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Abstract
The nutations of Mars are about to be estimated to a few milliarcseconds accuracy with
the radioscience experiments onboard InSight and ExoMars 2022. The contribution to the
nutations due to the liquid core and tidal deformations will be detected, allowing to constrain
the interior of Mars. To avoid introducing systematic errors in the determination of the core
properties, an accurate precession and nutation model for a rigidly behaving Mars is needed.
Here, we develop such a model with adequate accuracy based on the Torque approach and
compare it to previous models. We include in the model the forcings by the Sun, Phobos,
Deimos, and the other planets of the solar system. We also include the geodetic precession
and nutations. We use semi-analytical developments for the solar and planetary torques, and
analytical solutions for the effect of Phobos and Deimos and for the geodetic precession and
nutations. With a truncation criterion of 0.025milliarcseconds in prograde and/or retrograde
amplitude, we identify 43 nutation terms. The uncertainty on our solution mainly derives
from the observational uncertainty on the current determination of the precession rate of
Mars. Uncertainties related to our modeling choices are negligible in comparison. Given
the current determination of the precession rate (7608.3 ± 2.1mas/yr, Konopliv et al. in
Icarus 274:253–260, 2016. https://doi.org/10.1016/j.icarus.2016.02.052), ourmodel predicts
a dynamical flattening HD = 0.00538017± 0.00000148 and a normalized polar moment of
inertia C/MR2 = 0.36367 ± 0.00010 for Mars.

Keywords Nutation · Precession · Mars

1 Introduction

The geodesy experiments Rotation and Interior Structure Experiment (RISE, Folkner et al.
2018) and Lander Radioscience (LaRa, Dehant et al. 2020) on InSight and ExoMars 2022
measure the rotation of Mars by tracking the respective lander on its surface. From the
measurements, important orientation parameters of Mars are determined. These are the
length-of-day variations, the polar motion of the spin axis with respect to a crust-fixed frame,
and the precession/nutation of the spin axis in space.
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Fig. 1 Precession and nutations
of the spin axis about the orbit
pole. Adapted from Lowrie
(2011)

The precession is the slow uniform circular retrograde motion of the spin axis about the
perpendicular to the orbital plane induced mainly by the gravitational torque exerted by the
Sun on Mars, which reacts as a spinning top (see Fig. 1). The aperture of the precession
cone is about 25◦ and the precession period is about 170,000years, corresponding to the rate
of − 7608.3 ± 2.1mas/yr (milliarcsecond per year, Konopliv et al. 2016). The precession
rate is, on the one hand, proportional to the J2 gravity coefficient (a spherical planet would
not precess) which is well known from gravity field measurements, and, on the other hand,
inversely proportional to the polar moment of inertia C which constrains interior models of
Mars (e.g., Rivoldini et al. 2011).

The nutations are short-period (e.g., the revolution period of Mars and its harmonics)
oscillations of the orientation of the spin axis with amplitudes reaching a few hundreds
milliarcseconds (mas). Note that 1mas corresponds to a displacement of 1.6cm at the surface
of Mars. The nutations are superimposed on the precession, so that the spin axis trajectory
in space appears wiggly. Nutations occur mainly because of periodical changes in the solar
torque during the orbital motion of Mars. Additionally, the torques exerted by the other
planets of the solar system and by Phobos and Deimos, the two natural satellites of Mars,
contribute to the nutations.

The tides raised on Mars by the Sun indicate that Mars has an internal liquid core (Yoder
et al. 2003), with a radius between about 1730 and 1860km (Rivoldini et al. 2011; Khan
et al. 2018). A planet with a liquid core is characterized by a rotational normal mode called
Free Core Nutation (FCN) that depends on its interior properties (core radius and shape,
capacity to deform) and that can resonantly amplify nutations (e.g., Hilton 1992; Groten et al.
1996; Folkner et al. 1997a). In the frequency domain, nutation amplitudes are conveniently
expressed by multiplying rigid nutation amplitudes with a transfer function (e.g., Folkner
et al. 1997a, after Sasao et al. 1980). The rigid nutations represent the nutations of an entirely
solid and rigid planet of given mass and moments of inertia. The transfer function depends
on the precise interior structure and allows to account for the effect of the fluid core as well
as for the tidal deformations. The effect of the transfer function on the prograde semi-annual
nutation (whose amplitude is often denoted p2), the largest nutation, ranges between 5 and
25mas, depending on the free core nutation period. The retrograde ter-annual nutation (r3)
can be enhanced by a few tens of mas in the presence of a large liquid core (Dehant et al.
2000; Le Maistre et al. 2012, 2020).
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The model of Mars rotation used for radioscience data analysis usually includes preces-
sion and nutation (e.g., Folkner et al. 1997b; Kuchynka et al. 2014; Konopliv et al. 2016).
Whereas the precession rate can be estimated from the data, the main nutation terms are held
fixed to values obtained from a rigid nutation model and a transfer function, because they
cannot be determined with a satisfying accuracy from the data. For example, in the analysis
of the radio signals exchanged with Viking lander 1 by Borderies et al. (1980), the main
nutation terms have been determined with large uncertainties (50–100% level). Le Maistre
(2013) and LeMaistre et al. (2018) used historical data from several landed missions (Viking
lander 1, Pathfinder, the Mars Exploration Rovers Spirit and Opportunity) to determine the
amplitudes of the main nutation terms. However, the transfer function contribution was dif-
ficult to determine with a sufficient precision to constrain interior models of Mars. RISE
and LaRa will further improve the determination of the main nutation terms of Mars. The
expected precision on p2 and r3 measurements with LaRa alone lies between 2 and 15mas,
depending on the mission operational parameters (Le Maistre et al. 2020). The uncertainties
reduce by 2–3mas when using both RISE and LaRa data together (Dehant et al. 2020; Péters
et al. 2020). The expected precision is sufficient to provide an independent assessment of
the state of the core as well as a constraint on the core radius that can be comparable to that
obtained by the Love number k2, depending on the period of the FCN. Additionally, nutation
can also constrain the shape of the core.

In order to infer reliable properties about the core from the forthcoming radioscience data,
an accurate model for the precession/nutation of a rigid Mars is needed. The first detailed
rigid precession/nutationmodel has been proposed during the operational period of theViking
landers (Reasenberg and King 1979). The most recent rigid precession/nutation models date
from 20years ago (Bouquillon and Souchay 1999; Roosbeek 1999). In this study, our aim is
twofold. As the differences between the existing models are large, we assess their accuracy.
At the same time, we determine the most efficient and accurate method to provide an up
to date rigid precession/nutation model consistent with the latest orbital ephemerides of the
bodies of the solar system, in order to prepare the analysis of the forthcoming radioscience
data.

The plan of the paper is as follows. In Sect. 2, we present the existing models for the
precession and nutations of a rigid Mars and we compare them to each other. In Sect. 3,
we introduce the governing equations and we derive approximated analytical solutions for
the precession and nutations due to the Sun, Phobos and Deimos, and the other planets.
This allows to better understand the strengths and weaknesses of the existing approaches,
but also what differentiates them. We chose the approach of Roosbeek (1999), simple to
implement and sufficiently accurate in comparison to the precision on future measurements,
to generate an up-to-date solution for the precession and nutations of a rigid Mars in Sect. 4.
But before that, we recompute the series of Roosbeek (1999), named RMAN99 for Roosbeek
MartianAnalytical Nutations 1999, withmodern computer performances and, as a result, find
significant differences with respect to the original series. The recomputed RMAN99 series is
necessary to correctly assess the changes introduced when updating the series. By analogy,
the updated version of the precession/nutations series will be called BMAN20 for Baland
Martian Analytical Nutations 2020. A simplified version more suited for the interpretation
of radioscience data (BMAN20RS) is also provided. In Sect. 5, we examine the definition
of the IAU standard for Mars right ascension and declination. We end with a discussion and
concluding remarks in Sect. 6.
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2 Current status of precession and nutations of a rigid Mars

2.1 Initial results

To provide the means for analyzing data from the Viking landers and future lander missions,
Reasenberg and King (1979) (RK79 hereafter) developed a rotation model of a rigid Mars
including both the precession and nutation terms. Their goal was to identify all the precession
terms down to 0.14mas/yr, corresponding to a surface displacement of at least 1cm in a 10-
year period, and the nutation terms with amplitudes down to about 0.7mas in longitude and
0.3mas in obliquity, corresponding to peak-to-peak displacements of 1cm.

They considered the torque exerted by the Sun on an axisymmetric and flattened
Mars evolving on a precessing elliptic orbit. They found a theoretical precession rate of
− 7568mas/yr and nutation terms with frequencies equal to harmonics of the mean motion
of Mars (the main solar terms hereafter). Given the considered truncation criterion, they
included terms up to the sixth harmonic in their solution (the same year, Lyttleton et al. 1979
published a solution with terms up to the fourth harmonic). The non-axial symmetry of Mars
leads to semi-diurnal nutation with an amplitude of the order of 0.1mas, below the truncation
criterion. RK79 included in their model a geodetic precession of 6.70mas/yr resulting from
general relativity. Regarding the direct torques by the other planets, the effect of Jupiter was
introduced as a small additional contribution of − 0.22mas/yr to the precession rate.

The RK79 nutation series are elegantly written in a simple form using only two arguments.
The first argument, denoted M , is the mean anomaly of Mars. The second argument, denoted
q , is twice the pericenter longitude of the Sun measured from the node of the Body Frame
(BF) on the orbit of Mars. This argument is obtained as q = 2ω − 2θ , with ω the argument
of perihelion of Mars measured from the node of Mars orbit on the ecliptic of the Earth
and θ the angle between the two aforementioned nodes, see Fig. 4. The simplicity of RK79
nutations series explains why they are still considered nowadays for computing the rotation
model used to analyze radioscience data from recent missions (e.g., Kuchynka et al. 2014;
Konopliv et al. 2016), as well as for defining the IAU model for Mars orientation (Kuchynka
et al. 2014; Archinal et al. 2018). However, RK79 do not include the nutations induced by the
direct torques by Phobos and Deimos (the satellite terms hereafter). These nutations are large
(up to 10mas in longitude, as demonstrated later) and should be included in Mars rotation
model. Several smaller and neglected effects will also have to be considered in view of the
precision expected with RISE and LaRa. In particular, we will consider the effect of the
modifications of the solar torque due to the perturbations of the orbit of Mars by the other
planets (the indirect planetary terms), as well as the effect of the direct torques by the other
planets (the direct planetary terms).

Over the next two decades, other authors (Borderies 1980; Borderies et al. 1980; Hilton
1991; Groten et al. 1996) proposed a solution for the precession and nutations of a rigid
Mars. A common feature of these studies is the computation of the main solar terms of the
nutations assuming that Mars is axisymmetric and evolves on a Keplerian orbit of a given
eccentricity. The series of Borderies (1980) are not directly comparable to those of RK79, due
to a different choice of reference plane (the Earth ecliptic versus Mars orbit). The series of
Borderies et al. (1980), Hilton (1991) andGroten et al. (1996) are comparable to RK79 series:
the orbit of Mars is chosen as the reference plane and the set of arguments are equivalent.1

Their truncation criterion was larger or similar, leading to less or about the same number

1 The arguments 2ω − 2h of Borderies (h is the same angle as the angle θ defined above), 2Λ of Hilton,
and 2Φ0 of Groten correspond by definition to the argument q of RK79. Note that a confusion between the
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of solar terms as in RK79. It results that none of those series is good enough to supersede
those of RK79. Yet, their authors explored other aspects of the problem that can impact
the interpretation of radioscience data, laying the foundations for subsequent studies. For
instance, Hilton (1991) was the first to recognize the importance of the effects of Phobos and
Deimos (see Sect. 3.5 for more details). He also investigated the direct effects of the other
planets (see Sect. 3.6). Groten et al. (1996) noticed that the nutation amplitudes may change
with time because of the secular variations in the eccentricity2 and perihelion of the orbit of
Mars due to perturbations by the other planets (the reasoning is extended to the effect of the
other orbital elements in Sect. 3.4.2).

2.2 Roosbeek, Bouquillon, and Souchay

To the best of our knowledge, Roosbeek (1999) and Bouquillon and Souchay (1999)
(RMAN99 and BS99 hereafter) published the most recent and detailed solutions for the
precession and nutation of a rigid Mars. These studies already date from 20years ago. The
methodologies of the two studies differ from each other: BS99 is based on the Hamiltonian
approach (i.e., workingwith theHamiltonian corresponding to the total energy of the system),
whereas RMAN99 considers the Torque approach (i.e., working with the gravitational torque
acting on Mars). Besides the solar terms (main solar terms and indirect planetary terms),
RMAN99 and BS99 also include the satellite terms in their solution. Some direct planetary
terms (induced by the Earth and Jupiter) are included in BS99, but not in RMAN99.

Their main improvement compared to previous studies lies in the modeling of the planets’
motion. RMAN99 abandoned the Keplerian representation of the orbit of Mars and the use
of mean orbital elements, and considered instead the rectangular coordinates and distance
to the Sun as given by a semi-analytical theory for planetary ephemerides called VSOP87
(Bretagnon and Francou 1988). The acronym VSOP stands for Variations Séculaires des
Orbites planétaires (Secular Variations of Planetary Orbits). As a consequence, the model
provides a semi-analytical description of the precession/nutations, instead of the analytical
description in terms of the mean orbital elements provided in RK79. Unlike RMAN99, BS99
considered an approach partially based on the VSOP87 ephemerides, and partially on the
assumption of osculating orbits.3

numerical values of ω − θ and ω in Groten et al. (1996) (he wrongly uses q = −147◦ instead of q ∼= 142◦)
renders his series incorrect.
2 Hilton (1991) also attempted to take into account the changes in eccentricity with time. He wrongly assumed
that the orbit perturbations change the J2000 mean eccentricity (e0), leading to incorrect changes in the

precession rate and mean values of the nutation amplitudes. The eccentricity is defined as e =
√

h2 + k2

with h and k given in Bretagnon (1982) under the form
∑

n hn and
∑

n kn , see Eq. (57) of Hilton (1991).
When we follow his procedure to extract the J2000 mean eccentricity, we find e0 = 0.0936037, whereas
e0 = 0.0934006, see Simon et al. (1994). As a consequence, the term in sin M in his Table 1 with an
amplitude of − 634.4mas and which is proportional to e0 is wrongly changed by 1.4mas, see his Table 2.

What is wrong in Hilton’s procedure? First, he constructs the eccentricity as e = ∑
n

√
h2n + k2n = ∑

n en

instead of
√

(
∑

n hn)2 + (
∑

n kn)2. Second, he expands each en about T = 0 and keeps the zeroth-order
terms, which makes no sense for relatively short period terms (between 400 and 6000days for the principal

terms of h and k). The correct value of e0 can be obtained by expanding
√

(
∑

n hn)2 + (
∑

n kn)2 about
√

h20 + k20 with h0 and k0 the constant parts of h and k.
3 For the gravitational action of the Sun, the factor 1/r3 in their disturbing potential Ui (their Eq. 7), with r
the distance of the Sun to Mars, is developed as a function of the eccentricity and mean longitude of Mars,
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The use of accurate planetary ephemerides, as VSOP87, which accounts for their mutual
perturbations,4 affects the precession/nutation model in two ways. First, provided that the
truncation criterion is small enough, nutation termswith frequencies other than the harmonics
of the mean motion of Mars, the indirect planetary terms, appear in addition to the main solar
terms, as shown in RMAN99 and BS99. Second, they produce secular changes in the nutation
amplitudes,5 as demonstrated in BS99 (their mixed terms). The latter effect was overlooked
in RMAN99.

Both RMAN99 and BS99 provide series for the nutations in longitude and obliquity
choosing a truncation criterion of 0.1mas in amplitude, below that of RK79. This truncation
level is not the level of precision on the amplitude of a given nutation term,which also depends
on the precision of the choice of ephemerides and parameter values, modeling assumptions,
and computer limitations.6 As a matter of fact, the agreement between RMAN99 and BS99,
term by term, is at the mas level, an order of magnitude above the truncation level (up to 2mas
for the semi-annual solar and Phobos terms in longitude, see Table 1). In the time domain,
the cumulated difference between the two series can reach 6mas in longitude and 2mas in
obliquity, as can be seen in panels (a, b) of Fig. 2. Such large differences are unexpected since
both series are based on the same ephemerides (VSOP87 for the planets and ESAPHO and
ESADE for Phobos and Deimos, see Chapront-Touze 1990) and are too large to be ignored,
as the effect of the fluid core on the nutation amplitude can be of that order.

Some difference results from different values used for the mass of Phobos MPh and the
scaling factor HD . As demonstrated in Sect. 3.2, Eq. (11c), the scaling factor is defined as
the ratio of the difference between the polar and the mean equatorial moments of inertia
over the polar moment of inertia (C − Ā)/C and contributes to the amplitude of each term
in the nutations series. HD is taken as 0.00535464 in RMAN997 and as 0.005363 in BS99.
The value of Phobos mass in BS99 is 22% larger than the one used in RMAN99, the latter
being closer to the recent determinations (e.g., Jacobson and Lainey 2014). By rescaling
BS99 series with the HD value and Phobos mass of RMAN99, the differences in the time
domain between the two series are reduced to 1mas in longitude and 0.1mas in obliquity
(see panels c and d of Fig. 2), and up to 0.4mas term by term, still 4 times larger than the
truncation criterion. Note that by rescaling the RK79 time series with the HD of RMAN99,
the differences between the RK79 series and the RMAN99 or the rescaled BS99 series can
reach up to 4mas (see Table 1), ten times the differences between the RMAN99 and rescaled
BS99 series. It mainly results from the fact that the RK79 series concern the axis of figure of
Mars, whereas the other series are for the angular momentum axis of Mars (see Sect. 3.7).

It is necessary to elucidate the origin of the remaining differences between the RMAN99
and the rescaled BS99 series in order to avoid introducing bias in the interpretation of future
radioscience data in terms of interior structure. To that end, we recompute the RMAN99

that is to say as if Mars was evolving on an osculating orbit. The factor P0
2 (sin δ) is expressed as a function

of spherical coordinates which are converted from the rectangular coordinates of Mars in the VSOP87.
4 And therefore implicitly for all the secular variations of the mean orbital elements, not just for the secular
variations in eccentricity or inclination.
5 Under the “Keplerian assumption,” the modulations in nutation amplitude can be obtained by extracting the
long-period arguments (the orbital elements other than the mean anomaly, see Sect. 3.4.2) from the sine and
cosine developments through a linearization around their epoch values.
6 The solution is obtained after repeated trigonometric manipulations of a large amount of terms. When the
computation speed and random-access memory are too limited, as was the case 20years ago, approximations
which alter the accuracy of the solution must be done during the computation. See details of the computation
procedure of the recomputed RMAN99 solution in Sect. 4.
7 The value 0.00536 reported in RMAN99 is in fact a wrong rounding of the value actually used, Fabian
Roosbeek, personal communication.
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BS99 versus RMAN99
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Fig. 2 Black curves: differences, as a function of time, between the nutations in longitude (left) and in obliquity
(right) computed from the series of BS99 (considering the main solar terms, the indirect planetary terms, and
the satellite terms, but not the mixed and direct planetary terms, which have no counterparts in RMAN99) and
the nutations computed from the series of RMAN99.Very long period terms are not included in the comparison,
since the computational procedure of RMAN99 can make them artificially large or small (and so wrongly
included or not in the final series), see Sect. 4.1.3. Blue, green, and red curves are for the differences between
the main solar terms, the indirect planetary terms, and the satellite terms, respectively. The time is measured
in years past J2000. The differences in solar terms are mainly related to the annual and semi-annual terms (see
also Table 1). The differences in satellites terms is mainly related to Phobos. Top panels: differences between
BS99 and RMAN99 original series. Middle panels: as in top panels, except that BS99 series are rescaled to
the scaling factor HD and Phobos mass used in RMAN99. Bottom panels: as in middle panels, except that
RMAN99 series are recomputed using modern computer capabilities (see Sect. 4.1)
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series, using the same ephemerides (VSOP87, ESAPHO, ESADE) as for the original series,
but taking advantage of modern computer performances. The assumptions made at the time
are also examined (see details in Sect. 4.1). We will show that the so obtained recomputed
series is in a better agreement with the rescaled BS99 series (� 0.1mas term by term, the
difference being relatively smaller for the dominant terms: 0.01% on the semi-annual term
but 0.6% for the fifth term, for instance). The difference is at most 0.01% in the time domain
(see panels e and f of Fig. 2) and on the first three dominating terms, and can be seen as
modeling uncertainties resulting from the different physical assumptions considered in the
two approaches.

Compared to the expected precision on future nutation measurements (a few mas), the
choice between the two approaches (Hamiltonian versus Torque approach) can be seen as a
matter of convenience. The VSOP87 is about 30years old and itself adjusted to numerical
ephemerides (DE200, Standish 1982) 6years older. Using the Torque approach, we thus
determine an updated rigid nutation series (BMAN20), using the more recent ephemerides
VSOP2000 which has the advantage of being expressed in a similar format as VSOP87
(Moisson and Bretagnon 2001), see Sects. 4.2 and 4.3. In these sections, we also show that
the variations of the rigid nutation amplitudes that would be induced by the use of other
recent ephemerides (e.g., the numerical ephemerides DE431) would be small compared to
the difference between the recomputed RMAN99 and the updated BMAN20 series.

3 Governing equations and analytical solutions

The variations in the rotation of Mars can be separated into the variations in rotation speed
around its spin axis (length-of-day variations, �LOD) and the variations in orientation of
the spin axis in space (precession/nutation) and with respect to the surface of the planet
(polar motion). In this section, we aim to set the theoretical grounds for the study of the
precession and nutations. As the differential motion between the angular momentum (AM)
and spin axes is negligible (BS99, RMAN99), we derive the governing equations for the
precession/nutation of the angular momentum (AM) axis of Mars in space. We follow the
Torque approach, starting from the definition of the Euler angles of the figure axis, since the
rotation of Mars can simply be described by the temporal evolution of the Euler angles from
an Inertial Frame (IF) to the rotating Body Frame (BF) of Mars. We make the connection
between the governing equations of RK79 for the motion of the figure axis and of RMAN99
for the motion of the angular momentum axis.

3.1 The Euler angles and the rotationmatrix

The Euler angles for the figure axis are the node longitudeψ , the obliquity ε, and the rotation
angle φ (see Fig. 3). We consider prograde angles and ascending nodes of moving planes
with respect to fixed planes. The IF is centered at the center of mass of Mars and chosen to
be associated with the mean orbital plane of Mars at a reference epoch (J1978.0 in RK79,8

8 As RK79 do not impose the epoch values of their arguments M and q, it is possible to consider values
referred to the mean orbit of Mars at epoch J2000 when using their series, as, e.g., in Konopliv et al. (2016)
and in Table 1.
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Fig. 3 Euler angles (defined as prograde angles) between the rotating BF of Mars (axes XY Z , in red) and the
IF associated with the mean orbit of Mars at epoch J2000 (axes xyz in black, the x-axis is in the direction of
the ascending node of Mars orbit over the Earth ecliptic of epoch J2000). The X -axis of the BF is chosen as
the prime meridian defined in the IAU convention (Archinal et al. 2018). ψ is measured from the x-axis to
the autumn equinox, φ is measured from the equinox to the X -axis, and ε is the angle from the z-axis to the
Z -axis, or the inclination of the BF equator over the IF xy plane. The term “true autumn equinox” is here an
abuse of terminology, as the true Autumn equinox is in principle the ascending node of the true equator over
the true orbit of date. The angular momentum axis does not coincide with the figure axis of Mars. They are
inclined by εPM to each other, and χPM is measured from the node of the AM equator over the BF equator to
the XAM-axis (the subscript PM stands for Polar Motion, the differential motion between the figure and spin
axes. We here consider that the AM and spin axes are aligned to each other, see BS99 and RMAN99). Beware
that throughout the text, the notations ψ , ε, and φ are also used for the Euler angles of the AM axis

J2000 in RMAN99,9 BS99,10 and in this paper). The BF is attached to the principal axes of
inertia of the planet, its X and Y axes define the equator of figure of Mars, and its Z axis
defines the figure axis.

The rotation matrix from the BF to the IF can be expressed in terms of the figure axis
Euler angles (ψ , ε, φ) as

M = Rz(−ψ) · Rx(−ε) · Rz(−φ). (1)

9 Contrary to what is stated in RMAN99, his nutation series are referred to the mean orbit and equinox of
epoch J2000 and not of date, as he sets t = 0 in his Eq. (3) (Roosbeek, personal communication).
10 The nutation series of BS99 are in fact referred to the non-inertial mean orbital plane of date. They introduce
a complementary term in their Hamiltonian to account for the motion of the reference frame with respect to
the mean orbital plane of epoch J2000, which results in complementary secular variations of the longitude and
obliquity of Mars BF (see their Sect. 5). Neglecting those complementary variations therefore approximately
amounts to consider the mean orbital plane of epoch J2000 as the reference plane, so that comparison between
the different nutation theories is possible, and done in Table 1 and Fig. 2.
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Alternatively, the transformation can be expressed as (Folkner et al. 1997a; Konopliv et al.
2006; Le Maistre et al. 2012)

M = Rz(−ψ) · Rx(−ε) · Rz(−φ) · Ry(X P ) · Rx(YP ), (2)

where (ψ, ε, φ) are the AM axis Euler angles. The projection of the unit vector along the
AM axis in the BF is often denoted (X P ,−YP ) with the minus sign in front of YP coming
from the convention used for Earth polarmotion, but can also be expressed as (−εPM sin χPM ,
−εPM cosχPM), with χPM and εPM , the angles from the BF to the AM frame (see Fig. 3).

The advantage of the rotation matrix of Eq. (1), as used in RK79, is that it avoids the
need to introduce polar motion terms. The rotation matrix of Eq. (2) is more convenient for
interpreting Doppler data in terms of nutations and polar motion separately. Nutations are
usually associated with external gravitational torques and modeled in the IF, whereas polar
motion is usually associated with surface torques due to AM exchanges with the atmosphere
andmodeled independently in the rotatingBF. It should be kept inmind that it is not consistent
to introduce the nutations series of RK79 for the figure axis into a rotation matrix such as that
of Eq. (2). Yet, that is what is done in, e.g., Folkner et al. (1997b), Konopliv et al. (2006, 2016)
and Kuchynka et al. (2014). Such practice could lead to a significant bias in the interpretation
of future nutation measurements in terms of the core characteristics, as the difference of the
order of the mas between the AM and figure axes (Oppolzer terms, see Sect. 3.7) could be
wrongly interpreted as part of the amplification related to the fluid core. It is more appropriate
to introduce an AM nutations series, as done recently in Folkner et al. (2018) and Dehant
et al. (2020).

3.2 Angular momentum equation

In the rotating BF, the angular momentum equation can be written as

∂H
∂t

+ � ∧ H = �. (3)

Here, � is the angular velocity vector of rotation (or rotation vector, see Eq. 5a), � =
(ΓX , ΓY , ΓZ ) is the total torque exerted on the planet, andH = I� is the angular momentum,
with the inertia tensor

I =
⎛

⎝
A 0 0
0 B 0
0 0 C

⎞

⎠ . (4)

The components of the rotation vector are customarily written as

� =
⎛

⎝
ω1

ω2

ω3

⎞

⎠ = ΩR

⎛

⎝
m1

m2

1 + m3

⎞

⎠ , (5a)

with ΩR the mean rotation rate. The variation rates ψ̇ , ε̇, and φ̇ of the Euler angles of the
figure axis describe successive rotations of the planet about the z-axis, the autumn equinox
axis, and the Z -axis, respectively, so that, as observed from the BF, the rotation vector writes
(e.g., Dehant and Mathews 2015):
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� = Rz(φ) · Rx(ε) ·
⎛

⎝
0
0
ψ̇

⎞

⎠ + Rz(φ) ·
⎛

⎝
ε̇

0
0

⎞

⎠ +
⎛

⎝
0
0
φ̇

⎞

⎠ ,

=
⎛

⎝
ψ̇ sin ε sin φ + ε̇ cosφ

ψ̇ sin ε cosφ − ε̇ sin φ

φ̇ + cos ε ψ̇

⎞

⎠ . (5b)

We include the gravitational torques by the Sun, Phobos, Deimos, and the planets. Here,
we neglect the torque produced by the atmosphere dynamics of Mars, as it can be shown that
its effect on the precession/nutation is negligible (see Sect. 3.7). We also consider the “rigid
nutations” in the sense of no fluid layer/atmosphere dynamics. We momentarily assume that
the planet is axisymmetric (A = B = Ā, with Ā = (A+B)/2 themean equatorial moment of
inertia), in order to retrieve the equations of RK79. We will introduce the effect of triaxiality
subsequently. We also assume that ΓZ = 0, as we do not study the variations in LOD. At
first order in small quantities (ω1 and ω2), the three components of the angular momentum
equation (3) can then be written as

Āω̇1 + (C − Ā)ω3ω2 = ΓX , (6a)

Āω̇2 + ( Ā − C)ω3ω1 = ΓY , (6b)

Cω̇3 = 0. (6c)

Equation (6c) indicates that ω3 is a constant, which is the mean rotation rate of the planet
ΩR . Note that the quantities X P and YP introduced in Eq. (2) are equal to m1 and −m2,
respectively. After substitution of Eq. (5b), Eqs. (6a, 6b) can be written as

Āε̈ + ψ̇ sin ε(CΩR − Āψ̇ cos ε) = ΓX cosφ − ΓY sin φ, (7a)

Āψ̈ sin ε − ε̇(CΩR − 2 Āψ̇ cos ε) = ΓX sin φ + ΓY cosφ, (7b)

which are second-order differential equations equivalent to Eqs. (5–6) of RK79 derived from
the Lagrangian of the system that govern the nutations of the figure axis (Z -axis of the BF).
As explained by RK79, after Woolard (1953), by neglecting the square and products of ψ̇

and ε̇ and the second derivative terms ψ̈ and ε̈, and by taking sin ε0 instead of sin ε in front
of ψ̇ in Eqs. (7a, 7b), one obtains equations governing the nutations of the AM axis. In the
triaxial case (A �= B), we have, after similar manipulations as in the axisymmetric case,

ψ̇ sin ε0 ΩR = ΓX

C + A − B
cosφ − ΓY

C + B − A
sin φ, (8a)

−ε̇ ΩR = ΓX

C + A − B
sin φ + ΓY

C + B − A
cosφ. (8b)

The torque, in the coordinates of the rotating BF, can be written as (e.g., Murray and
Dermott 1999)

� = 3
G MB

d5
B

⎛

⎝
(C − B)ỸB Z̃ B

(A − C)X̃ B Z̃ B

0

⎞

⎠ , (9)

with r̃B = (X̃ B , ỸB , Z̃ B) the position of the perturbating body, dB its distance to the center
of Mars, MB its mass, and G the gravitational constant. We transform the (X̃ B , ỸB , Z̃ B)

coordinates according to
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r̃B = Rz(φ) · rB =
⎛

⎝
cosφ X B + sin φ YB

− sin φ X B + cosφ YB

Z̃b

⎞

⎠ , (10)

with rB = (X B , YB , Z B) the position in the coordinates of an alternative BF whose x-axis
is in the direction of the autumn equinox. This equinox BF precesses and nutates as the true
BF of date precesses and nutates with respect to the mean orbit of the chosen epoch.

Correct up to the first order in the differences (A − Ā) and (B − Ā), Eqs. (8a, 8b) are now
written as

ψ̇ = 3HDG MB

sin ε0ΩR

YB Z B

d5
B

+ 3 δH tri
D G MB

2 sin ε0ΩR

X B Z B sin 2φ − YB Z B cos 2φ

d5
B

, (11a)

ε̇ = 3HDG MB

ΩR

X B Z B

d5
B

+ 3 δH tri
D G MB

2ΩR

X B Z B cos 2φ + YB Z B sin 2φ

d5
B

, (11b)

with

HD = (C − Ā)/C, (11c)

δH tri
D = (B − A)/C . (11d)

HD is the dynamical flattening of Mars, also called scaling factor, as the nutation series can
always be rescaled to a chosen value of HD , as we did in Table 1.

Equations (11a, 11b) are first-order linear differential equations in ψ̇ and ε̇. As Mars’
rotation is faster than its revolution, the response to the external torques is divided into two
distinct parts. The first part does not depend on the variations of the rotation angle φ and on
the triaxiality.11 If δH tri

D is neglected [or Eqs. (11a, 11b) are averaged over the rotation angle
φ], the AM equations become

ψ̇ = 3HDG MB

sin ε0ΩR

YB Z B

d5
B

, (12a)

ε̇ = 3HDG MB

ΩR

X B Z B

d5
B

, (12b)

and are equivalent to the governing equations (15–16) of RMAN99 and Eq. (4) of Hilton
(1991), which are easier to integrate than Eqs. (7a, 7b) and Eqs. (5–6) of RK79.

The part of the AM equations proportional to δH tri
D is related to the triaxiality and induces

quasi semi-diurnal nutations of small amplitudes, since φ is a fast angle. In the BMAN20
solution, we will find only one term above our truncation criterion, with an amplitude in
longitude of the order of 0.1mas (see also RK79, BS99, and Borderies 1980).

HD and δH tri
D are related to the second-degree gravity field coefficients (see Eqs. 11c,

11d, 77). We neglected the effect of high-order gravity coefficients (e.g., J3) on the preces-
sion/nutation. The effect of J3 on the amplitude of the annual nutation is about 0.0006mas,
as can be verified from the integration of Eqs. (56–57) of Roosbeek and Dehant (1998).

11 To the best of our knowledge, Groten et al. (1996) are the only one to find an effect of the triaxiality on
the scaling factor HD , and therefore on the precession rate and the main nutation terms. However, it has been
shown that triaxiality does not change the main precession/nutation behavior of Mars (e.g., Newman 2013),
but induces only small semi-diurnal nutations (e.g., BS99), as we find in this paper.
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3.3 Different precession/nutation representations

The orientation of the spin axis is usually described by two angles: the node longitude and
the obliquity with respect to the orbital plane, whose periodic variations can be expressed
with periodic series. Alternatively, the wiggly trajectory of the spin axis in space can also
be expressed as series of prograde and retrograde circular motions, or as variations in right
ascension and declination with respect to the ICRF J2000, as in the IAU conventions.

3.3.1 Longitude/obliquity representation

Usually (e.g., RK79, RMAN99, BS99), the solution for the Euler angles ψ and ε of the AM
or figure axis is expressed in the form of

ψ = ψ0 + Ψ̇ t + �ψ, (13a)

ε = ε0 + Ė t + �ε. (13b)

The anglesψ0 and ε0 are integration constants forψ and ε, respectively,which can be obtained
from the observed spin orientation at the reference epoch. Some authors do not include
the longitude integration constant in the solution (e.g., RK79). Apart from the integration
constant, ψ is decomposed into a slow uniform precession around the z-axis at rate Ψ̇ and
periodic nutations in longitude �ψ . The obliquity is the sum of ε0, of a very slow secular
variation (seeBS99), andof periodic nutations�ε. TheBMAN20 solution (Sect. 4.3) includes
quadratic terms:

ψ = ψ0 + Ψ̇ t + Ψ̈

2
t2 + �ψ, (14a)

ε = ε0 + Ė t + Ë

2
t2 + �ε. (14b)

We introduced the notation Ψ̇ and Ė for the secular variation rates, to avoid confusion with
ψ̇ and ε̇, the time derivatives of ψ and ε, as used in Eqs. (12a, 12b).

In the following, as in RMAN99, the nutations series in longitude and in obliquity will be
written as {

�ψ

�ε

}
=

∑

j

({
ψc

j
εc

j

}
cosϕ j +

{
ψ s

j
εs

j

}
sin ϕ j

)
, (15)

withψ/ε
c/s
j the amplitudes andϕ j = f j t+ϕ0

j a linear combination of fundamental arguments
(here, the mean longitude of Mars, the Earth, Venus, Jupiter, and Saturn, and the nodes of
Phobos and Deimos). In RMAN99, the nutation amplitudes are constant with time. In BS99
and in BMAN20 solutions (Sect. 4.3), the nutation amplitudes change with time.

For later use, we define the mean node longitude and obliquity (using the notations θM

and εM of Eq. (3) of RMAN99):

θM = ψ0 + Ψ̇ t = θ0 + θ̇ t, (16a)

εM = ε0 + Ė t . (16b)

In this paper, as in RMAN99, the notations ψ and ε are preferably used for the output of
the computation (the solution), whereas the notations θM and εM are used for the input (the
torque computation). We now return to the definition of the equinox BF given earlier after
Eqs. (9, 10) for the torque. The x-axis of the equinox BF lies in the xy plane of the IF
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(the mean Mars orbit of epoch J2000), at the angular distance ψ from the x-axis of the IF.
Similarly, the angles θM and θ0 define the x-axes of the mean equinox BF of date and of the
J2000 mean equinox BF, respectively. The mean (equinox) BF is defined so that it follows
the precession but not the nutations.

3.3.2 Prograde/retrograde representation

The nutations of the angles ψ and ε for the AM axis (or figure axis) are often related to the
corresponding periodic variations in the projection of the trajectory of a unit vector along the
AM (figure) axis onto the equator of the J2000 mean equinox BF (Defraigne et al. 1995),
denoted (δx, δy). Omitting the linear and quadratic terms in Eqs. (14a, 14b), the components
of the unit vector along the figure axis (AM axis) in the J2000 mean equinox BF are given
around J2000, at first order in small variations, by

⎛

⎝
δx
δy
1

⎞

⎠ = Rx(ε0) · Rz(ψ0 − ψ) · Rx(−ε) ·
⎛

⎝
0
0
1

⎞

⎠ =
⎛

⎝
sin ε0�ψ

−�ε

1

⎞

⎠ . (17)

The projection can be expressed as series of prograde and retrograde circular motions
{

δx
δy

}
=

∑

j

(
P j

{
cos
sin

}
( f j t + π j ) + R j

{
cos
sin

}
(− f j t − ρ j )

)
, (18)

with amplitudes P j and R j and phases π j and ρ j at J2000 that are related to those of the
series for the longitude and obliquity nutations by:

P j =
√√√√

(
sin ε0 ψc

j − εs
j

2

)2

+
(
sin ε0 ψ s

j + εc
j

2

)2

, (19a)

R j =
√√√√

(
sin ε0 ψc

j + εs
j

2

)2

+
(
sin ε0 ψ s

j − εc
j

2

)2

, (19b)

cos(π j − ϕ0
j ) = sin ε0 ψc

j − εs
j

2P j
, (19c)

sin(π j − ϕ0
j ) = − sin ε0 ψ s

j − εc
j

2P j
, (19d)

cos(ρ j − ϕ0
j ) = sin ε0 ψc

j + εs
j

2R j
, (19e)

sin(ρ j − ϕ0
j ) = − sin ε0 ψ s

j + εc
j

2R j
. (19f)

3.3.3 Right ascension and declination

The angles ψ and ε for the AM axis (figure axis) can also be related to (α, δ), the equatorial
coordinates of a unit vector along the AM axis (figure axis) in the ICRF (see, e.g., Fig. 1 of
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Fig. 4 Angles defining the positions of the Sun and of Phobos for the simple case of precessing Mars (the Sun
orbit, as seen from Mars) and Phobos orbits. The angles (Ω0, i0) = (ΩM , iM )|t=0 and (θM , εM ) allow the
transformation from the ecliptic reference frame to the mean equinox BF of date [see Fig. 1 of RMAN99 and
Eq. (16a)]. The origin γ of the ecliptic is the ascending node on the J2000 Earth equator. ΩP and iP are the
ascending node and inclination, respectively, of the orbit of Phobos with respect to the local Laplace plane.ωM
and ωP are the arguments of the pericenters of the orbit of Mars and of Phobos, respectively. ωM − π − θM
is the longitude of the pericenter of the Sun with respect to the mean autumn equinox for a non-precessing
orbit (see argument q = 2(ω − θ) in RK79). τ is the tilt between Mars equator and the local Laplace plane
of Phobos. The Laplace plane and the equator share their node on the mean orbit. νM and νP are the true
anomalies. Numerical values for the angles are given in Table 2

Archinal et al. 2018). The coordinates of the unit vector along the AM axis (figure axis) in
the coordinate system of the IF are given by

⎛

⎝
X f

Y f

Z f

⎞

⎠ = Rx(i0) · Rz(Ω0) · Rx(εEarth) ·
⎛

⎝
cos δ cosα

cos δ sin α

sin δ

⎞

⎠ , (20)

with i0 and Ω0 the mean orbital inclination and node longitude of Mars (see Fig. 4). The
angles (ψ, ε) can then be related to (α, δ) by using the trigonometric relations

ε = arccos Z f , (21a)

ψ = π

2
+ arctan

Y f

X f
. (21b)

There, ψ0 = θ0 � 35◦, measured from the intersection of the mean Mars orbit of epoch on
the ecliptic of epoch (see Fig. 4), as in, e.g., Folkner et al. (1997b).
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Alternatively, (X f , Y f , Z f ) can also be defined as
⎛

⎝
X f

Y f

Z f

⎞

⎠ = Rx(J ) · Rz(N ) ·
⎛

⎝
cos δ cosα

cos δ sin α

sin δ

⎞

⎠ , (22)

with J and N the inclination and node longitude of the meanMars orbit of epoch with respect
to the ICRF equator. In that case, ψ0 = θ0 � 82◦ is measured from the intersection of the
mean Mars orbit of epoch on the ICRF equator, as in, e.g., Konopliv et al. (2016).

If we assume a solution in obliquity/longitude of the form (14a, 14b), then the equatorial
coordinates can be written as

α = α0 + α̇t + α̈

2
t2 + �α, (23a)

δ = δ0 + δ̇t + δ̈

2
t2 + �δ. (23b)

The integration constants α0 and δ0 derive directly from observations. The integration
constants in obliquity (ε0) and longitude (ψ0 = θ0) can then be determined from (α0, δ0) and
(Ω0, i0, εEarth) or (J , N ). To express the recomputed RMAN99 series in Sect. 4.1 in terms
of right ascension and declination, we will use the values α0 = 317◦.681 and δ0 = 52◦.886
of Davies et al. (1989), consistent with the obliquity and longitude integration constants used
by Roosbeek (1999) [see their Eq. (3)]. In Sects. 4.2 and 4.3, to update the nutation series,
we will consider the values (α0, δ0) = (317◦.6811155, 52◦.8863525) of Konopliv et al.
(2016).12

The variations in right ascension and declination are obtained as

{α̇, α̈,�α} = Γαε{Ė, Ë,�ε} + Γαψ {Ψ̇ , Ψ̈ , �ψ}, (24a)

{δ̇, δ̈, �δ} = Γδε{Ė, Ë,�ε} + Γδψ {Ψ̇ , Ψ̈ , �ψ}. (24b)

The values of the Γ coefficients, obtained from (α0, δ0,Ω0, i0, εEarth), can easily be esti-
mated, assuming that the variations in α and δ are small quantities:

Γαε = 1.135458 (1.135478), (25a)

Γαψ = 0.513838 (0.513834), (25b)

Γδε = −0.728413 (−0.728407), (25c)

Γδψ = 0.291631 (0.291632). (25d)

The first set of values will be used for the recomputation of the RMAN99 precession/nutation
solution, whereas the values in parentheses will be used for the computation of the updated
BMAN20 solution.

3.3.4 Cautions

Potential users of the nutation series should proceed with care. The chosen orientation of the
equatorial plane of the IF, here the J2000Marsmean orbit derived from aVSOP theory, affects
the values obtained for the angles θ0 and ε0 (Fig. 4), which intervene in the computation of

12 Note that they give the values of the integration constants in obliquity and longitude, but referred to the 1980
mean orbit. With their values for the angles J and N , orienting the 1980 orbit with respect to ICRF, we retrieve
the observed values for α0 and δ0, from which we will obtain again the integration constant in obliquity and
longitude, but this time referred to the J2000 mean orbit (ε0 = 25◦.191819740 and θ0 = 35◦.497525780).
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the nutation amplitudes. For consistency, the fundamental arguments to be used with the
nutation series must be those of the orbital theory used to obtain θ0 and ε0. As an illustration
of the potential error, we consider the different values for the mean longitude Ma of Mars in
VSOP87:

MaVSOP87 = 355◦.433 + 191402◦.9930T , (26)

and in the JPL Keplerian Elements for Approximate Positions of the Major Planets13:

MaJPL = 355◦.447 + 191403◦.0268T , (27)

with T the time measured in thousands of Julian years from J2000. Using MaJPL instead of
MaVSOP87 to compute the semi-annual term in Table 1 produces differences up to 0.5mas in
the time domain, due to the 0◦.014 difference in the epoch value of Ma; and up to 0.03mas
after 20years, due to the 0.03◦ difference in mean motion per thousand of years.

Depending on the users’ preferences, the representation for �ψ and �ε can be modified.
The J2000 values ϕ0

j of the arguments can be extracted from the cosine and sine functions,
affecting the definition of the amplitudes:

{
�ψ

�ε

}
=

∑

j

({
ψ̃c

j
ε̃c

j

}

cos f j t +
{

ψ̃ s
j

ε̃s
j

}

sin f j t

)

, (28a)

ψ̃c
j = ψc

j cosϕ0
j + ψ s

j sin ϕ0
j , (28b)

ψ̃ s
j = −ψc

j sin ϕ0
j + ψ s

j cosϕ0
j , (28c)

ε̃c
j = εc

j cosϕ0
j + εs

j sin ϕ0
j , (28d)

ε̃s
j = −εc

j sin ϕ0
j + εs

j cosϕ0
j . (28e)

This alternative representation can be rewritten as a pure sine (or cosine) representation, with
phase values for the arguments depending not only on the chosen orbital theory but also on
the rotation response of Mars itself:

{
�ψ

�ε

}
=

∑

j

{ ˜̃
ψ j sin( f j t + ˜̃ϕψ

j )

˜̃ε j sin( f j t + ˜̃ϕε
j )

}

, (29a)

˜̃
ψ j =

√
(ψ̃c

j )
2 + (ψ̃ s

j )
2, (29b)

˜̃ε j =
√

(ε̃c
j )
2 + (ε̃s

j )
2, (29c)

˜̃ϕψ
j = arctan ψ̃c

j /ψ̃
s
j , (29d)

˜̃ϕε
j = arctan ε̃c

j/ε̃
s
j . (29e)

Alternative representations can also be obtained for the pro/retro and right ascen-
sion/declination representations. For instance,Kuchynka et al. (2014) provide nutations series
in (α, δ) in the pure sine form.

An advantage of those alternative representations is that their use is less prone to errors
since the epoch values of the fundamental arguments are implicitly taken into account, even
though care must be taken in using the correct frequencies of the arguments. This being
said, for the sake of continuity with respect to RMAN99, we continue here with the first
representation, as in Eq. (15).

13 https://ssd.jpl.nasa.gov/?planet_pos.
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3.4 Precession and nutations induced by the solar torque

The precession and nutations induced by the solar torque, assumingMars on aKeplerian orbit
of given orbital elements, can be expressed in analytical form to high order in eccentricity
(RK79, Hilton 1991). Because of the mutual perturbations of the planets, the orbit of Mars is
better described as an osculating orbit. Some efforts have beenmade to introduce the effects of
the secular variations of the osculating elements in an analytical precession/nutation model.
For instance, RK79 discussed the effect of the mean precession of Mars pericenter on the
semi-annual nutation (see the end of the section “Principal Solar Terms” in their Appendix
B). Hilton (1991) considered the effects of the secular variations in eccentricity, but used an
incorrect procedure (see Sect. 2). He also tried to take into account the secular variations
of the orbital inclination and node longitude. However, he used for this a different set of
governing equations, taken from Ward (1974) and intended for study the climate of Mars,
not for interpretation of lander data.14

It is possible to introduce in a consistent way the effects of the secular variations of
all osculating elements in an analytical precession/nutation model, as we explain below. In
reality, osculating elements are also varying periodically and a semi-analytical solution in the
form of series (e.g., RMAN99 and BMAN20, see Sects. 4.1, 4.3) based on a semi-analytical
orbital theory for the position of Mars is definitely more accurate than an analytical solution.
Despite its limited accuracy, an analytical solution is still useful though to better understand
the semi-analytical solution and assess the order of magnitude of individual effects. We here
explain the basics of how precession and nutation terms can be obtained assuming Mars on
an osculating orbit with secularly varying elements, without giving the full expression of the
solution. We start from the expression for the coordinates of the Sun in the equinox BF, to
be introduced in the AM Eqs. (12a, 12b):
⎛

⎝
X S

YS

ZS

⎞

⎠ = Rx(εM )·Rz(θM )·Rx(i0)·Rz(Ω0−ΩM )·Rx(−iM )·Rz(−ωM +π−νM )·
⎛

⎝
rS

0
0

⎞

⎠ ,

(30)
with angles as defined in Fig. 4. The distance between the mass centers of Mars and the Sun,
rs , and the true anomaly of Mars, νM , can be expressed as

rS = aM − aM eM cos MM + O(e2M ), (31a)

νM = MM + 2eM sin MM + O(e2M ), (31b)

with the mean anomaly MM = Ma −ΩM −ωM in which Ma is the mean longitude of Mars,
and the argument we chose to express the solution.

3.4.1 Zero-order solution (main solar terms)

The solution is obtained iteratively. We first neglect the variations of εM , θM , iM , ΩM , ωM ,
aM and eM in the right-hand members of the AM equations, and use their epoch values ε0,
θ0, i0, Ω0, ω0, a0 and e0, to obtain the zero-order solution. Under this assumption, we get

⎛

⎝
X S

YS

ZS

⎞

⎠ � rS

⎛

⎝
− cos (θ0 − ω0 − νM )

cos ε0 sin (θ0 − ω0 − νM )

− sin ε0 sin (θ0 − ω0 − νM )

⎞

⎠ , (32)

14 In Ward’s model, nutations are expressed with respect to the orbit of the date (see also the complementary
term in the Hamiltonian of BS99 to account for the motion of the orbit of date, resulting in additional secular
variations of the longitude and obliquity of Mars BF), and not to the orbit of a chosen epoch.
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with rS = a0−a0e0 cos MM +O(e20) and νM = MM +2e0 sin MM +O(e20). Equations (12a,
12b) then show that ψ̇ and ε̇ are proportional to 1−cos 2(θ0−ω0−νM ) and sin 2(θ0−ω0−νM ),
respectively.

For e0 = 0, the constant term in ψ̇ leads, after integration, to a precession in lon-
gitude, whereas the cosine and sine terms in ψ̇ and ε̇ lead to the semi-annual nutation
(∼ 200 cos 2Ma − 1100 sin 2Ma, with amplitudes in mas). For e0 �= 0, the precession rate
in longitude due to the solar torque is given by (RK79):

Ψ̇S = −3

2

n2

ΩR
(1 − e20)

−3/2HD cos ε0, (33)

and nutations at other periods (annual, ter-annual,…) are obtained after trigonometricmanip-
ulations of the terms in ψ̇ and ε̇, besides the semi-annual nutations. The zero-order solution
does not lead to secular variations in obliquity (the secular variation rate in obliquity due to
the solar torque ĖS = 0).

3.4.2 First-order solution (planetary perturbations)

The first-order solution is obtained by introducing the secular variations Ė, θ̇M =
Ψ̇ , i̇M , Ω̇M , ω̇M , ȧM and ėM of the quantities εM , θM , iM ,ΩM , ωM , aM and eM , respec-
tively, in the right-hand members of the AM equations15 (12a, 12b). Linearizing the AM
equations around the epoch values of these quantities, we identify two effects of the plane-
tary perturbations: (1) quadratic terms in longitude and obliquity, and (2) secular variations
of the nutation amplitudes.

The quadratic terms, at first order in i0, are given by

ψ̈S t2

2
= 3HDG MS

4ΩRa4
S sin ε0

(
3

2
ȧM sin 2ε0 − aM Ė cos 2ε0 + aM i̇M cos 2ε0 cos θ0

+ aM i0Ω̇M cos 2ε0 sin θ0
)

t2, (34a)

ËS t2

2
= −3HDG MS cos ε0

4ΩRa3
S

(−i̇M sin θ0 + i0Ω̇M cos θ0)t
2. (34b)

They amount to about − 13000 T 2 mas and 2000 T 2 mas, respectively, with T , the time
measured in thousands of Julian years from J2000. The contributions from ȧM and Ė are
negligible compared to the contributions from Ω̇M and i̇M to the quadratic variations in
longitude. Those quadratic variations due to Ω̇M and i̇M are found in RK79 with similar
numerical values (see their equation B41 for Ψ̈ t2/2 and the value for Ë after their equation
C6).

The largest nutation amplitude variations are caused by the effect of the BF precession
θ̇M [about −80 T mas on the cosine term and +15 T mas on the sine term of the semi-annual
nutation, to be compared with the effect obtained in BMAN20 solution (Table 10)]. The
cumulated effects of the secular variations of the osculating elements on the semi-annual
nutation is about one order of magnitude smaller. This evaluation depends on the arguments
chosen to express the solution (Ma here but MM in RK79, explaining why we reach different
conclusion regarding the importance of the effect of the orbit precession).

15 The direct torque by the planets leads to a secular variation in obliquity ĖPl , see Eq. 48b. This is why we
do not necessarily assume here that Ė = 0.
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3.4.3 Geodetic precession and nutations

The planetocentric IF cannot be regarded as inertial from the relativistic point of view, as its
origin is accelerated with respect to a solar system barycentric reference frame (Fukushima
1991, 2003). This effect generates a small but significant additional precession/nutation
motion of the spin axis in space, called geodetic or geodesic precession/nutation. For the
Earth, the precession rate in space is about + 50.288 as/year, of which − 0.019as/year is
attributed to geodetic precession rate (remember that for the Earth, the usual convention is
to measure the longitude of the spin axis in the retrograde sense). Note that the sign of the
geodetic precession rate is opposite to the sign of the lunisolar precession.

As the geodetic precession and nutations of Mars are expected to be small, it is sufficient
to consider the orbit of Mars as Keplerian to estimate them. The geodetic contribution to the
nutation in longitude, �ψg , measured as a prograde angle can then be expressed as

�ψg = 3

2c2La0

G MS

(1 − e20)
(νM + e0 sin νM ), (35)

with cL the speed of light (Fukushima 1991, see also Eq. 69 of Roosbeek and Dehant (1998)).
By expressing the true anomaly at third order in eccentricity as

νM = MM + 2e0 sin MM − 1

4
e30 sin MM + 5

4
e20 sin 2MM + 13

12
e30 sin 3MM , (36)

we get a geodetic precession rate Ψ̇g of +6.754mas/yr (with a sign opposite to that of
Ψ̇S � −7600mas/yr), and geodetic nutations (in mas)

�ψg = 0.229 cos Ma + 0.029 cos 2Ma + 0.003 cos 3Ma

+ 0.516 sin Ma + 0.026 sin 2Ma + 0.001 sin 3Ma. (37)

Our estimated value for Ψ̇g is consistent in magnitude with that estimated by RK79 (their
Eq. B38) and BS99 (their Eq. 41). However, the sign of Ψ̇g in RK79 is wrongly assumed
to be negative in their text after their Eq. (8) where the total rate of precession is described.
This sign error has propagated to Folkner et al. (1997b) and Konopliv et al. (2006), affecting
the estimate of the polar moment of inertia from the observed precession rate, but not in
Konopliv et al. (2011).

To the geodetic precession rate correspond the variations rates in right ascension and
declination α̇g = 3.470mas/yr and δ̇g = 1.970mas/yr. In Sect. 4.3, we choose a truncation
level of 0.025mas in pro/retro amplitude. Therefore, only the annual term will be retained
for the final solution BMAN20 and is included in Table 9.

3.5 Precession and nutations induced by Phobos and Deimos

Unlike for solar nutations terms, a simple analytical solution can be used to obtain the main
nutations induced by Phobos and Deimos with a sufficient accuracy because they are smaller.
BS99considered a simple precessingorbit in their analytical solution,whereasRMAN99used
series for rectangular coordinates before integrating the AM equations. When the series are
rescaled to the same satellite masses and scaling factor, both approaches are consistent within
0.01mas (see Table 1) in nutation amplitudes. Hilton (1991) concluded that considering a
simple circular precessing orbit is sufficient to obtain the satellite nutations terms.
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Below, we derive an analytical solution in the Torque approach and demonstrate that,
except for a secular term in longitude, it is equivalent to the solution of BS99 derived in the
Hamiltonian approach.

The definition of the position vector rP of Phobos involves different angles that are
defined in Fig. 4. Phobos’ orbit is precessing about the local Laplace plane, defined in order
to minimize the variations in inclination iP that is therefore considered as constant. With
respect to the Laplace plane, the rate of variation of the ascending node longitude, Ω̇P , is
also considered as constant. The precession of Phobos’ orbit is mainly driven by Mars and
by the Sun so that the Laplace plane is lying between the orbital plane and equator of Mars,
and follows the precession of the equator with respect to the orbit (Jacobson and Lainey
2014; Sinclair 1972). The constant inclination τ between the Laplace plane of Phobos and
the equator ofMars (denoted ε in Jacobson and Lainey 2014) is 0◦.009 for Phobos and 0◦.889
for Deimos. We consider a circular orbit (eP = 0, rP = aP and νP = MP ) and measure ΩP

from the common node of the Laplace plane and Mars equator on Mars orbit (from the node
of the Laplace plane on the ICRF equator in Jacobson and Lainey (2014)). We also write the
mean longitude λP = ΩP + ωP + MP = n P t + λ0P .

Correct up to the first order in inclination iP and tilt τ , the coordinates of Phobos in the
mean equinox BF16 are then given by

⎛

⎝
X P

YP

Z P

⎞

⎠ = Rx(τ ) · Rz(−ΩP ) · Rx(−iP ) · Rz(−ωP − MP ) ·
⎛

⎝
aP

0
0

⎞

⎠

= aP

⎛

⎝
cos λP

sin λP

−τ sin λP + iP sin (λP − ΩP )

⎞

⎠ . (38)

After integration of the AM equations (12a, 12b), the solution for the precession/nutation in
longitude and in obliquity can be written as:

�ψ = −3HDG MPτ

2a3
PΩR sin ε0

t + 3HDG MPiP

2a3
PΩRΩ̇P sin ε0

sinΩp

− 3HDG MPiP

2a3
PΩR(2n P − Ω̇P ) sin ε0

sin (2λP − ΩP ) + 3HDG MPτ

4a3
PΩRn P sin ε0

sin 2λP , (39a)

�ε = 3HDG MPiP

2a3
PΩRΩ̇P

cosΩp − 3HDG MPiP

2a3
PΩR(2n P − Ω̇P )

cos (2λP − ΩP )

+ 3HDG MPτ

4a3
PΩRn P sin ε0

cos 2λP . (39b)

This solution also applies to the nutations induced by Deimos after changing the coordinates
of Phobos to Deimos.

The first periodic term in the solution (39a, 39b) is related to the period of nodal preces-
sion of the satellite (825.641 and 19998.9days for Phobos and Deimos, respectively). Using
the parameters’ values from Table 2, we obtain nutation amplitudes of 9.882/4.388mas in
longitude and of−4.206/−1.868mas in obliquity for Phobos/Deimos, very close to the val-
ues obtained in the RMAN99 recomputed series using ESAPHO and ESADE ephemerides

16 The mean equinox BF is defined in Sect. 3.3, after Eqs. (16a, 16b). The transformation in Eq. 38 does not
go to the mean equinox BF strictly speaking, but to a mean BF whose x-axis is in the direction of the node of
the mean BF of date over the mean orbit of date (and not of epoch). Additional rotations can be introduced to
account for this, but without noticeable effect on the solution.
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Table 2 Parameter values used for recomputing RMAN99 series in Sect. 4.1, and meant to be consistent with
VSOP87, ESAPHO, and ESADE theories

Parameter Symbol (unit) Value References

Scaling factora HD 0.00535464 RMAN99

Solar standard gravitational parameter GMS (m3/s2) 1.3271224 × 1020 Table (1) of RMAN99, from
McCarthy (1996)

Astronomical unitb au (m) 149597870691 McCarthy (1996)

Constant of gravitationc G (m3 kg−1 s−2) 6.67259 × 10−11 Ibid

Mean rotation rate of Mars ΩR (rad/s) 7.0882181 × 10−5 Table (1) of RMAN99, from
Chapront-Touze (1990),
Davies et al. (1989)

Node longitude of Mars Ω0 (◦) 49.55809321 Eq. (3) of RMAN99, with
t = 0, from Simon et al.
(1994)

Inclination of Mars i0 (◦) 1.84972648 Ibid

Epoch node angle θ0 (◦) 35.496817571 Eq. (3) of RMAN99, with
t = 0, from
Chapront-Touze (1990)

Obliquity of Mars ε0 (◦) 25.192028020 Ibid

Obliquity of the Earth εEarth (◦) 23.439280306 Bretagnon and Francou
(1988)

Mass of Phobos MP (kg) 1.05 × 1016 Table (1) of RMAN99, from
Chapront-Touze (1990)

Mass of Deimos MD (kg) 1.80 × 1015 Ibid

Longitude mean motion of Phobos n P (◦/day) 1128.84476 Page 289-290 of BS99, from
Chapront-Touze (1990)

Node longitude rate of Phobos Ω̇P (◦/day) − 0.436025 ibid

Inclination of Phobos iP (◦) 1.067639 Ibid

Semi-major axis of Phobos aP (km) 9373.713 Ibid

Longitude mean motion of Deimos nD (◦/day) 285.161875 Ibid

Node longitude rate of Deimos Ω̇D (◦/day) − 0.018001 Ibid

Inclination of Deimos iD (◦) 1.78896 Ibid

Semi-major axis of Deimos aD (km) 23457.060 Ibid

The mean orbital elements of Phobos and Deimos are used to estimate the nutations induced by the satellites
with an analytical solution (Eqs. 39a, 39b), and to compare them with the nutations obtained directly from the
ESAPHO and ESADE ephemerides (Chapront-Touze 1990). The numerical values of the parameters for the
computation of the BMAN20 series in Sect. 4.3 are given in Table 7
aThe value of HD used in Roosbeek (1999) was tuned to obtain the mean precession rate Ψ̇ = −7576mas/yr
of Folkner et al. (1997b), given the fact that using ephemerides instead of mean orbital elements alters the
prediction made with the classical relation of Eq. (33) (Fabian Roosbeek, personal communication)
bUsed to multiply the rectangular coordinates of the VSOP87
cUsed to multiply the mass of Phobos and Deimos in Eqs. (39a, 39b)

(9.877/4.390mas in longitude and−4.204/−1.863mas in obliquity), confirming that an ana-
lytical theory is sufficiently accurate. The second and third periodic terms are at short period
(approximately half the revolution period of the satellite, 0.16days for Phobos, 0.63days for
Deimos) and have very small amplitudes (< 0.002mas).
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With τ = 0, the analytical expressions of Eqs. (39a, 39b) are consistent with the analytical
solution of BS99 (see their Eqs. 27.1–27.2). The terms proportional to τ are missing in
Bouquillon andSouchay (1999) andHilton (1991), because they assimilated the local Laplace
plane with the equator of Mars. Though the nutation terms caused by τ are negligible, the
secular term in precession (− 0.232mas/yr for Phobos and − 0.250mas/yr for Deimos) are
of the same order as the direct effect of Jupiter as estimated in RK79, and should therefore
intervene in the expression for the longitude precession. Note that we retrieve similar secular
precession terms in RMAN99 recomputed series using ESAPHO and ESADE ephemerides
(− 0.232mas/yr and − 0.251mas/y, see Sect. 4.1.2).

3.6 Precession and nutations induced by the planets (direct effect)

An analytical solution for the precession and nutations induced by the direct torque exerted by
the other planets on Mars is discussed in Hilton (1991) for the case of circular orbits (e = 0)
in a common plane (i = 0). Just as for the solar torque, it is possible to derive an analytical
solution for the general Keplerian case. Although it is more accurate to consider series from
semi-analytical orbital theories for the position of perturbating bodies before integrating the
AM equations, we here provide the analytical solution in the case of Keplerian orbits, correct
up to the first order in eccentricities and inclination. This will allow us to better understand
the differences between the series solution of BS99, our series solution BMAN20 derived in
Sect. 4.3.3, and the conclusions of RK79 regarding the direct effects of the planets.

By consideringKeplerian orbits, the planet coordinates (subscript Pl) in themean equinox
BF are written as

⎛

⎝
X Pl

YPl

Z Pl

⎞

⎠ =
⎛

⎝
X S

YS

ZS

⎞

⎠

+Rx(ε0) · Rz(θ0) · Rx(i0) · Rz(Ω0 − ΩPl)

·Rx(−iPl) · Rz(−ωPl − νPl) ·
⎛

⎝
rPl

0
0

⎞

⎠ , (40)

with (X S, YS, ZS) the Sun coordinates as given in Eq. (30). Considering that the mean
longitudes of the planet and Mars (and therefore the argument of the series to be built) are
defined as

λPl = ΩPl + ωPl + MPl , (41a)

λM (= Ma) = ΩM + ωM + MM , (41b)

and that, to first order in eccentricities,

rS = aM − aM eM cos MM , (42a)

rPl = aPl − aPlePl cos MPl , (42b)

νM = MM + 2eM sin MM , (42c)

νPl = MPl + 2ePl sin MPl , (42d)

then the coordinates to first order in inclinations and eccentricities simplify to the form
⎛

⎝
X Pl

YPl

Z Pl

⎞

⎠ =
⎛

⎝
X Plo

YPlo

Z Plo

⎞

⎠ +
⎛

⎝
δX Ple

δYPle

δZ Ple

⎞

⎠ +
⎛

⎝
δX Pli

δYPli

δZ Pli

⎞

⎠ , (43a)
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with
⎛

⎝
X Plo
YPlo
Z Plo

⎞

⎠ =
⎛

⎝
aPl cos(λPl − ΩM − θ0) − aM cos(λM − ΩM − θ0)

cos ε0(−aPl sin(λPl − ΩM − θ0) + aM sin(λM − ΩM − θ0))

sin ε0(aPl sin(λPl − ΩM − θ0) − aM sin ε0 sin(λM − ΩM − θ0))

⎞

⎠ , (43b)

⎛

⎝
δX Ple
δYPle
δZ Ple

⎞

⎠ =
⎛

⎝
− 1

2aM eM (cos(θ0 − 2λM + ωM + 2ΩM ) − 3 cos(θ0 − ωM ))
1
2aM eM cos ε0(sin(θ0 − 2λM + ωM + 2ΩM ) − 3 sin(θ0 − ωM ))

− 1
2aM eM sin ε0(sin(θ0 − 2λM + ωM + 2ΩM ) − 3 sin(θ0 − ωM ))

⎞

⎠

+
⎛

⎝
1
2apl ePl cos(θ0 − 2λPl + ωPl + ΩPl + ΩM )

− 1
2apl ePl cos ε0 sin(θ0 − 2λPl + ωPl + ΩPl + ΩM )

1
2apl ePl sin ε0 sin(θ0 − 2λPl + ωPl + ΩPl + ΩM )

⎞

⎠

+
⎛

⎝
− 3

2apl ePl cos(θ0 − ωPl − ΩPl + ΩM )

+ 3
2apl ePl cos ε0 sin(θ0 − ωP L − ΩPl + ΩM )

− 3
2apl ePl sin ε0 sin(θ0 − ωP L − ΩPl + ΩM )

⎞

⎠ , (43c)

⎛

⎝
δX Pli
δYPli
δZ Pli

⎞

⎠ =
⎛

⎝
0
aPl sin ε0(iPl sin(λPl − ΩPl ) − iM sin(λPl − ΩM ))

aPl cos ε0(iPl sin(λPl − ΩPl ) − iM sin(λPl − ΩM ))

⎞

⎠ . (43d)

Before substituting these expressions in Eqs. (12a, 12b), we first note that the squared
distance between Mars and the planet does not depend on the inclinations at first order, and
simplifies to:

d2
Pl M = d2

Pl Mo + δ(d2
Pl M ), (44a)

dPl Mo =
√

a2
Pl + a2

S − 2aPlaS cos(λM − λPl), (44b)

δ(d2
Pl M ) = −2a2

J eJ cos(λPl − ωPl − ΩPl) − 2a2
M eM cos(λM − ωM − ΩM ),

−aPlaM ePl(cos(2λPl − λM − ωPl − ΩPl)

−3 cos(λM − ωPl − ΩPl))

−aPlaM eM (cos(λPl − 2λM + ωM + ΩM )

−3 cos(λPl − ωM − ΩM )), (44c)

where δ(d2
Pl M ) is a quantity of first order in eccentricities. As a result the factor d−5

Pl M in Eqs.
(12a, 12b) simplifies to:

d−5
Pl M = (d2

Pl Mo + δ(d2
Pl M ))−5/2 = d−5/2

Pl Mo − 5

2
δ(d2

Pl M ) d−7/2
Pl Mo, (45)

so that

ψ̇ = 3HD
G MPl

sin ε0ΩR

(
YPlo Z Plo

d5
Pl Mo

− 5YPlo Z Plo

2d7
Plo

δ(d2
Pl M ) + YPlo

d5
Pl Mo

(δZ Ple + δZ Pli )

+ Z Plo

d5
Pl Mo

(δYPle + δYPli )

)

, (46a)

ε̇ = 3HD
G MPl

ΩR

(
X Plo Z Plo

d5
Pl Mo

− 5X Plo Z Plo

2d7
Plo

δ(d2
Pl M ) + X Plo

d5
Pl Mo

(δZ Ple

+δZ Pli ) + Z Plo

d5
Pl Mo

(δX Ple + δX Pli )

)

. (46b)
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The quantities d−5
Pl Mo and d−7

Pl Mo can be computed from Eq. (94) of Hilton, using Laplace
coefficients Bs

k (α) (see also Eq. 22 of Laskar and Robutel 1995):

d−l
Pl Mo = a−l

α

(
1

2
Bl/2
0 (α) +

∑

k>0

Bl/2
k (α) cos(k(λPl − λM ))

)

, (47a)

Bs
k (α) = 2

(s + k − 1)!
(s − 1)!k! αk F(s, s + k; k + 1;α2), (47b)

with aα = max(aPl , aM ), α = min(aPl/aM , aM/aPl), and F the Gaussian hypergeometric
function. The expansion converges slowly for the Earth, because Mars and the Earth are
relatively close to each other.

After inserting Eqs. (43b–43d) and (47a, 47b), (46a, 46b) for ψ̇/ε̇ are seen to contain
constant terms Ψ̇Pl and ĖPl , which give rise to secular variations after integration, and
periodic terms (nutations).

The rates of secular variations are given by

Ψ̇Pl = −3HD cos ε0G MPl
(
a2

Pl + a2
M

)
B5/2
0 (α)

4a5
αΩR

+ 3HD cos ε0G MPlaPlaM B5/2
1 (α)

2a5
αΩR

−
(

aPl B5/2
0 (α) − aM B5/2

1 (α)
)

3HDaPl G MPl cos 2ε0 (iM cos θ0 − iPl cos(θ0 − ΩPl + ΩM ))

4a5
α sin ε0ΩR

, (48a)

ĖPl = −
(

aPl B5/2
0 (α) − aM B5/2

1 (α)
)

3HDaPl G MPl cos ε0(iM sin θ0 − iPl sin(θ0 − ΩPl + ΩM ))

4a5
αΩR

. (48b)

Those equations can be compared to previously published results. ĖPl and the third part
of Ψ̇Pl are proportional to the orbital inclinations iPl and iM and are therefore not part of
Hilton’s solution. The second term in Ψ̇Pl , proportional to the Laplace coefficients B5/2

1 ,
results from the multiplication of terms proportional to cos(λPl − λM ) in d−5

Plo and in the
product Y0Z0, since cos2(λPl − λM ) = (1+ cos 2(λPl − λM ))/2. Such a term can be found
in Hilton’s solution (his Eq. 95), but is not included in his Eq. (24) for the precession in
longitude, which contains only the first term proportional to B5/2

0 .
RK79 provides estimates for Ψ̇Pl only, approximately obtained by a rescaling of the

precession rate induced by the Sun, which is proportional to the solar mass and inversely
proportional to the cube of the mean solar distance, to the mass and mean distance of the
considered planet. This approximation can be found by neglecting the orbital inclinations,
replacing aα by aPl , and expanding to the order zero in α (so that B5/2

0 � 2 and B5/2
1 � 0):

Ψ̇Pl � Ψ̇S
MPl

MS

(
aS

aPl

)3

. (49)

The direct contributions of Jupiter, the Earth, Saturn, and Venus to the rates of secular
variation are given in Table 3, and compared to the approximate solution of Eq. (49), the
series solution of BS99, the series solution of Sect. 4.3.3, and Hilton’s solution. Hilton’s
values are very different from the other values, and likely wrong for an unknown reason.
RK79’s approximation works very well for Saturn and fairly well for Jupiter, which are far
enough from Mars so that the order 0 approximation in α is justified. The approximation
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Table 3 Longitude and obliquity secular variations rates (in mas/yr) due to the direct torques by Jupiter,
Saturn, the Earth, and Venus, obtained from an analytical solution, divided into the contributions from Laplace

coefficients B5/2
0 and B5/2

1 (with iM = iPl = 0) and from the inclinations iM and iPl (columns 2–5)

Planet B5/2
0 B5/2

1 iM and iPl Total Approx RK79 BMAN20 BS99 Hilton

(Ψ̇Pl )

Jupiter −0.323 0.114 − 0.002 − 0.221 −0.179 − 0.223 −0.222 −0.198

Saturn −0.010 0.001 0.000 − 0.009 −0.009 − 0.010 – –

Earth −0.618 0.540 0.004 − 0.074 −0.080 − 0.074 −0.082 −0.363

Venus −0.094 0.062 − 0.001 − 0.033 −0.171 − 0.034 – –

(ĖPl )

Jupiter – – − 0.006 − 0.006 – − 0.0063 −0.0060 –

Saturn – – − 0.0004 − 0.0004 – − 0.0002 – –

Earth – – 0.0018 0.0018 – 0.0035 0.0025 –

Venus – – 0.00014 0.00014 – 0.0002 – –

The rates obtained with the approximation of RK79 (Eq. 49), the series solution of Sect. 4.3.3, the series
solution of BS99, and Hilton’s solution are given in columns (6–9)

seems to work for the Earth, but it is by chance, as the approximation does not make sense in
the first place for a planet closer to the Sun than Mars (it can be verified that it does not work
at all for Venus). The agreement between the analytical solution and the BMAN20 solution
is good, especially for the secular rate in longitude. For the smaller secular rate in obliquity,
agreement is more difficult to reach, likely because of the approximations made in order to
get the analytical solution.

The main nutations due to the planets are given in Table 4, and compared to the series
solution of BS99 and the series solution BMAN20 of Sect. 4.3.3. For a truncation level of
0.025mas in prograde/retrograde motion, as applied in Sects. 4.1 and 4.3, we find two terms
for Jupiter, two terms for the Earth, and one term for Venus. For Jupiter, the agreement
between the analytical solution and the series solution is again excellent. The agreement is
good for the Earth and Venus. It is interesting to note that the Jupiter solution corresponds to
BS99 solution only when we neglect the orbital inclination of the planets.

3.7 Oppolzer terms and polar motion

In the context of rotation studies, three axis are of interest: the figure, angular momentum
(AM), and spin axes. The separation between the spin and figure axes is classically called
polar motion. RK79 noticed that the misalignment between the figure and spin axes induced
by the solar torque is small (about 5cm at the surface of Mars, or 3mas). The amplitude
of the offset between the spin and AM axes is about17 m HD with m the amplitude of polar
motion and HD the scaling factor of Eq. (11c), and is two to three orders of magnitude
smaller than the polar motion, so that the AM and spin axes can be assimilated to each other
(BS99, RMAN99). In the following, by abuse of terminology, we will call polar motion
the differential motion of the AM/spin axis with respect to the figure axis, as seen from
the rotating Body Frame. We will call Oppolzer terms the differential motion of the figure

17 Consider Eqs. (41) and (45) of Roosbeek and Dehant (1998), and the relation N f H = Nrh − m, to get
Nr H = m HD/(1 + HD) � m HD .
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Table 4 Main nutations raised by the planets (direct effect) as obtained with an analytical solution, compared
with the series solution of BS99 and the series solution of Sect. 4.3.3 (BMAN20)

j Solution Ju Ma Te Ve 2π/ f j (d) ψc
j (mas) ψs

j (mas) εc
j (mas) εs

j (mas)

Jupiter

1 BS99 2 0 0 0 2166.29 − 0.03 − 0.19 − 0.09 0.02

Analytical − 0.042 − 0.187 − 0.088 0.021

(with iM = iPl = 0 − 0.033 − 0.187 − 0.088 0.015

BMAN20 − 0.042 − 0.187 − 0.088 0.022

2 Analytical − 3 1 0 0 1310.24 0.018 − 0.080 0.038 0.009

BMAN20 0.018 − 0.079 0.037 0.009

Earth

1 BS99 0 2 − 1 0 5764.01 − 0.08 − 0.14 0.00 0.00

Analytical − 0.072 − 0.127 0.000 0.000

BMAN20 − 0.076 − 0.129 0.006 0.001

2 Analytical 0 4 − 2 0 2882.00 − 0.010 − 0.080 − 0.037 0.004

BMAN20 − 0.012 − 0.078 − 0.029 0.006

Venus

1 Analytical 0 − 3 0 1 11987.20 0.024 − 0.146 0.069 0.011

BMAN20 0.034 − 0.150 0.066 0.012

axis with respect to the AM/spin axis, as seen from the Inertial Frame. Here, polar motion
and Oppolzer terms have therefore opposite amplitudes, and different frequencies (a polar
motion at frequency w in the rotating BF corresponds to an Oppolzer term at frequency
f = w + ΩR in the IF), but they represent in fact the same motion and have the same
physical causes. The polar motion of Mars is mainly due to the atmospheric dynamics and
the condensation/sublimation cycles of the atmosphere and polar ice caps. The amplitudes
of the seasonal terms are expected to range between 0 and 15mas (Defraigne et al. 2000;
Van den Acker et al. 2002). The atmosphere can also excite the Chandler wobble, a normal
mode for the motion of the spin axis with respect to the figure axis. The period of the Martian
Chandler wobble is expected to be around 200days, and its amplitude can be of the order of
10 to 100mas (Dehant et al. 2006). The modeling of the atmospheric polar motion and of
the Chandler wobble is beyond the scope of this study. As in RK79 and BS99, we consider
that the polar motion/Oppolzer terms here are only due to the external gravitational torque.

It is possible to express the Oppolzer terms in terms of the nutations, since the motion
of the figure axis in space and the motion of the spin axis in the BF are linked by the Euler
kinematic equation

ε̇ + I ψ̇ sin ε = (ω1 + Iω2)e
Iφ, (50)

with I = √−1, which can be derived from Eq. (5b), and where (ψ, θ, φ) are the Euler
angles of the figure axis. This equation can be rewritten in an alternative form using the
prograde/retrograde formulation of the nutation series, as we show now. First, we use the
simple fact that the motion of the unit vector p̂ along the perpendicular to the inertial J2000
mean BF equator is not subject to any torque:

d p̂

dt
+ � ∧ p̂ = 0. (51)
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Second, we find that, at first order in small variations,

p̂ = Rz(φ) · Rx(ε) · Rz(ψ − ψ0) · Rx(−ε0) ·
⎛

⎝
0
0
1

⎞

⎠ = Rz(φ) ·
⎛

⎝
−δx
−δy
1

⎞

⎠ , (52)

for the component of p̂ in the coordinates of Mars rotating BF, with (δx , δy) the projection
of the trajectory of a unit vector along the figure axis on the J2000 mean BF equator (see
Eq. 17). Finally, assuming that the projectionsp = p̂−(0, 0, 1) andm = �/ΩR −(0, 0, 1) =
(ω1, ω2, 0)/ΩR on the BF equator are circular motions at a common frequencyw = f −ΩR

in the BF, that is to say that px + I py = peIwt and mx + I my = meIwt with p the amplitude
of the inertial pole motion, and m the amplitude of the polar motion, Eq. (51) becomes
(Mathews et al. 1991):

p = m

1 + w/ΩR
. (53)

From Eqs. (18) and (52), p = −A f withA f the prograde (P f ) or retrograde (R f ) amplitude
of the figure axis nutation, and Eq. (53) becomes

mo = A f
f

ΩR
, (54)

with mo = −m the amplitude of the Oppolzer terms (here the offset between the figure
and spin axes, assimilated to the offset between the figure and AM axes). If we note AS

the amplitude of the spin axis nutation at frequency f in the IF, which is by definition the
difference of the figure axis nutation and Oppolzer term amplitudes (A f − mo) at the same
frequency, we alternatively have that

mo = AS
f

ΩR − f
. (55)

From Eqs. (53–55), it follows that

AS = m
ω

ω + ΩR
, (56a)

A f

ΩR
= AS

ΩR − f
. (56b)

From Eq. (55), it is possible to find the amplitude of the Oppolzer terms corresponding
to any nutation term for the AM axis, by switching between the longitude/obliquity and
prograde/retrograde circular formulations. Since ψ̇ 
 ΩR , it is reasonable to consider that
the precession has no polar motion/Oppolzer term counterparts (mo � 0 and A f � AS). The
Oppolzer terms, in longitude/obliquity, corresponding to the main terms of our recomputed
RMAN99 nutations series are given in Table 5, along with the Oppolzer terms obtained
by BS99, and the differences between the “RK79 rescaled” and “RMAN99 recomputed”
series of Table 1. For the semi-annual nutation, the Oppolzer terms can reach up to 4mas.
In general, the Oppolzer terms correspond well to the difference between the RK79 rescaled
series for the figure axis and the RMAN99 recomputed series for the AM axis. The remaining
differences can be attributed to the differences in the treatment of the orbital configuration
of Mars (unperturbed Keplerian orbit of given orbital elements for RK79, orbit taken from
the VSOP87 ephemerides for RMAN99).

Conversely, from Eq. (56a) and a model of the atmospheric polar motion, it is in principle
possible to compute the amplitude of the corresponding (non-rigid) nutation of the AM axis
in space. Let us consider a polar motion with an amplitude of 10mas at annual period. The
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Table 5 Differences (in mas) between the RK79 (rescaled) and RMAN99 (recomputed) series for the main
solar terms of Table 1 (columns 2–3)

RK79-RMAN99 RMAN99 Oppolzer BS99 Oppolzer

Arg. cos sin cos sin cos sin

(Δψ)

1Ma −0.04 0.19 -0.04 0.17 -0.04 0.16

2Ma −0.64 −3.66 -0.62 -3.57 -0.62 -3.55

3Ma −0.61 −0.96 -0.66 -0.99 -0.66 -0.99

4Ma 0.18 −0.19 -0.23 -0.14 -0.23 -0.14

5Ma −0.18 −0.05 -0.05 -0.01 0. 0.

6Ma −0.07 0.02 -0.01 0. 0. 0.

(Δε)

1Ma −0.33 0.19 -0.30 0.18 -0.37 0.16

2Ma −1.40 0.24 -1.41 0.28 -1.37 0.24

3Ma −0.34 0.23 -0.38 0.26 -0.38 0.26

4Ma −0.05 0.08 -0.06 0.09 -0.05 0.08

5Ma −0.00 0.04 0. 0.02 0. 0.

6Ma −0.01 −0.03 0. 0. 0. 0.

Oppolzer terms (mas), in longitude/obliquity of the recomputed RMAN99 (columns 4–5) and the rescaled
BS99 (columns 6–7) nutation series

corresponding AM nutations would have quasi diurnal periods in the IF, much shorter than
the harmonics of the annual period related to the solar torque, and an amplitude of 0.015mas.

4 Semi-analytical solution

In this section, we first recompute the nutation series of the AM axis of Roosbeek (1999)
(RMAN99), considering the same original calculation settings since the computer perfor-
mances available at the time of the computation of RMAN99 made the semi-analytical
treatment tedious and less accurate than intended. As we will see below, the computational
error on the semi-annual term was of about 0.3mas, above the chosen truncation criterion of
0.1mas. The recomputed series (RMAN99 recomputed) presents a negligible computational
error, as demonstrated by a comparison with a numerical integration of the AM equations
(RMAN99num).
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In a second step, we use the planetary ephemerides fromVSOP2000, VSOP2013, DE431,
and INPOP17a to assess the effect of a change in ephemerides on the precession/nutation
solution.We also evaluate the effect of the chosen values for the constants (e.g., HD) involved
in the computations. To update the nutations induced by Phobos andDeimos, we use themean
orbital elements of Jacobson and Lainey (2014) and the analytical solution of Sect. 3.5. We
also consider the direct effects of the Earth, Jupiter, Saturn, Venus, and Mercury on the
precession/nutation of Mars. The full solution (solar, satellites, and direct planetary terms)
defines the BMAN20 solution.

Finally, as not all terms of BMAN20 will be above the detection capabilities of the RISE
and LaRa experiments, we provide a restricted version (BMAN20 for Radio-Science, or
BMAN20RS) of the solution which includes only main solar terms (possibly merged with
indirect planetary terms) and satellite terms.We also estimate the uncertainty on the individual
terms of the solution, which mainly results from the uncertainty on the scaling factor HD .

4.1 Recomputation of RMAN99

To estimate the nutations induced by the solar torque, Roosbeek (1999) integrates over time
the AM Eqs. (12a, 12b). The distance dB is directly taken from the VSOP87 as equal to
dM , the distance of Mars to the Sun. The position (X B , YB , Z B) of the Sun is expressed in a
reference frame attached to the J2000 mean equinox BF18 after the following transformation
(see Fig. 4) ⎛

⎝
X B

YB

Z B

⎞

⎠ = −Rx(ε0) · Rz(θ0) · Rx(i0) · Rz(Ω0)︸ ︷︷ ︸
MT

·
⎛

⎝
xM

yM

zM

⎞

⎠ , (57)

with (xM , yM , zM ) as given in VSOP87 (Bretagnon and Francou 1988) for the position of
Mars in a reference frame attached to the ecliptic (Earth orbit) and equinox (ascending node
of the Earth orbit on the Earth equator) at the J2000 epoch. (xM , yM , zM ), (X B , YB , Z B),
and dM are written as series of the form

∑

j

(
C j cosϕ j + S j sin ϕ j

)
, (58a)

C j =
∑

α

T αCα, j , (58b)

S j =
∑

α

T α Sα, j , (58c)

where Cα, j and Sα, j are amplitudes and T is the time measured in thousands of Julian years
from J2000. ϕ j are linear combinations of fundamental arguments. After integration of Eqs.
(12a, 12b), the fundamental arguments of the nutation series of Eq. (15) are the same as the
VSOP87 arguments, by construction (see also Sect. 4.1.1). The arguments needed to express
the truncated solution will be the mean longitudes of Saturn (Sa), Jupiter (Ju), Mars (Ma),
the Earth (Te), and Venus (Ve), see Table 2 of Bretagnon and Francou (1988):

Sa = 0.87401675650 + 213.2990954380 T , (59a)

Ju = 0.59954649739 + 529.6909650946 T , (59b)

Ma = 6.20347611291 + 3340.6124266998 T , (59c)

18 Roosbeek (1999) took t = 0 in his Eq. (3) (Roosbeek, personal communication). Therefore, the transfor-
mation from the IF goes to the J2000 BF and not the BF of date.
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Te = 1.75347045953 + 6283.0758499914 T , (59d)

Ve = 3.17614669689 + 10213.2855462110 T . (59e)

The power α is an integer in-between 0 and 5. For α = 0, the series are periodic, like the
periodic nutations series of Roosbeek (1999). For α ≥ 1, the series are pseudo-periodic
(Poisson series) and were not computed in Roosbeek (1999). Therefore, we consider only
α = 0 to recompute RMAN99 series.

To estimate the nutations induced by Phobos and Deimos, Roosbeek (1999) integrates
the AM Eqs. (12a, 12b) with the positions (X P , YP , Z P ) and (X D, YD, Z D) of the natural
satellites obtained directly in the mean equinox BF from the ephemerides ESAPHO and
ESADE of Chapront-Touze (1990) without transformations (MT = I3 is an identity matrix).
Their squared distances d2

P and d2
D can be obtained as (X2

P + Y 2
P + Z2

P ) and (X2
D + Y 2

D +
Z2

D), respectively. In ESAPHO and ESADE, the positions of the natural satellites are also
defined as periodic series under the form (58a), considering a specific set of fundamental
arguments. After integration, the arguments of the main terms related to Phobos and Deimos
in the nutation series are the orbital nodes of the satellites (constructed from the argument
combination D − F + l ′ + ω′∗ of Roosbeek 1999):

NPh = 125◦.8759 − 159257◦.97707018 T , (60a)

NDe = 11◦.1971 − 6574◦.96623684‘ T . (60b)

The values of the transformation angles (ε0, θ0, i0,Ω0) in Eq. (57) are taken fromEq. (3) of
Roosbeek (1999). Besides the transformation angles, the integration of theAMequations also
requires values for G MS,P,D , the Solar/Phobos/Deimos standard gravitational parameters,
for ΩR , the mean rotation rate of Mars, and for HD , the scaling factor. Here, for consistency,
we use the same values as Roosbeek (1999) (see Table 2).

4.1.1 Computational procedure

To obtain nutation series in the form of Eq. (15), it is preferable to express the right-hand
members of the AM Eqs. (12a, 12b) in a similar form first. We now describe briefly this
computational procedure.

Since dM , the Sun–Mars distance, is the sum of a constant term do (1.53033 AU in
VSOP87) and of series δd with terms of amplitudes 
 do, the ratio 1/dM can be expanded
about 1/do as follows

1

dM
= 1

(do + δd)
= 1

do
+

kmax∑

k≥1

(−1)k (δd)k

dk+1
o

. (61)

The maximal value kmax = 11 is chosen such as to ensure that the computational uncertainty
on the solution is negligible, as can be checked with a numerical integration of the AM
equations (see Sect. 4.1.4). This expansion is then raised to the fifth power, before being
multiplied by YB Z B or X B Z B .

The squared Mars–Phobos distance d2
P is the sum of a constant term d2

Po and of periodic
terms δ(d2

P ), so we use the following expansion about d2
Po:

(
1

dP

)5

=
(

1

d2
Po + δ(d2

P )

)5/2

= 1

d5
Po

− 5 δ(d2
P )

2 d7
Po

+ 35 (δ(d2
P ))2

8 d9
Po

+ . . . (62)

1/d5
P is then multiplied by YP Z P or X P Z P . The same procedure applies to Deimos.
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At each calculation step, trigonometric manipulations are used to express quantities in
a form similar to that of Eq. (58a), and we neglect the smallest terms, considering a rela-
tive tolerance which ensures the accuracy of the solution. In the end of this computational
procedure, the AM equations are in the form

{ d�ψ
dt

d�ε
dt

}
=

∑

j

({
Cψ

j
Cε

j

}

cosϕ j +
{

Sψ
j

Sε
j

}

sin ϕ j

)

. (63)

4.1.2 Secular solution

For j = 0, the secular part of the solution of Eqs. (14a, 14b) is given by

Ψ̇ t = Ψ̇S t + Ψ̇P t + Ψ̇D t, (64a)

Ė t = ĖS t + ĖP t + ĖD t, (64b)

with

Ψ̇S = −7578.132mas/yr ; ĖS = −0.002mas/yr, (64c)

Ψ̇P = −0.232mas/yr ; ĖP = 0mas/yr, (64d)

Ψ̇D = −0.251mas/yr ; ĖD = 0mas/yr. (64e)

The rate of variations of the right ascension and declination, see Eqs. (24a, 24b), are therefore
given by

α̇ = −3894.186mas/yr = −1◦.082 /kyr, (65a)

δ̇ = −2210.160mas/yr = −0◦.614 /kyr. (65b)

Contrary to the analytical solution (see Sect. 3.4.1), the secular rate in obliquity ĖS �= 0,
but is very small, and there are no quadratic terms in the recomputed RMAN99 solution,
as we consider only α = 0 in Eq. (58a). The difference between the recomputed and old
values for Ψ̇S (− 7578.132 vs. −7576mas/yr) is about 2mas/year. The difference between
the recomputed value and the precession rate (− 7578.09mas/yr) obtained with the analytical
solution [Eq. (33)] is 0.04mas/yr, one order of magnitude smaller than the expected precision
(� 0.3mas/yr) on the precession rate from RISE and LaRa (Dehant et al. 2020). This shows
that using an analytical method to infer HD from the measured precession rate does not
introduce a significant bias.Wefind a very small but nonzero secular variation rate in obliquity
Ė , due to the mutual perturbations of the planets. The effect of Phobos and Deimos on the
precession rate of Mars (− 0.232mas/year and − 0.251mas/year) differ from the old values
by less than 0.0005mas/year (Fabian Roosbeek, personal communication) and compare very
well with those obtainedwith the analytical solution (−0.232mas/year and− 0.250mas/year,
see Sect. 3.5).

4.1.3 Periodic series

For j ≥ 1, the nutations in longitude and obliquity have amplitudes given by

⎛

⎜⎜
⎝

ψc
j

ψ s
j

εc
j

εs
j

⎞

⎟⎟
⎠ = 1

ϕ̇ j

⎛

⎜⎜⎜
⎝

−Sψ
j

Cψ
j

−Sε
j

Cε
j

⎞

⎟⎟⎟
⎠

, (66)
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with C/Sψ/ε
j coming from Eq. 63.

For practical reasons (we find several tens of thousands of terms in the solution for the
periodic series, most of them are not relevant in practice), a truncation criterion needs to be
defined for presenting the recomputed RMAN99 series. Originally, RMAN99 considered the
same truncation criterion of 0.1mas in both longitude and in obliquity. A truncation criterion
in obliquity of sin ε0 × 0.1mas = 0.4mas could be considered more consistent with the
truncation criterion in longitude, as it would correspond to similar surface displacements
(note that RK79 chose 0.7 and 0.3mas as the truncation criterion in longitude and obliquity,
respectively). Here, we keep the terms which have prograde and/or retrograde amplitudes
larger than 0.025mas. In this way, we provide the obliquity terms corresponding to all the
longitude terms retained, which was not the case in the original series RMAN99 in which
there are 24 terms in longitude and 10 terms in obliquity. We end up with 34 solar terms, one
term for Phobos, and one term for Deimos. The recomputed RMAN99 solution, using the
three representations of the solution (longitude/obliquity, prograde/retrograde, right ascen-
sion/declination) defined in Sect. 3.2, is available at https://doi.org/10.24414/h5pn-7n71. In
Table 6, we present the amplitudes in longitude and obliquity, as well as the prograde and
retrograde amplitudes, of selected terms.

We recover all the terms of the original series, with the exception of the 24th term in
longitude in Table II of Roosbeek (1999), whose amplitudes was artificially high because
of the lack of accuracy of the computational procedure applied by RMAN99 for very long
period terms (lower maximal value for k and larger relative tolerance than ours). We also find
several new termswith amplitudes below the truncation criterion of Roosbeek (1999) and two
long period terms (lines 35–36 in Table 6) with amplitudes larger that Roosbeek (1999) failed
to identify. The differences between the original and recomputed RMAN99 series amounts to
0.3mas in amplitude for the semi-annual term in longitude (see line 15 inTable 6 and line 10 in
Table II of Roosbeek 1999). The difference between the recomputed and original Phobos and
Deimos terms is only 0.02mas at most (9.86mas versus 9.88 in longitude, for the nutation
due to Phobos). The last reason for the differences between the original and recomputed
RMAN99 series results from the application of the truncation criterion in Roosbeek (1999),
not only both in longitude and obliquity, but also both in cosine and sine terms. As Roosbeek
(1999) writes the amplitude down to the second decimal, 40% of the solar terms in longitude
and 12.5% of the solar terms in obliquity of RMAN99 are written down as 0.00mas, and the
reader cannot know which terms are really zero up to the second digit, and which terms are
below the truncation criterion. As a consequence, termswith amplitudes as large as 0.085mas
(the sine amplitude of the seventh solar term, line 1 in Table 6 and in Table II of Roosbeek
(1999)) were neglected.

4.1.4 Solution accuracy: effect of the computational procedure

To assess the accuracy of the series solution (we mean here the entire RMAN99 recomputed
series, not the truncated series), we numerically integrate Eqs. (12a, 12b) over time, with-
out applying the computational procedure presented in Sect. 4.1.1. The numerical solution
RMAN99num is obtained as follows

�ψ(t) = �ψ(to) +
∫ t

to

d(�ψ)

dt
dt, (67a)

�ε(t) = �ε(to) +
∫ t

to

d(�ε)

dt
dt, (67b)
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Table 6 Selected periodic terms (main solar terms, satellite terms, and long periods terms) of the RMAN99
recomputed series, using the longitude/obliquity and prograde/retrograde representations defined in Sect. 3.2

j Sa Ju Ma Te Ve NPh NDe 2π/fj(d) ψc
j (mas) ψs

j (mas) εc
j(mas) εs

j(mas) Pj(mas) Rj(mas)

1 0 0 7 0 0 0 0 98.140 –0.102 0.085 0.040 0.048 0.059 0.003
2 0 0 6 0 0 0 0 114.497 –0.893 0.253 0.117 0.419 0.415 0.020
3 0 0 5 0 0 0 0 137.396 –6.262 –0.885 –0.427 2.928 2.825 0.133
4 0 0 4 0 0 0 0 171.745 –34.832 –21.661 –10.209 16.193 18.301 0.843
7 0 0 3 0 0 0 0 228.993 –137.078 –200.058 –93.513 62.673 107.898 4.705
22 0 0 1 0 0 0 0 686.980 –282.484 –477.765 47.671 11.912 102.108 136.705
25 (P) 0 0 0 0 0 –1 0 825.642 0.000 9.877 –4.204 0.000 0.000 4.204
32 (D) 0 0 0 0 0 0 –1 19998.582 0.000 4.390 –1.863 0.000 0.000 1.866
33 5 –2 0 0 0 0 0 322614.503 –0.363 0.104 –0.143 0.075 0.125 0.101
34 0 –3 8 –4 0 0 0 651392.660 0.996 0.290 –0.003 0.013 0.214 0.227
35 5 4 –16 8 0 0 0 3.40948×107 0.137 0.189 0.028 –0.095 0.094 0.032
36 –6 8 –7 0 2 0 0 1.33011×108 0.080 0.455 –0.150 –0.132 0.086 0.179

The full solution is available at https://doi.org/10.24414/h5pn-7n71. The arguments Sa, . . . , NDe are given
in Eqs. (59a–60b). The table contains terms which have prograde and/or retrograde amplitudes larger than
0.025mas. Thefirst sevenmain solar terms and the satellites terms are highlighted in blue and gray, respectively.
They are used in Table 1 where RMAN99 recomputed series are compared with the main terms of RK79 and
BS99 series

considering to = J2018 and t between J2018 and J2023. We set �ψ(to) and �ε(to) to the
values obtained with the recomputed RMAN99 series, so that at to the differences are zero.
The differences between the RMAN99num and the RMAN99 recomputed series result from
the computational procedure applied to find a solution in the form of a series, and can be
seen as a computational contribution to the uncertainty on the solution. As the differences in
the time domain are very small (of the order of 10−5 mas at most within the 2018–2025 time
period), this contribution can be safely neglected when the nutation amplitudes are written
down to the third digit, as in Table 6.

4.2 How to update the nutations series?

We have already established in Sect. 3.5 that the use of an analytical solution and recent mean
orbital elements is sufficient to update the nutations induced by Phobos and Deimos. In this
section, we explore the three following components of the computation, that can affect the
nutation series induced by the Sun:

1. The choice of ephemerides (VSOP87, VSOP2000, …),
2. The value of the transformation angles (Ω0, i0, θM and ε0),
3. The value of the other constants involved in the AM equations (in particular HD).

4.2.1 The choice of ephemerides

The VSOP ephemerides are analytical planetary theories, fitted to numerical integrations,
themselves fitted to observations. VSOP87, VSOP2000 and VSOP2013 are fitted to DE200
(Standish 1982), DE403 (Standish et al. 1995), and INPOP10a (Fienga et al. 2011), respec-
tively. In the VSOP2000 ephemerides, the Mars coordinates (xM , yM , zM ) are expressed
in the same form as in VSOP87 (see Eq. 58a) and dM can be computed as their norm. In
VSOP2013, the rectangular coordinates (xM , yM , zM ) are given in the form of Tchebychev
polynomials, from which time series can be produced, before computing numerically the
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corresponding nutation time series. Nutation time series can also be obtained from DE431
and INPOP17a, the most recent American and European ephemerides.

VSOP2000 and VSOP87 ephemerides can be used with or without the Poisson terms of
Eq. (58a). The difference in nutation time series obtained with and without the Poisson terms
represents the effect of the mutual perturbations between the planets on the nutation series,
which is of the order of the mas (between− 3 and 2mas in longitude and− 0.3 and 0.7mas in
obliquity within the 2018–2025 time period), and should be included in an updated nutation
solution. The nutation time series obtained with VSOP2013, DE431, or INPOP17a include
the effect of the mutual perturbations between the planets.

Considering Poisson terms, and all other things (the values of the transformation angles
and of the other constants) being unchanged, the differences in nutations time series obtained
from VSOP2000 versus VSOP87 are small (e.g., about −0.0003mas/yr in the precession
rate and 0.0002mas in amplitude for the semi-annual nutation), and therefore negligible. The
differences in nutations times series obtainednumerically fromVSOP2000versusVSOP2013
are even smaller. We also verified that the nutation time series based on VSOP2000 differ
negligibly from numerical nutation solutions obtained from DE431 or INPOP17a (about
−0.0016mas/yr on the precession rate and 0.0004mas in amplitude for the semi-annual
nutation).

As is apparent from the above, we could in principle use indifferently VSOP87 or
VSOP2000 periodic and Poisson series for the solar coordinates to update the nutation semi-
analytical solution. However, the choice of the VSOP theory influences the definition of the
mean orbital elements involved in the definition of the transformation angleswhich, aswewill
see below, have a significant effect on the solution.Mean orbital elements are not provided for
VSOP2000, while series for the rectangular coordinates (xM , yM , zM ) are not provided for
VSOP2013. Since the difference between VSOP2000 and VSOP2013 ephemerides is negli-
gible for our purpose, we will update the nutations series in Sect. 4.3 by using transformation
angles consistent with VSOP2013 and rectangular coordinates from VSOP2000.

4.2.2 The value of the transformation angles

Four angles (Ω0, i0, θ0, and ε0) are involved in the transformation of Eq. (57) from the J2000
Earth ecliptic reference frame to the J2000 mean Equinox BF. Ideally, as the BF is precessing
and nutating, the solar coordinates should be expressed in the true BF of date, instead of the
J2000 mean equinox BF, and expressions for θ and ε taking into account the precession
and nutations should be used in the transformation. But since the precession/nutation is the
motion we want to determine from the integration of the AM equation, those expressions are
a priori unknown. A compromise is to express the solar torque in the mean equinox BF of
date (that is to say still neglecting the nutation, see Sect. 3.4.1), assuming that we know a
priori the precession rate in longitude of the BF with respect to the chosen reference plane, or
θ̇M . We do not introduce Ė , the secular variation rate in obliquity, as its effect on the solution
is negligible. The transformation of Eq. (57) is therefore replaced by

MT = −Rx(ε0) · Rz(θM ) · Rx(i0) · Rz(Ω0). (68)

The values ofΩ0 and i0 used byRoosbeek (1999) come fromSimon et al. (1994). They are
mean orbital elements consistent with VSOP87. To update the nutation series, we consider
the mean orbital elements of Simon et al. (2013) that correspond to the VSOP2013, and
in good approximation, to VSOP2000 (− 0.08 arcsec for Ω0 and − 0.001 arcsec for i0,
compared to the values of Simon et al. 1994). The expression for θM and εM reported in
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Table 7 Values of the parameters used to compute the solution BMAN20

Parameter Symbol (Unit) Value Uncertainties References

Scaling factor HD 0.00538017 0.00000148 Sect. 4.2.3

Solar standard
gravitational
parameter

G MS (m3/s2) 1.3271244002 × 1020 0.0000000010 × 1020 Konopliv et al.
(2016)

Astronomical unit au (m) 149597870700 3 Ibid

Mean rotation rate
of Mars

ΩR (rad/s) 7.08822 × 10−5 2.4 × 10−15 Ibid, or Archinal
et al. (2018)

Node longitude of
Mars

Ω0 (◦) 49.55807197 Unknown Simon et al.
(2013)

Inclination of
Mars

i0 (◦) 1.84972607 Unknown Ibid

Obliquity of the
Earth

εEarth (◦) 23.439280933 Unknown Ibid

Epoch node angle θ0 (◦) 35.497525780 0◦.0000026 Sect. 3.4.3 and
Konopliv et al.
(2016)

Obliquity of Mars ε0 (◦) 25.191819740 0◦.0000043 Ibid

The values of the parameters specific to Phobos and Deimos are given in Table 8

Roosbeek (1999) come from Chapront-Touze (1990). We now use ε0 = 25◦.191819740 and
θ0 = 35◦.497525780, and θ̇M = Ψ̇ = −7608.3mas/yr, which are consistent with the latest
determination of the spin axis orientation by Konopliv et al. (2016), see Sect. 3.4.3.

In the time domain, the differences related to the update of the J2000 values of the trans-
formation angles are larger (up to 0.15mas in longitude and 0.02mas in obliquity within the
2018–2025 time period) than the differences related to the choice of ephemerides, and are
mainly due to the update of θ0 (which differs by 2.5 arcsec from the value consistent with
VSOP87). The effect of θ̇M is of the same order (the mas) than the effect of the Poisson terms
of the ephemerides.

4.2.3 The value of the other constants involved in the AM equations

The updated values for G MS andΩR (Table 7) are very close to the previous values (Table 2)
and the changes do not affect significantly the solution. On the contrary, updating the value of
the scaling factor is needed for several reasons. Roosbeek (1999) chose the value for HD in
order to retrieve the measured Ψ̇ of Folkner et al. (1997b) considering only the solar torque.
We need to choose the value for HD to be consistent with the most recent measurement of Ψ̇

by Konopliv et al. (2016), considering not only the solar torque, but also the direct torques
by the other planet, by Phobos and Deimos, the geodetic precession, and the effect of long
period terms. Only the geodetic precession is not proportional to HD , therefore:

Ψ̇observed = Ψ̇g + HD

0.00535464
(Ψ̇S + Ψ̇L P + Ψ̇P + Ψ̇D + Ψ̇Pl)|HD=0.00535464. (69)

As

– Ψ̇S |HD=0.00535464 = −7578.144mas/yr (see Sect. 4.3.1),
– Ψ̇L P |HD=0.00535464 = −0.002mas/yr (see Sect. 4.3.1),
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– Ψ̇P |HD=0.00535464 = −0.234mas/yr (see Sect. 4.3.2),
– Ψ̇D|HD=0.00535464 = −0.200mas/yr (see Sect. 4.3.2),
– Ψ̇Pl |HD=0.00535464 = −0.340mas/yr (see Sect. 4.3.3),
– Ψ̇g = +6.754mas/yr (see Sect. 3.4.3),

we find that HD = 0.00538017 (+0.5%with respect to the value of Roosbeek 1999) ensures
that Ψ̇ = −7608.3mas/yr, the measured precession rate of Konopliv et al. (2016). The
current uncertainty on HD is directly related to the uncertainty of 2.1mas/yr on Ψ̇ , so that
σHD = 0.00000148, or 0.03%. The resulting uncertainty on the precession/nutation solution
(e.g., 0.30mas in semi-annual amplitude with the current measurement precision, 0.04mas
with the expected measurement precision of RISE and LaRa) is larger than the modeling
uncertainties resulting from the choice of the ephemerides.

The 0.5% change in HD affects the nutation amplitude (5mas for the semi-annual term,
1mas for the annual term, …, in longitude) well above the expected measurement accuracy.
The precession rate will be re-estimated by RISE and LaRa. For consistency, it will be
appropriate to re-update the value of HD from the observed Ψ̇ by RISE/LaRa, and therefore
the amplitude of the rigid nutation terms, before determining Mars interior properties from
the observed nutations.

From Eq. (11c) and the unnormalized gravity coefficient J2 = (C − Ā)/MR2 =
0.00195661 ± 2.82 × 10−10 (MRO120D gravity field, Konopliv et al. 2016), we determine
the normalized polar moment of inertia of Mars

C

MR2 = J2
HD

= 0.36367 ± 0.00010. (70)

The uncertainty on C/MR2 results almost entirely from σH D .

4.3 BMAN20 solution

We now build an up-to-date semi-analytical solution for the precession and nutations of a
rigid Mars. The total precession/nutation is the sum of different terms that are computed
in the following subsections. We first compute the solar terms, including the geodetic and
semi-diurnal nutations. Then, we compute the satellite and the direct planetary terms.

4.3.1 Solar terms

We now use VSOP2000 ephemerides to update the solar terms of RMAN99 solution.
The semi-analytical computational procedure is pretty much the same as with VSOP87
ephemerides. We integrate the AM Eqs. (12a, 12b). The position (X B , YB , Z B) of the Sun
in the J2000 mean equinox BF is given by

⎛

⎝
X B

YB

Z B

⎞

⎠ = MT

⎛

⎝
xM

yM

zM

⎞

⎠ , (71)

withMT given by Eq. (68), and the values of the transformation angles are taken as explained
in Sect. 4.2.2. In particular, θM varies with time, and θ̇M is taken as the measured rate of the
precession in longitude. For the semi-analytical resolution, the transformation of Eq. (71) is
expressed as series of θ̇M .

In VSOP2000, Mars coordinates (xM , yM , zM ) are expressed in the same form as in
VSOP87, with periodic and Poisson series (see Eq. 58a), but with a slightly different set
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of fundamental arguments. The values of the five arguments used in the truncated nutation
series are:

Sa = 0.87401678345 + 213.2990797783 T , (72a)

Ju = 0.59954667809 + 529.6909721118 T , (72b)

Ma = 6.20349959869 + 3340.6124347175 T , (72c)

Te = 1.75346994632 + 6283.0758504457 T , (72d)

Ve = 3.17613445715 + 10213.2855473855 T . (72e)

Here, we also consider Poisson series (we take α = 0 and 1 in Eq. 58a) in the solution.
Contrary to VSOP87, VSOP2000 does not include a series for the distance dM between
Mars and the Sun. We therefore create such a series for d2

M from the rectangular coordinates
series, and use an expansion similar to Eq. (62).

After trigonometric manipulations, the AM equations can be written in the form of Eq.
(63), with

Cψ/ε
j =

∑

α

T αCψ/ε
α, j , (73a)

Sψ/ε
j =

∑

α

T α Sψ/ε
α, j . (73b)

Together with the mean precession rate θ̇M , the Poisson series in (xM , yM , zM ) lead to
quadratic variations and to Poisson nutation series, also called mixed terms in BS99, but also
to a very small alteration of the periodic nutation series (largest effect smaller than 0.02mas
on the amplitude of the annual nutation in longitude).

For j = 0, the secular part of the solution is given by (in mas, and T is the time measured
in thousands of years from J2000)

ψ =
∑

α

T α+1

α + 1
Cψ

α,0 = −7.61428 × 106 T − 14353.7 T 2 + · · · , (74a)

ε =
∑

α

T α+1

α + 1
Cε

α,0 = −2.42138 T + 2007.5 T 2 + · · · (74b)

Terms with α ≥ 3 are negligible, in the sense that they are below 0.01mas at 50years
from J2000. Note, as in Sect. 4.2.3, that we first computed the solution for the value of HD

of Roosbeek (1999), and updated the value of HD so that the total precession rate of the
full solution (solar, satellite and planet torques + geodetic precession) is consistent with the
measured precession rate. For the solution expressed in terms of the right ascension and
declination, we have, see Eqs. (24a, 24b):

α = −3.91248 × 106 T − 5096.0 T 2 + . . . (in mas),

= −1◦.08680 T − 0◦.00142 T 2 + . . . , (75a)

δ = −2.22056 × 106 T − 5648.2 T 2 + . . . (in mas),

= −0◦.61682 T − 0◦.00157 T 2 + . . . (75b)

For j ≥ 1, the solution for the longitude and obliquity nutations has amplitudes given
by (terms with α ≥ 2 are fully negligible, in the sense that they do not alter the amplitude
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nutations before the third decimal)

ψ
c/s
j =

∑

α

T αψ
c/s
α, j , (76a)

ε
c/s
j =

∑

α

T αε
c/s
α, j , (76b)

with

⎛

⎜⎜
⎝

ψc
0, j

ψ s
0, j

εc
0, j

εs
0, j

⎞

⎟⎟
⎠ = 1

ϕ̇ j

⎛

⎜⎜⎜
⎝

−Sψ
0, j

Cψ
0, j

−Sε
0, j

Cε
0, j

⎞

⎟⎟⎟
⎠

+ 1

ϕ̇2
j

⎛

⎜⎜⎜
⎝

Cψ
1, j

Sψ
1, j

Cε
1, j

Sε
1, j

⎞

⎟⎟⎟
⎠

+ · · · , (76c)

⎛

⎜⎜
⎝

ψc
1, j

ψ s
1, j

εc
1, j

εs
1, j

⎞

⎟⎟
⎠ = 1

ϕ̇ j

⎛

⎜⎜⎜
⎝

−Sψ
1, j

Cψ
1, j

−Sε
1, j

Cε
1, j

⎞

⎟⎟⎟
⎠

+ · · · (76d)

The first term in Eq. (76c) corresponds to the periodic nutation series as computed in
Roosbeek (1999). The second term represents small alterations of the periodic nutation series.
Equation (76d) is the nutation Poisson series. The series solution, for the updated value of HD

(0.00538017), is available at https://doi.org/10.24414/h5pn-7n71, for the three representa-
tions of the solution (longitude/obliquity, prograde/retrograde, right ascension/declination)
defined in Sect. 3.2. Selected terms are presented in Tables 9 (periodic series) and 10 (Poisson
series).

The periodic solution includes four terms of long period (> 800years, lines 40–43 of
Table 9). About J2000, they would be perceived as secular terms with Ψ̇L P = −0.002mas/yr
and ĖL P = −0.0006mas/yr by radioscience experiments spread between the seventies (e.g.,
Viking) and the coming years (e.g., LaRa). Compared to Ψ̇S = −7578.28mas/yr and the
future expected precision on the precession rate measurement (±0.03mas/yr), Ψ̇L P is small.
ĖL P is small, but only four times smaller than ĖS = −0.0024mas/yr. The other periodic
terms have period � 50years and can be observed, if they are of detectable amplitude.

We add the geodetic precession and annual nutation (line 23 of Table 9) defined in
Sect. 3.4.3 to the solar terms obtained above. We also add a semi-diurnal term (line 1 of
Table 9), obtained after integration of the last terms of Eqs. (11a, 11b). We use

δH tri
D = 4

√
C2
22 + S2

22
MR2

C
= 0.000694106, (77)

with the unnormalized gravity coefficientsC22 = −0.0000546304 and S22 = 0.0000315903
(Konopliv et al. 2016) and C/MR2 from Eq. (70). The argument φ is defined as

φ = 208◦.3654777 + ΩRt . (78)

The J2000 value of φ is the sum of φ0 and δφ0. φ0 = 133◦.3848958 is the rotation angle of the
prime meridian measured from the node of Mars equator over the mean Mars orbit of J2000
(our IF), and obtained after transformation of the angle φ0 of Konopliv et al. (2016) measured
from the node of Mars equator over the mean Mars orbit of J980. δφ0 = 74◦.9805819 is the
angle from the prime meridian to the axis of least inertia, obtained as 1

2 arctan S22/C22.
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Table 8 Mean orbital elements of Phobos and Deimos adapted from Jacobson et al. (2018) and Jacobson and
Lainey (2014), to be used in the analytical solution of Eqs. (39a, 39b)

Parameter Symbol (Unit) Phobos Deimos

G×Mass GMP (km3/s2) (7.092 ± 0.004) × 10−4 (0.962 ± 0.028) × 10−4

Semi-major axis aP (km) 9375 23458

Tilt between Mars
equator and the local
Laplace plane

τ (◦) 0.009 0.889

Inclination with
respect to the Laplace
plane

i p (◦) 1.076 1.789

Node longitude J2000
with respect to the
Laplace plane

ΩP |J2000 (◦) 122.079 11.614

Node longitude rate Ω̇P (◦/day) − 0.436 − 0.018

The node longitude is expressed here with respect to the common node of the Laplace plane and mean equator
of Mars over the orbit of Mars

4.3.2 Satellite terms

We inject themean orbital elements of Phobos andDeimos from Jacobson and Lainey (2014),
as given in Table 8, in the main terms of the analytical solution of Eqs. (39a, 39b) for the
precession/nutations induced by the satellites. We obtain (in mas)

�ψ = −0.235 × 103 T − 10.125 sinΩP , (79a)

�ε = −4.310 cosΩP , (79b)

(α̇ = −0.121mas/yr and δ̇ = −0.069mas/yr) for the motion induced by Phobos, and

�ψ = −0.201 × 103 T − 3.532 sinΩD, (80a)

�ε = −1.503 cosΩD, (80b)

(α̇ = −0.103mas/yr and δ̇ = −0.059mas/yr) for the motion induced by Deimos. The node
longitudes ΩP and ΩD , are the arguments NPh and NDe of the updated series:

NPh = 2.13055663363 − 2779.4193805084T , (81a)

NDe = 0.20283841509 − 114.7466716724T . (81b)

The updated solution is close (+3%) to theRMAN99 solution for Phobos torque.However,
the updated solution for Deimos torque is significantly different (−20%), because theDeimos
mass has been significantly revised by Jacobson and Lainey (2014). Note, as in Sect. 4.2.3,
that we first computed the satellite terms for the value of HD of Roosbeek (1999), and updated
the value of HD so that the total precession rate of the full solution is consistent with the
measured precession rate.
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4.3.3 Planetary terms

We integrate the AM Eqs. (12a, 12b). The planet coordinates in the equinox BF are given by
⎛

⎝
X Pl

YPl

Z Pl

⎞

⎠ = Rx(ε0) · Rz(θ0) · Rx(i0) · Rz(Ω0).

⎛

⎝
xPl − xM

yPl − yM

zPl − zM

⎞

⎠ , (82)

with (xM , yM , zM ) and (xPl , yPl , zPl) as given in the VSOP2000 for the position of Mars
and of the other planet in a reference frame attached to the ecliptic (Earth orbit) and equinox
(ascending node of the Earth orbit on the Earth equator) at the J2000 epoch. They are given
under the form of Eq. (58a), and we consider only α = 0 here (no Poisson terms).

The distance dPl M betweenMars and another planet varies greatly with time, especially if
their semi-major axes are close to each other. Therefore, it is difficult to obtain a convergent
development for 1/d−5

Pl M such as in Eq. (62) from the VSOP2000 series for the rectangular
coordinates. To obtain a workable expression for 1/d5

Pl M , we therefore assume that the orbits
of Mars and of the other planets are Keplerian and not inclined with respect to each other,
and we use the mean orbital elements of Simon et al. (2013). We are entitled to neglect the
mutual inclination, as we have seen that d2

Pl M is independent from iM and iPl at first order
(Eq. 44a). Under those approximations, we have

d2
Pl M = d2

M + d2
Pl − 2dM dPl cos(ω̄Pl + νPl − ω̄M + νM ), (83)

with ω̄ = Ω + ω, and we develop a5
αd−5

Pl M , with aα = max(dM , dPl), to order 30 about
α = min(dPl/dM , dM/dPl). Then, we replace dM/Pl and νM/Pl by developments correct up
to the third order in eM/Pl . This procedure, which can be seen as a more accurate extension
of Eq. (45), ensures a good (for Saturn and Jupiter) or fair (for the Earth and Venus) accuracy
of the semi-analytical solution obtained, compared to a numerical integration of the solution
using the VSOP2000 series for 1/d−5

Pl M (absolute differences smaller than 0.001mas for
Jupiter and Saturn, relative differences smaller than 10% for the Earth and Venus).

After integration of the AM equations, the contributions of Jupiter, Saturn, Earth, Venus
and Mercury to the variations rates in longitude and in obliquity can be expressed as:

Ψ̇Pl = −0.2223 − 0.0743 − 0.0097 − 0.0341 − 0.0015 = −0.342mas/yr, (84a)

ĖPl = −0.0063︸ ︷︷ ︸
Jupiter

− 0.0002︸ ︷︷ ︸
Saturn

+ 0.0035︸ ︷︷ ︸
Earth

+ 0.0002︸ ︷︷ ︸
Venus

+ 0.0000︸ ︷︷ ︸
Mercury

= −0.003mas/yr, (84b)

corresponding to α̇ = −0.179mas/yr and δ̇ = −0.098mas/yr. In addition, the direct effect
of the planets causes 5 nutations terms (2 induced by Jupiter, 2 induced by the Earth, and one
induced by Venus) above the chosen truncation level of 0.025mas in amplitude (Table 9).

The planetary induced precession rate is larger inmagnitude (+55%) than the one retained
in RK79 (−0.22mas/yr) and used in Konopliv et al. (2016), because we consider not only
Jupiter, but also other planets of the solar system.Note, as in Sect. 4.2.3, thatwefirst computed
the planetary terms for the value of HD of Roosbeek (1999), and updated the value of HD so
that the total precession rate of the full solution is consistent with the measured precession
rate.

4.3.4 BMAN20RS: practical solution for Planetary Science

The BMAN20 solution for the orientation of Mars angular momentum axis in space includes
secular and quadratic terms in longitude and obliquity, as well as 43 nutations terms with
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Table 9 Selected periodic terms (main solar terms, satellite terms, …) of the BMAN20 nutations series, using
the longitude/obliquity and prograde/retrograde representations defined in Sect. 3.2

j Sa Ju Ma Te Ve NPh NDe φ 2π/fj(d) ψc
j (mas) ψs

j (mas) εc
j(mas) εs

j (mas) Pj(mas) Rj(mas)

1 (SD) 0 0 0 0 0 0 0 2 0.513 0.000 0.110 –0.047 0.000 0.000 0.047

2 0 0 7 0 0 0 0 0 98.140 –0.102 0.085 0.040 0.048 0.059 0.003

3 0 0 6 0 0 0 0 0 114.497 –0.898 0.255 0.118 0.421 0.417 0.020

4 0 0 5 0 0 0 0 0 137.396 –6.292 –0.889 –0.429 2.942 2.839 0.134

5 0 0 4 0 0 0 0 0 171.745 –34.998 –21.766 –10.258 16.269 18.388 0.847

7 0 –3 11 –4 0 0 0 0 228.913 0.095 –0.031 –0.014 –0.044 0.044 0.002

8 0 0 3 0 0 0 0 0 228.993 –137.727 –201.016 –93.959 62.969 108.412 4.727

9 0 3 –5 4 0 0 0 0 229.074 0.063 –0.078 –0.036 –0.030 0.045 0.002

14 0 –3 10 –4 0 0 0 0 343.309 0.309 0.028 0.016 –0.140 0.137 0.005

15 –6 8 –5 0 2 0 0 0 343.489 0.075 –0.077 –0.034 –0.035 0.047 0.002

16 0 0 2 0 0 0 0 0 343.490 –221.944 –1113.768 –509.879 88.885 500.446 18.118

17 6 –8 9 0 –2 0 0 0 343.491 0.099 0.042 0.020 –0.045 0.047 0.002

18 0 3 –6 4 0 0 0 0 343.671 0.274 –0.144 –0.063 –0.127 0.137 0.005

23 (G) 0 0 1 0 0 0 0 0 686.980 0.229 0.516 0.000 0.000 0.120 0.120

24 0 0 1 0 0 0 0 0 686.980 –283.834 –480.044 47.897 11.969 102.595 137.356

27 (P) 0 0 0 0 0 –1 0 0 825.688 0.000 10.127 –4.310 0.000 0.000 4.310

30 (J) 0 –3 1 0 0 0 0 0 1310.238 0.018 –0.079 0.037 0.009 0.002 0.036

31 (J) 0 2 0 0 0 0 0 0 2166.295 –0.042 –0.187 –0.088 0.022 0.086 0.005

33 (E) 0 0 4 –2 0 0 0 0 2882.003 –0.012 –0.078 –0.029 0.006 0.032 0.002

35 (E) 0 0 2 –1 0 0 0 0 5764.006 –0.076 –0.129 0.006 0.001 0.030 0.034

37 (V) 0 0 –3 0 1 0 0 0 11987.226 0.034 –0.150 0.066 0.012 0.002 0.066

39 (D) 0 0 0 0 0 0 –1 0 20000.000 0.000 3.532 –1.503 0.000 0.000 1.503

40 5 –2 0 0 0 0 0 0 322618.691 –0.373 0.112 –0.143 0.076 0.127 0.104

41 0 –3 8 –4 0 0 0 0 651385.029 1.003 0.284 –0.002 0.015 0.215 0.229

42 5 4 –16 8 0 0 0 0 3.41836×107 0.131 0.052 –0.008 –0.015 0.036 0.025

43 –6 8 –7 0 2 0 0 0 1.32273×108 0.278 –0.212 –0.029 –0.024 0.093 0.056

The full solution is available at https://doi.org/10.24414/h5pn-7n71. The arguments Sa, . . . , Ve are given in
Eqs. (72a–72e), φ is given in Eq. (78), and NPh and NDe are given in Eqs. (81a–81b). The table contains terms
which have prograde and/or retrograde amplitudes larger than 0.025mas. The first seven main solar terms,
satellites terms (Phobos, Deimos), and direct planetary terms (Jupiter, Earth, and Venus) are highlighted in
blue, gray, and pink, respectively. The geodetic annual term is included in line 23. One semi-diurnal term
related to triaxiality is also included (line 1)

pro and or retrograde amplitude larger than 0.025mas (36 induced by the Sun, one of them
being the geodetic annual nutation, 1 by Phobos, 1 by Deimos, 2 by Jupiter, 2 by the Earth,
and 1 by Venus), of which 4 terms (the first main solar terms) have amplitudes varying with
time (see Tables 9, 10). This truncation criterion is sufficient for the interpretation of the
RISE and LaRa radioscience experiment. Recent simulations (Dehant et al. 2020; Péters
et al. 2020; Le Maistre et al. 2020) suggest that only the secular variation in longitude, the
secular variations in obliquity (if as large as about −0.2mas/yr, which is not the case in the
BMAN20 solution, where Ė � −0.006mas/yr due to the Sun and the planets, including the
long period nutation terms), and the largest nutations terms can influence the transponders’
radio signal in a detectable way.

A higher accuracy of the theoretical rigid precession/nutation model than the accuracy of
the observation is needed since terms that can observationally not be identified separately can
contaminate other signals. Over short times scales such as the duration of the RISE and LaRa
mission, the quadratic terms in longitude and obliquity (see Eqs. 74a, 74b) will be perceived
as secular variations (− 0.632mas/yr and + 0.088mas/yr, in longitude and obliquity, about
J2022), introducing a bias on the determination of HD . Similarly, the Poisson nutation terms
will be perceived as part of the periodic nutation terms (with a periodic contribution of
1.245mas from the Poisson cosine annual term in longitude in J2022, for instance), and
some terms with periods very close to the period of the main nutation terms will be perceived
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as contribution to those main terms, introducing bias in the determination of Mars’ interior.
By using in combination the data from older missions (e.g., the Viking missions in the late
seventies) with the RISE/LaRa data, the ambiguity between the secular and quadratic terms
could be alleviated, and the quadratic terms detected, but only the recent data will bear
information about nutations, since the accuracy of the older missions in the determination of
nutation amplitudes is weak. If only recent data are used, a correction for the “secular” effect
of the quadratic term in longitude should be introduced in Eq. (69) before determining HD .

We therefore provide a modified version of the solution (named hereafter BMAN20 for
Radio-Science, or BMAN20RS) which reproduces at best the behavior of the BMAN20
solution, but groups different terms (main periodic terms, Poisson terms, and periodic terms
of period close to the period of the main periodic terms) into a more limited subset of nutation
terms that can be observed and identified by RISE and LaRa. Discarding Ė , BMAN20RS
solution writes (in mas, and T is the time measured in thousands of years from J2000)

ψ = ψ0 − (7.6083 ± 0.0021)106 T − (14353.7 ± 4.0)T 2 + �ψ, (85a)

ε = ε0 + (2007.5 ± 0.6) T 2 + �ε, (85b)

α = α0 − (3.90940 ± 0.0011)106 T − (5096.0 ± 1.4) T 2 + �α, (85c)

δ = δ0 − (2.21882 ± 0.0006)106 T − (5648.2 ± 1.6) T 2 + �δ. (85d)

The periodic terms �ψ , �ε, �α, �δ are given in Table 11. Table 11 also includes the
pro/retrograde representation of the periodic terms. The J2000 epoch values are

ψ0 = 35◦.4975258 ± 0◦.0000043, (86a)

ε0 = 25◦.1918197 ± 0◦.0000026, (86b)

α0 = 317◦.6811155 ± 0◦.0000037, (86c)

δ0 = 52◦.8863525 ± 0◦.0000023, (86d)

see Sect. 3.4.3. The uncertainties on α0 and δ0 are obtained as in Eqs. (24a, 24b) from the
uncertainties on ε0 and θ0 taken from Konopliv et al. (2016). The uncertainty on the other
terms of the solution is±0.03% and mainly results from the uncertainty on the scaling factor
HD , which results itself from the uncertainty of ±0.03% on the measured precession rate
by Konopliv et al. (2016). The uncertainties are not indicated in Table 11, for the sake of
conciseness. Only the geodetic term is not affected by this uncertainty, as it does not depend
on HD .

The periodic terms have been constructed as follows. Since the expected precision on the
nutation amplitude measurements with RISE and LaRa is a few mas (Dehant et al. 2020;
Péters et al. 2020; Le Maistre et al. 2020), only the satellite terms and the largest main
solar terms are selected. The selected term with the smallest amplitude is the 6th-annual
term (0.9mas in longitude, likely just below the detection limit). The satellite terms are
taken without modification in the modified solution. The period of the main solar terms
are harmonics of the revolution period of Mars. The 5th-annual and 6th-annual terms are
taken from BMAN20 without modification. For the quarter, ter, semi, and annual terms,
the corresponding BMAN20 terms are modified to take into account the Poisson series and
other terms of very close periods which cannot be distinguished from the main terms by the
radioscience experiments.
The annual term In the longitude/obliquity representation, we take the main annual solar
term (line 24 in Table 9) to which we add the Poisson annual term (Table 10) evaluated at
J2022 (JD2459581.0), the average epoch of the RISE and LaRa mission duration, to obtain
the modified annual term (in mas):
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�ψ = −282.589 cos Ma − 480.543 sin Ma, (87a)

�ε = 47.955 cos Ma + 11.822 sin Ma. (87b)

The difference with the main annual term of BMAN20 is 1mas in longitude and 0.1mas in
obliquity. We keep the geodetic annual nutation separated from the modified annual term in
the BMAN20RS solution, as it is not proportional to HD , does not depend on the internal
structure of Mars and therefore must not be multiplied by transfer functions in order to
interpret radioscience data.
The semi-annual term We consider the main semi-annual solar term (line 16 in Table 9) and
the Poisson semi-annual term (Table 10) evaluated at J2022, but also the 4 small solar terms
of similar periods (lines 14, 15, 17, and 18 in Table 9).We first rewrite these four terms so that
their sine and cosine phases vanish for t = J2022 (this ensures the best match between the
exact and approximated terms). For instance, for line 15 in Table 9, in longitude, we obtain
(amplitudes in mas, phases in radian)

�ψ = 0.075 cos(−25.113 + 6.68124t) − 0.077 sin(−25.113 + 6.68124t) (88a)

= −0.106 cos(6.68124(t − 22.0014)) + 0.017 sin(6.68124(t − 22.0014)),(88b)

with t , the time in years from J2000. Then, we approximate the frequency by the semi-annual
frequency (2n, with n = Ṁa):

�ψ � −0.106 cos(2n(t − 22.0014)) + 0.017 sin(2n(t − 22.0014)). (88c)

After some trigonometric manipulation, we then obtain

�ψ � 0.038 cos 2Ma + 0.101 sin 2Ma. (88d)

We proceed in the same way for the four terms, both in longitude and obliquity, and add
them to the main and Poisson terms, to obtain the modified term presented in Table 11. The
difference with the main semi-annual term of BMAN20 is 2mas in longitude and 1 mas in
obliquity.
The ter-annual term The procedure is similar to the one used for the semi-annual term. We
consider the main term (line 8 of Table 9), the Poisson term (Table 10), and the two terms
of similar periods (lines 7 and 9 in Table 9). The difference with the main ter-annual term of
BMAN20 is of 0.20 mas in longitude and 0.04mas in obliquity.
The quarter-annual term We only need to consider the main term (line 5 of Table 9) and the
Poisson term (Table 10), just as we did for the annual term. The difference with the main
quarter-annual term of BMAN20 is of 0.07 mas in longitude and 0.03 mas in obliquity.

5 IAU standardmodel for Mars spin axis position

Differently from previous reports, the latest IAU standard model for the right ascension (α)
and the declination (δ) of Mars spin axis includes the periodic variations of the angles along
with the traditional secular terms (Archinal et al. 2018). In this section, we explain why we
consider that the current IAU standard model has no added practical relevance compared to
the previous standard model.

First, the current IAU model is a Fourier series fitted by Kuchynka et al. (2014) to an α/δ

time series derived from theψ/ε nutation model of Konopliv et al. (2006) (see also Jacobson
2010; Jacobson et al. 2018). Inherently to their methods, such solutions obtained from the
fits include a long period (about 70, 000years) terms in α and in δ that have no physical
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significance and that alter the definition of the epoch α (317◦.269 instead of 317◦.681) and
above all of the epoch δ (54◦.432 instead of 52◦.886). In addition, the periods of the terms
in α/δ obtained with the FFT approach are not exactly the same. These differences have
no physical origin. It is easier and more accurate to derive an α/δ model from a given ψ/ε

nutation model by considering the geometrical transformation as described in Sect. 3.4.3.
Second, the ψ/ε nutation model of Konopliv et al. (2006) is derived from the ψ/ε rigid

nutation model of RK79, which was built for the figure axis and not for the spin axis (see
Sect. 3.7), introducing errors of the order of a few mas. Besides, RK79 and Konopliv et al.
(2006) models do not include the nutation terms induced by Phobos and Deimos, which
have amplitudes between 1 and 10mas. They also do not take into account the complex
orbital dynamics of Mars, perturbed by the other planets of the solar system. The solution
BMAN20RS for a rigid Mars defined above would be a more relevant basis to define a α/δ

standard model including periodic terms, assuming that Mars behaves rigidly.
Third, IAU practice is to provide α/δ models without giving uncertainties, assuming that

the provided angle values are representative of their “true” values. Kuchynka’s α/δ and
Konopliv’s ψ/ε models are based on measurements for the epoch values of the angles and
their secular variations and on models for the periodic part. This computed periodic part
is based on a rigid nutation model (RK79) altered by the action of a liquid core, which is
modeled by transfer functions depending on the liquid core amplification factor F and on
the free core nutation period TFC N (see Eq. 16 of Konopliv et al. 2006 or Eq. 12 of Dehant
et al. 2020). The nutation model so obtained by Konopliv et al. (2006) considers unique
values for the nutation parameters (i.e., F = 0.07 and TFC N = −240days). However, the
uncertainties in nutation amplitudes (either in ψ/ε or in α/δ) brought by the uncertainties on
F and TFC N are so large that it is currently pointless to propose one specific value for the
nutation amplitudes that the users would mistakenly assume realistic/representative.

This being said, a IAUmodelwith relevant periodic terms shall be proposed after RISE and
LaRa experiments, which will determine the nutation amplitudes and the core parameters.

6 Discussion and conclusions

Theprecession andnutations ofMars spin axiswill be estimated to an unprecedented accuracy
with the radioscience experiments RISE and LaRa (Folkner et al. 2018; Dehant et al. 2020),
allowing to confirm the presence of a liquid core and to constrain Mars’ interior.

Given the expected precision on the determination of the nutation amplitudes (a few mas,
Dehant et al. 2020; Péters et al. 2020; Le Maistre et al. 2020) and the modifications of the
amplitudes due to the liquid core and tidal deformations (from a fewmas to a few tens of mas,
depending on the core dimensions, Le Maistre et al. 2012, 2020), the existing models for the
nutation of a rigid Mars are not suitable for the interpretation of radioscience measurements,
due to a lack of accuracy and/or inappropriate modeling approximations. For instance, we
have seen that the solution RMAN99 (Roosbeek Martian Analytical Nutations 1999) of
Roosbeek (1999) lacks of internal accuracy due to a too loose computational procedure,
whereas the solution of Reasenberg and King (1979) does not include the effect of Phobos
and Deimos and concerns the axis of figure and not the spin axis.

As the use of those existing models can introduce systematic errors in the determination
of the core properties, we have developed a new model, based on the method of Roosbeek
(1999) and an adequate computational procedure. We have included the effect of different
forcings (by the Sun, Phobos and Deimos, and the other planets of the solar system). We
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have also included the geodetic precession and nutations in the solution. This new model,
called BMAN20 (Baland Martian Analytical Nutations 2020), is based on semi-analytical
developments for the solar and planetary torques, and on analytical solutions for the effect
of Phobos and Deimos and the geodetic precession/nutations. The uncertainty on BMAN20
solution derives in a one to one way from the uncertainty in HD , except for the geodetic
contribution.Amodified version of the solution,more suited for interpretation of radioscience
data, has been derived alongside. Using our new precession/nutation model, we have updated
the values of the scaling factor HD (0.00538017±0.00000148) determined from themeasured
rate of precession in longitude rate (Ψ̇ = −7608.3 ± 2.1mas/yr, Konopliv et al. 2016), and
of the normalized polar moment of inertia C

MR2 (= 0.36367 ± 0.00010). Finally, we have
questioned the relevance of the current IAU standard for the orientation of the spin axis of
Mars which is partially based on assumptions about the unknown characteristics of the core
of Mars.

The RMAN99 recomputed (Table 6), BMAN20 (Tables 9, 10), and BMAN20RS
(Table 11) series are available at https://doi.org/10.24414/h5pn-7n71.
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