
Journal Pre-proof

Assessing soil erosion risk at national scale in developing
countries: The technical challenges, a proposed methodology, and
a case history

Miluska A. Rosas, Ronald R. Gutierrez

PII: S0048-9697(19)35467-1

DOI: https://doi.org/10.1016/j.scitotenv.2019.135474

Reference: STOTEN 135474

To appear in: Science of the Total Environment

Received date: 23 July 2019

Revised date: 7 November 2019

Accepted date: 9 November 2019

Please cite this article as: M.A. Rosas and R.R. Gutierrez, Assessing soil erosion risk at
national scale in developing countries: The technical challenges, a proposed methodology,
and a case history, Science of the Total Environment (2019), https://doi.org/10.1016/
j.scitotenv.2019.135474

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2019 Published by Elsevier.

https://doi.org/10.1016/j.scitotenv.2019.135474
https://doi.org/10.1016/j.scitotenv.2019.135474
https://doi.org/10.1016/j.scitotenv.2019.135474


Jo
ur

na
l P

re
-p

ro
of

Assessing soil erosion risk at national scale in developing countries: The

technical challenges, a proposed methodology, and a case history

Miluska A. Rosas
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Abstract

Through an extensive bibliographic review, this contribution underlines the urgency and challenges to

quantify soil erosion rates (ERs) in developing countries. It subsequently elaborates on the combined

application of GIS-based RUSLE, generalized likelihood uncertainty estimation (GLUE) principles

and sediment delivery ratio functions (SDR) to quantify ERs at country scale for these countries, as

they commonly have limited measurements to that purpose. The methodology, termed RUSLE-GGS

(RUSLE-GIS-GLUE-SDR) herein, comprises the following sequence: (1) construction of ER samples

using RUSLE-GIS based on freely available local/global geoenvironmental observations and field

relations, (2) construction of area-specific sediment yield samples utilizing SDR transfer functions,

and (3) assessment of the most behavioral samples by means of bias analysis and cross validation.

Its application to Peru allows obtaining 5-km resolution ER and potential erosion maps for the

years 1990, 2000, and 2010. RUSLE-GGS is highly replicable and could potentially be used as an

initial standard and systematic method to estimate ERs in developing countries through the active

participation of local scientists. Thus, it potentially can contribute to improve the capacity building

in such countries and set an initial frame to compare the evolution of soil erosion in their territories

towards attaining Goal 15 of the UN 2030 Agenda for Sustainable Development.
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1. Introduction1

Soil erosion is a natural phenomenon mainly induced by site meteorological, topographical, ge-2

ological, land cover conditions (e.g., soil disturbances related to deforestation, mining, agriculture,3

construction, urbanization, population growth, etc.), and underlying geomorphological processes such4

as hill slope erosion, mass movement, and channel erosion. Soil erosion will very likely be intensified5

by large scale anthropogenic controls such as global warming (Nearing et al., 2004; Lal et al., 2011).6

As a consequence, soil erosion represents a global societal concern because: (1) it often degrades soil7

and water resources and triggers economic losses in several countries all around the World (Ribaudo,8

2009; Ayele et al., 2015), and (2) plays an important role in the global carbon cycle (Yang et al.,9

2003; Van Oost et al., 2007; Ito, 2007).10

Some initiatives have been launched in recent years to improve World’s social, economic, environ-11

mental conditions. The UN 2030 Agenda for Sustainable Development (United Nations, 2015) has12

set 17 goals for the year 2030 to that end. In specific, Goal 15 - life on land (”by 2030 governments13

need to protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage14

forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss”)15

is closely related to soil erosion. Lu et al. (2015) identified the following 5 priorities to accomplish16

these goals: (1) devising metrics so that the goals can be measurable, comparable and achievable:17

(2) establishing monitoring mechanisms to decide which values need to be tracked, and set up sys-18

tems to acquire the data; (3) evaluating progress; (4) enhancing infrastructure, i.e. expanding Earth19

observation, ground-based monitoring and information processing capabilities; and (5) standardizing20

and verifying data, e.g. presenting the data as open access information.21

Soil erosion rates (ERs) have been profusely estimated in developed countries through field, ex-22

perimental and numerical modeling approaches, and at a wide range of spatio-temporal scales23

(Kirkby and Cox, 1995; Dedkov and Gusarov, 2006; Bellin et al., 2011; Morgan and Nearing, 2011;24

Cerdà et al., 2013). Conversely, a very limited number of such studies have been conducted in de-25

veloping countries (Onyando et al., 2005; Shamshad et al., 2008; Labrière et al., 2015), even though26

there is a large suite of scientific evidence that (1) ERs are steadily increasing in their territories27

and likely reaching dramatics levels (Pimentel et al., 1995; Pham et al., 2001; Ananda and Herath,28

2003; Boardman, 2006; Labrière et al., 2015; Borrelli et al., 2017), and (2) soil erosion is currently29
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one of the major environmental and geomorphic hazards exhibiting higher impacts in these countries30

(Alcantara-Ayala, 2002; Mondal et al., 2017). Thus, to attain Goal 15, the quantification of ERs in31

developing countries probably needs to be addressed with particular urgency.32

Developing countries are mostly located in humid tropical regions (Sachs, 2001) and commonly33

face technical, financial, regulatory, and capacity-building challenges to improve the availability of:34

(1) spatio-temporal measurements and field relations to estimate ERs (Millward and Mersey, 1999;35

Labrière et al., 2015); and (2) soil erosion observations (e.g., ERs, frequency and extent of erosion,36

sediment yield) to calibrate or validate erosion models. In particular, sediment yield data is usually37

only available for large rivers, and, in many instances is insufficient in length, consistency, and con-38

tinuity; and moreover, it is rarely publicly available (Labrière et al., 2015).39

Several models to estimate ERs exist. They have been characterized as follows: (1) empirical or40

statistical models (e.g., SEDD, PSIAC) which are mainly based on the Revised Universal Soil Loss41

Equation, RUSLE; (2) conceptual models (e.g., SEDNET, SWAT), which commonly describe catch-42

ment processes without providing specific details of their interactions; and (3) physically based models43

(e.g., WEPP, PESERA, EUROSEM) which are based on the equations of conservation of mass and44

momentum for flow and the equations of conservation of mass for sediment (de Vente et al., 2013;45

Hajigholizadeh et al., 2018). The distinction between models is however diffuse for they couple mod-46

ules from each of these categories (Ranzi et al., 2012; de Vente et al., 2013). Likewise, past research47

has highlighted the strong dependency of empirical, conceptual and physically based models on the48

availability of high resolution spatio-temporal input and calibration data, and the critical need of49

long and continuous simulations to reliably predict soil erosion (Merritt et al., 2003; Nearing, 2004;50

Ranzi et al., 2012; de Vente et al., 2013; Borrelli et al., 2017). Therefore, the selection of the most51

suitable model is subjected to the intended use and available data.52

RUSLE was basically developed to estimate long-term average soil loss (i.e. gross erosion) and has53

been applied not only at small scales, but also at large scales, i.e. national, continental, and global54

scales (de Vente et al., 2005, 2008; Jetten and Maneta, 2011; Naipal et al., 2015; Panagos et al.,55

2015; Martin-Fernandez and Martinez-Nuñez, 2011). Typically, the main purpose of national scale56

estimations has been showing historical average erosion risk information to be used by policy-makers57

and territorial planning authorities, and to identify critical soil erosion prone areas that might need58
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institutional attention and/or require finer spatio-temporal assessment (Van der Knijff et al., 2000;59

Šúri et al., 2002; Terranova et al., 2009). Some of these estimates (Šúri et al., 2002; Terranova et al.,60

2009; Ranzi et al., 2012) were obtained by adopting Geographical Information System (GIS) tech-61

niques to treat data for the application to the RUSLE model.62

In order to achieve Goal 15 of the UN 2030 Agenda for Sustainable Development, developing coun-63

tries must firstly concentrate their efforts in the first and fifth priorities proposed by Lu et al. (2015).64

We posit that the studies to that end should be gradually conducted by local scientists to improve65

their capacity-building in these countries as well. Thus, it is reasonable to state that on the basis of66

Priority 1, there is a need to: (1) estimate soil erosion rates at both national scale and annual scale67

by following a standard method, (2) set a standard base line year for future comparison. The appli-68

cation of the RUSLE-GIS model based on publicly available local and satellite observations appears69

to be the most accessible mean to meet this necessity. That nevertheless demands generalizing detail70

in data and coping with the structural paucity of soil erosion measurements, which makes model71

validation challenging and imposes higher uncertainty into the model outputs.72

Several studies have tackled RUSLE uncertainty. For instance, at global scale RUSLE-based ERs73

were validated using spatial extrapolation of plot experiments data from the NRI database for the74

USA and erosion estimates for Europe, and subsequently they were compared with global sediment75

yield observations from the World’s major rivers (Pham et al., 2001; Van Oost et al., 2007; Ito, 2007;76

Naipal et al., 2015). Borrelli et al. (2017), meanwhile, used Markov Chain Monte Carlo approach.77

At catchment scale, RUSLE-based ERs have been validated using sediment delivery ratio (SDR)78

equations, in which SDR was used as a proxy parameter to estimate catchment sediment yield from79

gross erosion (Catari Yujra and Sauŕı i Pujol, 2010; Lee et al., 2014; Swarnkar et al., 2017). Like-80

wise, Swarnkar et al. (2017) coupled Monte Carlo, RUSLE and SDR at catchment scale in India and81

obtained ER estimates with acceptable level of uncertainty.82

In recent years Generalized Likelihood Uncertainty Estimation (GLUE) principles have been adopted83

to estimate the uncertainty of erosion models. For example de Vente et al. (2008); Jetten and Maneta84

(2011) coupled GLUE and SDR estimates to validate physically based erosion models at regional85

scale. GLUE considers that in field applications it is very difficult to specify a consistent model86

of the output errors due to our imperfect knowledge of the system and the associated uncertainty87
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of the input data, and by virtue of that, different parameter sets can produce acceptable results88

(Freer et al., 1996; Brazier et al., 2000, 2001; Aronica et al., 2002; Wei et al., 2008; Beven et al.,89

2008; Quinton et al., 2011). Far from the prevalent approach that parametrizes the RUSLE fun-90

damental parameters and calibrate the outputs with local observations, an application of GLUE91

into RUSLE-based models would estimate the likelihood of a given set of models, parameters and92

variables. That would also agree with a body of evidence that suggests that model predictions that93

are produced through the random generation of parameter values can perform better than those94

produced by classical calibration (Brazier et al., 2000; Beven and Brazier, 2011).95

This contribution aims to present a novel method termed RUSLE-GGS (RUSLE-GIS-GLUE-SDR)96

and has the following specific objectives: (1) describing the technical details of RUSLE-GGS, which97

unlike previous methodologies can potentially provide reliable ERs estimates at country scale to98

address the urgency to quantify the dynamics of soil erosion in developing countries in accordance99

to Goal 15 from the UN 2030 Agenda for Sustainable Development; and (2) elaborating on the100

application of RUSLE-GGS to Peru for the years 1990, 2000 and 2010.101

2. Data and methods102

2.1. Study area103

2.1.1. Geoenvironmental conditions104

Peru is located on the Neotropic ecoregion (Fig. 1-a). It occupies 1 .29×106 km2 and traditionally105

has been divided into three main natural regions (Fig. 1-b and 1-c), namely: coastal (western),106

andean (central), and amazonian (eastern), which occupy 12%, 28%, and 60% of the Peruvian107

territory, respectively. The main biomes in Peru (Fig. 1-c) are deserts and xeric shrublands (coastal108

region), montane grasslands and shrublands (andean region), and tropical and subtropical moist109

broadleaf forests (amazonian region) based on Olson et al. (2001).110

According to the Köppen-Geiger climate classification scheme (Fig. 1-d): (1) the amazonian region111

mostly comprises types Af (tropical rainforest) in the Northern portion and Am (tropical monsoon)112

in the central and Southern portions; (2) the andean region mainly encompasses type Aw (tropical113

savannah) in the Northern portion and BSk (arid cold steppe) in the central and Southern portions;114

and (3) the coastal region mostly comprises type BWh (arid hot desert) in the Northern and central115
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portions and BWk (arid cold desert) in the Southern portion (Peel et al., 2007). Two global scale116

weather patterns control the climatic conditions of Peru, namely: (1) the tropical climate that117

affects 60.1% of South America (Peel et al., 2007); and (2) the occurrence of severe rainstorms when118

El Niño Southern Oscillation (ENSO) hits the arid coastal region (e.g., in 1972, 1983, 1987, 1998,119

2015) causing dramatic changes in sediment fluxes at a multidecadal time scale (Quinn et al., 1987;120

Takahashi et al., 2011; Laraque et al., 2009). Global models also suggest that global warming could121

induce considerable precipitation variations in the Peruvian territory (Vuille et al., 2008).122

2.1.2. Socio-economic conditions123

From the 70’s on Peruvian society has been transformed by the sustained growth of coastal urban124

centers as a result of massive migration of people from the andean region (Skeldon, 1977; Matos,125

2012). Thus, in 2015, most of the Peruvian population lived in the coastal region (56.3%), followed by126

the andean region (29.7%), and the amazonian region (14%) (INEI, 2016). Peruvian economy chiefly127

relies on its natural resources such as mining in the andean region, and petroleum and gas in the128

amazonian region (Vuohelainen et al., 2012; OXFAM, 2014). Likewise, in 2012, the total cultivated129

land area was 0.07 × 106 km2, which was distributed as follows: 46.3% in andean region, 30.1% in130

the amazonian region, and 23.7% in the coastal region (INEI, 2012). Peru is also steadily increasing131

its infrastructure portfolio.132

2.1.3. Soil erosion features133

Soil erosion in Peru is highly variable geographically and regarded as a very serious problem134

(World Bank, 2009). This high spatial variability is explained by particular topographic and climate135

controls such as: (1) the central Andes which is considered one of the global erosion hotspots on ac-136

count of the convective storms it prompts in the dry highlands (Morera et al., 2013; Espinoza et al.,137

2012; Boardman, 2006; Borrelli et al., 2017); and (2) the Amazon rainforest that occupies a large138

portion of its territory. However, despite this critical condition there is not an specific erosion control139

regulatory framework in this country, and to the best of our knowledge, no quantitative study of140

soil erosion at national scale has been conducted for its territory. The last official map by INRENA141

(1996) solely presents qualitative information on the matter.142

Peru has insufficient hydrometeorological observations to estimate sediment yield and ERs (Morera et al.,143

6
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Figure 1: (a) country location on terrestrial ecoregions; (b) main natural regions (limited by white dotted lines):
coastal (western), andean (central), and amazonian (eastern); (c) Peru’s main biomes after Olson et al. (2001); and
(d) main climates after Peel et al. (2007): Af (tropical rainforest), Am (tropical monsoon), Aw (tropical savannah),
BSh (arid hot steppe), BSk (arid cold steppe), BWh (arid hot desert), BWk (arid cold desert) Cfa (temperate,
without dry season, hot Summer), Cfb (temperate, without dry season, warm Summer), and Cwb (temperate, dry
Winter, warm Summer).

2013; Latrubesse and Restrepo, 2014). For instance, global estimates of suspended sediment fluxes144

by Peucker-Ehrenbrink (2009) were based on annual suspended sediment flux data from 599 rivers145

only covering 4.7% of rivers from western South America, yet no one represented the Peruvian146
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territory. Similarly, a small number of studies at field plot/hillslope scale (Alegre and Rao, 1996;147

Alegre and Cassel, 1996; Inbar and Llerena, 2000; Romero et al., 2007), and basin scale (Harden,148

2006; Laraque et al., 2009; Tote et al., 2011; Morera et al., 2013; Pepin et al., 2013) were performed149

in Peru.150

2.2. Data151

Conducting temporal assessments of ERs at national scale in developing countries will possibly152

need setting a benchmark in the year 1990. That stems from resolution restrictions from satellite153

measurements and poor technical quality of information from local agencies prior to that year. Thus,154

for Peru such assessment is performed for the years 1990, 2000 and 2010 and is based on raw data155

described in Table 1, which can also be accessed from Rosas and Gutierrez (2017).156

The raw data structure and data flow is depicted in Figure 1, which shows that the raw data was157

mainly used to obtain the fundamental parameters of RUSLE-GIS. The procedure to that end is158

detailed in the Supplementary Material.159

Table 1: Input data used for the assessment of soil erosion in Peru for the years 1990, 2000 and 2010

Description Source Resolution Year Reference

1 Global precipitation
climatology project (GPCP) NOAA 2.5◦ 1979-2009 Adler et al. (2003)

2 Tropical rainfall measuring
mission (TRMM) NASA 0.25◦ 1998-2010 Huffman et al. (2007)

3 Rainfall data ANA1 Monthly Varies
4 Sand, silt and clay content maps ISRIC - WSI2 1 km 2013 ISRIC (2013)
5 Organic carbon content map ISRIC - WSI2 1 km 2013 ISRIC (2013)
6 ASTER digital elevation model JSS3 - NASA 30 m 2009-2011 METI and NASA (2011)
7 Global forest canopy height ORNL-DAAC (NASA) 1 km 2011 ORNL-DAAC (2011)
8 Global land use/land cover

images (15 classes) USGS EROS 0.1◦ 1992-1993 Loveland et al. (2000)
9 The Global land cover

facility (17 classes) MODIS 0.25′ 2001 Channan et al. (2011)
10 Global land cover share

database (10 classes) FAO 1km 2014 Latham et al. (2014)
11 Ecological Peruvian map

(shapefiles, 106 classes) ONERN4 1997
12 Vegetative cover Peruvian map

(shapefiles, 39 classes) MINAM5 2010

1 Autoridad Nacional del Agua (Peru)
2 World soil information
3 Japan Space System
4 Oficina Nacional de Evaluación de Recursos Naturales (Peru)
5 Ministerio del Ambiente (Peru)

A set of stations (Table 2) were selected to obtain are-specific sediment yield (SSY) observations160
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from stream flow-sediment sampling stations and sediment reservoir surveys. They were chosen based161

on their free availability, and are spatially distributed to try to best represent Peru’s meteorological162

and topographical characteristics. These stations encompass two watersheds running towards the163

Pacific Ocean (Jequetepeque, Chira, and Santa) and two watersheds running to Amazon tributaries164

(Urubamba, and Marañon). Additionally, we used the SSY estimate for the whole Eastern Peruvian165

Andes (average 1, 113 × 106 t/y for the year 2005) by Latrubesse and Restrepo (2014), which was166

assumed to be valid for both the years 2000 and 2010, and later corroborated by our results.167

Table 2: Area-specific sediment yield measurements (SSYi,j,y) used in this study1

Station Station Station Type2 Area Available Res.3 y Reference
name coordinates (km2) data for

1 Chira Poechos 04◦40’S, 80◦30’W RES 6,344 1976-2009 Y 1990, 2000, 2010 ANA (2010)
2 Jequetepeque Gallito Ciego 07◦06’S, 78◦30’W RES 3,317 1976-2009 M 1990, 2000, 2010 Technical report
3 Santa Condorcerro 08◦40’S, 78◦16’W SSS 10,415 1999-2009 M 2000, 2010 Morera et al. (2013)
4 Urubamba Atalaya 10◦44’S, 73◦47’W SSS 55,757 2004-2015 M 2010 Hybam4

5 Marañon Borja 04◦27’S, 77◦27’W SSS 42,561 2003-2016 M 2010 Hybam4

6 EPA5 REG 298,530 2004-2006 Y 2000 Latrubesse and Restrepo (2014)

1 All the data is presented in Rosas and Gutierrez (2017)
2 RES=reservoir, SSS=streamflow sediment sampling station, REG=region
3 Resolution: Y=yearly, M=monthly
4 Hybam website: http://www.ore-hybam.org/
5 EPA=Eastern Peruvian Andes

2.3. Methods168

RUSLE-GGS is aimed to assess the uncertainty in using the RUSLE-GIS model to estimate169

soil ERs at national scales in developing countries. It tackles such uncertainty by using the GLUE170

method, which is adapted in this study in the following sequence:171

(i) Construction of ER samples : a set of RUSLE-GIS samples are built from realizations of the172

fundamental model parameters (see the Supplementary Material on RUSLE-GIS). These real-173

izations are constituted by available local and global geoenvironmental data and field relations.174

(ii) Construction of area specific sediment yield samples (SSY*): SDR equations are utilized as175

transfer functions to create SSY ∗ samples from ER samples.176

(iii) Assessment of the most behavioral ER samples : past research standards are applied to define the177

likelihood bound of SSY*. Subsequently, behavioral SSY* samples are identified by performing178

cross validation of the ER parameters transferability to select the behavioral ER sample for a179

given year. Additionally, behavioral ER samples are compared with results from global models.180
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The main building blocks of the application of RUSLE-GIS to Peru are displayed in Fig. 2 and181

are fully described as follows. The reader can access to all the information to build ER and SSY ∗
182

samples from Rosas and Gutierrez (2017).

Figure 2: Flow diagram of the main building blocks of RUSLE-GGS. See the Supplementary Material for technical
details on RUSLE-GIS.

183
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2.3.1. Construction of RUSLE-GIS-GLUE based ER samples184

A matrix
{

E
[1]
y , E

[2]
y , . . . , E

[24]
y

}
of 24 E

[k]
y ER samples using Eq. A.1 were built for each year of185

study y, where y ∈ {1990, 2000, 2010}. Each E
[k]
y was based on the following N realizations of the186

five fundamental parameters of RUSLE which are presented in detail in the supporting information187

by Rosas and Gutierrez (2017):188

(i) Six realizations (N = 6) of the rainfall erosivity factor obtained by using satellite precipitation189

data (
{

R
[1]
y , . . . , R

[3]
y

}
) and ground precipitation measurements (

{
R

[4]
y , . . . , R

[6]
y

}
) as input pa-190

rameters for Eqs. A.2a-A.2d. The equation by (Renard and Freimund, 1994), which is only191

applicable to regions exhibiting low precipitation rates, was used solely in regions having less192

than 200 mm of annual precipitation, i.e., mainly in the coastal region that comprises class193

Ea23 and Aa22 arid land areas.194

(ii) One realization (N = 1) for the soil erodibility factor (K) defined by Eq. A.3 which remains195

static for each year y.196

(iii) Two realizations (N = 2) for the cover and management factor based on the data source from197

which were obtained, namely: C
[1]
y from global data, and C

[2]
y from data published by local198

agencies.199

(iv) Two realizations (N = 2) of the slope length/steepness (LS) factor, namely, LS [1] from Eqs.200

A.4a-A.4d, and LS [2] based on the LS-TOOL output, which remain static for each year y.201

(v) One realization (N = 1) for the support practice factor P (Eq. A.5).202

2.3.2. Construction of area-specific sediment yield samples (SSY*)203

Sediment production can be described by: (1) SY and area-specific sediment yield (SSY) measured204

at either streamflow-sediment sampling stations or sediment reservoir surveys; and (2) sediment205

delivery ratio (SDR) representing the fraction of soil erosion supply from the catchment to the206

streams, i.e. the ratio between SY and ER (Alatorre et al., 2010; Vigiak et al., 2012). Thus, by207

using bulk area-specific ER (Ē
[k]
y in t/h/y in Eq. 1) from j specific locations and a set of SDR208

transfer functions (Table 3), proxy area-specific sediment yield samples (SSY ∗
i,j,y in Eq. 1) were209

11
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Table 3: SDR transfer functions utilized to obtain SSY∗ samples

Equation Parameters description Area Source
(km2)

SDR1 = 0.627 × (SLP )0.403 SLP : slope of the main
stream channel in % 0.5-18 Williams and Berndt (1972)

SDR2 = 1.817 × A−0.132 A: catchment area in km2 6.6-800 Sharda and Ojasvi (2016)

SDR3 = exp{1.7935 − 0.14191 × log A} A: catchment area in km2 1-262 Renfro (1975)

SDR4 = 0.42 × A−0.125 A: catchment area in mi2 1-500 Vanoni (1975)

SDR5 = 0.51 × A−0.110 A: catchment area in mi2 0.5-150 USDA-NRCS (1979)

SDR6 =
1.366×10−11×A−0.00998×(ZL)0.3629×(CN)5.444

A: catchment area in km2

ZL: relief-length ratio in m/km
CN: long-term average
US Soil Conservation Service
curve number that is used
to estimate runoff 200 Williams (1977)

obtained.210

SSY ∗
i,j,y = SDRi × Ē [k]

y ; for i = 1, 2, . . . , j (1)

SDRi is a dimensionless parameter expressed in decimal form and SSY ∗
i,j,y is expressed in m3/h/y211

after assuming an average sediment specific weight of 1.2 t/m3 (Montgomery, 2007; Ito, 2007).212

2.3.3. Assessment of the most behavioral ER samples213

GLUE requires determining a likelihood measure to assess the goodness of fit between SSY ∗ and214

SSY observations (Table 2). However, since in most of environmental modeling it is difficult to define215

a likelihood measure to that purpose, the choice of likelihood based on GLUE is in general subjective,216

the only formal requirement is that it should be zero for all non-behavioral outputs (Brazier et al.,217

2000). In this study, two likelihood functions were employed: the bias and the Nash-Sutcliffe index.218

Past GLUE applications in soil erosion and hydrologic modeling (Kim and Gilley, 2008; Houska et al.,219

2014) have used the bias function (Eq. 2) to quantify the model tendency to over or under estimate220

the measurements. Other soil erosion studies (Bingner et al., 1989; Hui et al., 2010) have accepted221

SY rates results differing less than 20% from SY measurements. RUSLE-GGS hence assumes an a222

priori bias of ±20% respect to SSY measurements (dotted horizontal lines in Figure 3).223

Bias =
SSY − SSY ∗

SSY
× 100 (2)

12
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After selecting the scenarios falling inside the bias acceptable bounds, a full cross validation for224

all the stations was performed. It basically implied testing the parameter settings of a behavioral225

sample E
[k]
y on another site and vice versa. The Nash-Sutcliffe index (NSE in Eq. 3) was subsequently226

used to quantify the model’s sensitivity to outliers. In Eq. 3 SSY represents the mean SSY from227

j observations for a given year y. NSE=1 when the model predicts the observations perfectly and228

NSE=0 when the model has the same goodness of fit as the observations average (de Vente et al.,229

2013). Samples having NSE < 0 imply that the cross validation produces more variation than the230

observations (Betrie et al., 2011; Haregeweyn et al., 2013; Houska et al., 2014).231

NSE = 1 −

∑j
m=1(SSYm − SSY ∗

m)2

∑j
m=1(SSYm − SSY )2

(3)

A second-stage assessment was performed by comparing RUSLE-GGS outputs with those from232

global erosion models by Kirkby and Cox (1995); Van Oost et al. (2007); Doetterl et al. (2012);233

Naipal et al. (2015). The assessment mainly consisted on comparing the orders of magnitude of bulk234

erosion rates and potential soil erosion (PE in Eq. 4 expressed in t/h/y) at the coastal (176, 117 km2),235

andean (361, 929 km2), and amazonian (751, 075 km2) regions based on the regional limits displayed236

in Fig. 1-b. PE is defined as the product of the R, K, L, and S RUSLE factors. PE maps reflect237

the soil vulnerability to erosion when it does not have any vegetative cover and any erosion con-238

trol practice is implemented, and thereby provides information on the most critical scenario for soil239

erosion hazard (Šúri et al., 2002).240

PE = R × K × L × S (4)

3. Results241

3.1. RUSLE-GGS efficiency242

Equations A.1 through A.5 were used to build 24 ER samples (
{

E
[1]
y , . . . , E

[24]
y

}
), and subse-243

quently, by using 6 SDR transfer functions (Table 3), 144 area-specific sediment yield samples244

(SSY ∗) were obtained for each year y ∈ {1990, 2000, 2010}, and for each station in Table 2. Thus,245

this study is based on 1,728 SSY ∗ samples whose likelihood were evaluated by using the Bias func-246
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Figure 3: Assessment of the behavioral SSY ∗ samples for the years 1990, 2000 and 2010. Black dotted lines represent
the Bias function upper and lower 20% limits. Red circles depict non-behavioral samples, and blue filled squares depict
behavioral samples laying inside the Bias function acceptable area. Black triangular marks represent the behavioral
samples having NSE > 0.

tion (Eq. 2) and the Nash-Sutcliffe index (Eq. 3).247

A custom computer program was built to analyze the spatio-temporal likelihood distributions of248

the SSY ∗ samples. Figure 3 shows the results from both the streams flowing to the Pacific Ocean249

(Stations 1, 2, and 3) and to the Amazon River (Stations 4, 5, and 6). In Fig. 3, the bias bounds250
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of ±20% are represented by horizontal dotted lines which allowed for identifying 131 out of 1,728251

behavioral SSY ∗ samples. The assessment of the behavioral SSY ∗ samples through cross-validation252

indicates that 6 out of 131 present NSE > 0.253

The behavioral samples are predominantly obtained by using the SDR1 transfer function (Fig. 4-a),254

rainfall erosivity factor R[1] (Eq. A.2a using satellite precipitation input data), cover and manage-255

ment factor C [1] (based on global data) and slope length/steepness factor LS [2] (LS-TOOL output),256

which together constitute E [13] (Fig. 4-b). These samples are spatially distributed as follows: 51257

correspond to Pacific streams (Fig. 4-c-d) and 80 to Amazonian streams (Fig. 4-e-f). They are258

temporally distributed in this fashion: 20 (1990), 65 (2000), and 46 (2010).259

The accuracy of RUSLE-GGS outputs is described herein in terms of the average of the behavioral260

samples (SSY ∗), which as anticipated, exhibits strong spatio-temporal variability. In 1990, SSY ∗ =261

0.37×106 m3/h/y at Gallito Ciego station (Jequetepeque basin), and SY Y ∗ = 3.35×106 m3/h/y at262

Poechos station (Chira basin). Similarly, for the year 2000, SSY ∗ rates of 2.96 and 28.3×106 m3/h/y263

were obtained at these stations. Interestingly enough, no behavioral sample exists for the Condorcerro264

gauging station (Santa basin).265

In the whole Eastern Peruvian Andes we estimated an average SY of 984 × 106 t/y, which lays very266

close to that obtained in that study (1, 113 × 106 t/y). RUSLE-GGS exhibits a low performance267

for the year 2000. It nevertheless best performs in 2010, in which SY Y ∗ estimates of 4.7, 3.1, 3.7,268

99.4, and 219.7× 106 m3/h/y were obtained for the Condorcerro, Gallito Ciego, Poechos, Borja, and269

Atalaya stations, respectively (Fig. 5-i). Our results also indicate that SSY ∗ rates in Santa, Chira,270

Urubamba, Marañon, and Jequetepeque rivers are proportional to the basin area.271

272

After assessing the behavioral samples, PE maps (Fig. 5a-c) and ER maps (Fig. 5d-f) were273

developed for the years 1990, 2000, and 2010. They show that RUSLE-GGS provides estimates that274

have the same order of magnitude as those from global soil erosion models for the years 1990 and275

2000, and for the coastal and amazonian regions (Fig. 1-b), although it is not always the case for the276

andean region.277
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Figure 4: Probability of: (a) SDR transfer functions, (b) ER samples based on the SSY ∗ behavioral samples, (c-d)
SDR transfer functions and ER samples for streams flowing to Eastern Andes, and Western Andes (e-f). From 1990
to 2010, the most probable ER sample is E[13] which is constituted by R[1], C [1], LS[2].

3.2. Spatio-temporal evolution of ERs in Peru278

For the period 1990-2010, ER maps evince that the mean highest ERs (> 50 t/h/y) are found in279

the andean (31%) and coastal (11%) regions. Conversely, for the same period, low ERs (< 10 t/h/y)280

persistently covers ∼ 60% of the amazonian region. As expected, the andean region presents the281

highest PE (> 500 t/h/y), which covers ∼ 39% of its territory.282

A spatio-temporal analysis of ERs emphasizes that moderate rates (10 − 50 t/h/y) have notably in-283

creased in the the western Peruvian Andes and the coastal region for the periods 1990-2000 (Fig. 5.d)284

and 2000-2010 (Fig. 5.e).285

The average national ER shows the following evolution: ∼ 24 t/h/y (1990), ∼ 12 t/h/y (2000) and286

∼ 33 t/h/y (2010). For the period 1990-2000 the highest ERs in the country increased 3% in average;287

similarly, for 2000-2010 it increased 10%. The highest increase is observed in the andean region, as288

follows: 10% (1990-2000) and 30% (2000-2010).289

As shown in Figure 6, for the year 2010, Moquegua and Apurimac provinces (southern Peru, Fig. 5-290

f), which are mostly located in the andean region, feature the highest proportion of their territories291

with severe erosion.292
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Figure 5: RUSLE-GGS output for Peru at 5-km resolution. (a)-(c) PE rates maps for 1990, 2000 and 2010, respectively.
(d)-(f) ER maps for the same years. (g) ER gradients maps for period 1990-2000 and 2000-2010 (h). (i) locations of
the SSY gauging stations and the limits of the Eastern Peruvian Andes region after Latrubesse and Restrepo (2014).

4. Discussion293

4.1. RUSLE-GGS, the proposed methodology294

The critical affectation of many developing countries by soil erosion has been reported in several295

studies (Pimentel et al., 1995; Pham et al., 2001; Alcantara-Ayala, 2002; Ananda and Herath, 2003;296

Boardman, 2006; Labrière et al., 2015; Mondal et al., 2017; Borrelli et al., 2017). As described in297

Section 2.1, Peru, an upper-middle-income economy, epitomizes such situation. It is therefore rea-298

sonable arguing that it might be much worse in poorer countries.299

Soil erosion studies require quantifying uncertainties associated to the complexity of the physical pro-300
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cesses and the scarcity of accurate field observations for calibration (Cea et al., 2016). Even though301

developed countries have considerable SY and ER field datasets, still several researchers believe that302

they are not long enough to apply and calibrate sophisticated soil erosion models (Ferro and Porto,303

2000; Nearing, 2004). As highlighted in this contribution, developing countries feature insufficient304

input data and restricted observations to calibrate erosion models. For example, water discharge305

and SY are poorly characterized at the western South America (Peucker-Ehrenbrink, 2009), pos-306

sibly because collecting SY measurements is expensive (Hudson, 1993; McCool and Busacca, 1998;307

Onyando et al., 2005). As a consequence, sophisticated models only can be applied to a very limited308

number of watersheds.309

Empirical models such as RUSLE are relatively simple, robust in structure and thereby, have been310

widely used in the assessment of soil erosion under scarcity of field data, and when integrated311

with GIS on grid-cell basis, it allows for analyzing spatially distributed soil erosion potential ef-312

fectively (Terranova et al., 2009; Ganasri and Ramesh, 2016; Singh and Panda, 2017). The accuracy313

of RUSLE also results in some cases is approximately similar as that for the WEPP model which314

nevertheless needs finer resolution data (Nearing, 2004). RUSLE does not quantify sediment yield315

at the outlet of the watershed; nonetheless, a reliable assessment of SDR can be performed by using316

observed sediment yield at a watershed section or reservoir from RUSLE outputs. That is the case317

reported by Lee et al. (2014), who obtained relative errors between 6.4% and 13.5% for the Gyeongan318

River (561 km2), Korea.319

As shown in this study, in the context of developing countries, and under the urgent challenge of es-320

timating erosion rates at country scales, the combined application of RUSLE-GIS, GLUE, and SDR321

transfer functions (RUSLE-GGS) can provide estimates with quantitatively-known uncertainties.322

Most studies at large scales rarely have used spatial output for verification (Jetten and Maneta,323

2011). Our results are yet quantitatively assessed by following the GLUE methodology and SSY324

field data. GLUE and Bayesian approaches have been criticized for having limitations in quantifying325

model output uncertainty (Beven et al., 2008), recent studies however suggest that even imprecise326

historical data can markedly decrease a model uncertainty (Salinas et al., 2016). Therefore, we be-327

lieve that although ER field data and observations of RUSLE factors are limited/nonexistent in328

developing countries, it is highly probable finding even ”fuzzy” data from sediment loads of rivers329
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and siltation of dams and reservoirs that could improve the efficiency of RUSLE-GGS. That being330

so, it is reasonable stating that that RUSLE-GGS can potentially be applied in most developing331

countries, yet its results should be regarded as preliminary. This stems from the fact that RUSLE332

estimates are regarded as broad scale erosion surveys for assessing ER spatio-temporal evolution,333

but are not useful as storm-response design tools (Nearing, 2004).334

Recently, some members of the scientific and intergovernmental communities have underscored the335

need to adopt open-science data practices, and promote the use of steadily increasing Earth ob-336

servations (Showstack, 2015). We believe that RUSLE-GGS could contribute to these ends if it is337

adopted as an initial standard frame to quantify ERs for developing countries. These ERs could338

subsequently become freely accessible to guide the decisions and actions to efficiently manage soil339

resources in such countries, this information could also be assimilated into physically-based models340

to improve the scientific understanding of the mechanisms that describe soil erosion in the tropics.341

Likewise, RUSLE-GGS can provide information to implement metrics of sediment connectivity (e.g.,342

Heckmann et al., 2018; Grauso et al., 2018) to quantify the vulnerability to the offsite effect of soil343

erosion. For these reasons, we believe that a systematic and standardized application of RUSLE-344

GGS may contribute to accomplish with the soil-erosion-related Goal 15 of the UN 2030 Agenda for345

Sustainable Development which requires using: (1) geographical information systems to host and346

share data from the observing networks; and (2) simulation and decision-making tools to support347

sustainability planning, management and enforcement (Lu et al., 2015).348

4.2. Application of RUSLE-GGS to Peru349

The application of RUSLE-GGS over Peru was performed using input data consisting on satellite350

measurements and, to a lesser extent, observations provided by local public agencies. However, all351

the aforementioned information does not allow to discern which of these controls are more predomi-352

nant in inducing such evolution. That certainly deserves further research.353

Apparently, SRTM performs better than other digital elevation models in improving the efficiency354

of RUSLE (Mondal et al., 2017). Such evidence was not evaluated in this contribution, yet two355

realizations of the slope length/steepness factor (LS) were built from the ASTER DEM. RUSLE356

typically shows high sensitivity to the rainfall erosivity (R) and cover and management (C) factors357
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Figure 6: Territorial categorical distribution of ERs in Peru for the year 2010.

(Jetten and Maneta, 2011). When the latter is calculated on an annual basis, apparently the main358

source of uncertainty is the temporal variability of precipitation at wider spatial scales (Catari et al.,359

2011). Even though six realizations of the R factor were obtained for this study, we hypothesize360

that the efficiency of RUSLE-GGS could be improved if R is estimated from the direct analysis of361

hourly/sub-hourly precipitation measurements. That would require quantifying the average annual362

summation of individual storm erosivities (Nearing, 2004). Unfortunately, only monthly precipita-363

tion data was freely available for our study.364

Peru exhibits an insufficient density of SSY gauging stations (Latrubesse and Restrepo, 2014), even365

though it is an upper-middle-income-economy. For instance, Syvitski and Milliman (2007) used two366

global datasets containing information from large and small rivers. Even so, none of them included367

Peruvian rivers draining to the Pacific Ocean because such information was not available.368

Our results show a positive correlation between SSY ∗ and catchment area, although past studies369

indicate that it may increase or decrease as a function of drainage area (Cerdà et al., 2013). The370

identification of behavioral SSY ∗ samples were based on six watersheds, which represent the data371

solely available from technical reports, past studies, and reliable institutions (e.g. Hybam) for Peru.372

A relaxed threshold for the Nash-Sutcliffe index was assumed (i.e., NSE > 0), as formulated by373
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Houska et al. (2014). No one of the behavioral samples belongs to the year 2000, which suggests374

that such year is an outlier. Most behavioral samples were obtained per unit reservoir than that per375

unit stream flow sediment sampling station. For instance, no behavioral sample was obtained for376

the Cordorcerro gauging station. This might stem from the fact that (1) generally small rivers are377

more responsive to episodic events (Syvitski and Milliman, 2007), or (2) reservoir surveys commonly378

provide more reliable SSY measurements than gauging stations (de Vente et al., 2013).379

RUSLE-GGS’ performance in somewhat low in the year 2000, probably triggered by the 1998 ENSO380

event as ENSO plays an important role in the erosion processes in the Peruvian northern coastal area381

(Quinn et al., 1987). However, the model performance markedly improves in the year 2010, may be382

because there were more freely accessible observations for that year.383

The model outputs have the same order of magnitude as some global models. For instance, the ER384

1990 map (Fig. 5.d) shows that in the amazonian region, the mean ER was ∼ 2 t/h/y, similar to385

that obtained by Pham et al. (2001) (0 − 10 t/h/y). Our result for the coastal region (∼ 85 t/h/y)386

is also comparable to that by Pham et al. (2001) (10 − 50 t/h/y), it is however slightly higher in387

areas having poor density of rainfall ground stations (see the Supplementary Material). For the year388

2000, the RUSLE-GGS outputs differ from the global model by Doetterl et al. (2012), though it has389

same order of magnitude. Our results for the the year 2010 can only be comparable with the conti-390

nental ER obtained by Doetterl et al. (2012) (12 − 18 t/h/y) and that for the average country ER391

(∼ 33 t/h/y). Our ER estimates for the andean region are: 39 (1990), 32 (2000), 101 t/h/y (2010)392

which are in the ER range (0.3 − 151 t/h/y) obtained by Molina et al. (2008) for a central Andean393

region.394

Over all, our results exhibit the same pattern observed in most of erosion models: they tend to395

overestimate erosion rates during years when little erosion occurs (e.g. when no ENSO events occur)396

and underestimates it during years when erosion is significant (e.g. during the strong 1998 ENSO) as397

reported by Beven and Brazier (2011). Despite these restrictions RUSLE-GGS allowed for obtaining398

both ER and PE maps for Peru which, to the best of our knowledge, would be the first publicly399

available quantitative maps.400

The aforementioned maps suggest that moderate ERs in Peru are rapidly increasing in the coastal401

and andean regions. This pattern is similar to the global trend reported by Pham et al. (2001);402
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Van Oost et al. (2007); Ramankutty et al. (2008); Doetterl et al. (2012). The highest ERs are also403

located in these regions. This may stem from the fact that the andean region presents steep hills404

and periods of high rainfall that play an essential role in the production of SY and soil erosion405

(Michaelides and Martin, 2012). It is unclear nevertheless whether soil erosion is predominantly de-406

termined by natural or anthropogenic controls. The same conclusion was draw in a catchment-scale407

study by (Vanacker et al., 2007) in an andean area from Ecuador.408

Highest ERs in the coastal region are possibly controlled by variations in the C factor due to land409

development as the population grew from 54.6% to 63.4% of the country’s population for the pe-410

riod 2007-2014 (Paulet and Amat, 1999; World Bank, 2015; MINAR, 2015; INEI, 2014). Since this411

region is seismically highly active, soil erosion and landslides may also be positively correlated with412

earthquakes as past research (Scheidegger, 1992; Scheidegger and Ai, 1986) suggests.413

The amazonian region exhibits the lower ERs in Peru and the lowest increase on it. This corroborated414

our assumption that the ER in the Eastern Peruvian Andes by Latrubesse and Restrepo (2014) was415

somewhat invariant for both the years 2000 and 2010.416

The average national ER exhibits an increasing trend, similarly to that reported by Borrelli et al.417

(2017), that might persist due to the steady growth of the Peruvian population and the increase of418

the extension of areas granted to the extractive industry (OXFAM, 2014). Mining is intensive in the419

andean region where the dry-land hills prompt significant SY rates even during relatively low rainfall420

intensities (Michaelides and Martin, 2012).421

We argue that the RUSLE-GGS performance for Peru can be improved if engineers/scientists from422

public agencies use the data they may have access to and set the year 1990 as long-term bench-423

mark to assess ER spatio-temporal gradients. A long-term benchmark would allow for consistent424

cost-benefit analyses of erosion mitigation strategies (Vanacker et al., 2007). In our opinion, these425

strategies should include (1) the establishment of a freely available SY database for larger areas in426

the Peruvian territory, and (2) a consistent program to document sediment fluxes triggered by ENSO427

events that currently are poorly documented even though they can increase 11 times the fluxes from428

normal years (Tote et al., 2011). Finally, it is worth to point out that our results suggest that Peru429

urgently needs regulatory standards to manage its territorial erosion control challenges.430
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5. Conclusions and implications431

The profuse literature review presented in this study indicates that soil erosion in developing432

countries is a matter of serious concern and that Peru, an upper-middle-income economy, presents433

erosion features that exemplify such situation. Thus, it is reasonably grounded to state that the434

quantification of soil erosion rates (ERs) in developing countries needs to be addressed with partic-435

ular urgency. This is however challenging because they commonly suffer from an inherent paucity of436

conventional ground-based observations and field relations to obtain ERs.437

The Generalized Likelihood Uncertainty Estimation (GLUE) principles have been extensively used438

to identify behavioral model outputs under conditions where there is an incomplete knowledge of439

the modeled system and the input data is, at some degree, uncertain. RUSLE-GGS results from440

the combined application of RUSLE-GIS, GLUE, and sediment delivery ratio (SDR) functions in441

the following sequence: (1) ER samples are constructed using RUSLE-GIS based on available lo-442

cal/global geoenvironmental observations and field relations, (2) area-specific sediment yield samples443

are constructed utilizing SDR transfer functions, and (3) the most behavioral samples are assessed444

by means of bias analysis and cross validation. It is aimed to cope with the technical challenges445

related to estimating ERs in developing countries at country scale.446

RUSLE-GGS is successfully applied to obtain ER and potential erosion maps for Peru at 5-km res-447

olution for the years 1990, 2000 and 2010. For this period, Peru exhibits erosion rates in the order448

of 24− 33 t/h/y which are triggered by natural (e.g., ENSO, the Andes) and anthropogenic controls449

(e.g., changes in land use as its economy relies mainly on extractive industries, expansion of its450

infrastructure portfolio, urban population growth). Determining which of them is the predominant451

control certainly deserves further attention. ERs for the year 2000 are possibly underestimated as452

they include a 1989 strong ENSO event.453

Despite its limitations, RUSLE-GGS accounts the model uncertainty. Consequently, we believe that454

(1) it has the potential to provide the initial standard and systematic frame to quantify erosion rates455

in developing countries, which can subsequently be used to make institutional decisions to efficiently456

control soil erosion, and (2) the year 1990 could be set as a benchmark to track the regional evolution457

of soil erosion in such countries. We also believe that these steps would represent active measures to458

meet Goal 15 of the UN 2030 agenda.459
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Supplementary Material460

Input data for the creation of ER samples and output of RUSLE-GGS is presented in Rosas and Gutierrez461

(2017) (https://doi.pangaea.de/10.1594/PANGAEA.884460). A file that details the RUSLE-GIS462

model also accompanies this contribution.463
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HIGHLIGHTS 

 

 

 Large evidence on the urgency to asses soil erosion in 

developing countries (DC) 

 Most DC have insufficient observations to quantify erosion 

at country scale  

 RUSLE-GGS successfully tackles with the uncertainty in 

quantifying erosion in DC 

 RUSLE-GGS can potentially standardize erosion evolution 

assessment in DC 

 Attaining Goal 15 from UN 2030 Agenda demands 

standardizing such assessment 
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