugs may abate secondary hyperalgesia via attenu-
ation of afferent input, central hyperexcitability, or both,
and models may help disclosing such mechanisms in hu-
mans. Gabapentinoids, intravenous lidocaine and ketamine
acted on 2HA but did not affect physiological nociception,
as reflected by pain thresholds in normal skin, suggesting a
specific reduction of central hyperexcitability. Conversely,
opioids and local anaesthetics reduced both secondary hyper-
algesia and physiological nociception (Andersen et al., 1996;
Ilkjaer et al., 1996; Eckhardt et al., 2000, Gottrup et al., 2000;
Koppert et al., 2000; Warncke et al., 2000; Dirks et al., 2000;
Dirks, Petersen, et al., 2002; Werner et al., 2001; Mathiesen
et al., 2006, Wallace, et al., 2002, 2008; Petersen et al., 2014).
The facts that opioids may be insufficient to suppress tem-
poral summation, and that they influence hyperalgesia only
when the dose permits also a reduction of acute pain, has
been put forward to suggest that their action on 2HA is
mainly driven by a reduction of afferent nociceptive input,
rather than a specific effect on central mechanisms (Brennum
et al., 1994, Eisenach et al., 1997; Warncke et al., 1997).
The pattern of response of UVB-based hyperalgesia dif-
fered from that of capsaicin, thermal-injury and LFS mod-
els. UVB 2HA did not respond to gabapentinoids but was
sensitive to NSAIDs, which do not show effects on central
sensitization in animals except under direct spinal adminis-
tration (Malmberg & Yaksh, 1992). The surprising sensitivity
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FIGURE 4 Graphical summary of the models’ responsiveness to major classes of drugs used for neuropathic pain. Studies were classed as

“positive” (blue bars) if the drug affected significantly at least one output readout (e.g. 2HA area) versus control/placebo. The number of studies

is indicated in abscissae; the number of subjects tested for each drug in negative and positive reports is noted besides each bar. Please note the

convergent profile of capsaicin, heat-injury and electrical models in their response to drugs acting on NP, which contrasts with the UVB profile,

mainly reactive to anti-inflammatory drugs

to NSAIDs of the UVB model may be linked to its inflamma-
tory nature, and the small afferent nociceptive barrage that it
triggers. Insufficient ascending input may be inadequate to
generate centrally sustained hyperalgesia, and the hyperalge-
sic state would subside if peripheral input is further reduced
due to the peripheral action of NSAIDs such dissimilarities
confirm that the UBV procedure is a good model for periph-
eral inflammation, but not a translational replica of central
neuropathic hyperalgesia.

Both capsaicin and heat-injury models remained insensi-
tive to a number of drugs that worked in animals, but have
no or very little efficacy in human neuropathic pain. These
include benzodiazepines (Park et al., 1995; Vuilleumier
et al., 2013), anti-histaminics (Wang et al., 2008), lamotrig-
ine (Petersen et al., 2003), T-type calcium channel blockers
(Wallace, et al., 2002), minocycline (Sumracki et al., 2012),
melatonin (Andersen, Poulsen, et al., 2015), the anti-NK1
aprepitant (Chizh et al., 2007), dextromethorphan as add-on
to morphine (Frymoyer et al., 2007), and still others. Also,
no anti-hyperalgesic response was obtained to cannabinoids
in the studies reported so far (review De Vita et al., 2018),
although one report described a specific decrease in unpleas-
antness, without changes in pain intensity (Lee et al., 2013).

Some first-line drugs for human neuropathic pain such
as tricyclic antidepressants (TCAs) were only inconsistently
active on human 2HA models: TCAs abated wind-up to re-
petitive electrical stimuli (Enggaard et al., 2001), but failed to
modify 2HA in two capsaicin studies (Eisenach et al. 1997;
Wallace, Ridgeway, et al., 2002). The clinical effects of
TCAs require a sustained treatment to allow recruitment

of downstream mechanisms that cannot be tagged by acute
models (Kremer et al., 2016). Adequate testing of the ef-
fect of these drugs would need several weeks of continuous
treatment, difficult to implement in healthy subjects. These
drugs might also target mechanisms that are only activated in
chronic conditions and not modelled in volunteers.

Taken together, hypersensitivity from capsaicin, heat-
injury and LFS models responded to drugs clinically
accepted for neuropathic pain (gabapentin/pregabalin, iv ket-
amine, iv lidocaine) in a greater proportion than to drugs with
non-clinical effect in NP, the difference being highly signifi-
cant (see Table 6).

422 | Methodological issues and
controversies

Induction of central sensitization

The duration of inducing stimuli, their intensity/dosage and
spatial extension, the bending force of testing filaments,
the time of testing and various other parameters vary enor-
mously from one study to another, and the same group of
investigators can report on the “same” model using differ-
ent standards. This reflects the lack of consensus on optimal
procedures, and together with the variety of output variables
hampers generalization of results. Some overall considera-
tions may however be cautiously pondered, for instance that
models inducing only mild effects may induce false positive
results by responding to drugs with insufficient clinical activ-
ity. Relatively ‘soft” models using low-concentration topical
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capsaicin (0.075%-1%) responded to NMDA-antagonists
without proven clinical efficacy such as dextromethorphan
or CHF3381 (Duedahl et al., 2005; Mathiesen et al., 2006),
while only intravenous ketamine was able to counteract
‘strong’ surrogate 2HA models such as rekindled 47°C heat-
injury (compare Ilkjaer et al., 1996, 1997). It appears reason-
able that pain models eliciting relatively intense effects may
be more appropriate to detect drugs potentially useful in the
clinics. It remains to be ascertained whether models eliciting
too strong hyperalgesic reactions might also mask the effect
of clinically useful agents (Scanlon et al. 2006).

Mode of assessment of central sensitization

The ‘optimal’ variable to reproduce clinical data and predict
drug effects remains unsettled. Areas of hyperalgesia/allo-
dynia have been the most frequently used readouts, and are
often correlated with the evoked pain within the hyperalgesic
region. However, these two variables can also be dissociated
(Ando et al., 2000; Schifftner et al., 2017; Zheng et al., 2009),
and pain within the hyperalgesic region has been reported as
more reliable than area size to tag clinically useful analgesia
(Ando et al., 2000; Lotsch et al., 2020). Quantifying pain in-
tensity is more subjective and prone to bias than measuring
the area of hyperalgesia, which is performed without visual
control from subjects (Jensen & Petersen, 2006). On the other
hand, the area measured is greatly dependent on the subject's
attention and the pressure exerted by the filament (Ringsted
et al., 2015), and this may have strong consequences, espe-
cially in ‘soft’ models.

A further source of incertitude concerns whether static
(pinprick) 2HA or dynamic (brush) allodynia are of equiv-
alent value to predict drug efficacy. These two abnormal
percepts result from different central and peripheral mech-
anisms, may not respond similarly to drugs, and are often
dissociated in timing and intensity in both healthy sub-
jects (Cervero et al., 1993; Gottrup et al., 2000; Witting
et al., 2000) and neuropathic patients (Gottrup et al., 1998).
In all models, pinprick 2HA tends to develop more con-
sistently than DMA, which is often restricted to a smaller
area, is less stable, lasts a shorter time and has less dis-
tinct borders (Dirks et al., 2003; Geber et al., 2007; Gottrup
et al., 2000; LaMotte et al., 1991; Magerl et al., 1998; Pfau
et al. 2011; Poyhida & Vainio, 2006; Wallace, et al., 2002;
Warnacke et al. 1997). Yet, DMA interferes extensively
with the patients’ common activities and is considered
more troublesome in daily life than pinprick hyperalge-
sia (Yezierski & Hansson, 2018). Patients with neuro-
pathic pain tend to fear moving, rather than static stimuli
(Koltzenburg et al., 1992, 1994; Peyron et al., 1998), and
brush-evoked allodynia correlates with ongoing pain in pa-
tients with painful neuropathies (Koltzenburg et al., 1994;
Rowbotham & Fields, 1996; Samuelsson et al., 2011),
while this has not been shown for pinprick hyperalgesia.

Failure to consistently induce DMA may therefore hinder
the translational capacities of some experimental models:
for instance, of 18 studies reporting significant antihyper-
algesic effects of gabapentinoids on surrogate models, 10
failed to induce, report or modify dynamic allodynia.

Bias

Many uncontrolled sources of error apply to results of drug
trials on hyperalgesia models. At variance with clinical
settings, experimental studies often test drug efficacy with
a single dose administered before the inducing stimulus.
Blinding may not be feasible if subjects experience sub-
jective effects when administered drugs (ketamine, gabap-
entinoids, lidocaine), and it would not be reasonable to
dismiss a trial as of low quality because of the absence of
blinding (Higgins et al., 2011). Dose of inducting agents,
skin temperature, pre-induction pain thresholds and timing
of testing are sources of study variability that can hardly
be controlled for (Hansen et al., 2017; Liu et al., 1998;
Scanlon et al., 2006).

5 | GENERAL CONCLUSIONS &
HINTS FOR FUTURE STUDIES

More than a dozen human surrogate models have been pub-
lished that mimic aspects of ongoing and evoked neuropathic
pain. Despite a significant reporting bias, in particular regard-
ing the percentage of responders and the respective effect
on 2HA and DMA, six of these models have been tested in
multiple laboratories, and five were found to reliably induce
secondary hyperalgesia to pinprick. This may facilitate trans-
lation from rodent models (where hypersensitivity to von
Frey monofilaments is a frequent readout) to humans using
equivalent readouts. More important, crucial benefits should
be obtained from reverse translation, whereby preclinical
models will take advantage of biomarkers that have proven
sensitive in human beings. Failure to consistently elicit dy-
namic allodynia is a yet unsolved drawback, which may hin-
der the models’ translational capacities. Whether the areas
of hypersensitivity or the pain intensity within these areas
should be preferred to model NP symptoms and quantify an-
algesia remains debatable. For four models, pharmacological
profiles have been obtained in sufficient detail to verify simi-
larity to some clinical conditions. Intradermal and high-dose
capsaicin, heat-injury and LFS models responded in signifi-
cantly higher proportion to clinically anti-hyperalgesic drugs
than to drugs without proven clinical value, and may be rel-
evant to mimic neuropathic hyperalgesia. The UVB model
appears biased towards inflammatory peripheral mechanisms
with little contribution of central sensitization. In summary,
while it is clearly not possible to model a disease such as neu-
ropathic pain in healthy subjects, there is a sufficient range
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of validated and easy to use models of key mechanisms and
symptoms. Future essays on drug development for neuro-
pathic pain conditions should use them in order to close the
translation gap.

Of note, although the initial automatized key-word based
search returned >1,500 papers, this figure became drastically
reduced upon multi-level inspection for relevance. In parallel,
automatic search failed to identify a substantial number of
reports where terms such as “allodynia”, “hyperalgesia” or
“model” were present in the main text but absent from title,
abstract or keywords. This may underscore the importance
of complementary manual search from bibliographic lists,
review papers and grey literature to maximize the number
of relevant contributions when dealing with complex topics
—and for future researchers looking to update or expand on
this review.
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