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Single-Index Quantile Regression Models
for Censored Data

Axel Bücher, Anouar El Ghouch, and Ingrid Van Keilegom

Abstract When the dimension of the covariate space is high, semiparametric
regression models become indispensable to gain flexibility while avoiding the curse
of dimensionality. These considerations become even more important for incom-
plete data. In this work, we consider the estimation of a semiparametric single-index
model for conditional quantiles with right-censored data. Iteratively applying the
local-linear smoothing approach, we simultaneously estimate the linear coefficients
and the link function. We show that our estimating procedure is consistent and we
study its asymptotic distribution. Numerical results are used to show the validity
of our procedure and to illustrate the finite-sample performance of the proposed
estimators.

1 Introduction

Quantile regression is a very attractive alternative to the classical mean-regression
model based on the quadratic loss. While the latter provides only information about
the central behavior of the data, by varying the quantile level, the former provides
a more complete picture, both in the center and in the tails. At the same time, one

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-73249-3_10) contains supplementary material, which is
available to authorized users.

A. Bücher
Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225
Düsseldorf, Germany
e-mail: axel.buecher@hhu.de

A. El Ghouch
ISBA, UCLouvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium
e-mail: anouar.elghouch@uclouvain.be

I. Van Keilegom (B)
ORSTAT, KU Leuven, Naamsestraat 69, box 3500, 3000 Leuven, Belgium
e-mail: ingrid.vankeilegom@kuleuven.be

© Springer Nature Switzerland AG 2021
A. Daouia and A. Ruiz-Gazen (eds.), Advances in Contemporary Statistics
and Econometrics, https://doi.org/10.1007/978-3-030-73249-3_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73249-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-73249-3_10
mailto:axel.buecher@hhu.de
mailto:anouar.elghouch@uclouvain.be
mailto:ingrid.vankeilegom@kuleuven.be
https://doi.org/10.1007/978-3-030-73249-3_10


178 A. Bücher et al.

does not need to impose restrictive assumptions about the unknown data generating
process. There are many cases where studying the conditional mean is uninformative
compared to the conditional upper or lower quantiles representing more extreme
situations. A nice illustration can be found in Elsner et al. (2008), where the interest
lies in the lifetime-maximum wind speeds of tropical cyclones. The authors found
that trends are near zero for the mean and lower quantiles (median and below), but
are upward for higher quantiles.

With the objective of providing a robust yet easily computable alternative to lin-
ear mean models, Koenker and Bassett (1978) propose a method to estimate a linear
quantile model using the so-called check loss function. This seminal work inspired
many researchers from different fields and the method has been generalized and
adapted to a wide range of statistical applications including fully nonparametric
methods like local-polynomial or spline smoothing; see, e.g., Yu and Jones (1998)
and Koenker et al. (1994). Although a completely nonparametric approach is flexi-
ble, its application requires a large amount of data in order to overcome the curse of
dimensionality. While retaining much flexibility, semiparametric models avoid the
curse of dimensionality by imposing some structure on the model. One such structure
is the single-index model in which one assumes that the objective function depends
linearly on the covariates through an unknown link function. Many widely used para-
metric models can be seen as particular cases of the single-index model. Examples
are the linear regression model and the generalized linear model. In a single-index
model, no matter the number of covariates, the curse of dimensionality is avoided
because the nonparametric part (link function) is of dimension one. This model was
investigated and successfully applied to many objective functions, including the con-
ditional mean and conditional quantiles. For some related papers, see, for example,
Ichimura (1993), Klein and Spady (1993), Härdle et al. (1993), Carroll et al. (1997),
Delecroix et al. (2003), Wu et al. (2010), and Kong and Xia (2012) to cite just some
of the relevant papers.

The majority of the available literature is devoted to the case where the variable
of interest, say Y , is completely observed. This is not the case in many interesting
applications including survival analysis where censoring prevents the direct appli-
cation of “classical” semiparametric methods because instead of observing Y , one
only observes the minimum of Y and a censoring variable. For general results on
(linear) quantile regression within such a setting, see, e.g., Portnoy (2003), Wang
and Wang (2009), and references therein. Compared to the uncensored case, the lit-
erature on single-index models dealing with censoring is very sparse. To the best of
our knowledge, the only paper so far is the one of Christou and Akritas (2019) who
studied a non-iterative approach based on a combination of four local smoothing
estimators: the local Kaplan–Meier estimator for estimating the conditional distri-
bution function of the censoring variable, the nonparametric estimator of Kong et al.
(2013), a Nadaraya–Watson-type estimator for estimating the link function, and a
local-linear estimator for estimating the desired conditional quantile. For the case of
the conditional mean, we refer to Lopez et al. (2013) and the references therein.

In this paper, we study the single-index model for the conditional quantile func-
tion when the data are right-censored. We estimate the parameters of interest by
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constructing a weighted check function in a way similar to the method of El Ghouch
and Van Keilegom (2009). The main difficulties here are the non-differentiability of
the check loss function and the fact that the weight function depends on the censoring
distribution, which is unknown and needs to be estimated and then plugged-in in the
estimating equation. Our proposed local-linear estimation method is based on an iter-
ative procedure involving a

√
n-consistent estimator of the single-index parameters.

In every iteration, we need to maximize a large number of local equations. We derive
the asymptotic properties of the resulting quantile regression function under some
suitable sufficient conditions. The practical performance of the proposed method is
examined via Monte Carlo experiments. The estimator is shown to perform very well
for data of moderate size, even when the percentage of censoring is relatively high.

The remainder of the paper is organized as follows. Section2 describes the estima-
tion procedure. The asymptotic properties such as the consistency and the asymptotic
normality of our semiparametric estimator are obtained in Sect. 3. The problem of
selecting the bandwidth parameter is tackled in Sect. 4. Simulation studies are pre-
sented in Sects. 5, and 6 highlights a brief application to real data. Proofs and technical
lemmas are deferred to an online supplement.

2 Model and Estimation

Suppose that Y is a non-negative response depending on a d-dimensional covariate
X . The object of interest in this paper is the τ th conditional quantile of Y given
X = x , τ ∈ (0, 1), which we denote by Qτ (x). We impose a single-index structure
on Qτ , i.e., we suppose that

Qτ (x) = mτ (x
T β0,τ ), (1)

where mτ : R → R is an unknown smooth link function and where β0,τ is a vector
of unknown coefficients in the unit sphere Sd−1 = {β ∈ R

d : ‖β‖ = 1}, where ‖ · ‖
denotes the Euclidean norm on R

d . For identifiability reasons, we suppose that the
first coordinate of β0,τ is positive. As long as it will not cause any ambiguity, we
suppress the index τ and write m = mτ and β0 = β0,τ . In model (1), estimating Qτ

boils down to estimating m and β0.
For u ∈ R, let ρτ (u) = u{τ − 1(u < 0)} denote the check function. Then, it is

well known that β0 is given by

β0 = argminβ∈RdE[ρτ {Y − m(X T β)}]
= argminβ∈RdE

[
E[ρτ {Y − m(X T β)}|X T β]] . (2)

The expressions E[ρτ {Y − m(X T β)}] and E[ρτ {Y − m(X T β)}|XT β] can be inter-
preted as the expected and the conditional expected loss, respectively.

For the moment, let us suppose that there is no censoring and that we observe
an i.i.d. sample (Xi , Yi )

n
i=1 from (X, Y ). The following procedure for estimating β0

and m(v), where v ∈ R is arbitrary, stems from Wu et al. (2010). The main idea is
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to define an empirical analog of the expected loss in (2), which can be minimized
subsequently. Let β ∈ Sd−1 be given. Then, assuming that m is sufficiently smooth
and that XT

i β is close to v, a Taylor expansion yields

m(X T
i β) ≈ m(v) + m ′(v)(XT

i β − v) = a + b(XT
i β − v),

where a = m(v) and b = m ′(v). Thus,

n∑

i=1

ρτ

{
Yi − a − b(XT

i β − v)
}

K {(X T
i β − v)/h} (3)

with some kernel function K and a bandwidth h represents an empirical analog of
the conditional expected loss in (2). Note that, for given β = β0, minimizing (3) with
respect to a and b yields oracle estimators for m(v) and m ′(v), respectively. To get
an empirical analog of E[ρτ {Y − m(X T β)}], we need to average (3) over v. Hence,
setting v = v j = XT

j β, we obtain

n∑

j=1

n∑

i=1

ρτ

{
Yi − a j − b j (XT

i jβ)
}
wi j (β), (4)

where Xi j = Xi − X j and where

wi j (β) =
{

n∑

i=1

K

(
X T

i jβ

h

)}−1

K

(
X T

i jβ

h

)

.

By minimizing the expression in (4) with respect to (a j , b j )
n
j=1 and β, we obtain

estimators of (m(v j ), m ′(v j ))
n
j=1 and β0. To simplify this minimization problem, Wu

et al. (2010) proposed an iterative procedure based on successive estimation of β0

and (m(v), m ′(v)), for any given v ∈ R. In the present paper, we adapt their approach
to the case where the observations of the response variable may be censored.

In the presence of censoring, we do not fully observe the response variables Yi .
Instead, we observe a sequence of i.i.d. triplets (Xi , Zi ,�i )

n
i=1 from (X, Z ,�),

where Z = min(Y, C), � = 1(Y ≤ C), and C ≥ 0 denotes a censoring variable.
Assume for the moment that C is independent of Y given XT β and let FC |XT β

(z|xT β) = Pr(C ≤ z|XT β = xT β) denote the conditional distribution of C given
X T β = xT β. Then, some simple calculations based on the tower property of condi-
tional expectations show that, for any measurable function h : R2 → R,

E[h(Y, XT β) | XT β] = E

[
h(Z , X T β)�

1 − FC |XT β(Z − |XT β)

∣∣
∣∣ XT β

]
. (5)

Therefore, we can write E
[
ρτ {Y − a − b(XT β − v)} | XT β

]
as
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E

[
Q(β)ρτ {Z − a − b(XT β − v)} | XT β

]

= τE
[
Y − Z |XT β

]
+ E

[
{Z − a − b(XT β − v)} [τ

−Q(β)1{Z < a + b(XT β − v)}
] ∣∣∣XT β

]
,

where Q(β) = �/{1 − FC |XT β(Z − |XT β)}. This suggests to replace (3) by either

n∑

i=1

Q̂i (β)ρτ {Zi − a − b(XT
i β − v)}K

(
XT

i β − v

h

)
, (6)

or

n∑

i=1

{Zi − a − b(XT
i β − v)}

[
τ − Q̂i (β)1{Zi < a + b(XT

i β − v)}
]

K

(
XT

i β − v

h

)

,

(7)

with Q̂i (β) = �i/{1 − F̂C |XT β(Zi − |XT
i β)}, where F̂C |XT β is a suitable estimator

of FC |XT β . For instance, one may use the local Kaplan–Meier estimator given by

F̂C |XT β(z|xT β) = 1 −
∏

Zi ≤z

(

1 − Bi (β, x)
∑

Z j ≥Zi
Bi (β, x)

)1−�i

,

with

Bi (β, x) =
K

(
βT Xi −βT x

an

)

∑n
j=1 K

(
βT X j −βT x

an

) ,

and where an is a bandwidth sequence converging to zero as n tends to infinity.
When Bi = n−1 for all i , F̂C |XT β reduces to the classical (unconditional) Kaplan–
Meier estimator, subsequently simply denoted by F̂C . Note that, for any given β,
both (6) and (7) are convex functions. Although the numerical minimization of (6)
may be easier than that of (7), in this work we opt for the latter because, as is
well known, the Kaplan–Meier estimator is very unstable at the right tail and this
problem can be adequately and automatically dealt with through (7). In fact, in (6),
the Kaplan–Meier estimator needs to be calculated for every Zi whereas in (7),
using the fact that Q̂i (β)1{Zi < a + b(XT

i β − v)} = 0 if Zi ≥ a + b(XT
i β − v),

the observations beyond m(xT β) would have no or a very small impact (depending
on the bandwidth) on the resulting estimator. A very similar approach was used in
El Ghouch and Van Keilegom (2009) for the case of one covariate. An approach
based on minimizing a quantity closely related to (7) can be found in He et al. (2013)
for analyzing high-dimensional survival data.
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For simplicity, and to avoid some technical difficulties, in the present paper, we
assume that

(C1) C is independent of Y given X and C are independent of X

(a different assumption, also used for instance by Bouaziz and Lopez (2010)
recently, under which the asymptotic results in this paper remain valid is given
in Remark1 below). In such a case, Y and C are independent given X T β, and
FC |XT β(z|xT β) = Pr(C ≤ z) = FC(z) so that the unconditional Kaplan–Meier esti-
mator can be used. To sum up, we estimate m(v) and m ′(v) by m̂(v, β) = â(v, β)

and m̂ ′(v, β) = b̂(v, β), respectively, where

(â(v, β), b̂(v, β)) = argmina,b∈R
n∑

i=1

{Zi − a − b(XT
i β − v)} [τ

−Q̂i1{Zi < a + b(XT
i β − v)}

]
K

(
XT

i β − v

h

)
, (8)

and where Q̂i = �i/{1 − F̂C(Zi−)} with the unconditional Kaplan–Meier estimator
F̂C . Still, it remains to construct an estimator for β0. To do so, we proceed as in the
uncensored case and define the following empirical analog of (4):

n∑

j=1

n∑

i=1

{Zi − a j − b j (XT
i jβ)}

[
τ − Q̂i1{Zi < a j + b j (XT

i jβ)}
]
wi j (β).

The joint minimization of the resulting expression with respect to (a j , b j )
n
j=1 and β is

complicated and likely to lead to unstable estimates, hence we propose the following
iterative procedure adapted from Wu et al. (2010).

Step 1. Start with an initial estimator β̂(0) of β0 and set βi ter = β̂(0) (see below for a
suitable example on how to obtain β̂(0)).

Step 2. For j = 1, . . . , n, let

(â j , b̂ j ) = argmina,b∈R
n∑

i=1

{Zi − a − b(XT
i jβi ter )}

[
τ −

Q̂i1{Zi < a + b(XT
i jβi ter )}

]
wi j (βi ter ).

Step 3. Using the estimates (â j , b̂ j )
n
j=1, set

β� = argminβ∈Rd

n∑

j=1

n∑

i=1

{Zi − â j − b̂ j (XT
i jβ)}[τ −

Q̂i1{Zi < â j + b̂ j (XT
i jβ)}]wi j (βi ter )

and update βi ter by setting βi ter = sgn(β�
1)β

�/‖β�‖.
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Step 4. Repeat Steps 2 and 3 until the difference between two consecutive estimations
of β is smaller than a given threshold and define the final estimate β̂ by setting
β̂ = βi ter .

Step 5. For any desired index value v ∈ R, estimate m(v) and m ′(v) by m̂(v, β̂) =
â(β̂) and m̂ ′(v, β̂) = b̂(β̂), the latter estimators being defined in (8). For any
desired index value x ∈ R

d , estimate Qτ (x) by m̂(xT β̂, β̂).

Step 1 requires an initial estimator for β0. We propose to use an estimator adapted
from the OPG (outer product of gradients) method in the mean-regression context in
Xia et al. (2002). The method requires that X has a density, and the underlying idea is
as follows: For any x ∈ R

d , we have ∂m(xT β0)/∂x = m ′(xT β0)β0. Hence, the partial
derivatives of m(xT β0) with respect to x are parallel to β0. For j = 1, . . . , n, let b j =
m ′(XT

j β0)β0. One can easily see that the (standardized) eigenvector corresponding
to the largest eigenvalue of Vn = n−1 ∑n

i=1 b j bT
j is given by β0, which suggests

to estimate β0 by replacing b j in the definition of Vn by suitable estimators b̂ j ,
that is, we define β̂0 as the (standardized) eigenvector corresponding to the largest
eigenvalue of V̂n = n−1 ∑n

j=1 b̂ j b̂T
j . For the estimation of b j , we propose to use the

local-polynomial estimators

(â j , b̂T
j ) = argmin(a,bT )∈Rd+1

n∑

i=1

{Zi − a − bT Xi j }
[
τ − Q̂i1{Zi < a + bT Xi j )}

]
K (Xi j/h),

where K denotes a d-dimensional kernel.

3 Asymptotic Results

In this section, we present asymptotic results for the final estimator m̂ = m̂(β̂) arising
from Step 5 of the procedure described in the preceding section. In particular, we
show that the estimator for m does not depend on the specific form (or asymptotic
distribution) of the parametric estimator β̂, as long as it is

√
n-consistent for β0 . In

a non-censored case, the latter assumption has for instance been shown for a similar
recursively defined estimator in Kong and Xia (2012). In a censored case, it is satisfied
for the maximum likelihood estimator proposed by Strzalkowska-Kominiak and Cao
(2013) and for the regression-like semiparametric estimator of Bouaziz and Lopez
(2010).

We begin by describing technical conditions. For fixed v ∈ R, suppose that there
exist neighborhoods Uβ0 ,Um(v), and Uv of β0, m(v) and v, respectively, such that:
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(A1) The kernel K is a density function on R which is symmetric around 0, has a
compact support denoted by supp(K ), and is differentiable with a bounded
derivative.

(A2) The function m is twice continuously differentiable on Uv with bounded
derivatives.

(A3) (i) The support of X , denoted by supp(X), is contained in a compact subset
DX of Rd .
(ii) For any β ∈ Uβ0 , the random variable XT β has a density fXT β . The func-
tion Uβ0 × Uv → R, (β, u) 
→ fXT β(u) is bounded and Lipschitz-continuous
at (β0, v). In addition, fXT β0(v) > 0.

(A4) (i) The conditional distribution FY |X of Y given X has a conditional density
fY |X (·|·) that is bounded on Um(v) × supp(X).
(ii) For any β ∈ Uβ0 , the conditional distribution of Y given X T β has a condi-
tional density fY |XT β(·|·). The function Uβ0 × Um(v) × Uv → R, (β, y, u) 
→
fY |XT β (y | u) is bounded and Lipschitz-continuous at (β0, m(v), v). In addi-
tion, fY |XT β0(m(v) | v) > 0.
(iii) Uβ0 × Um(v) × Uv → R, (β, y, u) 
→ fY |XT β(y|u) is partially differen-
tiable with respect to y and the derivative, denoted by f ′

Y |XT β
(y|u), is bounded.

(A5) The point v ∈ R satisfies FZ {m(v)} < 1, where FZ denotes the c.d.f. of Z .

Before we formulate the main results, let us introduce some additional nota-
tions. For β ∈ R

d and u ∈ R, let Xi (β, u) = (
1, (X T

i β − u)/h
)T

, Zi (β, u) = Zi −
m(u) − m ′(u)(XT

i β − u), and Ki (β, u) = K {(X T
i β − u)/h}. Moreover, set K̄ j =∫

R
u j K (u) du and K̄ ′

j = ∫
R

u j K 2(u) du for j ∈ {0, 1, 2, 3} and let

K̄ =
(

K̄0 K̄1

K̄1 K̄2

)
, K̄ ′ =

(
K̄ ′

0 K̄ ′
1

K̄ ′
1 K̄ ′

2

)
.

For some constant M > 0, let UM denote the closed d-dimensional ball of radius
M with center 0, i.e., UM = {γ ∈ R

d : ‖γ ‖ ≤ M}. Finally, for β ∈ R
d and u ∈ R

(usually considered to be close to β0 and v), let

Mn(u, β) = √
nh

{(
m̂(u, β) − m(v)

h{m̂ ′(u, β) − m ′(v)}
)

− h2

2
K̄ −1

(
K̄2

K̄3

)
m ′′(v)

}

with m̂(u, β) and m̂ ′(u, β) as defined in (8).

Theorem 1 Suppose that (C1) is met and that h = h(n) → 0 satisfies limn→∞ nh3 =
∞ and nh5 = O(1) as n → ∞. Then, for any v ∈ R that satisfies conditions (A1)–
(A5) and for any M > 0,

sup
(γ,κ)∈UM ×[−M,M]

∥∥
∥∥Mn(v

κ
n , βγ

n ) − V −1 1√
nh

n∑

i=1

[
τ −

Qi1
{
Zi < m(X T

i β0)
} ]

× Xi (β0, v)Ki (β0, v)

∥∥
∥∥ = oP(1),
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where vκ
n = v + κ/

√
n and β

γ
n = β0 + γ /

√
n, where Qi = �i/{1 − FC(Zi−)} and

where V = [
fY |XT β0

{m(v) | v} fXT β0(v)
]
K̄ .

Note that the sum between the norm signs in Theorem1 consists of centered
summands as a consequence of (5). The uniformity in γ and κ in Theorem1 is
essential for the next corollary which can be regarded as the main result of this
paper: it states that the final estimator for Qτ (x) in Step 5 is asymptotically normally
distributed.

Corollary 1 Let β̂n ∈ Sd−1 be an estimator for β0 such that γ̂n = √
n(β̂n − β0) =

OP(1). Suppose that (C1) and the conditions on the bandwidth of Theorem1 are met.
Then, for any v ∈ R that satisfies conditions (A1)–(A5) and for any x ∈ R

d such that
v = xT β0 satisfies conditions (A1)–(A5),

Mn(v, β̂n) � N2
(
0, σ 2(v)K̄ −1 K̄ ′ K̄ −1

)
, and

Mn(x
T β̂n, β̂n) � N2

(
0, σ 2(xT β0)K̄ −1 K̄ ′ K̄ −1

)
,

where, for any v ∈ R,

σ 2(v) = �β0{m(v) | v} − τ 2

f 2
Y |XT β0

{m(v) | v} fXT β0(v)

and where, for any u, v ∈ R,

�β0(u | v) = E

[
1(Y < u)

1 − FC(Y−)

∣∣∣ XT β0 = v

]
.

Remark 1 The results of Theorem1 and Corollary1 remain valid provided we
replace Condition (C1) by the following Condition (C2) originating from Stute
(1993). Note that it is also imposed in Bouaziz and Lopez (2010).

(C2) � is independent of X given Y and C are independent of Y .

We also refer to Lopez et al. (2013), where assumption (C1) is replaced by a weaker
assumption involving independence between C and Y conditional on g(X) for some
function g. For the sake of brevity, we omit further details.

4 Bandwidth Selection

The practical performance of any nonparametric regression technique depends cru-
cially on the choice of smoothing parameters. A (theoretical) local optimal band-
width can be derived from the result in Corollary1 by minimizing the asymptotic
mean squared error of m̂(v, β̂) with respect to h, yielding



186 A. Bücher et al.

hopt
n = hopt

n (v) =
{

σ 2(v)K̄0

{m ′′(v)}2 K̄ 2
2

}1/5

n−1/5.

Unfortunately, this expression is not directly applicable in practice, since it depends
on several unknown quantities. Even in the simpler non-censored case, the deriva-
tion of reliable estimators for the respective quantities is delicate. For that reason,
alternative procedures for the bandwidth selection have been proposed, see, e.g.,
Yu and Jones (1998) or Kong and Xia (2012) for procedures relying on the mean-
regression case. However, these procedures are not directly applicable in the presence
of censoring. For that reason, we propose to use the following leave-one out cross-
validation (CV) procedure (see also Zheng and Yang 1998; Leung 2005; El Ghouch
and Van Keilegom 2009):

(CV1) For a given h, estimate β̂ = β̂(h) as in Steps 1–4.
(CV2) For any j = 1, . . . , n, set m̂− j,h(XT

j β̂) = â− j (XT
j β̂, β̂), where, for any v ∈

R and β ∈ Sd−1,

(
â− j (v, β), b̂− j (v, β)

) = argmina,b∈R
∑

i=1,...,n
i �= j

{Zi − a − b(XT
i β − v)}

× Q̂i,− j
[
τ − 1{Zi < a + b(XT

i β − v)}] K

(
X T

i β − v

h

)

denotes the estimator based on all observations except the j th.
(CV3) For j ∈ {1, . . . , n} such that � j = 1, set ĉv− j,h = |m̂− j,h(XT

j β̂) − Z j |. Let
CV (h) denote either the median or the mean or the m%-trimmed mean of
that sample (referred to as MAE, MSE, or trimmed MSE in the following).

(CV4) Repeat the first three steps for several bandwidths and set hCV
n = argminh

CV (h).

We consider 10%-trimmed MSE, which, together with the MSE and the MAE, yields
three different criteria.

5 Numerical Results

In this section, we assess the finite-sample performance of the 5-step estimator for
m(v). For reasons of numerical stability, we constrain all minimizations to a compact
set [−M, M]p, with M = 10. Additionally, we stop the algorithm in Step 4 after
atmost 25 iterations, if convergence has not occurred until then. We perform 500
repetitions for two different models, two sample sizes (n = 200, 400), two levels
of censoring (on average 25% and 50%), three values of τ ∈ {0.3, 0.5, 0.7}, two
dimensions d ∈ {3, 6} and 61 values for v ∈ {0.05, 0.075, 0.1, . . . , 1.525, 1.55}. We
consider 15 different bandwidths h ∈ {0.1, 0.15, . . . , 0.75, 0.8}. Additionally, we
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Fig. 1 Left: True quantile curves for τ = 0.1, 0.3, 0.5, 0.7, 0.9 (black curves, in increasing order)
and a simulated sample of size n = 400 (for d = 3, with 25% censoring on average). Right: Proba-
bility of censoring v 
→ Pr(Y > C | XT β0 = v) for Model 1. The average probability of censoring
Pr(Y > C) is 25% for the black curve and 50% for the gray curve

investigate the performance of the cross-validation method described in Sect. 4. The
considered models are as follows.

Model 1 (location-scale model, censoring independent of the covariate)

For i = 1, . . . , n, we consider

Yi = 3 + 1
2 exp(XT

i β0) + {1 + 3
4 sin(2π XT

i β0)} εi , Xi = (Xi,1, . . . , Xi,d),

where Xi, j is i.i.d. uniform on (0, 1) for i = 1, . . . , n and j = 1, . . . , d, and where
εi is i.i.d. normal with mean 0 and variance 0.25. During the simulation study,
we consider the vector β0 = ‖(d, d − 1, . . . , 1)‖−1

2 × (d, d − 1, . . . , 1). Note that
the support of XT β0 is the interval [0, ‖β0‖1], with ‖β0‖1 = 1.60 for d = 3 and
‖β0‖1 = 2.20 for d = 6. The τ th conditional quantile of Yi given Xi = x is given by

Qτ (x) = qτ

(
1
2 exp(xT β0),

1
2 {1 + 3

4 sin(2πxT β0)}
)
, (9)

where qτ (μ, σ ) denotes the τ th-quantile of the normal distribution with mean μ

and standard deviation σ . The curves are depicted in the left panel of Fig. 1, for
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

The censoring variables are i.i.d. normal with mean μC and variance σ 2
C = 1,

independent of Xi and εi . We consider two choices for the mean μC , which result
in either a proportion of censoring of about 50% or of about 25% (for instance, for
d = 3 the choices are μC = 4.2 to obtain a proportion of censoring of about 50%,
and μC = 5 for proportion of censoring of about 25%). A sample of size n = 400
with d = 3 and 25% censoring is depicted in the left panel of Fig. 1.

Note that the probability of censoring given X = x is given by
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Fig. 2 Left: True quantile curves for τ = 0.1, 0.3, 0.5, 0.7, 0.9 (black curves, in increasing order)
and a simulated sample of size n = 400 (for d = 3, with 25% censoring on average). Right: Proba-
bility of censoring v 
→ Pr(Y > C | XT β0 = v) for Model 2. The average probability of censoring
Pr(Y > C) is 25% for the black curve and 50% for the gray curve

Pr(Y > C | X = x) = �

(
3 + 1

2 exp(xT β0) − μC
√

1 + 1
4 {1 + 3

4 sin(2πxT β0)}2

)
,

where � is the standard normal cumulative distribution function. The corresponding
curves v 
→ Pr(Y > C | X T β0 = v) are depicted in the right panel of Fig. 1 for μC ∈
{4.2, 5} (which, for d = 3, yields a proportion of censoring of about 50% and 25%,
respectively). From these graphs, we expect the estimator m̂(v, β̂) to have worse
performance for large values of v.

Model 2 (location-scale model, censoring depending on the covariate)

We consider the same data generating mechanism for Yi as for Model 1. In particular,
the conditional quantile curves are given by (9).

The censoring variables are i.i.d. normal with mean μC + 1
2 exp(XT β0) and vari-

ance σ 2
C = 1, independent of εi . We consider two choices for the mean μC , which

result in either a proportion of censoring of about 50% or of about 25% (for instance,
for d = 3 the choices are μC = 3 to obtain a proportion of censoring of about 50%,
and μC = 3.8 for proportion of censoring of about 25%). A sample of size n = 400
with d = 3 and 25% censoring is depicted in the left panel of Fig. 2.

The probability of censoring given X = x is given by

Pr(Y > C | X = x) = �

(
3 − μC√

1 + 1
4 {1 + 3

4 sin(2πxT β0)}2

)
.



Single-Index Quantile Regression Models for Censored Data 189

The corresponding curvesv 
→ Pr(Y > C | X T β0 = v) are depicted in the right panel
of Fig. 2 forμC ∈ {3, 3.8} (which, for d = 3, yields a proportion of censoring of about
50% and 25%, respectively). The curves are much flatter than in Model 1, whence
we may expect the estimator to perform similarly throughout the support of XT β0.

The results of our simulation study for the fixed bandwidth case are reported in
Table1 and Figs. 3 and 4. The results in Table1 concern both the performance of
the estimator of β and the estimator of m(v) for various values of v. We state the
minimal MSE (for β̂: the minimal summed MSE over the coordinates of β), over all
15 bandwidth choices h ∈ {0.1, 0.15, . . . , 0.8}, alongside with the value realizing
that minimum. The results in Figs. 3 and 4 illustrate the performance of the estimator
m̂(v) in dependence of the bandwidth parameter h, for a fixed value of v = 0.85.
The reported boxplots concern the empirical squared estimation error over N = 500
simulation runs, and are only reported for d = 3 (the results for d = 6 look very
similar and are not presented here for the sake of brevity).

Overall, the results are as to be expected: for both models, they (greatly) improve
with larger sample sizes and a smaller proportion of censoring. Concerning the
quantile level, the results are in most cases best for τ = 0.5, closely followed by
τ = 0.3 and then τ = 0.7. Despite the fact that the estimator for Model 2 (lower half
of Table1 and Fig. 4) is more complicated (being based on the local Kaplan–Meier
estimator for the censoring distribution), the performance of the estimator is often
better than for the Model 1, in particular for the parametric estimator β̂.

Finally, Table2 shows simulation results on the cross-validation method based on
the 10%-trimmed MSE for choosing the optimal bandwidth as described in Sect. 4.
For the sake of brevity, we only consider Model 1 with d = 6. We measure the quality
of the cross-validation method in terms of the relative efficiency:

RE = MSE(t̂, hgl.opt )

MSE(t̂, hCV
n )

,

where hgl.opt = minh∈{0.1,...,0.8}
{
MSE(β̂, h) + MSE(m̂(0.7), h) + MSE(m̂(1), h)

+ MSE(m̂(1.3), h)
}

and where t̂ ∈ {β̂, m̂(0.7), m̂(1), m̂(1.3)}.
The results in Table2 show that, overall, the cross-validation method works rea-

sonably well but we also noticed that in some cases, the method may lead to unsat-
isfactory results. Therefore more work is needed to develop a better solution for this
challenging problem of bandwidth selection.

6 Case Study

In this section, we fit the single-index quantile regression model to a subset of the
data from the University of Massachusetts AIDS Research Unit IMPACT Study
(called UIS-dataset), available online at the John Wiley & Sons website, ftp://ftp.
wiley.com/public/sci_tech_med/survival. This dataset has been extensively studied

ftp://ftp.wiley.com/public/sci_tech_med/survival
ftp://ftp.wiley.com/public/sci_tech_med/survival
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Table 1 Minimal summed MSE of β and minimal MSE of m̂ for four values of v in
Model 1 (upper half) and Model 2 (lower half), multiplied by 103, over all bandwidths h ∈
{0.1, 0.15, . . . , 0.75, 0.8}, alongside with the bandwidth realizing that minimum. The first and
third quarter are for d = 3, while the the second and fourth quarter are for dimension d = 6

n Cens. τ β̂ hopt m̂(0.4) hopt m̂(0.7) hopt m̂(1) hopt m̂(1.3) hopt

200 0.25 0.3 20.3 0.50 24.4 0.45 3.0 0.25 8.5 0.50 34.5 0.80

200 0.50 0.3 38.1 0.55 32.7 0.55 5.4 0.35 12.3 0.70 60.4 0.80

200 0.25 0.5 17.3 0.75 10.0 0.80 2.5 0.55 6.2 0.80 39.2 0.80

200 0.50 0.5 37.5 0.75 16.0 0.80 4.3 0.70 9.5 0.80 77.8 0.80

200 0.25 0.7 23.3 0.55 22.9 0.50 7.2 0.30 12.1 0.80 75.3 0.75

200 0.50 0.7 68.0 0.55 36.3 0.60 20.0 0.45 24.9 0.80 149.1 0.80

400 0.25 0.3 8.3 0.45 13.0 0.45 1.8 0.30 3.6 0.45 15.7 0.80

400 0.50 0.3 13.0 0.50 17.8 0.50 2.1 0.30 5.1 0.45 28.5 0.80

400 0.25 0.5 7.8 0.75 5.5 0.80 0.9 0.50 2.7 0.80 21.3 0.80

400 0.50 0.5 13.9 0.75 8.8 0.80 1.6 0.50 4.7 0.80 44.1 0.80

400 0.25 0.7 9.6 0.55 14.0 0.45 2.5 0.20 6.0 0.55 35.2 0.70

400 0.50 0.7 23.6 0.55 23.3 0.50 7.1 0.30 12.9 0.75 83.5 0.80

200 0.25 0.3 109.6 0.80 137.1 0.50 5.9 0.55 26.2 0.30 126.0 0.80

200 0.50 0.3 189.5 0.80 174.3 0.80 11.4 0.70 59.1 0.80 170.9 0.10

200 0.25 0.5 60.8 0.80 18.7 0.80 7.9 0.80 22.1 0.75 40.4 0.80

200 0.50 0.5 132.4 0.80 30.0 0.80 21.7 0.80 51.7 0.80 108.4 0.80

200 0.25 0.7 67.4 0.80 73.1 0.55 21.2 0.30 27.9 0.80 33.0 0.80

200 0.50 0.7 163.5 0.75 66.2 0.55 63.0 0.40 87.2 0.80 98.3 0.45

400 0.25 0.3 45.4 0.30 75.6 0.50 3.0 0.60 4.7 0.25 47.4 0.25

400 0.50 0.3 94.3 0.80 111.7 0.45 3.9 0.60 17.0 0.40 106.0 0.80

400 0.25 0.5 28.2 0.80 11.6 0.80 3.7 0.70 9.0 0.45 18.3 0.80

400 0.50 0.5 61.4 0.80 14.4 0.80 7.0 0.80 18.7 0.35 39.1 0.80

400 0.25 0.7 32.0 0.80 47.2 0.45 7.7 0.20 10.7 0.80 16.8 0.80

400 0.50 0.7 82.9 0.80 48.9 0.50 18.7 0.25 31.0 0.55 41.8 0.80

200 0.25 0.3 17.1 0.45 20.9 0.50 3.0 0.30 7.6 0.45 28.6 0.80

200 0.50 0.3 26.2 0.50 26.7 0.60 4.0 0.35 10.5 0.50 43.9 0.80

200 0.25 0.5 13.7 0.80 12.4 0.80 2.1 0.60 5.6 0.80 24.9 0.80

200 0.50 0.5 23.7 0.75 21.0 0.80 3.5 0.65 8.4 0.80 46.4 0.80

200 0.25 0.7 16.1 0.55 32.1 0.45 5.7 0.30 8.2 0.80 42.5 0.80

200 0.50 0.7 32.2 0.60 57.0 0.50 10.2 0.45 14.7 0.75 87.1 0.80

400 0.25 0.3 7.4 0.40 11.2 0.50 1.5 0.20 3.1 0.40 11.6 0.80

400 0.50 0.3 11.0 0.40 15.1 0.55 2.3 0.25 4.1 0.40 17.3 0.80

400 0.25 0.5 5.9 0.80 8.0 0.70 0.7 0.60 2.3 0.80 13.5 0.80

400 0.50 0.5 10.0 0.70 14.4 0.80 1.3 0.55 3.8 0.80 21.1 0.80

400 0.25 0.7 6.7 0.55 16.8 0.40 2.0 0.20 4.2 0.65 22.3 0.70

400 0.50 0.7 12.8 0.55 36.6 0.40 3.7 0.25 7.7 0.70 49.5 0.75

200 0.25 0.3 74.5 0.30 118.8 0.55 4.8 0.60 11.5 0.30 90.3 0.30

200 0.50 0.3 109.0 0.40 157.9 0.80 7.1 0.45 19.3 0.40 141.8 0.30

200 0.25 0.5 48.4 0.80 20.6 0.80 5.2 0.65 11.5 0.40 27.5 0.80

(continued)
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Table 1 (continued)

n Cens. τ β̂ hopt m̂(0.4) hopt m̂(0.7) hopt m̂(1) hopt m̂(1.3) hopt

200 0.50 0.5 81.3 0.80 31.6 0.80 10.0 0.70 21.4 0.55 44.5 0.80

200 0.25 0.7 47.6 0.80 103.5 0.55 11.9 0.25 13.5 0.80 22.0 0.80

200 0.50 0.7 89.0 0.80 120.5 0.65 26.3 0.80 28.9 0.80 41.7 0.80

400 0.25 0.3 27.5 0.25 61.7 0.50 2.9 0.55 2.9 0.30 26.6 0.20

400 0.50 0.3 39.8 0.30 85.3 0.50 3.3 0.60 4.3 0.35 37.2 0.25

400 0.25 0.5 23.0 0.80 13.8 0.80 2.9 0.70 5.3 0.35 12.8 0.45

400 0.50 0.5 38.3 0.80 17.5 0.80 4.2 0.70 7.1 0.40 18.6 0.50

400 0.25 0.7 23.4 0.80 68.4 0.50 4.5 0.20 6.1 0.80 13.6 0.35

400 0.50 0.7 41.9 0.80 91.0 0.55 10.0 0.80 11.3 0.80 25.3 0.35

Table 2 Relative Efficiency of β̂ and of m̂ in Model 1 (d = 6) based on the 10% trimmed MSE
cross-validation criterion

n Cens. τ β̂ m̂(0.7) m̂(1) m̂(1.3)

200 0.25 0.3 0.88 0.91 0.88 0.65

200 0.50 0.3 0.61 0.45 0.55 0.63

200 0.25 0.7 0.79 0.98 0.72 0.61

200 0.50 0.7 0.72 0.83 0.88 0.64

400 0.25 0.3 0.91 1.04 0.46 0.78

400 0.50 0.3 0.82 0.79 0.99 0.72

400 0.25 0.7 0.81 0.99 0.90 0.76

400 0.50 0.7 0.74 0.87 0.76 0.68

in the textbook Hosmer et al. (2008), see in particular Section 1.3 and the references
therein.

The censored, dependent variable of interest Y is the number of days from admis-
sion of a drug abusing patient until his/her self-reported return to drug use. While the
entire UIS-dataset from the above website consists of (incomplete) data on 628 sub-
jects, we only consider a subsample of size n = 202, consisting of patients receiving
one particular treatment (long term) and stemming from one particular treatment
site (site A). The proportion of censoring, i.e., the proportion of patients that did not
return to drug use, is about 21%. We are interested in the effects of 4 (approximately
continuous) covariates on the dependent variable: length of treatment in days (X1),
age at enrollment (X2), Beck Depression Score at admission (X3), and number of
prior drug treatments (X4).

To preprocess the data, we take logarithms of the number of days to return to drug
use. The four covariates are standardized to have mean 0 and variance 1. Denote the
estimated values of the single-index parameter by β̂(τ ) = (β̂1(τ ), . . . , β̂4(τ ))′ ∈ S3,
where τ ∈ {0.1, 0.3, 0.5, 0.7}. Note that due to the proportion of censoring of about
21%, higher quantiles cannot be expected to give any insight into the relationship
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Fig. 3 Squared estimation error of m̂(v) for v = 0.85 against the bandwidth h in Model 1 for
d = 3. Upper six pictures: n = 200, lower six pictures: n = 400. Note the different scale in the last
column (corresponding to τ = 0.7)

between the dependent variable and the covariates (see also the plot of the observa-
tions in Fig. 5). The bandwidth parameters are chosen based on the 10%-trimmed
MSE-criterion.
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Fig. 4 Squared estimation error of m̂(v) for v = 0.85 against the bandwidth h in Model 2 for
d = 3. Upper six pictures: n = 200, lower six pictures: n = 400. Note the different scale in the last
column (corresponding to τ = 0.7)

The estimated link functions, based on the 10%-trimmed-mean criterion, are
shown in Fig. 5, whereas the estimated single-index parameters are given in Table3.
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Fig. 5 Estimated link function xT β̂ 
→ m̂(xT β̂), for τ ∈ {0.1, 0.3, 0.5, 0.7} (from upper left to
lower right)

Table 3 Estimated single-index parameter for the UIS-dataset

τ β̂1(τ ) β̂2(τ ) β̂3(τ ) β̂4(τ )

0.1 0.999 0.005 −0.040 −0.001

0.3 0.999 0.007 −0.041 0.004

0.5 0.996 0.045 −0.034 −0.073

0.7 0.994 −0.052 −0.095 0.021

The triangles and circles in Fig. 5 are the censored and uncensored observations,
respectively.

The results reveal some interesting features about the effects of the covariates on
the response. First of all, we observe that for all quantile levels under consideration,
the covariate “length of treatment in days’’ seems to have a more important impact
than the three other covariates, since the coefficients of the standardized variables are
very different in size, as can be seen from Table3. As a general conclusion, a longer
treatment period results in a longer time until drug abusers return to drug use. The
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estimated link function is strictly increasing for all quantile levels and non-linear and
strictly concave for τ ∈ {0.1, 0.3, 0.5}. Furthermore, it is interesting to note that the
strength of concavity increases with decreasing quantile. Hence, the marginal utility
of an increase of X1 in its left tail is largest for those patients which generally tend to
return to drug abuse rather quickly (i.e., small quantiles of the response—these may
be considered as the most interesting group of patients).
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