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Abstract— The classical physical optics (PO) formulation of
the scattered fields suffers from the loss of accuracy when the
observation angle widely deviates from the specular direction.
This is even worse in the “forward region,” i.e., for the bistatic
angles between 90◦ and 270◦. The method presented in this article
aims at improving the accuracy of the fields in this region by
finding the currents induced on the nonilluminated part of the
object, where the classical PO assumes zero currents. The pro-
posed approach reformulates the initial problem using equivalent
currents over a domain surrounding the object. The equivalent
currents then act as new sources that induce electrical currents
computed by the classical PO formulation. The computation
of the equivalent problem is accelerated using the multipole
expansion of Green’s function, including appropriate singularity
extraction in the very near field. This approach provides an
error that is significantly lower in the forward direction than the
classical PO formulation. The principles of this new approach
are presented and validated for the 2-D scenarios.

Index Terms— Bistatic radar cross section (RCS), equivalence
theorem, fast multipole method (FMM), forward scattering,
magnetic-field integral equation (MFIE), physical optics (PO),
shadowing.

I. INTRODUCTION

FORWARD scattering plays a significant role in many
wireless applications. For example, it strongly impacts

the power transmitted or received by an antenna located
in the vicinity of a large structure (such as cars or
planes) [1]; it may also be viewed as nearly canceling the
incident field during blockage, for instance, shadowing by
humans in the millimeter-wave indoor communications [2].
Forward-scattering radars are another relevant example, which
exploit the enhanced radar cross section (RCS) of a target
when the angle between the transmitter and the receiver is
close to 180◦ [3]. In these conditions, the RCS is often
computed using Babinet’s principle [4], where the scattered
fields in the forward direction (i.e., for a bistatic angle equal
to 180◦) correspond to the fields radiated by an aperture
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having the same silhouette as the considered target; however,
this method does no longer hold when the bistatic angle
significantly deviates from 180◦.

Therefore, RCS predictions are usually obtained using dif-
ferent numerical methods offering various levels of complexity
and accuracy. Among them, the method of moments (MoM)
provides a very high accuracy, with an error level driven by
the mesh size, at the expense of high memory and computa-
tional complexities [respectively, O(N2) and O(N3) for the
direct solvers, with N the number of discretizing functions].
To overcome those limitations, one may employ the asymptotic
methods, approximating acceptably the scattered fields when
the electrical size of the target is very large. Among the
asymptotic methods, the physical optics (PO) approximation
[5] produces a moderate error level. This method describes
quite precisely a variety of scattering mechanisms, while
offering a complexity that grows linearly with the electrical
surface of the object.

While PO provides a satisfactory estimation of the fields
at an observation point near the specular direction, as well
as for a bistatic angle φ = 180◦, the accuracy on the fields
deteriorates significantly in the forward region [6]–[8], defined
by the bistatic angles φ ∈ [90◦, 270◦]. The reason is that PO
delivers a good approximation of the equivalent currents on
the illuminated part of the surface but lacks accuracy near
the shadow boundary and in the nonilluminated region of the
scatterer where it assumes zero currents. A better estimation
of the currents in those regions is, thus, required for a more
accurate evaluation of the fields in the forward region.

In the literature, the PO currents on the shadowed parts of
the objects are obtained using the iterative PO (IPO) method,
initially developed for the resonances in the open cavities [9].
In a nutshell, the initial PO currents (computed by the classical
formulation) act as new sources inducing in turn the currents
on the parts of the object visible from these new currents.
This has been extended to the general scenarios involving
resonances, such as concave objects [10], [11]: ships [12],
tanks [13], or antennas mounted on large platforms [1]. The
IPO is also used when different objects interact with each
other, so that an object in the forward region of another one
induces currents on the shadow part after reflection on the
surface of the former [14], [15]. In other words, the currents
on the shadowed surfaces computed with IPO correspond to
those induced by a reflection on the surrounding objects (if
any) but do not model the currents due to the diffraction by the
scatterer itself. In particular, IPO cannot compute currents in
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the nonilluminated part of the object when the studied scenario
involves a single scatterer.

Unlike the abovementioned works, the method proposed
here does not require reflections on any other nearby entities
to estimate the currents on the unlit part of an isolated
scatterer. To the best of our knowledge, such capabilities are
not yet available in the literature. Starting from the total fields
obtained with the classical PO, electric and magnetic currents
are computed on a surface enclosing the scatterer by invoking
the equivalence theorem [16, Sec. 3.5]. By superposition,
those currents in turn radiate magnetic fields that induce new
currents computed with the classical PO on the whole object.
We emphasize that the proposed method, as an improved
version of the classical PO, does not truly compete with the
MoM in terms of accuracy.

As for the classical PO formulation, the proposed method is
a current-based approach: once the equivalent currents repre-
senting the scattering problem have been computed, the fields
scattered in any direction of observation are computed easily.
This can, for instance, be done very efficiently using the
method described in [17]. This is not the case for other asymp-
totic approaches, such as the uniform theory of diffraction
(UTD). Using this ray-based method, the diffracted field at
a particular observation point in the shadow region depends
on the incident field where the ray hits the surface and on
the point from which the ray leaves the surface toward the
observation point, thus requiring a new computation for every
pair of source and observation points [18], [19].

This article is structured as follows. Section II illustrates the
limitations of the classical PO formulation based solely on the
electrical currents for the perfect electric conductors (PECs).
As presented in Section III, the proposed method overcomes
those limitations using the electric and magnetic equivalent
currents, accelerated with the fast multipole method (FMM).
The results for PEC bodies in two dimensions are given in
Section IV, where the scattered fields are compared for the
MoM reference solution, the classical PO method, and the
proposed approach. The conclusions and perspectives end this
article in Section V.

II. LIMITATIONS OF THE CLASSICAL PO

PO is a current-based asymptotic method with an O(N)
complexity, where N is the number of discretizing functions
representing an object surface. It is, therefore, very suitable
for the prediction of scattering by electrically large structures,
where the full-wave methods fail due to their computational
complexity. The PO method replaces the physical object by
equivalent currents JPO radiating in free space. Assuming a
PEC, those currents are expressed as

JPO =
{

2 n̂ × Hi on the “lit” region

0, on the “unlit” region
(1)

with n̂ the outward normal of the surface and Hi the incident
magnetic field on the object surface. The “lit” region encom-
passes the part of the surface that is in line of sight with the
source, while the “unlit” region is the complementary part.

Fig. 1. (a) Initial scattering problem. (b) Equivalent problem with PO currents
on the illuminated part of the object.

Fig. 2. Bistatic RCS of the problem depicted in Fig. 1, computed with
MoM (reference) and the classical PO. Bottom: relative error of the scattered
fields.

In the case of a convex object, those regions are defined for a
point r belonging to the surface S as

r ∈ S :
{

k̂i · n̂(r) �0, defines the “lit” region

k̂i · n̂(r) >0, defines the “unlit” region

where k̂i is the wave vector of the incident field. For the
concave objects, or when many objects are involved, different
techniques allow the determination of the “lit” region, such
as geometrical visibility [20], [21] or shadow radiation [11],
[14], [15].

To illustrate the validity and limitations of (1), consider
the problem depicted in Fig. 1. The initial problem consists
of a PEC smooth scatterer [Fig. 1(a)] complying with the
abovementioned criteria and an incident wave (taken here as
a plane wave, although this is not mandatory) propagating
from right to left. The equivalent PO problem is presented
in Fig. 1(b), where the PO currents are computed on the lit
region according to (1).

The bistatic RCS of the considered object is shown in Fig. 2,
where the PO solution is compared with a full-wave MoM
reference. The bottom graph depicts the relative error on the
scattered fields, defined as

Rel. error = 10 log10
|fMoM − fPO|2

|fMoM|2 (dB) (2)
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where fMoM and fPO stand for the scattered field amplitude
obtained with the help of the MoM and the PO solutions,
respectively. One can observe that in the vicinity of the
specular region (around 45◦), the PO solution is in good
agreement with the exact result. The approximation is also
valid in the vicinity of the forward direction (observation angle
close to 180◦). Besides those two aforementioned regions,
the PO approximation in its classical formulation does not
hold, providing an inaccurate estimation of the fields when
the observation angle φ lies in the forward region, roughly
defined as φ ∈ [90◦, 270◦]. Similar effects have been observed
in previous works [6], [22], [23].

These discrepancies arise because the PO does not accu-
rately represent the currents near the shadow boundary [23]
and assumes as null the currents on the backside of the
scatterer. Different approaches have been proposed for the
modeling of those currents on the convex objects. Fock’s the-
ory [24] proposes an asymptotic representation of the currents
near the boundary between the lit and the shadowed region,
within a region of length d = (λρ2/π)1/3, where ρ is the
radius of curvature at the boundary [24]. Although providing
a very accurate solution for simple geometries, this approach
does not enable a uniform description of the currents for
the arbitrary convex shapes [25]. An improvement in the PO
formulation is proposed in [26], where a new normal vector is
defined, which depends on the incident and observation angles,
and thus requires a new computation for every observation
point.

In this work, our goal is to provide a good approximation
of the currents in the shadow boundary, as well as in the deep
shadowed part of the surface, in order to improve the accuracy
of the fields computed behind the scatterer. The method derives
the surface currents flowing on the surface of the scatterer.
The solution depends only on the incident field, as opposed
to other techniques that require the a priori knowledge of the
scattering direction.

III. NEW FORMULATION OF THE PO

A. Update of the Currents via an Equivalent Problem

Let us consider a PEC convex body bounded by a surface
S and with sources (Ji, Mi) located outside S and radiating
the incident fields, as depicted in Fig. 3(a). As a first guess,
the total PO fields Et and Ht are obtained by the classical PO
approximation and are the sum of the incident fields (Ei, Hi)
and the fields radiated by the PO currents [see Fig. 3(a)]. It is
possible to derive an internal equivalent problem [16, Sec. 3.5],
so that the total PO fields inside the equivalence surface S� are
exactly described by the new equivalent electric and magnetic
currents Je and Me (respectively) flowing on S�. Outside S�,
the fields are set as null [see Fig. 3(b)], so that the equivalent
currents are computed as

Je = n̂� × (0 − Ht) (3)

−Me = n̂� × (0 − Et). (4)

The electric and magnetic fields Ee, He radiated by
the equivalent currents defined above are computed as

Fig. 3. Different steps for updating the PO currents. Magnetic currents
(double arrows) exist only on the equivalence surface S�, while the original
surface S only supports the electric currents (simple arrow). (a) Initial
problem. (b) Equivalent problem. (c) Re-radiation on the surface. (d) Updated
currents.

follows [27, Sec. 3.4]:
Ee = − jωμ

(
A + 1

k2
∇∇ · A

)
− ∇ × F (5)

He = ∇ × A − jω�

(
F + 1

k2
∇∇ · F

)
(6)

where A and F are, respectively, defined by

A =
∫

S�
JeG(r, r�)dS� (7)

F =
∫

S�
MeG(r, r�)dS�. (8)

In (5) and (6), μ is the vacuum permeability, � is the vacuum
permittivity, j is the imaginary unit, ω = 2π f , where f is the
frequency, k = 2π/λ is the wavenumber, r is the observation
point coordinate, r� is the source coordinate and belongs to
S�, and G(r, r�) = −( j/4)H (2)

0 (k|r − r�|) is 2-D Green’s
function. The differential operators apply on the observation
coordinates. Full derivation for a TM incident wave is provided
in Appendix A.

The current distribution can be represented as a weighted
sum of basis functions f i with weights ji

e and mi
e, so that (3)

and (4) are now read as

Je =
∑

i

ji
ef i (9)

Me =
∑

i

mi
ef i . (10)

Among different types of basis functions, the pulse basis
functions are used in this article and are defined as

fi(l) =
{

1, l i ≤ l ≤ l i+1

0, elsewhere
(11)

where l corresponds to a coordinate along the object boundary.
The new electric currents J� on the object are then computed

as follows: each elementary electric and magnetic current
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Ji
e and Mi

e associated with basis function i on S� radiate a
magnetic field through (6) on Svis(i), defined as the portion
of S that is visible from the source basis function i . This
process is illustrated in Fig. 3(c), where one can observe that
Svis(i)

⋂
Svis(i+1) �= ∅. The modified electric currents J� on

Svis(i) are then computed as

J�vis(i) = 2 n̂ × Hvis(i)
e (12)

where He stands for the magnetic field (6) re-radiated by the
equivalent currents. The contributions from each portion of
S� are added up, thus providing modified electric currents
on the whole surface of the object [Fig. 3(d)]. Redistributing
the incident source on an equivalence surface enclosing the
scatterer allows one to illuminate the latter from every angle,
thereby also illuminating the shadowed zone.

In [15], electric and magnetic currents are also used for
the PO calculations. The modified PO electric and magnetic
currents extend over the whole structure, regardless of the
visible or shadowed regions, producing nearly zero fields in
the deep shadow behind the scatterer. This approach bypasses
any visibility testing procedure for the isolated objects or
the multiple scattering scenarios. This is different from our
approach, for which the electric and magnetic currents are
located on an equivalence surface surrounding the object and
illuminate the shadowed part of it.

B. Acceleration Through Multipole Expansion

Obtaining the equivalent currents requires the computation
of the total fields from the initial PO problem [see (5) and
(6)]. This operation is the bottleneck of the proposed method;
if it is performed naively, the computational complexity is
O(M N), with (M, N) the number of basis functions on S and
S�, respectively. The number of operations is large, since the
standard PO approximation is valid for the objects conforming
to k R � 1. This difficulty is addressed with the help of
the FFM [28]. This method and its multilevel implemen-
tation [multilevel fast multipole algorithm (MLFMA)] [29]
are usually employed in an MoM context for reducing the
computation time and the memory requirement by speeding up
the matrix-vector products, enabling the analysis of scattering
by large structures [30]–[32].

In this article, the FMM speeds up the computation of (5)
and (6). This starts from writing Green’s function between
a basis function located at a point rn near rn� and a testing
function located at a point rm near rm� in the 2-D case as [33]

G(rm, rn) = 1

2π

∫
C

P �(rn�, α̂) · T (rn�m� , α̂) · P(rm� , α̂) dC

(13)

P �(rn�, α̂) = exp( jkα̂ · rnn�) (14)

P(rm� , α̂) = exp(− jkα̂ · rmm�) (15)

where C is the unit circle, α̂ is a vector pointing on C from
its center, and T (rm�n�, α) is the translation operator defined in
Appendix B. Other variables in (13) are defined in Fig. 4.

Equation (13) suggests that all the interactions between two
groups of basis functions whose centers are far from each
other (typically more than one wavelength) are expressed as

Fig. 4. Geometry of the multipole expansion of 2-D Green’s function. Gray
triangles represent the discretizing functions and black triangles represent the
chosen basis and testing functions. The dashed boxes represent the border of
the FMM groups, with centers’ positions rm� and rn� .

a product between the radiation patterns of the transmitting
(14) and receiving (15) groups, and a translation operator
that depends on the relative positions between the centers of
the groups. Once the radiation patterns of the transmitting
and receiving groups have been computed, one can rapidly
obtain all M N interactions between the N basis functions
of the transmitting group centered at rn� and the M test-
ing functions of the receiving group centered at rm� . Doing
so, the computational complexity reduces from O(N2) to
O(N3/2). For more details on the FMM, the reader is referred
to [27], [28], [33], and [34]. The partial derivatives of Green’s
functions involved in the computation of the fields in (5) and
(6) can also be decomposed with the FMM, and we derive
them in Appendix C.

The multipole expansion is valid for the transmitting and
receiving groups that are “far” from each other (Appendix B),
typically for rnm > λ. For close interactions, Green’s function
is integrated explicitly as in (5) and (6). Note that when S and
S� are close to each other, the numerical integration of Green’s
function requires a high number of sampling points due to
the singularity of Green’s function and its partial derivatives
at the origin. The computational complexity of this numerical
integration is reduced with an analytical singularity extraction,
as suggested in [35]–[39]. The singular part of the integrand
is subtracted, thus strongly reducing the number of points
required for the numerical integration of the nonsingular part.
This result is added to the analytical integral of the singular
part, which is written as∫∫

I dr�dr =
∫∫

(I − Is) dr�dr︸ ︷︷ ︸
non-singular: numerical

+
∫∫

Is dr�dr︸ ︷︷ ︸
singular: analytical

(16)

where I is the integrand found in (5) and (6) invoking Green’s
function or one of its partial derivatives, and the subscript s
stands for the singular part of I . Singularity extraction for
Green’s function can be found in the abovementioned articles,
and an example for the derivative of 3-D Green’s function
is available in [38]. The singular parts of the derivatives of
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Fig. 5. Cylinder with a circular section under plane-wave incidence. The
PEC surface is represented by the solid line, while the equivalence surface is
represented by the dotted line.

2-D Green’s functions are provided in Appendix D. A similar
derivation is found in [40].

IV. NUMERICAL RESULTS

This section presents the results obtained by the exact
solution (analytical or by a full-wave MoM simulation),
the classical PO approximation, and the proposed method for
various test cases. The given examples consist of infinitely
long cylinders with different convex contours, except for
an attempt for a concave contour. The examples are, thus,
considered as the 2-D problems. Nevertheless, the proposed
method can be generalized to the 3-D problems, as it relies on
the PO, equivalence principle, and FMM, all valid in 3-D. The
excitation comes from a plane wave, although the method is
not restricted to this type of excitation. Except for the cylinder
with a circular cross section (Section IV-A2), the incident
electric field is aligned with the cylinder axis (TM case).
Surfaces are discretized with the pulse basis functions of
maximal length λ/8 for the PO and the proposed method. For
the MoM solution, the surface is sampled at λ/15. Except for
the cylinder with a circular section that admits an analytical
solution, other reference solutions are computed with the MoM
code.

A. Circular section

1) TM Polarization: As a first example, we consider the
cylinder with a circular section of radius R = 5λ represented
in Fig. 5, with the electric field polarization parallel to the
cylinder axis +ẑ (TM case) propagating toward −x̂ . The
equivalence surface S� is also represented and has the same
shape as the cylinder, with a radius R� = R + 	, with 	 =
λ/10. The impact on this parameter will be discussed later
(Section IV-A3). This canonical problem admits an analytical
solution for the surface currents, given by [16, Sec. 5.9]

Jz = −2

ωμπ R

∞∑
n=−∞

j−ne jnφ

H (2)
n (k R)

. (17)

The comparison among the exact series solution (17), the stan-
dard PO formulation, and the proposed approach (named MPO
in the following figures) is displayed in Fig. 6. It is observed
that the MPO solution provides a good approximation of the
currents near the shadow boundary [24] (the boundary between
the lit and unlit regions), where the PO solution starts to
deteriorate. Note that for the parts of the scatterer located in the
deep lit region, the PO provides a slightly better approximation

Fig. 6. Magnitude of the currents obtained from three different methods
for a TM polarization. MPO(2) stands for the solution obtained with the
proposed method after two iterations. Inset: zoomed-in view around the
shadow boundary.

Fig. 7. Normalized far-field radiation pattern of the cylinder under TM
incidence in the forward region φ ∈ [90◦, 270◦].

of the MoM currents (inset of Fig. 6), although the simulation
results show that this does not have a significant impact on
the accuracy of the scattered fields.

The normalized far-field radiation pattern is illustrated
in Fig. 7. In the exact backscattering direction (φ = 0◦),
the PO (as well as MPO) matches with the exact solution [22].
The fictitious zeros appearing with the PO solution around the
forward region [periodically located at φ = π ± n(λ/(2R))]
are reduced by the proposed method.

2) TE Polarization: Let us now consider the same problem
of Fig. 5 with the electric field aligned with −ŷ and still
propagating toward −x̂ (TE case), with the same dimension
parameters. The analytical solution for the surface currents is
given as [16, Sec. 5.9]

Jφ = 2 j

ωμπ R

∞∑
n=−∞

j−ne jnφ

H (2)�
n (k R)

. (18)

From Fig. 8, one can observe that the modified PO approach
smoothens the abrupt current transition between the lit and
unlit regions, as obtained by the classical PO, which assumes
the magnitude of the currents is constant on the illuminated
region. The comparison between the radiation patterns is
presented in Fig. 9, where the contribution of the proposed
method is quite obvious in the forward region.

3) Impact of the Parameter 	: The proposed method relies
on a single parameter 	 that corresponds to the distance
between the object and the surface on which the intermediate
equivalent currents are computed. The authors observed that
the smaller the 	, the better the approximation of the currents.
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Fig. 8. Magnitude of the currents for the TE polarization.

Fig. 9. Normalized far-field radiation pattern of the cylinder under TE
incidence in the forward region (φ ∈ [90◦, 270◦]).

Fig. 10. Cylinder with an elongated section under plane-wave incidence (TM
case).

Nevertheless, one should ensure that, on the one hand, at least
one basis function of S is visible by each discretizing function
on S�. That implies that if S and S� are too close to each
other, the spatial sampling of the surface should be increased,
thus increasing the computation time and the memory required
for the computation of the near-field interactions. On the
other hand, when a pair of basis functions on S and S� are
very close, despite singularity extraction, a larger number
of integration points is required for the computation of the
equivalent currents due to the singular behavior of Green’s
function for small k|r − r�| (see Section III-B). As a rule of
thumb, choosing the distance parameter as 	 ≈ size l of the
basis functions is a good tradeoff between the accuracy and
the computational complexity.

B. Elongated Cylinder

The second example is illustrated in Fig. 10. The section of
this cylinder corresponds to two half disks of radius R = 5λ
connected by a rectangle of length L = 10λ and width 2R.
This is an example of interest, since the initial PO currents are
the same as that in the problem analyzed in Section IV-A1.

Fig. 11. Current distributions for the problem of Fig. 10 (TM case).

Fig. 12. Normalized far-field radiation pattern of the elongated cylinder (R =
5λand L = 10λ) under TM incidence in the forward region (φ ∈ [90◦, 270◦]).

Indeed, the PO currents are assumed null if n̂ · k̂i = 0 (i.e.,
the surface is parallel to the incident propagation vector). The
surface currents are displayed in Fig. 11. The modified PO
solution approximates quite accurately the currents on the flat
part of the object, within a 0.1 dB absolute error, whereas the
classical PO assumes null currents on that part. The results
for the MPO at iterations 0 and 2 are compared. One can
observe that for iteration 0, the proposed approach induces
an abrupt change in the current distribution, located at the
transition between the flat surface and the shadowed part.
Those current spurts are damped after an additional iteration;
thus, the MPO provides a good approximation of the exact
solution, even for small current intensities. The number of
additional iterations is fixed to 2 (hence, a total of three
iterations, including the initial evaluation), which does not
impact significantly the computation time, as discussed in
Section IV-D. Since the method is based on the tangent-plane
approximation (the same applies for the classical PO), it is
not expected that more iterations yield convergence toward
the exact solution.

The radiation pattern corresponding to this problem in the
forward region is provided in Fig. 12. The fields radiated by
the PO solution are the same as those presented in Fig. 7, since
the PO current distribution is the same for both examples. One
can conclude that the proposed approach efficiently deals with
the curvature discontinuities [41] and the nose-on illuminations
for the strongly elongated bodies, where the standard PO
fails [42]. The radiation pattern of a magnified version of the
problem (R = 50λ, L = 100λ) is also provided in Fig. 13.
This shows that the proposed PO approach also contributes to
a better estimation of the scattered fields for larger problems.
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Fig. 13. Normalized far-field radiation pattern of the elongated cylinder
(R = 50λand L = 100λ) under TM incidence in the forward region. For a
better visibility, the azimuth observation angle is limited to φ ∈ [165◦, 195◦].
Inset: zoomed-in view of the radiation pattern for φ ∈ [180◦, 185◦].

Fig. 14. Cylinder with an elongated section and a concave part under the
plane-wave incidence (TM case).

Fig. 15. Normalized far-field radiation pattern of the elongated cylinder with
a concave part (R = 5λand L = 10λ) under TM incidence in the forward
region (φ ∈ [90◦, 270◦]).
Due to its large dimensions, the reference solution of this
problem has been computed by an MoM-FMM approach.

A variation in this problem is illustrated in Fig. 14, where a
concave corner has been added to the half-circle facing the
incident-wave direction. The angle of the corner is chosen
large enough in order to reduce the effect of the higher order
reflections. The geometries inducing multiple scatterings may
be analyzed using the proposed approach combined with IPO,
but are outside the scope of this article. The comparison of the
radiation pattern for this example is provided in Fig. 15, with
a noticeable improvement on the accuracy of the scattered
fields in the forward region, despite the little concave part
in the contour, while the classical PO performs better in the
backward region.

C. Fields Behind a Scatterer

The following example analyzes the field distribution in the
vicinity of the scatterer in the forward region. The previous

Fig. 16. Magnitude of the total electric field computed with MoM (TM
case). The scatterer is illustrated in Fig. 10 and represented by a white solid
contour. The dashed lines show the positions of the cuts in which fields are
displayed in Fig. 17.

examples focused on the far-field radiation pattern, while the
proposed improvement in PO also provides a better estima-
tion of the fields in the close vicinity of the scatterer. This
region is of particular interest in different applications, such
as electromagnetic compatibility, stealth technology, antennas
installed on vehicles [1], and weather radar blockage by
wind turbines [43]. The proposed modification of the PO
method greatly improves the accuracy of the fields in the
region behind the object. Let us consider the same example
as before, with the scatterer in Fig. 10. The total electric
field computed with MoM is illustrated in Fig. 16, where the
dashed lines represent different cuts in which the total field
obtained with PO and the proposed approach are compared
in Fig. 17. The proposed method performs better than PO in
the vicinity of the surface, as shown in Fig. 17(a) and (b).
The poor performance of PO is expected due to the specific
geometry of the problem, since the approximation does not
hold for the grazing incidence. The farther the observation,
the better the accuracy of both PO and the proposed method.
However, the method described here significantly outperforms
the classical PO for any presented scenario, with an absolute
error below −30 dB for any observation in the forward region.
The error is higher right behind the scatterer, where the object
obstructs substantially the incident wave, producing a total
field with a very small amplitude.

D. Computational complexity

The computation time required for the proposed approach is
compared with the time required by an MoM-FMM solver. The
reference test consists in computing the currents on an infinite
cylinder with a circular cross section with a TM plane-wave
excitation (see Section IV-A1), for an increasing radius. The
MoM solution is obtained by solving the electric field integral
equation (EFIE), using the pulse basis and testing functions,
and is accelerated with the FMM for a fair comparison
with the method presented in this article. The solution is
computed iteratively using the generalized minimal residual
error (GMRES) [44], for which the classical PO solution is
used as the initial guess. The iterative process is stopped when
the norm of the residual is smaller than 10−5. The number
of iterations is reduced by means of a sparse approximate
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Fig. 17. Comparison of the total electric field of the problem described in Fig. 10 computed by MoM, the classical PO, and the method proposed in this
article (MPO) for a TM incidence. The absolute error in a logarithmic scale is also provided for the six cuts drawn in Fig. 16. (a) X = −5.1λ. (b) Y = 5.1λ.
(c) X = −50λ. (d) Y = 25λ. (e) X = −150λ. (f) Y = 50λ.

inverse (SAI) preconditioner [45], with a nonzero pattern iden-
tical to the near-field impedance matrix. The MPO solution is
taken after three iterations [i.e., MPO(2)], as presented in the
aforementioned examples. For both methods, the size of the
FMM groups is chosen optimally with respect to the FMM

preparation time. This comprises the time Tpat required for
the computation of the radiation patterns of the transmitting
and receiving groups [see (14) and (15)], the time Tnear for
the brute-force computation of the near-field interactions, and
the time Ttrans for the translation operator [see (29)]. Those
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Fig. 18. Total CPU time for both MoM-FMM and MPO for different radii
of an infinite cylinder with a circular section under TM plane-wave incidence.

Fig. 19. Current distribution for a cylinder with a circular cross section and
a radius R = 100λ. The vertical dotted lines correspond to 82◦ and 105◦ .

are computed and stored prior to the iteration process, and
thus do not depend on the number of iterations. Considering
a problem with N unknowns divided among G groups and H
unknowns per group, so that G H = N , the abovementioned
times are expressed as

Tpat = C1 N H (19)

Tnear = C2 N H (20)

Ttrans = C3G2 H = C3
N2

H
(21)

where C1, C2, and C3 are platform- and software-dependent.
The value of H that minimizes the total construction time
Tconstr = Tpat + Tnear + Ttrans is

H =
√

C3

C1 + C2
N

which leads to a computational complexity of O(N3/2). For the
considered problems and the platform used, the constants C1,
C2, and C3 are of the order 10−5, 10−3, and 10−4, respectively.
Once those constants are known, the total CPU time for the
modified PO is estimated using (19)–(21), where the time for
the three iterations is neglected, as it is marginal compared
with the FMM preparation (see Table I). This is not the case
for the MoM-FMM, for which the number of iterations is not
known a priori and the time required for reaching convergence
is not negligible compared with the total computation time.

For each considered radius, the maximal mesh element
size is λ/15 for the MoM-FMM and λ/8 for the proposed

TABLE I

COMPARISON OF THE COMPUTATION TIME FOR THE MOM AND THE MPO,
FOR AN INFINITE CYLINDER WITH CIRCULAR CROSS SECTION AND A

RADIUS OF R = 160λ

approach. To provide a fair comparison, the computation time
is expressed with respect to the electrical size of the scatterer
rather than the number of unknowns. The computations are
performed on Intel i7-4790 at 3.6 GHz CPU workstation with
32 GB RAM. The computation time versus the cylinder radius
is shown in Fig. 18. One can observe that the theoretical
complexity order is met and is the same for both methods,
whereas the MPO has a smaller absolute computation time
than the MoM-FMM (factor 3.4–7.4 depending on the consid-
ered radii). The total CPU time Ttot includes the computation
of the FMM precomputations (i.e., the radiation patterns of
the transmitting/receiving groups and the translation oper-
ator), as well as the computation of the near interaction
impedance matrices for both methods. In addition, the MoM-
FMM solution also requires the building of the preconditioner
and converges after an a priori unknown number of iterations,
usually growing with the electrical size of the object [46]. The
proposed modification of the PO is attractive in this respect,
since the number of iterations is fixed and limited to a maxi-
mum of three, after which no significant improvement on the
accuracy is expected. Those three iterations have a marginal
cost (Titer, with Tsol = Titer · Niter) in terms of computation
time, negligible compared with the FMM preparation and the
near interaction computations. We emphasize that, even when
using the classical PO solution as the initial guess, the MoM-
FMM solution obtained after three iterations is less accurate
than the converged MPO(2). This is observed in Fig. 19, where
the MoM-FMM solution after three iterations starts to deviate
from the exact solution at 82◦, whereas the MPO(2) curve
is in very good agreement with the reference currents up to
105◦. In this region, the nonconverged MoM-FMM currents
are oscillating due to the division of the scatterer in the FMM
subdomains, and those currents are significantly less accurate
than the MPO(2).

Table I summarizes the detailed CPU time for both methods
for a cylinder of radius R = 160λ. It is observed that the time
for one MPO iteration (Titer) is roughly two times larger than
that for an MoM-FMM iteration; that is because the sources
of magnetic field are both electric and magnetic in the case
of MPO, whereas it is purely electric for the MoM-FMM
(assuming a PEC reflector).

V. CONCLUSION AND PERSPECTIVES

A modified version of the classical PO solution has been
proposed in this work. This method provides a more accurate

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on July 07,2021 at 13:33:20 UTC from IEEE Xplore.  Restrictions apply. 



426 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 1, JANUARY 2021

solution where the classical PO fails, namely, in the forward
region, by finding an approximation of the currents induced
on the shadowed part of the object, where the classical
PO assumes zero currents. Those currents are obtained by
illuminating the shadowed part of the scatterer with equivalent
currents flowing on a surface surrounding the object, acting as
the source of the new incident fields.

The simulation results show that the new approach signifi-
cantly enhances the accuracy of the estimated scattered fields
compared with the classical PO, in particular for the obser-
vation points located behind the scatterer. Indeed, the results
displayed in Fig. 17 show that the absolute error in this
region is below −30 dB, which is reduced by 10–15 dB
with respect to the classical PO. In particular, the method
is useful for the nose-on illumination problems or when the
surface exhibits discontinuities (Section IV-B), as well as for a
TE-polarized incident field, where the classical PO delivers a
poor approximation in the nonspecular region (Section IV-A2).

The computation of those equivalent currents is the bottle-
neck of the algorithm and is, thus, accelerated in two ways.
On the one hand, for the interactions between the basis and
testing groups on S and S� that are far from each other,
a lower complexity is reached with the help of the FMM,
which reduces the complexity from O(N2) to O(N3/2), with
N being the number of basis and testing functions. For close
groups, on the other hand, the integration has to be computed
explicitly with (5) and (6). These integrals require a large
number of integration points due to the singularity of Green’s
function for small argument. This constraint is alleviated by
performing an analytical singularity extraction without the loss
of accuracy (Appendix D). The simulation results have shown
that, although the asymptotic complexity of this method is
the same as that for the MoM, smaller absolute CPU times
(factor of order 1/5) are achieved with the proposed method
for scatterers having the same electrical size.

The proposed PO modification has been presented for the
convex and slightly concave isolated objects, although many
practical problems involve internal reflections (e.g., convex
scatterers) or interactions between many scatterers. Such prob-
lems are generally analyzed using IPO [10], [11], [14], where
the method proposed here could provide a better starting point
for the iterative process.

APPENDIX A
EXPLICIT DERIVATION OF THE RADIATED FIELDS

Let assume a 2-D TM problem, where the electric field of
the wave illuminating the object is parallel to the axis of the
PEC cylinder, as depicted in Fig. 1. Under these conditions,
the initial PO currents on the object are given by

JPO = [0, 0, Jz
PO]T, MPO = 0. (22)

The currents Je and Me are obtained with the help
of (3) and (4), where Et = Ei + EPO and Ht = Hi + HPO.
The fields EPO and HPO radiated by the PO initial currents are
computed as

Ez
PO = − jωμ

∫
S

Jz
PO g dS (23)

Hx
PO =

∫
S

Jz
PO

∂ g

∂y
dS (24)

Hy
PO = −

∫
S

Jz
PO

∂ g

∂x
dS. (25)

The equivalent currents on S� are expressed as

Je = [0, 0, Jz
e]T, Me = [Mx

e , My
e , 0]T. (26)

The updated electrical current is obtained with the help
of (12), where the magnetic field He radiated by Je and Me

is expressed as

Hx
e = −

∫
S�

jω�

[
Mx

e g + 1

k2

(
Mx

e
∂2 g

∂x2
+ My

e
∂2 g

∂x∂y

)]
dS�

+
∫

S�
Jz

e
∂ g

∂y
dS� (27)

Hy
e = −

∫
S�

jω�

[
My

e g + 1

k2

(
Mx

e
∂2 g

∂x∂y
+ My

e
∂2 g

∂y2

)]
dS�

−
∫

S�
Jz

e
∂ g

∂x
dS�. (28)

The partial derivatives involved in the above equations are pro-
vided in Appendix D. This example can be derived similarly
for the TE problem.

APPENDIX B
TRANSLATION OPERATOR

The translation operator used here for the FMM interactions
is defined as [33], [47]

T (rn�m� , α) =
P∑

p=−P

H (2)
p (k|rn�m� |)e− j p(φn�m� −α+ π

2 ) (29)

where |rn�m� | is the distance between the centers of the
source and testing groups, α is the angle defining the unit
circle, and φn�m� is the angle of rn�m� along x̂. The error
by multipole decomposition can be reduced by performing
the above summation over larger values of P . Nevertheless,
the series diverges when P is larger than the argument of
Hankel’s function. The divergence is avoided by increasing
the minimal distance between the groups, at the price of a
higher computational complexity. More information regarding
the selection of P is found in [47]. Note that the FMM is only
valid for the groups that are sufficiently far from each other.
If the groups are too close (as a rule of thumb, the distance
between the centers is less than two times the size of the
group bounding box), the multipole expansion does not hold
anymore. This phenomenon is reported as the “violation of
the addition theorem” in [33]. The function T (rmn, α) is a
band-limited function with respect to α, such that it requires
a number of integration points Q ∼ O(P) [33].

APPENDIX C
FMM FOR THE DERIVATIVES OF GREEN’S FUNCTION

Equation (13) corresponds to the multipole decomposi-
tion of 2-D Green’s function, which consists of a product
of the radiation pattern of the source group, a translation
function, and the radiation pattern of the receiving group.
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The multipole decomposition also holds for the derivatives of
Green’s function, and is listed as follows. Since the differential
operators in(5) and (6) apply on the observation coordinates,
the differentiation operates solely on the receiving pattern
of (15)

P(x, y, α̂) = exp(− jkα̂ · rmm�) (30)
∂

∂x
P( · ) = P( · ) jk cos α (31)

∂

∂y
P( · ) = P( · ) jk sin α (32)

∂2

∂x2
P( · ) = −P( · )k2 cos2 α (33)

∂2

∂y2
P( · ) = −P( · )k2 sin2 α (34)

∂2

∂xy
P( · ) = −P( · )k2 cos α sin α. (35)

APPENDIX D
ANALYTICAL SINGULARITY EXTRACTION

We provide here the expression of Green’s function and its
partial derivatives as well as their singular part around the
origin. Thanks to the analytical singularity integration [see
(16)], the number of sampling points is significantly reduced
when the argument of Green’s function gets small. In the
following equations, ρ = |r� − r|, with r = x x̂ + y ŷ and
r� = x � x̂ + y � ŷ :

G(x) = − j

4
H (2)

0 (kρ) (36)

gs(x) = − j

2π
log(kρ/2) (37)

∂

∂x
G = − jk

4
H (2)

1 (kρ)
x � − x

ρ
(38)

∂

∂x
Gs = 1

2π

x � − x

ρ2
(39)

∂

∂y
G = − jk

4
H (2)

1 (kρ)
y � − y

ρ
(40)

∂

∂y
Gs = 1

2π

y � − y

ρ2
(41)

∂2

∂x2
G = jk2

4ρ2

(
(x − x �)2

2

(
H (2)

0 (kρ) − H (2)
2 (kρ)

)
+ (y − y �)2

ρ
H 2

1 (kρ)

)
(42)

∂2

∂x2
Gs = −k2

8π

(
1 + 4

k2ρ2
+ 2 log(kρ)

)
(43)

∂2

∂y2
G = jk2

4ρ2

(
(y − y �)2

2

(
H (2)

0 (kρ) − H (2)
2 (kρ)

)
+ (x − x �)2

ρ
H 2

1 (kρ)

)
(44)

∂2

∂y2
Gs = ∂2

∂x2
gs (45)

∂2

∂x∂y
G = jk

4ρ2

(
k(x − x �)(y − y �)

2

(
H (2)

0 (kρ) − H (2)
2 (kρ)

)
+ (x − x �)(y − y �)

ρ
H 2

1 (kρ)

)
(46)

∂2

∂x∂y
Gs = 4 + k2ρ2

4πρ4
(x − x �)(y − y �). (47)

All results involving Gs can be integrated analytically.
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