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Abstract
Rationale Binge drinking (i.e. excessive episodic alcohol consumption) among young adults has been associatedwith deleterious
consequences, notably at the cognitive and brain levels. These behavioural impairments and brain alterations have a direct impact
on psychological and interpersonal functioning, but they might also be involved in the transition towards severe alcohol use
disorders. Development of effective rehabilitation programs to reduce these negative effects as they emerge thus constitutes a
priority in subclinical populations.
Objectives The present study tested the behavioural and electrophysiological impact of neurocognitive stimulation (i.e. trans-
cranial direct current stimulation (tDCS) applied during a cognitive task) to improve attention and inhibition abilities in young
binge drinkers.
Methods Two groups (20 binge drinkers and 20 non-binge drinkers) performed two sessions in a counterbalanced order. Each session
consisted of an inhibition task (i.e. Neutral Go/No-Go) while participants received left frontal tDCS or sham stimulation, immediately
followed by an Alcohol-related Go/No-Go task, while both behavioural and electrophysiological measures were recorded.
Results No significant differences were observed between groups or sessions (tDCS versus sham stimulation) at the behavioural
level. However, electrophysiological measurements during the alcohol-related inhibition task revealed a specific effect of tDCS
on attentional resource mobilization (indexed by the N2 component) in binge drinkers, whereas later inhibition processes
(indexed by the P3 component) remained unchanged in this population.
Conclusions The present findings indicate that tDCS can modify the electrophysiological correlates of cognitive processes in
binge drinking. While the impact of such brain modifications on actual neuropsychological functioning and alcohol consumption
behaviours remains to be determined, these results underline the potential interest of developing neurocognitive stimulation
approaches in this population.
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Introduction

Alcohol remains the most widespread psychoactive substance
consumed worldwide. A hallmark of alcohol-related disorders

is the presence of executive impairments, underlain by re-
duced activity in frontal regions. Indeed, the dominant neuro-
biological (e.g. Koob 2014; Volkow and Baler 2015) and neu-
ropsychological (e.g. Rochat et al. 2019; Wiers et al. 2007)
models of severe alcohol use disorders (as defined by the
DSM-5) underline that this psychiatric disorder is simulta-
neously characterized by (1) increased activation of the re-
ward system (notably indexed by craving and alcohol-
related biases) and (2) reduced activation of the frontal net-
works responsible for inhibition and executive control. This
imbalance between an over-activated automatic system and an
under-activated control system leads to the persistence of ex-
cessive alcohol consumption. Many studies have supported
these models by repeatedly observing lower cognitive abilities
(e.g. Stavro et al. 2013) and anatomical/functional
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impairments in a large range of frontal (e.g. Bühler and Mann
2011; Moselhy et al. 2001) and prefrontal (e.g. Goldstein and
Volkow 2011) areas in severe alcohol use disorders.

Capitalizing on these data among patients, a new research
field has emerged during the two last decades, exploring
whether such cognitive and brain deficits might already be
observed in subclinical populations who present excessive
alcohol consumption (but who do not fulfil the criteria for
severe alcohol use disorders). In this context, many studies
(e.g. Carbia et al. 2018; Hermens et al. 2013 for recent
reviews) have been conducted on binge drinking, a frequent
alcohol consumption pattern in youth, characterized by large
alcohol intakes over short periods (leading to repeated
alternations between drunkenness and withdrawal episodes;
Kraus et al. 2016). It has indeed been shown that adolescents
who present binge drinking habits have a higher risk of devel-
oping severe alcohol use disorders in adulthood (e.g. Bonomo
et al. 2004; Viner and Taylor 2007). Binge drinking, while not
considered an addictive disorder per se, might thus constitute a
first step in the transition between pleasurable/controlled (drug
“liking”, as proposed in the incentive-sensitization theory;
Robinson and Berridge 2001) and compulsive/uncontrolled
(drug “wanting”) alcohol consumption. Although few studies
have reported reduced behavioural executive performance
among binge drinkers (BD) when compared with that of
non-/low drinkers (e.g. Czapla et al. 2015; Townshend and
Duka 2005), neuroimaging and electrophysiological tech-
niques have identified latent brain indexes of attentional and
executive difficulties related to binge drinking (e.g.
Campanella et al. 2013; Crego et al. 2012; Holcomb et al.
2019; Lannoy et al. 2017; López-Caneda et al. 2013). For
example, modified brain activity has been observed in BD
compared with controls, despite identical behavioural perfor-
mance (López-Caneda et al. 2013). Moreover, these brain
modulations were stronger when BD had to explicitly inhibit
alcohol-related stimuli (Lannoy et al. 2019; Petit et al. 2012).
In the same vein, neuroimaging evidence also suggests that
BD show reduced activation of the brain areas usually in-
volved in attention, executive and working memory tasks
(i.e. frontal and temporal regions), together with increased
activation in other regions classically not associated with such
tasks (e.g. Herman et al. 2018; López-Caneda et al. 2012).
Together, these results have led to the emergence of the com-
pensation hypothesis (Maurage et al. 2013), suggesting that
the altered functioning of the brain network related to atten-
tional or executive functions in binge drinking might initially
be undetectable at the behavioural level due to the compensa-
tory activation of alternative and preserved brain structures.

Given the key role of executive functions for the reg-
ulation of alcohol consumption, these latent brain impair-
ments might be involved in the maintenance of binge
drinking habits or even promote the onset of severe alco-
hol use disorders (Field et al. 2008; Maurage et al. 2013).

The transition between binge drinking and severe alcohol
use disorders could be characterized by a worsening of
alcohol-related brain consequences, leading to the disap-
pearance of the brain compensation mechanisms and to
the emergence of patent cognitive impairments, as repeat-
edly reported in severe alcohol use disorders (Stavro et al.
2013). It thus appears crucial to identify the early brain
correlates of binge drinking, even when behavioural mea-
sures cannot yet index them, and, most importantly, to
rehabilitate these difficulties before their expansion. To
this end, a promising perspective is offered by
neuromodulation techniques, particularly by transcranial
direct current stimulation (tDCS), a non-invasive and eas-
ily implemented tool, which could enhance cognitive abil-
ities through brain stimulation (Elmasry et al. 2015).

tDCS improves executive performance in healthy partici-
pants (Ditye et al. 2012; Friehs and Frings 2018), but this
technique has also recently been used in populations with
alcohol use disorders (Spagnolo and Goldman 2016).
Overall, these studies have shown that frontal tDCS can re-
duce craving in patients with severe alcohol use disorders
(Boggio et al. 2008; da Silva et al. 2013) and in young heavy
drinkers (den Uyl et al. 2015), as well as lower relapse rates in
recently detoxified patients (Klauss et al. 2014). The modula-
tion of frontal regions, which are directly involved in execu-
tive processing and the cognitive control of drinking behav-
iour, might thus lead to positive behavioural and clinical out-
comes. Notably, although tDCS has mostly been applied
offline (i.e. stimulation at rest), a larger impact of this proce-
dure has recently been shown when the participant is involved
in a cognitive task (i.e. online tDCS; Elmasry et al. 2015).
Following this proposal, trials were conducted in heavy
drinkers (den Uyl et al. 2016) and in patients with severe
alcohol use disorders (den Uyl et al. 2017; den Uyl et al.
2018) by coupling frontal tDCS with cognitive training ses-
sions to modify approach tendencies and attentional bias to-
wards alcohol. Although the joint tDCS/cognitive training ap-
proach has shown a slight positive impact on craving in young
heavy drinkers (den Uyl et al. 2016) or on the relapse rate in
recently detoxified patients (den Uyl et al. 2017, 2018), no
strong evidence for a specific enhancement effect of tDCS
on cognitive performance has been reported.

These mixed results might be partly related to issues with
clinical outcome variables (e.g. using self-reported craving
measures), sample characteristics (e.g. low initial craving
levels, low motivation to change) or discrepancies in stimula-
tion parameters (e.g. localization, intensity, number of ses-
sions), as well as centrally to the nature of the cognitive pro-
cesses targeted. Indeed, the processes underlying cognitive
bias modification measured in these studies were mainly re-
lated to implicit and automatic behaviours, rather than being
based on limbic areas and the reward system (Noël et al.
2010). Moreover, it has been shown that tDCS effects can

Psychopharmacology



be influenced by the cognitive load, as they are increased
when the cognitive process is sufficiently demanding to re-
quire the recruitment of higher cognitive and neuronal re-
sources (Elmasry et al. 2015; Gill et al. 2015). It is thus not
surprising that tDCS stimulation focused on frontal areas has
only limited impact on processes that require low involvement
of frontal regions and their related cognitive resources, in
comparison with more controlled executive processes
(Shiffrin and Schneider 1977).

Therefore, to address these issues, we tested whether ap-
plying online (i.e. performed simultaneously with a cognitive
task) frontal neuromodulation through tDCS might increase
efficiency in a cognitive task (Go/No-Go task) by directly
mobilizing the neural resources (i.e. frontal areas) involved
in controlled processes (i.e. attention and inhibitory control).
We chose the Go/No-Go paradigm because it presents a high
level of difficulty and resource mobilization (Vocat et al.
2008). Self-reported impulsivity was also measured at base-
line (through the UPPS-P; Billieux et al. 2012), as this factor is
related to binge drinking, predicts excessive alcohol consump-
tion (Henges and Marczinski 2012; Townshend and Duka
2005) and may also have an impact on the processing speed
in a Go/No-Go task (Lannoy et al. 2019). Moreover, to further
evaluate whether neurocognitive online tDCS can enhance
attentional and inhibitory performance in BD and to observe
the potential post-stimulation effect of the tDCS, we per-
formed behavioural measures after tDCS by using soft drink
and alcohol-related stimuli while participants performed a Go/
No-Go task (Lannoy et al. 2018). Although slightly different
from the Neutral Go/No-Go task, this adapted version was
chosen because (1) it requires similar cognitive and brain ex-
ecutive mechanisms; (2) it has already demonstrated specific
differences between BD and non-BD (Lannoy et al. 2018);
and (3) it avoids repeated administration of the same task
across sessions, which might generate training effects. This
behavioural measure was combined with a simultaneous elec-
trophysiological recording to determine the brain correlates of
neurocognitive stimulation. Interestingly, the high temporal
resolution and large sensitivity of event-related potentials
(ERPs) can index the extent (and modification through
neurocognitive stimulation) of subtle alcohol-related effects,
still undetectable at the behavioural level (Campanella and
Noël 2016). To specifically explore the brain correlates of
attentional and inhibitory processes, we recorded two electro-
physiological components indexing high-level cognitive abil-
ities, namely N2 and P3. N2 is classically considered to reflect
the amount of attentional resources involved in the task (i.e.
attentional focus; Knight 1991; Smith et al. 2013), but it is also
related to response inhibition and conflict (Donkers and van
Boxtel 2004; Nieuwenhuis et al. 2003) and modulated by
response-related activation (Bruin et al. 2001). P3 reflects
high-level decisional processes preceding response initiation
(Polich 2004; Sutton et al. 1965) or response inhibition

(Wessel and Aron 2015). N2 and P3 were also chosen because
they have been repeatedly explored in binge drinking.
Although several studies have shown delayed latency or re-
duced amplitude for N2 (Maurage et al. 2009, 2012) and P3
(Ehlers et al. 2007; Petit et al. 2014) among BD, other studies
have conversely shown increased amplitudes (Crego et al.
2009, 2012; López-Caneda et al. 2013) or an absence of group
differences (Park and Kim 2018; Petit et al. 2012; Watson
et al. 2016). The current literature is thus characterized by
mixed results regarding the electrophysiological modifica-
tions related to this drinking pattern.

The main aim of our study was to directly explore whether
a neurocognitive stimulation approach, using online tDCS,
can improve attentional and executive functioning at the be-
havioural and electrophysiological levels in binge drinking.
We used a single-blinded within-subject design with two
groups (BD, non-BD) and two sessions (sham stimulation,
active tDCS). We centrally hypothesised that (1) BD would
not present patent behavioural deficits for attention or inhibi-
tory control, but might have modified brain activations related
to cognitive processes (despite mixed results reported by ear-
lier electrophysiological studies), and (2) neurocognitive stim-
ulation would improve attentional and inhibition abilities in
both groups and counter the potential electrophysiological
modifications related to binge drinking.

Methods

Participants

Participants were selected through an online screening ques-
tionnaire sent by email or through social networks to univer-
sity students. The screening assessed socio-demographic var-
iables (age, gender) and alcohol consumption variables (i.e.
consumption speed in units per hour, mean number of alcohol
units per week, mean number of alcohol units (10 g of pure
ethanol) per drinking occasion, mean number of drinking oc-
casions per week, drunkenness frequency). Inclusion criteria
were as follows: no personal/family history of moderate/
severe alcohol use disorders and epilepsy, no history of head
injury, no brain surgeries, no psychological/neurological dis-
orders, no psychotropic medications, normal or corrected-to-
normal vision and absence of past or current drug consump-
tion (except for alcohol/tobacco). These inclusion criteria
were measured through self-reported items.

Two groups (BD, non-BD) were formed based on their
binge drinking score (Townshend and Duka 2005) and the
number of alcohol units per occasion (López-Caneda et al.
2014). The binge drinking score was computed according to
the following formula: (4 × consumption speed) + number of
drunkenness episodes + (0.2 × percentage of drunkenness ep-
isodes). Cut-off scores for group assignation (Townshend and
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Duka 2005) were adapted for Belgium’s alcohol unit measure-
ment (Lannoy et al. 2017) and reinforced by other alcohol-
related measures (Table 1). Twenty BD (binge drinking score
> 16; alcohol units/occasion ≥ 6) and 20 non-BD (binge drink-
ing score < 12; alcohol units/occasion ≤ 3) were selected. All
BD reported beer as their most regular alcoholic drink.

All participants (10 women per group) were between 18
and 26 years old (BD: 21.3 ± 2.0; non-BD: 21.6 ± 2.6). To
control the potential effects of psychopathological comorbid-
ities, we asked participants to fill in questionnaires that
assessed depressive symptoms (Beck Depression Inventory,
BDI-II; Beck et al. 1996), anxiety (State-Trait Anxiety
Inventory, STAI; Spielberger et al. 1983), impulsivity
(UPPS-P; Billieux et al. 2012) and alcohol-related disorders
(Alcohol Use Disorder Identification Test, AUDIT; Babor
et al. 2001). All participants were asked to refrain from con-
suming alcohol during the 3 days preceding each experimental
session.

General procedure

The experiment consisted of two 2-h sessions (one session
with active tDCS, one with sham stimulation), separated by
7 days. The order of the sessions was counterbalanced across
participants to avoid potential learning and/or training effects.
After we checked the exclusion criteria for tDCS use and
informed participants about the whole procedure, they provid-
ed written informed consent. They were seated in front of a
Dell computer (1280 × 1024 pixels) at a 60-cm viewing dis-
tance and tested individually.

The procedure was identical across sessions: participants
first had to perform a cognitive inhibition task (Neutral Go/
No-Go task) coupledwith neuromodulation (see tDCS section),
followed by an evaluation task (Alcohol-related Go/No-Go
task) during which electrophysiological data were recorded
(see EEG section) to assess the effect of online tDCS
(Fig. 1b). The two Go/No-Go tasks were presented by using
E-Prime 2 Professional software (Psychology Software Tools,
Pittsburgh, PA, USA). After the online tDCSwas completed, an
electrophysiological recording cap was immediately placed on
the participant. Between sessions, participants had to complete
the different questionnaires online by using Qualtrics software
(Qualtrics, LLC). At the end of the second session, participants
were debriefed and received compensation (40 euros). None of
the participants reported having detected a difference between
the sham stimulation and tDCS sessions. The study protocol
was approved by the local ethics committee and carried out
according to the principles of the Declaration of Helsinki.

Neurocognitive stimulation

Cognitive inhibition task

In this Neutral Go/No-Go task (adapted from Vocat et al.
2008), arrows presented centrally on a white background were
used as visual stimuli (subtending a visual angle of
11.4°×0.05°). Each trial started with a black arrow, oriented
upward or downward, presented for a variable duration
(1000–2000 ms). The arrow could then turn either green or
turquoise (these two colours were matched for luminance),
either in a similar or in the opposite direction (Fig. 1a). The

Table 1 Demographic, psychopathological and alcohol consumption measures (mean (SD)) for binge drinkers (BD) and non-binge drinkers (non-BD)
participants

BD (n = 20) non-BD (n = 20)

Demographic measures

Gender ratio (male/female)ns 10/10 10/10

Agens 21.25 (2.0) 21.60 (2.6)

Laterality (right/left)ns 19/1 19/1

Psychopathological measures

Beck Depression Inventoryns 6.80 (4.5) 5.65 (5.0)

State Anxiety Inventoryns 37.25 (10.7) 35.40 (8.8)

Trait Anxiety Inventoryns 38.90 (8.4) 39.40 (7.6)

UPPS-P* 48.70 (8.1) 41.75 (7.9)

Alcohol consumption measures

Alcohol Use Disorder Identification Test** 17.65 (5.6) 2.80 (2.9)

Binge Drinking Score** 40.04 (19.5) 3.00 (4.0)

Total units per week** 26.95 (12.3) 1.20 (1.9)

Number of occasions per week** 3.10 (1.0) 0.65 (1.1)

Number of units per occasion** 9.11 (3.3) 0.71 (1.1)

ns Non-significant, *p < .01, **p < .001
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coloured arrow remained on the screen for a maximum of
1500 ms. Trials were separated by a blank screen (500 ms),
followed by a central fixation cross (500 ms).

Participants were instructed to respond as fast as possible by
pressing the space bar with their dominant hand each time the
black arrow turned green and maintained the same direction (Go
trials). Participants had to refrain from responding each time the
black arrow turned turquoise or changed its direction (No-Go
colour and No-Go orientation trials, respectively). The task com-
prised two parts, each consisting of a calibration block (14 trials;
10 Go, 2 No-Go colour, 2 No-Go orientation), directly followed
by two test blocks (60 trials each; 40Go, 10No-Go of each type).
The whole task lasted around 20 min and included 268 stimuli.

During each calibration block, the mean reaction time (RT)
for Go trials was computed online and used to define a refer-
ence threshold for the following test blocks. Participants were
not informed about this procedure. For the first session, the
upper answer time limit was set to 80% of the mean RT of the
corresponding calibration block, and the upper limit was set to
90% for the second session (for more details, see Vocat et al.
2008). When participants were too slow, a feedback screen
related to their speed was displayed (“Too late” on-screen
message). Participants were informed that these slow hits were
considered errors and that they reduced their percentage of
correct responses (indicated on the top right of the screen).
This procedure forced participants to respond as quickly as
possible and thus promoted frequent error occurrences
(Vocat et al. 2008). This speedy version of the Go/No-Go
paradigm increased the complexity of the task and thus im-
proved the discrimination of participants’ performance by
preventing ceiling effects usually observed with simple tasks
(Campanella et al. 2017). As underlined earlier, the main aim

of this Neutral Go/No-Go task used during tDCS stimulation
(i.e. online tDCS) was to expose participants to a cognitive
task by using high-level inhibition processes and recruiting
brain areas specifically involved in this type of processing.
This recruitment of inhibitory-related processes and brain net-
works was used to maximize the tDCS impact, as it is in-
creased when performed simultaneously with a complex cog-
nitive task (Elmasry et al. 2015; Li et al. 2019).

tDCS

While participants performed the Neutral Go/No-Go task, a
1.5-mA current was administered by using two 35-cm2 (7 ×
5 cm) electrodes inserted in saline-soaked sponges and con-
nected to a DC stimulator (Neuroconn, Ilmenau, Germany).
The electrode position was established by using the interna-
tional 10–20 EEG system, with the anodal electrode placed at
the F3 position (corresponding to the left dorsolateral prefron-
tal cortex area) and the cathodal electrode placed above the
right eye, at the Fp2 position (corresponding to the right su-
praorbital region). In the active tDCS condition, the current
was held constant during the whole Neutral Go/No-Go task
(20 min). During the sham condition, the device was turned
off after a 30-s stimulation. In both conditions, gradual 20-s
fade-in and fade-out phases were used.

Evaluation task and EEG recording

Alcohol-related Go/No-Go task

The same procedure as that used in the Neutral Go/No-Go task
was followed, except for the type and number of stimuli

Fig. 1 a Trial examples for the Neutral (left) and Alcohol-related (right)
Go/No-Go tasks (illustrated here for the neutral upward orientation). The
neutral arrow/can was followed either by a green arrow/alcohol drink can
in the same orientation (Go trial), by a green arrow/alcohol drink can in
the opposite orientation (No-Go orientation trial) or by a turquoise arrow/
soft drink can in the same orientation (No-Go colour/content trial). b

General experimental procedure. The experiment consisted of two ses-
sions, separated by 7 days. During each session, participants had to per-
form (1) a Neutral Go/No-Go task during which they received 20 min of
active or sham tDCS (the order of the session was counterbalanced),
followed by (2) an Alcohol-related Go/No-Go task while electrophysio-
logical data were recorded
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displayed. This adapted version used soft drink- and alcohol-
related stimuli (Lannoy et al. 2018). Each trial started with a
neutral grey can, oriented upward or downward. The can
could then be replaced by an alcohol drink can (beer can) or
a soft drink can, either in a similar or in the opposite direction
(Fig. 1a). Several beer and soft drink cans were used during
this task, matched on perceptual parameters (colour, size, lu-
minosity). Participants have seen an illustration of all cans
beforehand to ensure their correct identification.

Participants had to respond as quickly as possible each time
the grey can was replaced by an alcohol drink and maintained
the same direction (Go trials) and to refrain from responding
each time the can became a soft drink or changed its direction
(No-Go content trials and No-Go orientation trials, respective-
ly). This second task was divided into three parts, each
consisting of a calibration block (14 trials; 10 Go, 2 No-Go
content, 2 No-Go orientation), directly followed by two test
blocks (60 trials each; 40 Go, 10 No-Go of each type). The
whole task lasted around 30 min and included 402 stimuli.
The same speedy procedure and mean RTcomputation during
the calibration block were applied, including the feedback
screen displayed after a slow hit and the percentage of correct
responses indicated on the top right of the screen.

EEG acquisition and pre-processing

Electrophysiological data were recorded with a 128-channel
(pin-type) Biosemi ActiveTwo system referenced to the CMS-
DRL ground at 1024 Hz (0–208 Hz bandwidth). EEG pro-
cessing was performed by using the BrainVision Analyzer.
First, EEG data were band-pass filtered (0.1–30 Hz,
Butterworth zero phase filters, 12 dB/oct), followed by a notch
filter at 50 Hz. Ocular artefact removal was carried out
through an independent component analysis ICA-based strat-
egy. Signals were re-referenced in order to average and build
EEG segments beginning 200 ms before and ending 800 ms
after stimulus onset. Baseline correction was applied for the
mean activity during the 200 ms prior to stimulus.
Algorithmic artefact rejection of voltage exceeding ±
100 μV was conducted, and segments with artefacts were
manually rejected. Finally, individual participants’ averages
for correct trials were built separately for each condition (i.e.
correct No-Go and Go). The two main components classically
considered to be ERP markers of response inhibition, namely
N2 and P3 (Donkers and Van Boxtel 2004; Wessel and Aron
2015), were identified. In line with previous studies (Kreusch
et al. 2014; López-Caneda et al. 2014; Maurage et al. 2012)
and following visual data inspection, the N2 component was
quantified by measuring peak amplitude/latency at three fron-
tal electrodes (Fz-F3-F4) in a 150- to 300-ms time interval,
and the P3 component was computed at three parietal elec-
trodes (Pz-P3-P4) in a 300- to 500-ms time interval. Finally,
the mean peak amplitude and latency obtained for the three

electrodes were averaged for each region (López-Caneda et al.
2014).

Statistical analyses

First, between-group comparisons (i.e. independent t tests and
chi-square independent test) were performed on demographic
and psychopathological characteristics, as well as on alcohol
consumption variables. Second, behavioural performance re-
lated to the Neutral and Alcohol-related Go/No-Go tasks was
explored by using analyses of variance (ANOVA) separately
for correct Go responses (RT hits) and correct No-Go re-
sponses (%). To observe the potential effect of neurocognitive
stimulation on inhibition performance of both groups, a 2 × 2
ANOVA with GROUP (BD, non-BD) as the between-subject
factor and SESSION (Active, Sham) as the within-subject factor
was computed. At the electrophysiological level, two 2 × 2
ANOVAs (amplitude, latency) were performed for each com-
ponent (N2, P3) in both trial types (correct Go, correct No-Go
trials), with GROUP (BD, non-BD) as the between-subject fac-
tor and SESSION (Active, Sham) as the within-subject factor.
Finally, correlational analyses were performed between be-
havioural and electrophysiological measures that significantly
differed across groups. Moreover, to further explore the links
between binge drinking habits and inhibition difficulties, we
performed correlations between inhibition performance dur-
ing Go/No-Go tasks and alcohol consumption.

Results

Demographic and psychopathological measures
(Table 1)

No significant group difference was observed for age [t(38) =
0.477, p = .636], gender [χ2(1, N = 40) = 0.000, p = 1], de-
pressive symptoms [t(38) = 0.761, p = .451] and state
[t(38) = 0.596, p = .555] or trait anxiety [t(38) = 0.198,
p = .844]. Regarding impulsivity, BD had a larger UPPS-P
score than non-BD did [t(38) = 2.754, p = .009]. Significant
differences regarding alcohol consumption were observed:
BD had a larger binge drinking score [t(38) = 8.327,
p < .001], AUDIT score [t(38) = 10.461, p < .001], number
of units per week [t(38) = 9.245, p < .001], number of occa-
sions per week [t(38) = 7.339, p < .001] and number of units
per occasion [t(38) = 10.868, p < .001].1

1 Complementary statistical analyses, including gender as a between-subject
factor for all experimental variables (alcohol consumption, behavioural and
electrophysiological measures), did not show any significant difference be-
tween females and males, either for the whole sample or within BD/non-BD
groups.
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Behavioural data (Table 2)

In both tasks (Neutral and Alcohol-related Go/No-Go),
there neither were significant differences between groups
(BD, non-BD) or sessions (Active, Sham) nor were there
significant interactions for any of the behavioural vari-
ables analysed (RT Go trials, percentage of correct No-
Go responses).

Correlational analyses between inhibition performance
and alcohol consumption measures showed a significant
negative relationship between percentage of correct No-
Go responses and binge drinking score in both tasks
(Neutral and Alcohol-related Go/No-Go) and both ses-
sions (Active and Sham) for BD only (all p values
< .001). Moreover, significant correlations were ob-
served between the UPPS-P score and percentage of
correct No-Go responses in both tasks (Neutral and
Alcohol-related Go/No-Go) in the Sham condition (all
p values < .05).

Electrophysiological analyses (Table 3)

Correct Go trials

– N2 amplitude: A GROUP × SESSION interaction was found
[F(1,38) = 4.728, p = .036, η2 = 0.111], showing a larger
amplitude after stimulation than after a sham session in
BD [t(19) = 2.438, p = .025], whereas no significant dif-
ference was observed in non-BD [t(19) = 0.486, p = .632;
Fig. 2].

– N2 latency: There was a main effect of SESSION

[F(1,38) = 4.107, p = .050, η2 = 0.098], showing a lon-
ger latency in the sham session than in the active
session. No main effect of GROUP [F(1,38) = 1.161,
p = .288, η2 = 0.030] and no GROUP × SESSION interac-
tion [F(1,38) = 1.916, p = .174, η2 = 0.048] was
observed.

– P3 amplitude: No significant main effect of GROUP and

SESSION and no significant interaction were found (all p-
values > .05).

– P3 latency: No significant main effect of GROUP and

SESSION and no significant interaction were found (all p-
values > .05).

Correct No-Go trials

– N2 amplitude: No significant main effect of GROUP and

SESSION and no significant interaction were found (all p-
values > .05).

– N2 latency: No significant main effect of GROUP and

SESSION and no significant interaction were found (all p-
values > .05).

– P3 amplitude: A GROUP × SESSION interaction was found
[F(1,38) = 7.616, p = .009, η2 = 0.167], showing a larger
amplitude after stimulation than after a sham session in
non-BD [t(19) = 2.666, p = .015], whereas no significant
difference was observed in BD [t(19) = 1.427, p = .170;
Fig. 3].

– P3 latency: No significant main effect of GROUP and

SESSION and no significant interaction were found (all p-
values > .05).

Correlational analyses

No significant correlations were found between behavioural and
electrophysiological measures. A significant negative correlation
was revealed between the UPPS-P score and the effect of stim-
ulation on the N2 latencies for Go trials (r= − .335, p= .034).

Table 2 Behavioural data for cognitive training (i.e. Neutral Go/No-Go) and evaluation (i.e. Alcohol-related Go/No-Go) tasks (mean (SD)) as a
function of stimulation session (Active, Sham) for binge drinkers (BD) and non-binge drinkers (non-BD) participants

Behavioural performance BD non-BD
Active Sham Active Sham

Neutral Go/No-Go

RT Hits (ms) 330 (53) 324 (37) 323 (41) 320 (40)

Correct No-Go (%) 65.75 (25.1) 70.75 (16.6) 73.50 (18.2) 76.57 (14.8)

Alcohol-related Go/No-Go

RT Hits (ms) 368 (62) 369 (36) 380 (50) 391 (64)

Correct No-Go (%) 50.11 (26.3) 48.32 (21.6) 52.36 (26.2) 54.32 (25.3)

RT reaction time
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Discussion

The cognitive and brain consequences of binge drinking have
been established during the last decade (Hermens et al. 2013).
Neurocognitive stimulation has emerged as a potential tool to
counter alcohol-related negative effects (Spagnolo and
Goldman 2016). The present study measured the behavioural
and electrophysiological correlates of neurocognitive stimula-
tion in university students, testing whether this technique can
modify attentional and inhibitory processes in BD and non-
BD.

No significant behavioural group difference was observed
regarding executive functioning. Contrary to what is found in
severe alcohol use disorders, binge drinking is not associated
with massive executive impairments at the behavioural level
(Lannoy et al. 2017; López-Caneda et al. 2012), despite higher
self-reported impulsivity and a (non-significant) trend to com-
mit more errors in BD than in non-BD in both Go/No-Go
tasks. In addition, anodal tDCS over the left frontal area did
not improve inhibition performance, as no difference in RT

and the correct response rate was detected between sessions.
As suggested earlier (Campanella et al. 2018), the behavioural
outcomes classically measured in the Go/No-Go task might
not be sensitive enough to detect subtle modifications
resulting from neurocognitive stimulation. This absence of
behavioural differences does not imply that tDCS has no im-
pact on the brain, as demonstrated by recent studies using
neuroscience tools among healthy participants (Campanella
et al. 2017; Cunillera et al. 2016; Sallard et al. 2018). The joint
use of electrophysiological measures in our study has thus
revealed the modulation effects of tDCS on brain activity,
beyond the absence of a detectable behavioural counterpart.

A reduced N2 latency for correct Go trials was observed
after stimulation in both groups, suggesting a positive offline
influence of tDCS. In Go trials, this component is usually
interpreted as being related to the speed and intensity of atten-
tional resource mobilization (Knight 1991; Smith et al. 2013)
and also indexes response-related activation (Bruin et al.
2001). The first main electrophysiological result is thus that
neurocognitive stimulation leads, in both groups, to a global

Fig. 2 Grand average event-related potential waveforms of correct Go trials at the frontal region for sham (light grey line) and active (dark grey line)
sessions for binge drinkers (left) and non-binge drinkers (right)

Table 3 Amplitude (in μV) and latency (in ms) (mean (SD)) of the N2
component for the frontal region (mean of Fz, F3 and F4) and P3
component for the parietal region (mean of Pz, P3 and P4) in each

experimental condition (correct Go and correct No-Go) as a function of
session (Active, Sham) for binge drinkers (BD) and non-binge drinkers
(non-BD) participants

Variable Condition BD non-BD

Active Sham Active Sham

N2 Amplitude Go 0.43 (2.76) 1.84 (2.93) 1.53 (2.55) 1.29 (2.54)

No-Go − 2.98 (2.56) − 3.21 (3.05) − 2.55 (2.76) − 3.23 (3.02)
Latency Go 215 (26) 233 (25) 230 (33) 234 (33)

No-Go 249 (24) 246 (31) 248 (28) 259 (20)

P3 Amplitude Go − 0.55 (1.58) 0.23 (2.05) 0.42 (1.30) 0.08 (1.58)

No-Go 4.49 (2.80) 5.05 (2.45) 5.05 (1.87) 4.24 (2.21)

Latency Go 397 (55) 389 (56) 394 (50) 383 (59)

No-Go 408 (43) 408 (41) 409 (44) 399 (37)
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boost of attentional abilities for Go trials, which is in line with
earlier studies showing that tDCS impacts attentional perfor-
mance (e.g. Filmer et al. 2017; Heeren et al. 2017). This boost
is even stronger among BD, also showing increased N2 am-
plitudes following neurocognitive stimulation (Fig. 2). This
result should, however, be interpreted with caution among
BD, as our paradigm exclusively used alcohol-related stimuli
as Go trials. It can thus not be excluded that tDCS in fact
enhanced the processing of salient alcohol cues in this group
(i.e. favours the attentional processing of alcohol), which
might be counterproductive at the therapeutic level. Future
studies comparing the electrophysiological effect of tDCS
for Go trials related to alcoholic versus non-alcoholic stimuli
are thus needed to determine whether the attentional boost in
binge drinking is general (as suggested by the fact that this
effect was also observed here among non-BD) or specific to
alcohol-related stimuli. It should also be underlined that this
attentional boost is not found in No-Go trials, where N2 in-
dexes inhibitory or response conflict processes (Botvinick
et al. 2001; Nieuwenhuis et al. 2003). The tDCS-related mod-
ifications are thus specific to attentional resources, as no effect
is observed when inhibitory abilities are recruited.

Regarding the P3 component, which constitutes the
main electrophysiological index of cognitive inhibition
(Smith et al. 2007; Wessel and Aron 2015), results
showed no impact of neurocognitive stimulation among
BD. Conversely, the P3 amplitude for correct No-Go trials
was increased following stimulation in the non-BD group,
indexing a tDCS impact on successful response inhibition
(Jacobson et al. 2012; Lapenta et al. 2014). Although
inhibition abilities may be compromised in binge drinking
(Campanella et al. 2013), neurocognitive stimulation did
not significantly impact the specific abilities related to
motor response inhibition in this group. As a whole,
neurocognitive stimulation can boost attentional resources
among BD but, conversely, has no impact on inhibitory
processes in this population.

These findings clarify the usefulness of neuromodulation
techniques in binge drinking, as well as their limits. On the
one hand, our study confirms that online tDCS constitutes a
powerful way to modulate brain activity in subclinical popu-
lations (Elmasry et al. 2015; Sathappan et al. 2018). The va-
lidity of our results is reinforced by the within-subject design
used (each participant receiving both active and sham tDCS),
which took into account the individual baseline level and min-
imized the impact of inter-individual differences. Moreover,
our choice to use a task involving cognitive processes (which
are involved in the persistence of binge drinking; Gill et al.
2015) related to frontal regions (Chikazoe 2010) proved to
have stronger sensitivity than was the case in previous studies
that focused on craving/automatic bias modification (den Uyl
et al. 2016). Finally, our findings confirm the importance of
electrophysiological measures, beyond behavioural indexes,
to objectify subtle modifications of brain activity and improve
the understanding of the processes involved in excessive al-
cohol consumption (Houston and Schlienz 2018). All these
methodological choices pave the way for the development of
gold standards for neurocognitive stimulation in subclinical
populations. On the other hand, our results suggest that
neurocognitive stimulation does not lead to global improve-
ment of brain activity, as it influences attentional components
(i.e. N2), but does not modify the electrophysiological corre-
lates of inhibition (i.e. P3), which is at the core of addictive
disorders. This lack of impact might be related to the absence
of a strong pre-existing inhibition deficit among BD. Indeed,
although BD tended to commit more errors than non-BD did,
and although a positive correlation was found between binge
drinking scores and error rates, our hypothesis that BD would
present pre-stimulation cognitive or electrophysiological def-
icits was not globally confirmed. As mentioned earlier, previ-
ous electrophysiological studies among BD led to mixed re-
sults, some showing N2-P3 impairments (Ehlers et al. 2007;
Maurage et al. 2009, 2012; Petit et al. 2014) while others did
not (Park and Kim 2018; Petit et al. 2012; Watson et al. 2016).

Fig. 3 Grand average event-related potential waveforms of correct No-Go trials at the parietal region for sham (light grey line) and active (dark grey line)
sessions for binge drinkers (left) and non-binge drinkers (right)
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The absence of deficit observed among BD in our study is thus
not at odds with several earlier results, but it could have
lowered the improvement range allowed by tDCS, particularly
regarding inhibition. This confirms the importance of consid-
ering the baseline cognitive state when defining tDCS para-
digms in experimental studies or rehabilitation programs (e.g.
Dubreuil-Vall et al. 2019; Li et al. 2019). Nevertheless, even
though our results cannot prove that neurocognitive stimula-
tion is useful to compensate for brain deficits among BD (as
they did not present such deficits at baseline), the findings do
show that tDCS can enhance brain activity related to atten-
tional processes in binge drinking. Boosting such processes,
which are involved in the emergence and maintenance of
alcohol-related disorders, might have a positive impact on
excessive alcohol consumption (future work being needed to
quantify this impact). Notably, the absence of baseline group
differences does not lessen the interest of our results: tDCS-
related changes here constitute an improvement of preserved
abilities rather than the rehabilitation of impaired abilities.
Many studies have indeed measured the boosting effect of
tDCS on a wide range of cognitive functions in healthy pop-
ulations (e.g. Ditye et al. 2012; Filmer et al. 2017; Friehs and
Frings 2018; Heeren et al. 2017) and have shown that a ben-
eficial effect (i.e. further boosting already efficient abilities)
can be observed even in the absence of a pre-existing deficit.

This study being the first to explore both the behavioural
and electrophysiological impact of neurocognitive stimulation
in BD, the current findings should be extended, notably by
exploring the impact of such an approach on other cognitive
processes (e.g. memory, emotional processing). Their modu-
lation by demographic factors (e.g. gender, as the absence of
gender effect reported here was based on a limited sample
size), psychological factors (e.g. impulsivity) or alcohol-
related factors (e.g. craving intensity and alcohol consumption
during the days preceding the experiment, which were not
measured here) should also be documented. As disease stage
(e.g. subclinical versus clinical status) strongly modulates the
efficiency of neurocognitive rehabilitation (e.g. Wiers et al.
2018), the variation of the impact of tDCS according to the
intensity of binge drinking habits should also be further ex-
plored (notably to extend our correlational analyses that show
that inhibitory deficits are influenced by the binge drinking
score).

Moreover, future studies should explore how methodolog-
ical choices modulate the impact of neuromodulation on be-
havioural or electrophysiological measures. First, although the
technical characteristics of tDCS used here are totally in line
(e.g. regarding stimulation intensity/duration and electrode
size) with the most recent studies that apply neuromodulation
in addictive disorders (e.g. Den Uyl et al. 2017, 2018; Klauss
et al. 2018), modifying such characteristics might modulate
the impact of tDCS. Large variations in executive enhance-
ment (after frontal stimulation) have been reported, depending

on current density (Dedoncker et al. 2016) or electrode size/
montage (Imburgio and Orr 2018). Second, the effect of re-
peated tDCS sessions should be measured: this study pro-
posed only one active session and the impact was measured
just after stimulation, which did not allow us to measure the
increased behavioural and brain impact related to multiple
tDCS sessions or to determine the long-term evolution of such
an impact. A recent review showed that a single stimulation
session was frequently insufficient in revealing reliable im-
provement effects (Horvath et al. 2015). In the same vein,
we applied anodal stimulation to the left frontal cortex, which
is consistent with previous studies on craving modulation in
heavy drinkers (den Uyl et al. 2015, 2016). However, other
studies have reported effects when stimulating the right frontal
cortex in similar Go/No-Go tasks (Cunillera et al. 2016;
López-Caneda et al. 2014). A more systematic exploration
of the influence of stimulation site should determine the opti-
mal location and define standardized guidelines. Finally, it
should be underlined that the impact of neurocognitive stim-
ulation might bemodulated by behavioural or brain abnormal-
ities preceding alcohol consumption. Indeed, although alcohol
neurotoxicity has a direct effect on brain functioning in binge
drinking (e.g. Maurage et al. 2009), some BDmight also pres-
ent pre-existing genetic or neurobiological vulnerabilities
(Goldstein and Volkow 2011; Volkow et al. 2012), leading
to cognitive and brain alterations before the initiation of alco-
hol consumption. Such predisposing factors, notably related
to reduced frontal activation (e.g. Norman et al. 2011), might
be more stable and thus less sensitive to neurocognitive
stimulation.

Conclusions

The main outcome of the present research is that, whereas
earl ier studies had observed a limited impact of
neuromodulation on craving in heavy drinkers, the use of
online tDCS can modify the brain correlates of cognitive pro-
cessing. Neurocognitive stimulation had a significant and spe-
cific impact on attentional resource mobilization in BD
(indexed by N2), whereas the later processing stages (i.e. in-
hibition or motor response preparation, indexed by P3)
remained unchanged by the intervention in this group. The
modulation of electrophysiological activity that results by fol-
lowing our approach proves that neurocognitive stimulation
can efficiently boost specific brain processes in BD, which
may initiate the application of such interventions in
subclinical populations. However, future studies are needed
to clarify the concrete influence of these brain modifications
on cognitive functioning and alcohol consumption habits be-
fore applying neurocognitive remediation approaches in this
population.
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