
GENERALIZATION ERROR FOR
TWEEDIE MODELS: DECOMPOSITION
AND ERROR REDUCTION WITH
BAGGING

Michel Denuit, Julien Trufin

REPRINT | 2021 / 25



Vol.:(0123456789)

European Actuarial Journal (2021) 11:325–331
https://doi.org/10.1007/s13385-021-00265-2

1 3

LETTERS

Generalization error for Tweedie models: decomposition 
and error reduction with bagging

Michel Denuit1 · Julien Trufin2

Received: 19 November 2020 / Revised: 19 January 2021 / Accepted: 22 January 2021 / 
Published online: 8 February 2021 
© EAJ Association 2021

Abstract
Wüthrich and Buser (DOI:10.2139/ssrn.2870308, 2020) studied the generalization 
error for Poisson regression models. This short note aims to extend their results to 
the Tweedie family of distributions, to which the Poisson law belongs. In case of 
bagging, a new condition emerges that becomes increasingly binding with the power 
parameter involved in the Tweedie variance function.

Keywords Generalization error · Supervised learning · Exponential dispersion 
family · Tweedie · Bagging

1  Introduction and motivation

In many applications, the analyst targets the conditional expectation �(X) = E[Y|X] 
of the response Y given the available information summarized in the vector X . The 
function x ↦ �(x) = E[Y|X = x] is generally unknown and is approximated by an 
estimator x ↦ �̂(x) . The goal is to produce the most accurate approximation to the 
true �̂(x) . Lack of accuracy for �̂(x) is defined by the generalization error

where L(.,  .) is a function measuring the discrepancy between its two arguments, 
called loss function, and the expected value is over the joint distribution of (Y ,X) . 
We refer the readers to Ref. [4] for more details about the generalization error. We 
aim to find a function �̂(x) of the features minimizing the generalization error (1.1).

In practice, loss functions L(., .) often correspond to negative log-likelihood func-
tions associated with distributions that belong to the Tweedie family. The Tweedie 

(1.1)Err(�̂) = E
[
L(Y , �̂(X))

]
,
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class regroups the members of the Exponential Dispersion family having power 
variance functions V(�) = �� for some � . We refer the readers to Ref. [2] for an 
extensive treatment of the Exponential Dispersion family and the Tweedie class in 
the context of insurance. Specifically, the Tweedie class contains continuous dis-
tributions such as the Normal, Gamma and Inverse Gaussian distributions. It also 
includes the Poisson and compound Poisson-Gamma distributions. Compound Pois-
son-Gamma distributions can be used for modeling data having a positive probabil-
ity mass at zero and a continuous distribution on the positive real numbers such as 
yearly insurance losses or rainfall meteorological data.

The following table gives a list of all Tweedie distributions: 

Type Name

𝜉 < 0 Continuous –
� = 0 Continuous Normal
0 < 𝜉 < 1 Non existing –
� = 1 Discrete Poisson
1 < 𝜉 < 2 Mixed, non-negative Compound Poisson-Gamma
� = 2 Continuous, positive Gamma
2 < 𝜉 < 3 Continuous, positive –
� = 3 Continuous, positive Inverse Gaussian
𝜉 > 3 Continuous, positive –

 Negative values of � gives continuous distributions on the whole real axis. There is 
no probability distribution in the Tweedie class corresponding to power parameters 
0 < 𝜉 < 1 . In this paper, we consider non-negative data and we restrict our analysis 
to � ≥ 1.

We denote by

the set of observations used to fit the model �̂  , called training set. An estimate 
�̂(x) to �(x) is obtained by minimizing the total loss on the training set D , that is, ∑n

i=1
L(yi, �̂(xi)) that can be seen as the empirical version of (1.1). The loss function 

corresponding to the Tweedie deviance is

Notice that the Tweedie loss functions (1.3) are particular cases of Bregman loss 
functions so that the expected loss is minimum for the mean response, whatever the 
value of the power parameter � ≥ 1 , as shown in Ref. [5].

(1.2)D = {(y1, x1), (y2, x2),… , (yn, xn)}

(1.3)L(y, �̂(x)) =

⎧
⎪⎪⎨⎪⎪⎩

2
�
y ln

y

�̂(x)
− (y − �̂(x))

�
for � = 1

2
�
− ln

y

�̂(x)
+

y

�̂(x)
− 1

�
for � = 2

2
�

y2−�

(1−�)(2−�)
−

y�̂(x)1−�

1−�
+

�̂(x)2−�

2−�

�
for � ∈]1,+∞[�{2}.
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This paper aims to decompose the generalization error (1.1) for loss functions 
(1.3) derived from Tweedie deviance into a sum of the error for the true model and 
an estimation error. This extends the classical decomposition that is known to hold 
for the squared error loss, corresponding to the Normal distribution ( � = 0 ) and 
for the loss function derived from the Poisson deviance ( � = 1 ) as established by 
Ref. [6] to the whole Tweedie class with � ≥ 1 . The condition under which bagging 
reduces the error is then obtained, depending on the power parameter � . Interest-
ingly, this condition becomes increasingly binding when � increases.

2  Generalization error

The generalization error Err(�̂) given in (1.1) can also be defined for a fixed value 
X = x as

Notice that averaging the local errors Err(�̂(x)) enables to recover the generalization 
error Err(�̂) , that is,

The generalization error of �̂  at X = x can be expressed as follows.

Proposition 2.1 We have

with

Proof For � = 1 , this result can be found in Ref. [6] (see Equation (7.5)). Turning to 
the case � = 2 , we get

(2.1)Err(�̂(x)) = E
[
L(Y , �̂(X))|X = x

]
.

(2.2)Err(�̂) = E
[
Err(�̂(X))

]
.

(2.3)Err(�̂(x)) = Err(�(x)) + E�(�̂(x))

(2.4)

E�(�̂(x)) =

⎧
⎪⎪⎨⎪⎪⎩

2�(x)
�

�̂(x)

�(x)
− 1 − ln

�
�̂(x)

�(x)

��
for � = 1

2
�

�(x)

�̂(x)
− 1 − ln

�
�(x)

�̂(x)

��
for � = 2

2

(2−�)(1−�)

�
�̂(x)2−�(1 − �) + �(x)2−� + (� − 2)�(x)�̂(x)1−�

�
for � ∈]1,+∞[�{2}.
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Finally, for the remaining cases, we have

This ends the proof.   ◻

The smallest generalization error coincides with the one associated to the true 
model.

Corollary 2.2
 
Proof For � = 1 and � = 2 , it suffices to notice that E�

(
�̂(x)

)
 is always positive since 

y → y − 1 − ln y is positive on ℝ+ . For the remaining cases, define the function f on 
ℝ

+ as

We have

Hence, for y > 0 , f �(y) = 0 if, and only if, y = �(x) and

Err
(
�̂(x)

)
=2 E

[
− ln

(
Y

�̂(x)

)
+

Y

�̂(x)
− 1

|||X = x

]

=2 E

[
− ln

(
Y

�(x)

)
+

Y

�(x)
− 1

|||X = x

]

+ 2 E

[
− ln

(
Y

�̂(x)

)
+ ln

(
Y

�(x)

)
+

Y

�̂(x)
−

Y

�(x)

|||X = x

]

=Err(�(x)) + 2 E

[
ln

(
�̂(x)

�(x)

)
+ Y

(
�(x) − �̂(x)

�̂(x)�(x)

)|||X = x

]

=Err(�(x)) + 2

(
ln

(
�̂(x)

�(x)

)
+ E[Y|X = x]

(
�(x) − �̂(x)

�̂(x)�(x)

))

=Err(�(x)) + 2

(
�(x)

�̂(x)
− 1 − ln

(
�(x)

�̂(x)

))
.

Err
(
�̂(x)

)
=2 E

[
Y2−�

(1 − �)(2 − �)
−

Y�̂(x)1−�

1 − �
+

�̂(x)2−�

2 − �

|||X = x

]

=2 E

[
Y2−�

(1 − �)(2 − �)
−

Y�(x)1−�

1 − �
+

�(x)2−�

2 − �

|||X = x

]

− 2 E

[
Y
(
�̂(x)1−� − �(x)1−�

)
1 − �

−
�̂(x)2−� − �(x)2−�

2 − �

|||X = x

]

=Err(�(x)) +
2�̂(x)2−� − 2�(x)2−�

2 − �
−

2�(x)�̂(x)1−�

1 − �
+

2�(x)2−�

1 − �
.

(2.5)Err(�̂(x)) ≥ Err(�(x)).

(2.6)f (y) =
2

(2 − �)(1 − �)

(
y2−�(1 − �) + �(x)2−� + (� − 2)�(x)y1−�

)
.

f �(y) = 2
(
y1−� − �(x)y−�

)
and f ��(y) = 2y−�

(
1 − � + �

�(x)

y

)
.
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so that f (y) ≥ f (�(x)) = 0 for all y > 0 , which completes the proof.   ◻

The generalization error of �̂  can be expressed as the sum of the generalization 
error of the true model � and an estimation error that is positive. The generalization 
error of the true model is called the residual error and is thus irreducible. Corol-
lary 2.2 can be found in Ref. [3] (see Theorem 7), where the loss functions derived 
from Tweedie models correspond to the Patton’s family of homogeneous scoring 
functions on the positive half line.

3  Bagging models and expected generalization error

Bagging is one of the first ensemble methods proposed in the literature by Ref. [1], 
who showed that aggregating multiple versions of an estimator into an ensemble 
improves the model accuracy. Consider a model fitted to our training set D , obtain-
ing the prediction �̂D(x) at point x . Bootstrap aggregation or bagging averages this 
prediction over a set of bootstrap samples in order to reduce its variability with 
respect to the data used to build it.

The probability distribution of the random vector (Y ,X) is usually not known. It 
can be approximated by its empirical version which puts an equal probability 1

n
 on 

each of the observations {(y1, x1), (y2, x2),… , (yn, xn)} of the training set D . Hence, 
instead of simulating B training sets D1,D2,… ,DB from the probability distribution 
of (Y ,X) , which is not possible in practice, the idea of bagging is rather to simulate 
B bootstrap samples D∗1,D∗2,… ,D∗B of the training set D from its empirical coun-
terpart. Specifically, a bootstrap sample is thus a random sample of D taken with 
replacement which has the same size as D.

Let D∗1,D∗2,… ,D∗B be B bootstrap samples of the training set D . For each D∗b , 
b = 1,… ,B , we fit a model, giving prediction �̂D,�b

(x) = �̂
D

∗b(x) . The bagging pre-
diction is then defined by

where � = (�1,�2,… ,�B) . Random vectors �1,�2,… ,�B fully capture the ran-
domness of the training procedure. For bagging, �1,�2,… ,�B are independent and 
identically distributed so that �b is a vector of n integers randomly and uniformly 
drawn in {1, 2,… , n} . Each component of �b indexes one observation of the training 
set selected in D∗b.

The generalization error Err(�̂bag

D,�
(x)) is evaluated conditional on the bootstrap 

samples D∗1,D∗2,… ,D∗B of D, so that it gives an idea of the general accuracy of 
the bagging training procedure for the particular bootstrap samples of D . In order to 
assess the general performance of the bagging training procedure, we use the 
expected generalization error, which averages the generalization error Err(�̂bag

D,�
(x)) 

over D and � , that is, ED,�

[
Err

(
�̂
bag

D,�
(x)

)]
 . From Proposition 2.1, we get

f ��(𝜇(x)) = 2𝜇(x)−𝜉 > 0,

(3.1)�̂
bag

D,�
(x) =

1

B

B∑
b=1

�̂D,�b
(x),



330 M. Denuit, J. Trufin 

1 3

For � = 1 , [6] showed that

meaning that the bagging prediction �̂bag

D,�
(x) outperforms the individual sample esti-

mate �̂D,�b
(x) in the Poisson case. The next proposition extends this result for � ≥ 1 

subject to the additional condition (3.4). Condition (3.4) implies that if the individ-
ual sample estimates �̂D,�b

(x) do not overestimate too much the true prediction �(x) , 
then it is beneficial to aggregate them in the sense that the aggregation reduces the 
local generalization error.

Proposition 3.1 If the individual sample estimates satisfy

then we have

Proof The case � = 1 is due to Ref. [6] (see Proposition 7.2). Notice that the upper 
bound in (3.4) is not binding when � = 1 . For � = 2 , by Proposition 2.1, one sees 
that inequality (3.5) is fulfilled if, and only if,

where 𝜙 ∶ y > 0 →
1

y
+ ln y . The latter inequality holds true when the individual 

sample estimates satisfy

which, in turn, guarantees that 
�̂
bag

D,�
(x)

�(x)
≤ 2 . Indeed, the function �(y) is convex for 

y ≤ 2 , so that Jensen’s inequality implies

(3.2)
ED,�

[
Err

(
�̂
bag

D,�
(x)

)]

= Err(�(x)) + ED,�

[
E�

(
�̂
bag

D,�
(x)

)]
.

(3.3)
ED,�

[
Err(�̂

bag

D,�
(x))

]

≤ ED,�b

[
Err(�̂D,�b

(x))
]
,

(3.4)
�̂D,�b

(x)

�(x)
≤

�

� − 1
,

(3.5)
ED,�

[
Err(�̂

bag

D,�
(x))

]

≤ ED,�b

[
Err(�̂D,�b

(x))
]
.

(3.6)

ED,�

[
�

(
�̂
bag

D,�
(x)

�(x)

)]

≤ ED,�b

[
�

(
�̂D,�b

(x)

�(x)

)]
,

(3.7)
�̂D,�b

(x)

�(x)
≤ 2,
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provided that condition (3.7) holds.
In the remaining cases for � , by Proposition 2.1, inequality (3.5) is satisfied if, 

and only if, ED,�

[
f
(
�̂
bag

D,�
(x)

)]
≤ ED,�b

[
f
(
�̂D,�b

(x)
)]

 , where the function f (⋅) is 
defined in (2.6). Now, we have f ��(y) ≥ 0 if, and only if, y

�(x)
≤

�

�−1
 . Therefore, when 

�̂D,�b
(x)

�(x)
≤

�

�−1
 and hence 

�̂
bag

D,�
(x)

�(x)
≤

�

�−1
 , we have f ��(�̂D,�b

(x)) ≥ 0 and f ��(�̂bag

D,�
(x)) ≥ 0 , 

so that Jensen’s inequality leads to

This ends the proof.   ◻
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(3.8)

ED,�

[
�

(
�̂
bag

D,�
(x)

�(x)

)]

= ED,�1,…,�B

[
�

(
1

B

B∑
b=1

�̂D,�b
(x)

�(x)

)]

≤ ED,�1,…,�B

[
1

B

B∑
b=1

�

(
�̂D,�b

(x)

�(x)

)]

=ED,�b

[
�

(
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(x)
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[
f
(
�̂
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(x)

)]
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[
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(
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