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Information theory is a unifying mathematical theory to measure information1

content, key for research in cryptography, statistical physics, and quantum computing [1–2

3]. A central property of information theory is the entropy, a metric quantifying the3

amount of information encoded in a signal [4]. In “Entropy Correlation and Its Impacts4

on Data Aggregation in a Wireless Sensor Network”, Nga et al. propose a general5

entropy correlation model to study the dependence patterns between multiple spatio-6

temporal signals [5]. They derive lower and upper bounds on the overall information7

entropy from only marginal and pairwise entropies, and use these bounds to study8

the impact of correlation on data aggregation, compression, and clustering of signals.9

Replicating these findings, we however show that these bounds were incorrect, over-10

and under-estimating the actual association patterns depending on the data. Deriving11

constraints and bounds on joint entropies is still a computationally difficult task and12

an active field of research [1,6], and new inequalities are regularly found [7–11]. More13

work is likely to be needed in order to develop a simple and general entropy correlation14

model for spatio-temporal signals.15

Nga et al. study a system of m random variables X1, X2, . . . , Xm. They propose a
normalized measure of correlation between two variables Y and Z, defined as:

ρ(Y, Z) = 2− 2
H(Y, Z)

H(Y) + H(Z)
(1)

with H the Shannon entropy [4]. The authors further denote by ρmin = mini 6=j ρ(Xi, Xj)16

and ρmax = maxi 6=j ρ(Xi, Xj) the minimum and maximum correlation between pairs of17

variables; Hmin = mini H(Xi) and Hmax = maxi H(Xi) the minimum and maximum18

individual entropies.19

The general entropy correlation model proposed by the authors rely on two claims,20

both incorrect:21

Claim 1. In equation (13) and section 2.2.2, Nga et al. claim that higher-order correlations are
bounded by pairwise correlations:

∀(i, j, k), ρmin ≤ ρ(Xij, Xk) ≤ ρmax

Claim 2. In equations (16) and (20), Nga et al. use Claim 1 to prove that, for any subset of m
variable, its joint entropy Hm is bounded by:

lm Hmin ≤ Hm ≤ km Hmax

with lm = 2−ρmax
2 (lm−1 + 1), km = 2−ρmin

2 (km−1 + 1), and l1 = k1 = 1.22
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We propose two examples for n = 3 demonstrating that all four inequalities are23

incorrect. In our first example, we obtain ρmin > ρ(Xij, Xk) which contradicts the lower24

bound of Claim 1 and H3 > k3Hmax which contradicts the upper bound of Claim 2.25

Proposition 1. Consider the four i.i.d. discrete random variables Y1, Y2, Y3, Z uniformly dis-26

tributed over {0, 1}. For the random variables (Xi)
3
i=1 = (Yi, Z), we have ρmin = 1/2,27

ρ(Xij, Xk) = 2/5 for any permutation (i, j, k) of (1, 2, 3), k3 = 15/8, H3 = 4 and Hmax = 2.28

Proof. As Y1, Y2, Y3, Z are independent, we have H(Xi) = H(Yi) + H(Z) = 2 for i =29

1, 2, 3 and H(Xij) = H(Yi) + H(Yj) + H(Z) = 3 for i 6= j. Using eq. (1), we have30

ρ(Xi, Xj) = 1/2 for i 6= j hence ρmin = 1/2, k2 = 2 − ρmin = 3/2 and k3 = (k2 +31

1)k2/2 = 15/8. For any permutation (i, j, k) of (1, 2, 3), we have H3 = H(Xijk) =32

H(Yi) + H(Yj) + H(Yk) + H(Z) = 4 hence ρ(Xij, Xk) = 2/5.33

In our second example, we obtain ρmax < ρ(Xij, Xk) which contradicts the upper34

bound of Claim 1 and H3 < l3Hmin which contradicts the lower bound of Claim 2.35

Proposition 2. Consider three discrete random variables X1, X2, X3 uniformly distributed over36

{0, 1} that are pairwise independent and satisfying the equation X1 ⊕ X2 ⊕ X3 = 0 where ⊕37

denotes the xor operation. We have ρmax = 0, ρ(Xij, Xk) = 2/3 for any permutation (i, j, k) of38

(1, 2, 3), l3 = 3, H3 = 2 and Hmin = 1.39

Proof. We have H(Xi) = 1 for i = 1, 2, 3 and as the variables are pairwise independent,40

H(Xij) = H(Xi) + H(Xj) = 2 for i 6= j. Using eq. (1), we have ρ(Xi, Xj) = 0 for i 6= j41

hence ρmax = 0, l2 = 2− ρmax = 2 and l3 = (l2 + 1)l2/2 = 3. For any permutation42

(i, j, k) of (1, 2, 3), we have H3 = H(Xijk) = 2 hence ρ(Xij, Xk) = 2/3.43

Overall, the two new inequalities derived by Nga et al. for the joint entropy Hm44

do not appear to be correct starting at m = 3. The errors in the model stem from the45

assumption made in Claim 1 that pairwise and higher-order associations share the same46

minimum and maximum. The authors validate their method on a very specific dataset47

with ρmin = 0.6, Hmin = 2.16, and Hmax = 2.55, yet our examples show that different48

association structures yield widely different joint entropies. Bounding the joint entropy49

allows the authors to study the impact of correlation on data aggregation, compression,50

and clustering of signals. Although different bounds could potentially offer similar51

results, the broader conclusions of this article may not hold in practice.52

Finally, deriving constraints and bounds on joint entropies is a computationally dif-
ficult task and an active field of research [1,6–11]. Theoretical derivations and numerical
estimations have both be used to bound the joint entropy Hm, based upon research on
entropic vectors. The entropic vector of the random variables X1, X2, . . . , Xm is the vector
of the entropies of all 2m−1 subsets of these variables. The set of all entropic vectors is
a convex cone, for which a polyhedral outer-approximation is known [12, Theorem 1].
For instance, we derive below tight1 lower and upper bounds for H3 in proposition 3,
suggesting an alternative approach that could lead to upper bounds for n > 3 and lower
bounds as well. This bound rely on the following inequalities [6, Theorem 2.34]:

H(XI) ≤ H(XJ) (2)

which is valid for any subsets I ⊆ J ⊆ {1, . . . , m} and

H(XI) + H(XJ) ≥ H(XI∩J) + H(XI∪J) (3)

which is valid for any subsets I, J ⊆ {1, . . . , m}.53

1 The tightness is a consequence of the fact that eq. (2) and eq. (3) completely describe the entropic cone [12, Theorem 2].
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Proposition 3. For any three random variables X1, X2, X3, the following inequalities hold:

max(H(X12), H(X23), H(X31)) ≤ H3 ≤ min(H(X31) + H(X12)− H(X1),

H(X12) + H(X23)− H(X2), H(X23) + H(X31)− H(X3)).

Proof. For any permutation (i, j, k) of (1, 2, 3), by eq. (2) with I = {i, j} and J = {i, j, k},54

we have H(Xij) ≤ H(Xijk) = H3 and by eq. (3) with I = {i, j} and J = {j, k}, we55

have H(Xij) + H(Xjk) ≥ H(Xijk) + H(Xj) which implies that H3 = H(Xijk) ≤ H(Xij) +56

H(Xjk)− H(Xj).57

Similar bounds can be obtained for m > 3 using eq. (2) and eq. (3) but their tightness58

is not guarantee as the entropic cone is not completely described by these inequalities for59

m > 3 [13, Theorem 6]. This gap could be reduced numerically by iteratively producing60

linear cuts, in order to refine the polyhedral outer-approximation of the entropic cone61

given by eq. (2) and eq. (3) [14]. Taken together, our findings suggest that theoretical62

derivations (m ≥ 3) and numerical approximations (m > 3) on the entropic cone might63

provide future research directions towards a robust general entropy correlation model.64
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