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Twenty-five years after its approval by the FDA and EMA, tacro-
limus remains the cornerstone of immunosuppressive treatment 
following solid organ transplantation [1,2]. The drug is highly 
effective in preventing acute rejection but its clinical use still is 
complicated by its narrow therapeutic range and high inter- and 
intra-patient pharmacokinetic variability [3,4]. In many transplant 
centers across the world, the starting dose of tacrolimus is based 
on a patient’s bodyweight, followed by whole-blood tacrolimus 
concentration measurement (preferably when the drug is in 
steady state) and dose titration. Therapeutic drug monitoring 
(TDM) is considered standard of care and limits the time that 
a patient is under- or overexposed to tacrolimus [1]. However, 
TDM is a reactive approach and in clinical practice, dosing of 
tacrolimus remains trial and error. Bodyweight is a poor predictor 
of an individual’s tacrolimus clearance [5,6] and as a result, it may 
take up to three weeks before a patient has a tacrolimus exposure 
within the target concentration range [7,8]. In addition, an indi-
vidual’s tacrolimus metabolic phenotype has been associated 
with transplantation outcomes [9]. A low tacrolimus concentra-
tion-to-dose ratio (C/D ratio), which indicates a more rapid tacro-
limus clearance, is an independent risk factor for death-censored 
graft survival [9]. There is an unmet need to personalize tacroli-
mus treatment and limit the time that transplant recipients are 
under- or overexposed to tacrolimus in order to limit the risks of 
acute rejection and tacrolimus-related toxicity, respectively [10].

The inter-individual differences in tacrolimus pharmacokinetics 
are in large part determined genetically. Single-nucleotide 
polymorphisms (SNPs) in multiple genes have been associated 
with tacrolimus dose requirement (for a review see references 
[11,12]). Especially, SNPs in the cytochrome P450 (CYP) 3A4 and 
CYP3A5 genes, which encode the main tacrolimus-metabolizing 
enzymes, have been strongly linked to an individual’s drug meta-
bolizing phenotype [6,13,14]. Carriers of at least one CYP3A5*1 
allele are considered CYP3A5 expressers and require a tacrolimus 
dose that is at least 1.5 times higher compared to so-called CYP3A5 
non-expressers (individuals with the CYP3A5*3/*3 genotype) [1]. 
The CYP3A4*22 SNP has been associated with slower tacrolimus 

clearance and a lower dose requirement [14–18]. In addition, the 
CYP3A4*20 SNP [16,19] and genetic variations in the ABCB1, POR, 
PPARA and NR1I2 genes have all been associated with tacrolimus 
pharmacokinetics. The effect of these variants seems smaller than 
that of CYP3A4 and CYP3A5 and is probably less clinically relevant 
[20,21].

It was hoped that pharmacogenetics-guided tacrolimus 
dosing would improve clinical tacrolimus treatment [22]. In 
particular, a pharmacogenetics-based approach may lead to 
a more appropriate tacrolimus starting dose, thereby limit-
ing the time a patient is outside the target concentration 
range in the critical early post-transplant phase [23]. The 
efficacy of genotype-based tacrolimus dosing was 
investigated in three randomized-controlled clinical trials 
[7,8,24]. In all three trials, the tacrolimus starting dose was 
based on an individual transplant recipient’s CYP3A5 geno-
type, being higher in CYP3A5 expressers (carriers of a *1 
allele) and lower in non-expressers. In the study by Thervet 
et al. [8] genotype-guided tacrolimus dosing resulted in 
significantly more patients being on target at first-steady 
state (i.e. after 5 unaltered tacrolimus doses) compared with 
the control group who received a standard, bodyweight- 
based tacrolimus starting dose (43.2% versus 29.1%; 
p = 0.03). In the study by Min et al. [24] this approach 
significantly shortened the time to reach the tacrolimus 
target concentration range in pediatric solid organ trans-
plant recipients (n = 53 patients). However, the absolute 
difference was small (a median of 3.4 versus 4.7 days in 
the genotype-guided versus the standard dose group, 
respectively). In the trial by Shuker et al. [7] there was no 
difference in the proportion of living donor kidney trans-
plant recipients that were on target at first steady state 
measurement. In the standard, bodyweight-based dose 
tacrolimus group, 37.4% of patients was on target (10–-
15 ng/mL) at day three after transplantation, whereas this 
was 35.6% in the experimental arm in which the tacrolimus 
starting dose was based on CYP3A5 genotype. Importantly, 
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in none of these three trials any clinical benefit of CYP3A5- 
guided tacrolimus dosing was observed, either in the short- 
or long-term [7,8,24,25]. The lack of evidence for clinical 
benefit of genotype-based tacrolimus dosing, is one of the 
reasons why this strategy has not been widely implemented 
clinically [26]. The Clinical Pharmacogenetics 
Implementation Consortium recommends to only use phar-
macogenetics-based tacrolimus dosing when an individual’s 
genotype is already available [27].

Not only a patient’s genotype but also other factors affect 
tacrolimus pharmacokinetics, including age, plasma albumin 
concentration, body surface area, co-medication, ethnicity, and 
hematocrit [10]. It is reasonable to assume that combining these 
factors with genetic information in a population pharmacokinetic 
(popPK) model will allow clinicians to predict a patient’s tacroli-
mus dose requirement with more precision than a prediction 
based on genotype (or bodyweight) alone, which might increase 
the clinical benefit. To date, multiple models predicting the 
tacrolimus starting dose have been developed, both for pediatric, 
as well as for adult renal transplant recipients [3,28–31]. However, 
few of these popPK models were externally validated 
[3,28,29,32,33] and even fewer were tested prospectively 
[34,35]. The latter is essential before model-based tacrolimus 
dosing can be implemented clinically. We developed a popPK 
model for pediatric kidney transplant recipients and validated 
this model both internally and externally [28]. However, when 
tested prospectively, the model did not predict a patient’s tacro-
limus dose requirement sufficiently [34]. Currently, several pro-
spective intervention trials, investigating the efficacy of initial 
algorithm-based dosing in adult renal allograft recipients are 
ongoing (https://www.trialregister.nl/trial/7360; NCT03465410; 
NCT03020589; NCT03527238 see clinicaltrials.gov).

Recent research has mainly focused on the calculation of 
the tacrolimus starting dose. However, not only the achieve-
ment but also the maintenance of the tacrolimus exposure 
within the target concentration range is a challenge. Patients 
with a tacrolimus concentration within the therapeutic range 
at first steady state can have a tacrolimus concentration that 
lies outside this range on subsequent days. This intra-patient 
variability is in part explained by post-transplant changes in 
hematocrit (e.g. resulting from blood loss due to surgery or 
frequent sampling) and albumin concentration (due to, for 
example, recovery of liver function and co-existing inflamma-
tion), and hepatic metabolism (from loss of uremic toxins [36]). 
Computerized follow-up dosing based on popPK models, may 
better maintain the targeted tacrolimus exposure and further 
individualize tacrolimus treatment after transplantation. 
Størset et al. [37] reported a clinical trial in which standard 
or high-immunological risk kidney transplant recipients were 
randomized (after initial bodyweight-based dosing) to 
undergo either computerized follow-up tacrolimus dosing or 
conventional tacrolimus dosing by experienced transplant 
physicians. Computerized dosing, based on several variables 
(historical tacrolimus dosages, previously measured tacrolimus 
concentrations, fat-free mass, hematocrit, and time after trans-
plantation), significantly improved the achievement of tacroli-
mus concentrations within the target range. During the first 
eight weeks after transplantation, a median of 90% of the 
patients’ tacrolimus concentrations was within the target 

range following computerized dosing, whereas this was 78% 
following standard dosing in the standard risk group 
(p < 0.001). Also, in the high-risk group, a significantly higher 
proportion of the patients’ tacrolimus concentrations was 
within the target range following computerized dosing com-
pared to standard dosing (median 77% versus 59%, respec-
tively; p = 0.04). In the computer-based dosing group, a lower 
two-hour plasma glucose concentration was observed follow-
ing an oral glucose tolerance test, performed eight weeks 
post-transplantation. This indicates a possible beneficial clin-
ical effect of algorithm-based tacrolimus dosing and the 
resulting reduced supra-therapeutic exposure in terms of glu-
cose metabolism [37].

Another strategy which may optimize tacrolimus treatment 
and increase clinical benefit is the monitoring of tacrolimus in 
a matrix other than whole-blood. Contradictory results have 
been reported on the correlation between whole-blood tacrolimus 
exposure and both rejection and drug-related toxicity [38–41]. The 
tacrolimus concentration at its target site (within lymphocytes) 
may better correlate with efficacy and clinical outcomes. This 
hypothesis was supported by the study of Capron et al., in which 
the tacrolimus concentration within peripheral-blood mononuc-
lear cells correlated significantly with the occurrence and severity 
of rejection in liver transplant recipients [42]. These findings need 
to be substantiated in larger studies. Interestingly, the intracellular 
tacrolimus concentration has been related, although not consis-
tently, to genetic variability in CYP3A4 and CYP3A5 but also to 
variability in the expression of drug transporter proteins such as 
ABCB1, which determine the drug’s distribution [43–45].

Expert opinion

Although the application of popPK models has the potential to 
move the field forward, it is clear that current models, which 
include demographic and genetic patient characteristics, do not 
explain all inter- and intra-patient variability in tacrolimus phar-
macokinetics. Recently, Zimmermann et al. [46] showed that 
residual variability in drug metabolism may be explained by 
variation in the human microbiome. Microbiome-encoded 
enzymes contribute substantially to pre-systemic metabolism 
of many drugs [46], including tacrolimus [47,48]. Lee et al. [47] 
demonstrated that the abundance of fecal Faecalibacterium 
prausnitzii is associated with higher tacrolimus requirement in 
the early post-transplantation phase. We feel that a further 
exploration of the role of the human microbiome in tacrolimus 
pharmacokinetics is an important research topic for the years to 
come and has the potential to improve the performance of 
future popPK models. Such studies are at present underway 
(see clinical trials.gov, NCT04207177). Hopefully, the revolution-
ary findings of Zimmerman et al. and Lee et al. [46,47] will fuel 
the transplant community to optimize tacrolimus treatment 
further. We owe this to our patients because tacrolimus will likely 
remain an essential component of immunosuppressive therapy 
after transplantation in the decade to come.
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