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ABSTRACT

Feature selection is an important preprocessing step in machine learning. It helps to better under-
stand the importance of some features and to reduce the dimensionality of a dataset, which improves
machine learning and information extraction. Among the different existing methods for selecting fea-
tures, filters are popular because they are independent from the model, which will be learnt afterwards,
and computationally efficient. The efficiency of filter methods relies on a strategic choice: the choice
of the relevance criterion. Many criteria exist; they exhibit various properties, which in turn result in
selecting different features. The choice of the criterion is thus important and should ideally be linked
to the properties of the data and to users’ goals. This paper shows that six properties should be anal-
ysed when selecting a relevance criterion in the context of regression problems. It proposes a reading
grid to analyse relevance criteria and to make a well-guided choice.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction
High-dimensional data are ubiquitous in regression prob-

lems. In high-dimensional datasets, some features may be not
relevant or redundant to the considered regression problem and
should be ignored. In contrast, other features are strategic; fo-
cusing on the latter helps to model data and extract information.
Feature selection is therefore an important preprocessing step in
machine learning; it does not only intend to reduce the dimen-
sion of the data but also improves interpretability and reduces
computational costs by selecting which features, or combina-
tions of features, are really of interest.

Among the different categories of feature selection meth-
ods, filters are known to be faster than wrappers and embed-
ded methods. But filter methods need a criterion to measure the
relevance of features for the problem at hand. The relevance cri-
terion is therefore the key ingredient of a good feature selection
process.

Many questions may influence the choice of the most appro-
priate criterion for the problem at hand: does the criterion need
to be multivariate? Nonlinear? How does it scale with large
datasets? Is it robust enough with small datasets? What about
the performance of its estimator? This paper focuses on these
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strategic questions to choose the best relevance criterion for a
dataset in the context of regression problems, with real valued
input variables. It aims at providing a reading grid detailing the
key properties of relevance criteria, helping the user for choos-
ing the most adequate one to be used with a specific dataset.

The following of this paper is structured as follows. Sec-
tion 2 describes feature selection and the problem statement.
Section 3 explores related works about filter feature selection
and relevance criteria; while these works are important for in-
troducing and comparing feature selection algorithms, they lack
an in-depth study of their differences and of the properties of the
relevance criteria. Section 4 presents six important properties to
be carefully analysed before choosing a relevance criterion and
its estimator. To illustrate and to show the importance of these
six properties, Section 6 analyses three relevance criteria, pre-
viously introduced in Section 5. The summary of this analysis
and a comparison of the relevance criteria are discussed in Sec-
tion 7. Finally, conclusions are drawn in Section 8.

2. Feature Selection

The key idea of feature selection is that a good feature sub-
set should contain the features that are the most relevant to the
target. Contrarily to dimension reduction whose goal is to cre-
ate new features, feature selection selects features among the
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original set, maintaining their interpretation. Many works fo-
cus on methods reducing the original set of features in datasets
[13, 32]. Feature selection has many benefits: it fights the curse
of dimensionality, decreases memory needs, improves predic-
tion performances, reduces computational costs, and allows to
better interpret the features and the model.

Feature selection methods are categorised into filters, wrap-
pers and embedded methods. Unlike wrappers and embedded
methods, filters are independent from the model to be learned.
This is an advantage in terms of computational cost and speed
because relevant features are selected without training numer-
ous models [2]. This computational advantage allows to test
more possible feature subsets than in a wrapper of embedded
approach. This paper focuses on filters.

To select the most relevant subset of features, a filter method
relies on two choices: the choice of the search procedure and
the choice of the relevance criterion. As the number of possi-
ble subsets of features is exponential with the dimensionality
(i.e., the number of original features), search procedures aim at
reducing the number of subsets that are considered and evalu-
ated. One of the most common search procedures is the forward
search. During a forward search, the first step finds the most
relevant feature with respect to the target. In the second step, it
computes the relevance of every group of two features contain-
ing the one selected during the first step and a new one to be
added. This procedure is extended to three, four, etc. features.
The forward search procedure is used in this paper as an illus-
tration for the feature selection process; however it can easily be
replaced by a backward search or any other search procedure;
the search procedure and the choice of the relevance criterion
are indeed independent choices.

Besides the search procedure, the key factor of a successful
feature selection is the relevance criterion, i.e., the measure of
the relevance between a group of features and the target. The
goal of this paper is to examine the properties of relevance cri-
teria, and to provide the user a reading grid that can be used to
adapt the choice of a criterion according to key properties of the
data in regression problems.

3. Related Works
Several papers have recently benchmarked feature selection

methods [4, 18, 29] where many relevance criteria are enumer-
ated for classification, clustering or regression. Several bench-
marks have been specifically realised to find the best filter crite-
rion. For example, Bommert et al. analyse different filter meth-
ods with respect to runtime and accuracy on high-dimensional
datasets, in a classification context [2]. Their work shows that
there is no filter method that always outperforms all other ones,
although some filter methods perform well on many of the
datasets. There is no analysis on the reasons of the conclusions
in the paper. Furthermore, they focus on classification. Another
example is the work done by Shivan Darshan et al. for filters in
classification [28]. It shows that, among many filter criteria,
several ones behave better than others in terms of accuracy.

Although the above papers usually do not focus on regres-
sion, they illustrate the large range of existing filter criteria and
the lack of a single, ideal one that fits all possible needs. There

exist indeed many different relevance criteria for filter methods:
the correlation factor, the mutual information and its variants
(MI, NMI, JMI, etc.) [3], the noise variance [8], the mRMR
[7], the coefficient of determination [23], etc.

However, these papers do not provide an in-depth discussion
of the properties of the criteria. As no criterion outperforms
all other ones from every aspect, the analysis of the properties
provides a reading grid that may be used to choose the criterion
that is best adapted to a regression problem and a dataset at
hand.

4. Properties of Relevance Criteria
The choice of the relevance criterion in a feature selection

process is strategic. As detailed in Section 3, there exist many
such criteria. This shows the need to establish a reading grid to
allow the user to make a choice for the problem at hand.

This section details six fundamental properties that can be
used to analyse any relevance criterion and understand its be-
haviour for a specific dataset. It describes why a relevance cri-
terion used in regression should be multivariate (Section 4.1)
and nonlinear (Section 4.2), and the important properties of the
estimator of the criterion itself, with one property focusing on
the estimator complexity in Section 4.4 and three properties fo-
cusing on stability properties in Sections 4.3, 4.5 and 4.6.

4.1. Property 1: Multivariate Criterion
When performing a search during a feature selection process,

e.g., with a forward search, one needs to evaluate the relevance
of groups of features (subsets of the initial set) with respect to
the target. Indeed, some features do not bring any information
on their own but bring information when coupled to other fea-
tures; an example is when the target depends on the product of
two features but is independent from each of the latter taken in-
dividually. For this reason, using a relevance criterion able to
detect multivariate relationships is essential [29]. This property
is regarded as mandatory: a criterion that does not meet this re-
quirement will not be considered in this paper. This property is
used in Section 6.1 to analyse relevance criteria.

4.2. Property 2: Nonlinear Criterion
Most regression datasets present nonlinearities between vari-

ables. A relevance criterion used for feature selection in regres-
sion must therefore be able to detect nonlinear relationships.
Similarly to Property 1, this property is regarded as mandatory:
a criterion that does not meet this requirement will not be con-
sidered in this paper. This property is analysed in Section 6.2.

4.3. Property 3: Estimator Parameters
Most filter criteria are defined as a statistical property of the

data averaged over the domain space. Because their evaluation
on a finite dataset relies on numerical integration over the do-
main space, the criteria can usually not be evaluated exactly: an
estimator is needed. The latter usually requires one or several
parameters to be tuned. The parameters may greatly influence
the quality of the estimator, and therefore the quality of the fea-
ture selection process itself. For example, nearest-neighbour-
based estimators, such as the Kraskov estimator [20] detailed in
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Section 5, need to choose the number of neighbours used in the
estimation. This choice of parameter might be crucial [10]; its
influence is often underestimated in the literature. In addition,
filter feature selection is an unsupervised process: the regres-
sion model is not used in filters, which means that the ground
truth would be the true value of the criterion, not of the regres-
sion; this ground truth is unknown, preventing the optimisation
of estimator parameters. A relevance criterion should therefore
be provided with an estimator that is as independent as possible
from the choice of user-defined meta-parameters. This property
is discussed in Section 6.3.

4.4. Property 4: Estimator Complexity

When choosing a criterion, the computational complexity of
its estimator must be taken into account [24]. Indeed depend-
ing on the search procedure to find the best subset of features,
the number of estimations of the criterion may be large (up to
2d − 1 for an exhaustive search, where d is the maximum num-
ber of selected features). An estimator with a high computa-
tional complexity would seriously hinder the benefits of filters
for feature selection (with respect to wrappers). A relevance
criterion should therefore have a low computational complex-
ity; this property is analysed in Section 6.4.

4.5. Property 5: Estimator Sample Robustness

As estimators work with finite datasets, how they behave
with small samples, and how they are sensitive to small vari-
ations in sets, are important questions.

First, while datasets with many instances are available in
some fields, the size of datasets remains limited in other fields
for many reasons, such as the occurrence of events or the cost
of collection, even when the number of features is large [27].
The number of instances/dimensionality ratio is therefore im-
portant in machine learning. A dataset with a low number of
instances/dimensionality ratio is called a small sample dataset.
For such datasets, feature selection is a necessity, e.g., to facili-
tate the estimation of the model. An estimator of the relevance
criterion which is robust to small samples is thus necessary.

Here, robustness first means that the estimator should be as
unbiased as possible and have a small variance, when the num-
ber of available data is limited. In addition, it might be accepted
that, in a feature selection process (e.g., forward search), the
bias of the estimator is less important than the preservation of
ranks, as a feature is selected when it maximises or minimises
the criterion, regardless of its actual value. This second, weaker
definition of robustness can be formulated as the variation in
feature selection results due to small changes in the dataset [25].
It is also often called stability in some papers [4].

In order to guarantee these two properties, the estimator
should have as small as possible bias and variance, when the
size of the dataset is small. Section 6.5 discusses this property.

4.6. Property 6: Estimator Noise Robustness

Real datasets can be noisy, which can influence the result of
the feature selection process. The extent of this influence is an
important matter and depends on the level and the type of the
noise. The value of an estimator should be as stable as possible

with respect to a certain level of noise. The way how stability is
measured is identical to Property 5. This property is discussed
and analysed for regression problems in Section 6.6.

5. Relevance Criteria Description

The goal of this paper is to provide a reading grid of proper-
ties that can guide the user when choosing a feature relevance
criterion. Numerous such criteria may be used for filter feature
selection. However, many of them do not satisfy Properties 1
and 2 (ability to evaluate the relevance of groups of features,
and discovering nonlinear dependencies). This paper only con-
siders criteria that meet these two basic properties. For exam-
ple, most of the criteria benchmarked by Bommert et al. [2] are
univariate, except those based on mutual information. This is
also the case for the correlation [33], the Fisher score [14] or
the Laplacian score [17]. To illustrate the reading grid this pa-
per covers three (families of) criteria that meet the multivariate
and nonlinearity properties; other criteria can easily be cast in
that framework.

As mutual information is at the root of many feature rele-
vance criteria (see Brown et al. [3] for details), the first criterion
is mutual information (as estimated by the Kraskov estimator,
see Section 5.1). The second criterion is the noise variance,
which is especially suited for regression, as it is closely related
to the mean squared error of the best possible model (as esti-
mated by the delta test estimator, see Section 5.2). Eventually,
the third criterion is the adjusted coefficient of determination
and its extension to nonlinear dependencies.

5.1. Mutual Information

Mutual information originates from information theory and
has been introduced by Shannon [26]. This entropy-based crite-
rion is widely used in feature selection processes, in classifica-
tion [21] and regression [11]. This paper focuses on regression;
a similar analysis could be done for classification.

Let X be a random vector of features and Y a random vari-
able (or vector) of targets, whose respective probability density
functions are pX and pY . The mutual information I(X; Y) mea-
sures the reduction in the uncertainty on Y when X is known

I(X; Y) = H(Y) − H(Y |X) (1)

where H(Y) is the entropy of Y and H(Y |X) is the conditional
entropy of Y given X. The mutual information between X and
Y is equal to zero if and only if they are independent. If Y can
be perfectly predicted as a function of X, then I(X; Y) = H(Y).
Notice that in Equation (1), both X and Y can be multidimen-
sional random vectors; if X gathers a subset of features and Y is
the target variable, I(X; Y) can be directly used to measure the
relevance of this subset of features.

With real datasets, I(X; Y) cannot be directly computed be-
cause it is defined in terms of probability density functions,
which are unknown when only a finite sample of data is avail-
able. Therefore, I(X; Y) has to be estimated [12].
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The Kraskov estimator of the mutual information, introduced
by [20], is based on the nearest-neighbour-based Kozachenko-
Leonenko entropy estimator [19]. Its definition is

Î(X; Y) = ψ(N) + ψ(k) −
1
k
−

1
N

N∑
i=1

(
ψ (τx(i)) + ψ

(
τy(i)

))
(2)

where ψ is the digamma function, N is the number of instances
in the dataset, k is the number of neighbours, τx(i) is the number
of points located no further than the distance εX(i, k)/2 from the
ith observation in the X space, τy(i) is the number of points lo-
cated no further than εY (i, k)/2 from the ith observation in theY
space and where εX(i, k)/2 and εY (i, k)/2 are the projections into
the X and Y subspaces of the distance between the ith observa-
tion and its kth neighbour. The intuition behind this estimator
is to measure whether the number of instances that are neigh-
bours is similar depending on whether X and Y are considered
together or separately (see Fig. 1 in [20] and details therein).

During a search procedure, such as the forward search, in
order to find the most relevant features for the problem at hand,
the subset with the highest value of Î(X; Y) (2) is selected.

5.2. Noise Variance

The noise variance is another frequently used filter criterion
in regression [8]. This criterion evaluates the level of noise in a
finite dataset. In the context of regression, the noise level in the
target estimation represents the error that a regression model
would make, based on the currently selected input features.

Considering a finite dataset of N instances, D features X j, a
target Y and N input-output pairs (xi, yi), the relationship be-
tween these input-output pairs is

yi = f (xi) + εi i = 1, ...,N (3)

where f is the unknown function between xi and yi, and εi is
the noise, or prediction error, when estimating f . For feature
selection, one selects the subsets of features X j which lead to
the lowest prediction error, or the lowest noise variance [8].

With real finite datasets, the noise variance has to be esti-
mated, e.g. with the delta test [15]

δ =
1

2N

N∑
i=1

[yNN(i) − yi]2 (4)

where N is the size of the dataset and yNN(i) is the output asso-
ciated to xNN(i), the nearest neighbour of the instance xi.

During the feature selection search procedure, the subset
with the lowest value of δ (4) is selected at each step.

5.3. Coefficient of Determination

The coefficient of determination R2 is the proportion of the
variance in the output variable Y that can be explained from the
input variables X j; it ranges from 0% (unpredictable) to 100%
(totally predictable). The definition of R2 is

R2 = 1 −
S S res

S S tot
(5)

where S S res =
∑

i(yi − f (xi))2 and S S tot =
∑

i(yi − y)2 with
i = 1, ...,N, with f being a linear regression and with y being the
mean of the observed data. This coefficient statistically mea-
sures how well regression approximates the target. Because R2

automatically increases when features are added to the model,
its alternative, the adjusted R2, or R2

ad j, is used in this work:

R2
ad j = 1 −

S S res/(N − d − 1)
S S tot/(N − 1)

(6)

where d is the number of selected features in the model and N
the sample size. A low R2

ad j indicates that observed data are not
close to the regression and a high R2

ad j indicates the opposite.
The R2

ad j criterion used with a linear regression model cannot
capture the nonlinear relationships between the features and the
target. In order to use the R2

ad j in a nonlinear context, local
linear approximations are considered [5], computed as follows.
For each instance a linear regression is performed on a defined
number of neighbours k around the instance. The R2

ad j is com-
puted for every regression and the average on all observed data
is taken. This process is repeated for increasing values of k
(starting from 4 in our experiments). The best mean R2

ad j is then
selected; it corresponds to a specific number of neighbours k.
Indeed, depending on the dataset, locally linear relationships
will be detected and measured at different scales, i.e., for a
different number of neighbours k. This best mean R2

ad j used
for nonlinear functions is called the nonlinear adjusted R2, or
NLR2, in the remaining sections of this paper.

If a forward search is used, at each step of the selection pro-
cess, the group of features that corresponds to the highest NLR2

value is selected. In that process, the local linear regressions are
successively fit in spaces of increasing dimensionality [6].

6. Analysis of Relevance Criteria

In this section, the three relevance criteria previously intro-
duced in Section 5 are analysed: the mutual information (MI)
with the Kraskov estimator (2), the noise variance (NV) with
the delta test estimator (4) and the adjusted coefficient of deter-
mination with the NLR2 estimator (6). They are analysed with
respect to the six properties previously described in Section 4,
on three informative features from three real-world datasets:
Anthrokids, Poland and Santa Fé (Fig. 1). The simulations are
illustrative only and aim at providing a basis for discussion of
the properties. It extends preliminary work presented in [5, 6].
The code for all experiments is available on https://github.
com/alexdegeest/FeatureSelection_ReadingGrid.

The Anthrokids dataset represents the results of a three-year
study on 3900 infants and children representative of the U.S.
population of year 1977, ranging in age from newborn to 12
years of age. The dataset comprises 121 variables and the
target variable to predict is children's weight. As this dataset
presents many missing values, a prior sample and variable dis-
crimination has been performed; the final set without missing
values contains 1019 instances, 53 input variables and one out-
put (weight) [16]. The Poland electricity load dataset consists
of 1370 samples with 30 continuous features. The original time
series is transformed into a regression problem, where the 30
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Fig. 1. Target variable (y axis) with respect to each of the three selected
features (x axis) for the Anthrokids (row 1), Poland (row 2) and Santa Fé
(row 3) datasets. See text for details.

past values are used to predict the electricity load of the next
day [30]. The Santa Fé laser dataset consists of 10081 samples
with 12 continuous features [31].

Only three features of each dataset have been chosen to illus-
trate at best the differences between the analysed filter criteria:
features 1, 11 and 19 for Anthrokids; features 1, 24 and 34 for
Poland; features 1, 4 and 5 for Santa Fé; these numbers cor-
respond to the feature numbers in references [16, 30, 31]. In
order to increase the nonlinearity of features in this analysis,
again for illustrative purposes, one of the features of Poland
and Santa Fé has been modified: f24 of Poland is replaced by
e f24 and f5 of Santa Fé is replaced by 16 ×

√
f5. Features are

normalised to avoid issues in distance computations when using
k-nearest-neighbour-based methods.

The following of this section presents experimental results of
the six properties detailed in Section 4 on these features. Sec-
tion 7 will discuss the results.

6.1. Property 1: Multivariate Criterion
The filter criteria considered here for analysis are all mul-

tivariate, in the sense that they can compute a measure of the
relevance of a group of features with respect to the target. The
first step of a forward search is univariate, but all criteria are
multivariate from the second step.

6.2. Property 2: Nonlinear Criterion
The filter criteria presented in Section 5 are all able to eval-

uate the relevance of nonlinear relationships, such as the rela-
tionship between the third feature x3 and the target y of Poland
(right feature in the second row of Fig. 1). Mutual information
and the noise variance are intrinsically nonlinear. For the ad-
justed coefficient of determination, the implementation, called
NLR2 and described in Section 5.3, uses local approximations
of the regression, which makes it also able to analyse nonlinear
relationships between the feature subsets and the target.

Fig. 2. Relevance criterion scores for datasets Anthrokids (column 1),
Poland (column 2) and Santa Fé (column 3), for increasing values of k from
4 to the total number of instances in the dataset. MI is represented in the
first row and NLR2 in the second row. The first row has a logarithmic scale
and the second row a linear one, in order to focus on the small values for
the first and the large ones for the latter; see text for details.

6.3. Property 3: Estimator Parameters

As detailed in Section 4.3, filter criteria need an estimator
for finite datasets. The behaviour of the estimator is there-
fore essential during feature selection. The estimators of the
three compared criteria are all based on a k-nearest-neighbour
search, but they show very different properties with respect to
the choice of k. The mutual information requires to set k, and
as the ground truth (the real value of MI) is not known, there
is no possibility to supervise the choice. In the delta test (4), k
is set to 1, which means that there is no parameter. About the
NLR2, a procedure has been detailed in Section 5.3 to supervise
the choice of the best value of k. Hence the method does not de-
pend on k anymore, but it remains interesting to check whether
a reasonable value of k is selected as a large k can reduce the
sensitivity towards noise but can miss local nonlinearities.

To compare the Kraskov estimator and NLR2, experiments
have been performed with the three features of the three
datasets, for increasing values of k from 4 to the total number
of instances in the dataset. The score of the two compared rel-
evance criteria (MI and NLR2) are shown in Figure 2. The MI
displayed on the first row of the figure is stable when k remains
small with respect to the number of instances in the dataset.
With high values of k, the MI value drops abruptly. This result
illustrates that MI is adequate for feature selection with a fixed
small k, e.g., around 6 such as advised in [20], in the sense that
its value remains stable in that range.

On the other hand, NLR2, displayed on the second row of
the figure, can only be used above a certain k (around 200)
for a successful feature selection process; below this thresh-
old, NLR2 is unable to reflect the relevance of features. Above
this threshold, the ranking of the features is stable, even if the
NLR2 value is not stable itself. In addition, the maximum value
of NLR2, selected as detailed in Section 5.3, is most often close
to the value obtained with the maximum number of instances.
In this case, NLR2 gets closer to a linear criterion, which con-
tradicts Property 2.
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6.4. Property 4: Estimator Complexity

The estimators (2) (4) (6) of the three relevance criteria
used in this work are all based on a k-nearest-neighbour-based
search; this search is the most computationally demanding op-
eration for the three estimators, as detailed below.

For the Kraskov estimator, the k-nearest-neighbour-based
search is performed once for each of the N instances, in or-
der to set a distance ε. Then, a search of the number of points
within ε is done twice, once in the X subspace and once in the
Y subspace. The difference ψ(k) − ψ (τx(i)) − ψ

(
τy(i)

)
is then

computed for each instance and averaged. In total, this gives
a complexity of O(N log N) with an efficient search algorithm,
such as a k-d tree [1] or a ball tree [22]. For the delta test es-
timator, a nearest-neighbour-based search (i.e., k = 1) is per-
formed N times: once for each of the N instances in the dataset.
The difference yNN(i) − yi between the target value for the in-
stance and its neighbour is then computed for each instance
and averaged. Again, it results in a complexity of O(N log N).
The above analysis focuses on the computational cost of the k-
nearest-neighbour-based search for a fixed value of k, but the
comparison of the computational complexities also depends on
the value of k. For the delta test, k is set to 1 by definition,
which makes its computational cost lower than the one of the
Kraskov estimator, although the difference will not be too large
as the latter works well with a low value of k, as mentioned in
Section 6.3.

For the nonlinear adjusted R2 (NLR2), the k-nearest-
neighbour-based search is performed m × N times, where m
is the number of tested k values, resulting in a complexity of
O(m × N log N). As explained in Section 6.3, the NLR2 needs
to use several values for k and it works better with a higher
value of k, what means that this relevance estimator has the
worst computational complexity between the three estimators.

6.5. Property 5: Estimator Sample Robustness

When applying feature selection on a small sample dataset,
one should select the most appropriate filter criterion. But what
happens to those criteria when the number of samples is low
with respect to the number of features? And are they robust to
small variations in the datasets?

To analyse the behaviour of the criteria with respect to the
number of samples, experiments have been performed on the
Anthrokids and Poland datasets. Each relevance criterion has
been evaluated ten times, with the number of samples increas-
ing from few instances (20) to the complete dataset. Small sam-
ples have been obtained by random subsampling of the whole
dataset. Results (average values and standard deviations over
ten repetitions) are represented in Figure 3. Regarding the small
sample robustness (average values), the three criteria behave
quite well above 200 instances. Below 200, the resulting fea-
ture ranking could differ for NLR2. Regarding the robustness to
variations in the datasets, the standard deviation is the largest
for the noise variance (NV), especially when the number of
samples is low. The standard deviation of mutual information
(MI) is smaller than for other criteria, even in small samples.
Below 100 instances, for the Poland dataset, the ranking of fea-
tures may be disturbed, especially with the noise variance.

Fig. 3. Average value (in black), and standard deviation (in grey) over ten
repetitions, of the MI (left column), the NV (centre column) and the NLR2

(right column) for the three features of the datasets Anthrokids (row 1) and
Poland (row 2), for sample sizes from 20 to the total number of instances.

Fig. 4. Feature selection performed on the three illustrative features of An-
throkids. Relevance score for groups of features: MI (left), NV (centre)
and NLR2 (right), for the three steps (1, 2 and 3) of the forward search.

A related interesting behaviour of a relevance criterion esti-
mator is its ability to correctly handle the successive steps of a
feature selection procedure. Indeed, in a forward search for ex-
ample, the successive estimations of the criterion are performed
in spaces of increasing dimensionality, with increasing risk of
estimation error due to the curse of dimensionality. Figure 4
shows an illustrative 3-feature selection process performed on
Anthrokids. It shows a decrease in the mutual information (MI)
score between the second step and the third step of the forward
search. If the true value of MI was illustrated, such decrease
would not be observed: even if an additional feature does not
add any information, the MI score should remain constant and
not decrease. The decrease is thus clearly linked to the qual-
ity (bias or variance) of the estimator when comparing groups
of features in different dimensions. Note that the lack of theo-
retical maximum means that another stopping criterion must be
used in a forward search (see, for example, [9]). The noise vari-
ance (NV) score shows the same problem. Interestingly, NLR2

does not show this phenomenon. But even with these estimation
errors, the resulting ranking of features of MI, NV and NLR2

are identical: f3 first, then f1 and finally f2.

6.6. Property 6: Estimator Noise Robustness

To compare the robustness of the three relevance criteria with
respect to noise, uniform noise with three different amplitudes
has been added, in a first experiment to the target Y (Fig. 5) and
in a second experiment to the features X (Fig. 6). The number
of affected data ranges from 0 to 40% of the whole dataset.
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Fig. 5. Average value for MI (left), NV (centre) and NLR2 (right) when
the proportion of points with y-noise changes from 0% to 40%. Three
amplitudes of noise are represented (small amplitude in black, moderate
amplitude in grey, high amplitude in light grey).

Fig. 6. Relevance value for MI (left), NV (centre) and NLR2 (right) when
the proportion of points with x-noise changes from 0% to 40%. First row:
average values with three amplitudes of noise (small amplitude in black,
moderate amplitude in grey, high amplitude in light grey). Second row:
Average values over 10 times (black) and standard deviation values (grey)
with a high amplitude of noise.

This experiment has been performed on the three same
datasets but, for a matter of space, only the results for Poland
are represented in Figure 5 and the first row of Figure 6, respec-
tively; the behaviour of the three criteria is similar with the two
other datasets and is therefore not exhibited. The figures show
average values of four repetitions. MI and NLR2 have a similar
behaviour: their score for the ”best” feature is more affected by
the amplitude of noise than the ”worst” feature. The NV score,
on the other hand, is affected in the same way by the amplitude
of noise for every feature, informative or not.

The second row of Figure 6 shows the same experiment as in
the first row, with only the highest level of noise (light grey lines
in the top row), but now with the standard deviation (estimated
on ten repetitions). All three criteria exhibit a low standard de-
viation (even though the standard deviation for feature f1 in the
NV experiment is slightly larger). This shows therefore a sta-
bility towards x-noise for all three criteria.

7. Discussion

To illustrate the proposed reading grid of the six properties
described in Section 4, an analysis of three interesting filter cri-
teria has been done in Section 6. Table 1 shows a summary of
the results of this analysis: the ability for a filter criterion to be
multivariate (P1) and nonlinear (P2), the sensitivity to param-
eters (P3) and complexity (P4), and their robustness towards
samples (P5) and noise (P6). With respect to each property,

it indicates whether the behaviour of the criterion is excellent,
good or fair.

The two first properties P1 and P2 are not discriminant for the
three considered criteria; they remain essential if other criteria
are considered. P2 has however been rated ‘Fair’ for the NLR2

criterion, because P2 and P3 cannot really be guaranteed jointly
(see comment about the value of k in Section 6.3).

The next four properties are discriminant in this study. For
the comparison of the estimator parameters (P3), the delta test
is the easier estimator to set up for an experiment as it has no
parameter. Kraskov is simple as well: it has a single parameter,
but setting a reasonably low value is sufficient: no optimisa-
tion is required. NLR2 is more complex, in terms of parameters
because the best value for parameter k is hard to find, problem-
dependent and needs optimisation. Concerning the complexity
of the estimator (P4), the delta test has the lowest computational
complexity, the NLR2 has the highest one and the Kraskov es-
timator offers a trade-off.

Regarding the small-sample robustness (P5), there is no real
difference in the number of samples the three methods need in
order to reach acceptable estimations. However NLR2 easily
fails in ranking correctly the features if the number of samples
is too low. In addition, what concerns the robustness to small
variations in the datasets, the standard deviation of the estima-
tors shows that the mutual information is more robust and the
noise variance is the less robust method.

The sixth property (P6) shows that the amplitude of noise on
the data has less influence on the values of MI and NLR2 than
on the values of the noise variance, especially for x-noise.

The properties are qualitatively summarised in Table 1. Ta-
ble 1 shows that, generally speaking, in the context of the ex-
periments developed in this paper, the mutual information has
less drawbacks than the two other criteria: it shows a good, or
an excellent, behaviour with regards to all properties, while the
noise variance is less robust to small samples and noise, and
the NLR2 is both sensitive to its parameter and too close to a
linear criterion if the parameter is set automatically. It is im-
portant to remember that the purpose of this paper is to provide
a methodology and a reading grid; depending on the applica-
tion, some of the properties will be more (or less) preponderant.
Hence, the results in the reading grid will need to be balanced
for each criterion depending on the specific needs. In practice,
for a specific dataset, it is suggested to (1) rely by default on
multivariate and nonlinear criteria (Properties P1 and P2); (2)
check the complexity of the estimator for this specific dataset
as this can influence both the choice of a criterion itself, and of
the subset search procedure as the latter is always a compromise
between the coverage of the subset space and the computational
resources at disposal; (3) check the robustness of the considered
estimators along the guidelines provided in this paper (and pre-
fer MI-based methods if the set of criteria is restricted to those
covered in this paper).

8. Conclusions

Filter methods for feature selection need a relevance criterion
adapted to the problem at hand, in regression and in classifica-
tion. This paper focuses on regression problems and proposes
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Table 1. Reading grid with three relevance criteria (see text for details).
Properties MI NV NLR2

P1: Multivariate Excell. Excell. Excell.
P2: Nonlinearity Excell. Excell. Fair
P3: Estimator parameters Excell. Excell. Fair
P4: Estimator complexity Good Excell. Good
P5: Sample robustness Excell. Fair Good
P6: Noise robustness Good Fair Good

a reading grid of six fundamental properties to analyse any rel-
evance criterion, in order to find the criterion which is the most
adapted to the current problem. To illustrate the proposed read-
ing grid, three relevance criteria have been analysed in feature
selection experiments (see Table 1 for a summary of the re-
sults).

This grid offers the advantage that it can be extended to other
relevance criteria in order to choose the best criterion for the
problem at hand. Furthermore, the grid only focuses on the
choice of the relevance criterion and is, therefore, completely
independent from the search strategy. On the other hand, the
reading grid has only been applied to regression datasets; it
could be extended to classification problems.

References

[1] Bentley, J.L., 1975. Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18, 509–517.

[2] Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M., 2020.
Benchmark for filter methods for feature selection in high-dimensional
classification data. Comput. Stat. and Data Analysis 143, 106839.

[3] Brown, G., Pocock, A., Zhao, M., Lujan, M., 2012. Conditional likeli-
hood maximisation: A unifying framework for mutual information fea-
ture selection. J. of Machine Learning Research 13, 27–66.

[4] Chandrashekar, G., Sahin, F., 2014. A survey on feature selection meth-
ods. Comput. Electr. Eng. 40, 16–28.

[5] Degeest, A., Verleysen, M., Frénay, B., 2019a. About filter criteria for
feature selection in regression, in: Proc. of IWANN, Gran Canaria, Spain.
pp. 579–590.

[6] Degeest, A., Verleysen, M., Frénay, B., 2019b. Comparison between filter
criteria for feature selection in regression, in: Proc. of ICANN, Munich,
Germany. pp. 59–71.

[7] Ding, C., Peng, H., 2003. Minimum redundancy feature selection from
microarray gene expression data, in: Proc. of IEEE Bioinformatics Con-
ference, Stanford, CA, USA. pp. 523–528.

[8] Eirola, E., Lendasse, A., Corona, F., Verleysen, M., 2014. The delta test:
The 1-nn estimator as a feature selection criterion, in: Proc. of IJCNN,
Beijing, China. pp. 4214–4222.

[9] François, D., Rossi, F., Wertz, V., Verleysen, M., 2007a. Resampling
methods for parameter-free and robust feature selection with mutual in-
formation. Neurocomputing 70, 1276–1288.

[10] François, D., Wertz, V., Verleysen, M., 2007b. The concentration of frac-
tional distances. IEEE Trans. on Knowl. and Data Eng. 19, 873–886.

[11] Frénay, B., Doquire, G., Verleysen, M., 2013. Is mutual information ade-
quate for feature selection in regression ? Neural Networks 48, 1–7.

[12] Gao, W., Kannan, S., Oh, S., Viswanath, P., 2017. Estimating mutual
information for discrete-continuous mixtures, in: Proc. of NIPS, Long
Beach, CA, USA. pp. 5986–5997.

[13] Gao, W., Hu, L., Ping, Z., He, J., 2018. Feature selection considering
the composition of feature relevancy. Pattern Recognition Letters 112,
70–74.

[14] Gu, Q., Li, Z., Han, J., 2011. Generalized fisher score for feature selec-
tion, in: Proc. of UAI, Arlington, Virginia, USA. pp. 266–273.

[15] Guillén, A., Arenas, M., van Heeswijk, M., Sovilj, D., Lendasse, A., Her-
rera, L., Pomares, H., Rojas, I., 2014. Fast feature selection in a gpu
cluster using the delta test. Entropy 16, 854–869.

[16] Guillén, A., Sovilj, D., Lendasse, A., Mateo, F., Rojas, I., 2008a. Min-
imising the delta test for variable selection in regression problems. Int. J.
of High Performance Systems Architecture 1, 269–281.

[17] He, X., Cai, D., Niyogi, P., 2005. Laplacian score for feature selection,
in: Proc. of NIPS, Vancouver, Canada. pp. 507–514.
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