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Abstract

This paper considers a peer-to-peer (P2P) insurance scheme where the higher layer is trans-
ferred to a (re-)insurer and retained losses are distributed among participants according to
the conditional mean risk sharing rule proposed by Denuit and Dhaene (2012). The global
retention level of the pool of participants grows proportionally with their number. We study
the asymptotic behavior of the individual retention levels, as well as individual cash-backs
and stop-loss premiums, as the number of participants increases. The probability that the
total loss hits the upper layer protected by the stop-loss treaty is also considered. The results
depend on the proportional rate of increase of the global retention level with the number of
participants, as well as on the existence of the Esscher transform of the losses brought to the
pool.

Keywords: conditional expectation, risk pooling, comonotonicity, Esscher transform, reg-
ularly varying tails.



1 Introduction and motivation

The progressive demutualization of the insurance sector has broken the link with the ances-
tral compensation mechanism consisting in using the contributions of the many to balance
the misfortunes of the few. As a consequence, the feeling to belong to a community helping
its unlucky members has disappeared to a large extent. In order to remedy this situation,
an offer started to develop in line with the collaborative economy by organizing peer-to-
peer (P2P) insurance communities, complementing traditional business. See, e.g., Eling and
Lehmann (2018), Abdikerimova and Feng (2019) and Clemente and Marano (2020). Collab-
orative, P2P insurance schemes may well become an additional sales channel, complementing
classical ones (brokers, direct, bank).

P2P insurance builds on the fundamental principle of mutuality at the origin of insurance
without the equity buffer provided by insurer’s capital. Precisely, participants to a P2P
insurance scheme agree to pool the first layer of the risks they face, whereas higher losses are
still covered by a third party, typically an insurance or reinsurance company, with the help
of a stop-loss protection. Participants to a P2P insurance scheme can thus access higher
amounts of retention compared to deductibles included in standard insurance covers, thanks
to the risk-reducing effect of pooling.

Unclaimed money can be paid back, given to a charity or used to fund a common project
to which members of the community adhere. In the case of a cash-back mechanism, the
contract operates as a participating policy. Surplus, that is, that part of the contributions
that has not been used to cover the losses, must thus be fairly shared, in an understandable
and transparent way, among participants. As everybody is well aware that insurance risks
are heterogeneous, equally sharing the total losses among participants may well appear to
be unfair. To be successful, P2P insurance schemes thus require an appropriate risk sharing
mechanism recognizing the different distributions of the risks brought to the pool. Denuit
(2019, 2020) and Denuit and Robert (2020d) proposed a simple and mathematically correct
solution based on the conditional mean risk sharing rule introduced by Denuit and Dhaene
(2012). Being based on the concept of mean value, this sharing rule turns out to be quite
intuitive as most participants have at least a vague idea about averaging and its risk-reducing
effect. Since participants can be informed when they enter the pool about the amount they
will have to contribute as a function of the total realized loss, this approach ensures full
transparency. Numerous attractive properties of the conditional mean risk sharing rule have
been obtained by Denuit and Robert (2020a,b,c).

The present paper studies individual retention levels, cash-backs and stop-loss premiums
within a large P2P insurance community. We assume that individual losses are mutually
independent and that the total losses of the pool obey a law of large numbers so that
the average loss per participant converges to some constant, µ say, as the size n of the
community tends to infinity. Then, we let the pool retention grow proportionally to the
number of participants and we denote as α its growth rate.

If α < µ then it turns out that the limiting individual retention is given by the expected
value of the Esscher transformed loss (with negative order related to the rate of increase
α of the global retention level) and that the limiting individual cash-back is null since the
individual retention is not sufficient to cover the expected value of the loss. As a consequence,
the individual stop-loss premium for the upper layer protection is asymptotically equal to
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the difference between these values.
If α > µ then we must distinguish two cases. Either the individual loss distributions pos-

sess moment generating functions and the limiting retentions are still given by the expected
values of the Esscher transformed losses, now with positive order related to α. Or individual
loss distributions have a heavier tail and we cannot use moment generating functions any-
more. For losses with regularly varying tail distributions, it is shown that limiting retentions
are equal to the expected losses supplemented with a quantity proportional to the difference
α − µ. In this case, the individual retention is larger than the expected value of the loss,
and a cash-back mechanism is necessary to restore fairness in the individual participations
to the pool.

We also study the probability that the stop-loss protection is activated, that is, the
probability that the total loss experienced by the pool exceeds the retention nα. Again,
the solution depends on the position of α with respect to asymptotic average loss µ per
participant. If α < µ, that is, if the community ultimately retains less than expected losses,
then this probability tends to 1. In a sufficiently large pool, the stop-loss protection is thus
almost surely activated. On the contrary, if α > µ then this probability tends to 0 so that
the pool is able to cover the entire losses in that case, provided it can attract infinitely many
participants. The rate of convergence of this probability to 0 is established. It is shown that
this rate is exponential when losses possess moment generating functions whereas it may
be much slower when the tails of individual loss distributions are heavier (with regularly
varying tail distributions, here).

The remainder of this paper is organized as follows. Section 2 describes the P2P insur-
ance scheme where the lower layer is shared among participants whereas the upper layer is
transferred to a (re-)insurer by means of a stop-loss cover. In Section 3 we provide the limit
of the individual retentions as the size of the P2P insurance community tends to infinity.
The asymptotic behavior of the probability that the total loss attains the stop-loss layer is
also studied there. In Section 4, we replace ex-post contributions by participants with ex-
ante payments combined with end-of-period cash-back mechanism restoring fairness. The
asymptotic values for individual ex-ante contributions and ex-post cash-backs are derived
under this alternative P2P insurance system. The proofs are gathered in appendix. For two
positive functions g1 and g2 defined in a neighborhood of infinity, we write g1 ∼ g2 provided
limx→∞ g1(x)/g2(x) = 1 in the remainder of the text. Also, we write g1 = o(g2) provided
limx→∞ g1(x)/g2(x) = 0.

2 P2P insurance scheme with stop-loss protection

2.1 Assumptions

Consider n participants to an insurance pool, numbered i = 1, 2, . . . , n. Each of them faces
a risk Xi. By risk, we mean a non-negative random variable representing monetary losses
caused by some insurable peril over one period (a calendar year, say). Throughout the
paper, we assume that X1, X2, X3, . . . are mutually independent, valued in [0,∞) and obey
zero-augmented absolutely continuous distributions, that is, P[Xi = 0] > 0 and Xi possesses
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a probability density function fXi|Xi>0 over (0,∞). We denote

µi = E[Xi] > 0 and σ2
i = Var[Xi] > 0

the mean and the variance of Xi, respectively. Both µi and σ2
i are assumed to be finite

throughout the paper. We voluntarily exclude the cases where no randomness is present,
that is, µi = 0⇔ σ2

i = 0⇔ Xi = 0 with probability 1.
Henceforth, we use the notation

Sn =
n∑
i=1

Xi

for the total loss of the pool. The mean and variance of Sn are denoted as

mn = E[Sn] =
n∑
i=1

µi and s2n = Var[Sn] =
n∑
i=1

σ2
i ,

respectively. Throughout this paper, we assume that the conditional expectations E[Xi|Sn]
are continuously increasing in Sn for all i ∈ {1, 2, . . . , n} so that the functions s 7→ E[Xi|Sn =
s] are one-to-one. As established by Denuit and Robert (2020c), this is generally the case
when n is sufficiently large under the assumptions retained in this paper. Thus, the random
variables E[Xi|Sn] are comonotonic. We refer the reader to Dhaene et al. (2002a,b) for an
overview of comonotonicity and of its applications in actuarial science.

2.2 Conditional mean risk sharing

In a risk pooling scheme, each participant contributes ex-post an amount hi,n(s) where s =∑n
i=1 xi is the sum of the realizations x1, x2, . . . , xn of X1, X2, . . . , Xn and

∑n
i=1 hi,n(s) = s.

In the design of a scheme, it is important that the sharing rule represented by the functions
hi,n is both intuitively acceptable and transparent. In that respect, the conditional mean risk
sharing (or allocation) h?i,n proposed by Denuit and Dhaene (2012) is particularly attractive.
Recall that this allocation is defined as

h?i,n(Sn) = E[Xi|Sn], i = 1, 2, . . . , n. (2.1)

Clearly, the conditional mean risk sharing (2.1) allocates the full risk Sn as we obviously
have

n∑
i=1

h?i,n(Sn) =
n∑
i=1

E[Xi|Sn] = Sn.

In words, participant i must contribute the expected value of the loss Xi he or she brings to
the pool, given the total loss Sn experienced by the entire community. Stated differently, the
contribution of each participant is the average part of the total loss Sn that can be attributed
to the loss he or she brings to the pool. Explained in this way, the risk sharing h?i,n appears to
be very intuitive and easily understandable by the members of the P2P insurance community.
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If the random variables X1, X2, . . ., Xn are assumed to be independent and identically
distributed, it is well known that

h?i,n(s) = E[Xi|Sn = s] =
s

n
. (2.2)

The total loss Sn is thus uniformly allocated to all participants in that particular case,
each of them contributing the same proportion 1/n of the total losses. The homogeneity
assumption is however very restrictive for applications and the conditional mean risk sharing
(2.1) extends (2.2) to heterogeneous losses Xi so that each participant supports the right
share of the total loss Sn.

2.3 P2P insurance scheme

The P2P insurance community has only limited risk-bearing capacity and must thus be
protected by a stop-loss arrangement with priority wn. This means that the community
covers the first layer (0, wn) of the total losses Sn experienced by all participants whereas
the upper layer (wn,∞) is transferred to a (re-)insurer. Here, the community only retains
min{Sn, wn} and wn acts as a pooled deductible.

To determine the contribution of each participant to the price of the stop-loss protection,
E[(Sn−wn)+] (excluding here for simplicity any loading), we consider the system proposed by
Denuit (2020). Since we have assumed that the functions h?i,n were continuous and increasing,
there exist w1,n, . . . , wn,n such that

∑n
i=1wi,n = wn and the identities

(wn − Sn)+ =
n∑
i=1

(
wi,n − h?i,n(Sn)

)
+

and (Sn − wn)+ =
n∑
i=1

(
h?i,n(Sn)− wi,n

)
+

(2.3)

both hold true for any wn such that 0 < FSn(wn) < 1. Under the assumptions retained
throughout this paper as listed in Section 2.1, we can define the individual retention levels
wi,n appearing in (2.3) by

wi,n = F−1h?i,n(Sn)

(
FSn(wn)

)
= h?i,n(wn) = E[Xi|Sn = wn], (2.4)

such that the individual stop-loss premium is given by E[(h?i,n(Sn)− wi,n)+].
Identities (2.3) also allow us to compute the respective contributions for each participant

to the retained loss min{Sn, wn}. Specifically, we get

min{Sn, wn} = wn − (wn − Sn)+ =
n∑
i=1

min{h?i,n(Sn), wi,n}. (2.5)

The loss min{Sn, wn} retained by the pool is thus distributed among its members according
to formula (2.5). Precisely, participant i contributes to the lower layer (0, wn) an amount

min{h?i,n(Sn), wi,n} = min{E[Xi|Sn],E[Xi|Sn = wn]}

payable at the end of the period, where wi,n is given in (2.4). It is clear from the formulas
given here that wi,n can be seen as the individual retention level for participant i in a pool
of size n.

In this pooling system, contributions are paid ex-post by participants, once the realized
loss Sn is known. The P2P insurance operation can thus be decomposed into
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- a random ex-post contribution min{h?i,n(Sn), wi,n} to the lower layer (0, wn),

- a deterministic contribution E[(h?i,n(Sn) − wi,n)+] to the upper layer, excluding the
loading,

- in exchange of the reimbursement of the loss Xi.

3 Retention capacity within a large P2P insurance com-

munity

In this section, we are interested in the individual retention levels wi,n given in (2.4) when
the number n of participants gets large. It is natural to let wn increase with n. In the
remainder of the paper, we will assume that the retention level wn is proportional to the
number n of participants, that is, wn = αn with α > 0.

We proceed as follows. First, we consider the particular case of losses Xi for which
conditional mean risk sharing reduces to proportional mean risk sharing and we derive the
limit of wi,n in that case. The results obtained in that particular case can be extended to
general risks with the help of the Esscher transform, whose definition is recalled below. Two
separate cases must be distinguished, according to whether wn exceeds the limiting average
loss of the pool or not. In the latter situation, the limit always exists whereas in the former
case, it depends on the thickness of the tails of the loss distribution. As an illustration,
we consider light-tailed losses with moment generating function and heavy-tailed ones (with
regularly varying tails).

3.1 Risks supporting a proportional allocation

As an introductory example, let us consider risks such that the conditional mean risk sharing
rule h?i,n coincides with the proportional mean sharing rule defined as

hpropi,n (Sn) =
E[Xi]

E[Sn]
Sn, i = 1, 2, . . . , n.

This is for instance the case in the semi-homogeneous collective risk model, whereX1, X2, . . . , Xn

obey compound Poisson distributions with identically distributed severities, or whenX1, X2, . . . , Xn

are independent and identically distributed as it can be seen from (2.2). If we moreover as-
sume that there exists µ > 0 such that limn→∞mn/n = µ, then

h?i,n (αn) = E[Xi|Sn = αn] =
E[Xi]

E[Sn]
αn =

αE[Xi]

mn/n
→
n→∞

α

µ
E[Xi].

Let us try to provide another expression of this limit exploiting the fact that h?i,n(Sn) is
proportional to Sn. Let us define the size-biased transform of a risk which appears to
be useful to study the conditional mean risk sharing rule, as pointed out in Denuit (2019).
Given a non-negative random variable Xi with distribution function FXi and strictly positive
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expected value E[Xi], define X̃i with distribution function

P[X̃i ≤ t] =
E
[
XiI[Xi ≤ t]

]
E[Xi]

where I[·] is the indicator function, equal to 1 if the event appearing within the brackets

is realized and to 0 otherwise. The risk X̃i is called a size-biased version of Xi. Assume
that the risks Xi are absolutely continuous with density function fXi . When the conditional
mean risk sharing rule coincides with the proportional mean sharing rule, we can derive from
Proposition 2.2 in Denuit (2019) that

fSn−Xi+X̃i (s) = fS̃n (s) (3.1)

where X̃i is independent of X1, . . . , Xn. Let us denote by mXi (h) = E[ehXi ] the moment
generating function of Xi. If the argument h is negative then mXi coincides with the Laplace
transform, which always exist since Xi is non-negative. Define

Hi = {h ∈ R|mXi (h) <∞}, H1,n =
n⋂
i=1

Hi, and H∞ =
∞⋂
i=1

Hi.

From (3.1), we deduce that, for h ∈ H1,n,

mSn−Xi+X̃i (h) =
mSn (h) mX̃i

(h)

mXi (h)
= mS̃n

(h) ⇔
mX̃i

(h)

mXi (h)
=

mS̃n
(h)

mSn (h)
.

Since mX̃i
(h) = m′Xi (t) /E[Xi], this is also equivalent to

1

E[Xi]

m′Xi (h)

mXi (h)
=

1

E[Sn]

n∑
i=1

m′Xi (h)

mXi (h)
.

Now assume that, there exists a moment generating function m∞ such that

lim
n→∞

1

n

n∑
i=1

m′Xi (h)

mXi (h)
=

m′∞ (h)

m∞ (h)
uniformly on H∞,

then it follows that

E[Xi|Sn = αn] =
E[Xi]

E[Sn]
αn = α

m′Xi (h)

mXi (h)

1

1
n

∑n
i=1

m′
Xi

(h)

mXi (h)

→
n→∞

α
m′Xi (h)

mXi (h)

1
m′

∞(h)
m∞(h)

,

uniformly on H∞. Finally, if there exists hα ∈ H∞ such that

m′∞ (hα)

m∞ (hα)
= α, (3.2)

then we deduce that

lim
n→∞

E[Xi|Sn = αn] =
m′Xi(hα)

mXi(hα)
. (3.3)

It turns out that the limit in (3.3) is the expected value of the Esscher transform of Xi, of
order hα. The next section recalls the definition of this actuarial tool. It is then shown that
representation (3.3) is generally valid, not only for risks supporting proportional mean risk
sharing.
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3.2 Esscher transform

For h ∈ Hi, let us associate to the individual loss Xi its Esscher transformed version X
(h)
i of

order h with distribution function F
X

(h)
i

defined as

dF
X

(h)
i

(x) =
ehx

mXi (h)
dFXi (x) .

The operator mapping the distribution function FXi of Xi to the distribution function F
X

(h)
i

of X
(h)
i is called the Esscher transform. The Esscher transform is a powerful tool in actuarial

science where it has been used to approximate the distribution of the aggregate claims of
an insurance portfolio, for premium calculation as well as option pricing. Outside actuarial
circles, it is also known as the exponential tilting of a distribution. We refer the reader to
Denuit et al. (2005) for an introduction to Esscher transform.

Compared to the initial lossXi, the Esscher transformed lossX
(h)
i with h > 0 has the same

support but the probabilities assigned to small values are reduced in favor of the probabilities
assigned to large values. This makes X

(h)
i “larger” compared to Xi. The opposite conclusion

is reached if h < 0. In fact, it is easy to see that the ratio dF
X

(h1)
i

/dF
X

(h2)
i

is increasing for

h1 > h2 so that the Esscher transformed loss X
(h)
i stochastically increases with h. We refer

the reader to Denuit et al. (2005, Chapter 3) for more details concerning stochastic order
relations expressing the idea of “being larger than” for random variables. In particular, the
expected value of X

(h)
i given by

E[X
(h)
i ] =

∫ ∞
0

xehx

mXi (h)
dFXi (x) =

m′Xi (h)

mXi (h)

indeed appears in (3.3). Since E[X
(h)
i ] increases with h, we have E[X

(h)
i ] < E[Xi] for h < 0

while E[Xi] > E[X
(h)
i ] holds for h > 0.

3.3 Individual retentions and Esscher transforms

As in Section 3.1, we assume that there exists a moment generating function m∞ defined on
H∞ such that

lim
n→∞

1

n

n∑
i=1

ln (mXi (h)) = ln (m∞ (h)) for h ∈ H∞ (3.4)

and

lim
n→∞

1

n

n∑
i=1

m′Xi (h)

mXi (h)
=

m′∞ (h)

m∞ (h)
uniformly on H∞. (3.5)

Let hα such that (3.2) holds true. We denote

µi,α = E[X
(hα)
i ] and σ2

i,α = Var[X
(hα)
i ],

and let

mn,α =
n∑
i=1

µi,α and s2n,α =
n∑
i=1

σ2
i,α.
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We need to assume that there exist γ > 0 and 0 < β <∞ such that for all n ≥ 1,

s2n,α ≥ nγ, E[|X(hα)
n − µn,α|2+δ] ≤ β for some 0 < δ ≤ 1, (3.6)

and that for every T > 0 ∫
|t|>T

n∏
j=1

∣∣∣E[eitX
(hα)
j ]

∣∣∣ dt = O
(
s−(2+δ)n,α

)
. (3.7)

The last assumption is about the rate of convergence of mn,α/n to α: we need the condition

|αn−mn,α| = o
(
s2n,α

)
. (3.8)

Let us now briefly comment on these conditions. Conditions (3.4) and (3.5) have been
seen as to be necessary to link α with the Esscher transforms of individual losses. Conditions
(3.6), (3.7) and (3.8) are given in Theorem 4 in Zabell (1993) for establishing a rate of
convergence of the conditional expectation of a random variable to its expectation given the
value of the sum of other random variables as the number of terms of the sums tends to
infinity. Note that Theorem 4 in Zabell (1993) needs the finiteness of at least the first second

moments of X
(hα)
i (and also the third moment for X

(hα)
i when considering wi (α)), but in our

case the existence of the Esscher transforms is sufficient for the existence of such moments.
Finally condition (3.8) says that the heterogeneity within the expectations of X

(hα)
i can not

be too strong.
The next result establishes that the limiting value (3.3) of wi,n when n tends to infinity

is generally valid when risks Xi possess Esscher transforms.

Proposition 3.1. Under the assumptions listed in Section 2.1, we suppose that conditions
(3.4) and (3.5) are also satisfied. If there exists hα such that (3.2), (3.6), (3.7) and (3.8)
hold true, then (3.3) is valid, that is,

wi (α) = lim
n→∞

E[Xi|Sn = αn] = E[X
(hα)
i ]. (3.9)

The proof of Proposition 3.1 is given in Appendix A. The key point of the proof is that

E[Xi|Sn = αn] = E[X
(h)
i |S(h)

n = αn] for any h ∈ H1,n.

This identity extends to the heterogeneous case previous results obtained by Van Campen-
hout and Cover (1981) in the homogeneous case. In fact, we can also show that

lim
n→∞

P[Xi ≤ x|Sn = αn] = P[X
(hα)
i ≤ x]

which corresponds to Theorem 2 in Van Campenhout and Cover (1981) in the particular
case where losses Xi are identically distributed.

Assumptions (3.4)-(3.5) involved in Proposition 3.1 imply that there exists µ > 0 such
that

lim
n→∞

mn

n
= µ.

If α < µ then hα solving (3.2) is negative and the result stated under Proposition 3.1 is
generally valid, whatever the tail of individual losses Xi. If α > µ then hα > 0 and the
limiting result established in Proposition 3.1 requires the existence of a moment generating
function. There is thus a need for another approach when losses have heavier tails, as
discussed next.
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3.4 Regularly varying tail distributions

Let us now consider the case α > µ for losses with heavier tails so that there is no hα solving
(3.2). In this section, we assume that losses Xi have regularly varying tail distributions with
common index γ > 3. More specifically we assume that

FXi|Xi>0 (x) = P[Xi > x|Xi > 0] = x−γLi (x) (3.10)

where Li are slowly varying functions. Moreover we assume that there exist a survival
function F and constants δi > 0, i = 1, 2, . . . such that

FXi (x) ∼ δiF (x) (3.11)

and

lim
n→∞

∑n
i=1 FXi (x)

nF (x)
= 1 (3.12)

uniformly for x ≥ x0, for some x0 > 0. We will also need that

lim
n→∞

mn

n
= µ > 0 (3.13)

and for some 1 < q ≤ 2
∞∑
n=1

n−qE[|Xn − µn|q] <∞. (3.14)

Conditions (3.11), (3.12), (3.13) and (3.14) are used in Theorem 3.1 in Lu et al. (2013)
to prove that, for any fixed κ > 0

P [Sn −mn > x] ∼ nF (x)

uniformly for x ≥ κn, when the non-negative random variables Xi are independent with
consistently varying tails. It is known that distributions with regularly varying tails are
also distributions with consistently varying tails. But we need the assumptions of regularly
varying tail distribution because we have to prove the convergence of the ratio of two density
functions (see the proof of Proposition 3.2) which is more intricate than for the survival
functions and necessitates stronger conditions. Section 4 in Lu et al. (2013) provides an
example of Pareto-type distribution functions for which (3.12) holds true. It is easy to extend
this example when FXi|Xi>0 are Pareto-type distribution functions and P[Xi = 0] > 0.

The next result summarizes the limiting behavior of wi,n for such losses.

Proposition 3.2. Assume that individual losses Xi have distribution functions FXi such that
(3.11) and (3.12) hold true and that the conditions (3.13) and (3.14) are satisfied. Then, for
any α > µ

wi (α) = E[Xi] + (α− µ)
δi

1− γ−1
. (3.15)

The proof of Proposition 3.2 is given in Appendix B. It is noteworthy that wi (α) now
depends linearly on α.
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3.5 Probability of activating the stop-loss protection

Let us consider the probability that Sn exceeds the retention level wn = nα in a large pool.
If α < µ then this probability tends to 1 whereas it tends to 0 if α > µ. As in Section 3.3,
we assume that (3.4) and (3.5) hold true, and that there exists a constant hα such that (3.2)
holds true, but we will also need the condition that

limn
(
n−1 ln mSn (hα)− ln m∞ (hα)

)
= 0. (3.16)

Moreover we suppose that there exists a constant σ2
α > 0 such that

σ2
α = lim

n→∞

1

n
s2n,α. (3.17)

Finally we introduce conditions similar to the conditions of Theorem 2 in Petrov (1956) to
obtain uniform approximations of the probability density functions of sums of independent
random variables: there exists a positive constant G such that, for all n, we have

n∑
i=1

E
[
|X(hα)

i − µi,α|3
]
≤ nG, (3.18)

and there exists a constant ε ∈ (0, σ2
α/24G) such that the characteristic functions t 7→

E[eitX
(hα)
j ] of X

(hα)
1 , X

(hα)
2 , . . . satisfy∫

|t|>ε

n∏
j=1

∣∣∣E[eitX
(hα)
j

∣∣∣ dt = O

(
1

n

)
. (3.19)

The next result establishes the asymptotic behavior of tail probabilities P[Sn ≥ αn] for
α > µ when the moment generating function exists.

Proposition 3.3. Let α > µ. Assume that conditions (3.4), (3.5), (3.2), (3.16), (3.17),
(3.18) and (3.19), hold true. If limn→∞ n (α−mn,α/n) = 0, then

P[Sn ≥ αn] ∼ 1√
2πn

1

hασα
e−ηαn,

where
ηα = αhα − ln (m∞ (hα)) . (3.20)

The proof of Proposition 3.3 is given in Appendix C. We can see that the probability
that the total losses Sn hit the upper layer (wn,∞) tends to 0 at exponential rate.

Let us now consider losses with heavier tails. Precisely, we consider the case of regularly
varying tail loss distributions as in Section 3.4.

Proposition 3.4. Let α > µ. Under the assumptions of Proposition 3.2,

P[Sn ≥ αn] ∼ nF
(
(α− µ)n

)
,

where the tail function F is defined in (3.12).

The proof of Proposition 3.4 is actually included in the proof of Proposition 3.2, as it
can be seen from equation (B.1). We note that the probability that the total losses Sn hit
the upper layer (wn,∞) now tends to 0 at hyperbolic rate.
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4 Individual stop-loss premiums and cash-backs within

a large P2P insurance community

The P2P insurance system discussed so far operates ex-post. It seems nevertheless reasonable
to ask participants to pay a provision πi,n ex-ante and to fairly distribute the possible surplus
among them, ex-post. The total amount of provision πi,n paid ex-ante by participant i is
decomposed into

πi,n = πP2P
i,n + πSL

i,n

where
πP2P
i,n = wi,n = h?i,n(wn) = E[Xi|Sn = wn]

is that part of the total contribution paid by participant i covering the first layer (0, wn)
shared within the P2P community and

πSL
i,n = E

[(
h?i,n(Sn)− wi,n

)
+

]
is the contribution to the pure premium of the stop-loss protection. This ensures that the
community has enough financial resources to cover the lower layer, since

n∑
i=1

πP2P
i,n = wn and

n∑
i=1

πSL
i,n = E[(Sn − wn)+].

To restore fairness, the surplus (wn − Sn)+ is shared ex-post among participants who
may decide to give it to a charity. Notice that allocating the surplus is important in case a
cash-back mechanism operates (the amount being reimbursed to the participant by the end
of the coverage period or used to reduce next-year’s contributions) but also if it is given to
a charity because participants often have the choice among several projects to fund. If the
community decides to distribute (wn − Sn)+ among participants then this amount must be
split among participants according to formula (2.3), that is, participant i receives a bonus
equal to

Bi,n =
(
πP2P
i,n − h?i,n(Sn)

)
I[Sn ≤ wn] =

(
wi,n − h?i,n(Sn)

)
+
.

To sum up, the operation can be decomposed into

- a deterministic, ex-ante payment πP2P
i,n = wi,n,

- a random, ex-post cashback/benefit Bi,n,

- a deterministic contribution πSL
i,n to the upper layer, excluding the loading,

- in exchange of the reimbursement of the loss Xi.

The next result establishes the asymptotic behavior of individual ex-ante contributions
πP2P
i,n and πSL

i,n, as well as of ex-post cash-backs Bi,n and of the probability that the total loss
hits the upper layer protected by the stop-loss treaty as n is large. As before, the discussion
is with respect to the rate of increase α of the the retention level wn = αn and the asymptotic
average loss µ per participant. Recall that limn→∞ π

P2P
i,n = wi (α).

11



Proposition 4.1. We assume that conditions A’, B and C of Proposition 3.6 in Denuit and
Robert (2020b) are satisfied. For a retention wn = αn, we can face two situations

Case 1: if α < µ, under the assumptions of Proposition 3.1, then

lim
n→∞

P [Sn ≥ wn] = 1

lim
n→∞

πP2P
i,n = E[X

(hα)
i ] < E[Xi]

lim
n→∞

πSL
i,n = E[Xi]− wi (α)

lim
n→∞

Bi,n = 0 with probability 1.

Case 2: if α > µ, under the assumptions of Propositions 3.1, 3.2 and that supn E[|E[Xi|Sn]|1+ε] <
∞ for some ε > 0, then

lim
n→∞

P [Sn ≥ wn] = 0

lim
n→∞

πP2P
i,n =

{
E[X

(hα)
i ]

E[Xi] + (α− µ) δi
1−γ

> E[Xi]

lim
n→∞

πSL
i,n = 0

lim
n→∞

Bi,n = wi (α)− E[Xi] with probability 1.

The proof of Proposition 4.1 is given in Appendix D. This result describes the P2P
insurance operation within an infinitely large pool. Depending on the growth rate α of the
retention level wn, we see that either the limit of πSL

i,n is strictly positive and there is no
ex-post cash-back when α < µ or the limit of πSL

i,n is zero and there is a positive ex-post cash
back when α > µ.

Remark 4.2. If α = µ and |mn−µn| = o (
√
n), then we would have, under conditions such

that a central-limit theorem holds, that limn→∞ π
P2P
i,n = E[Xi], limn→∞ P [Sn ≥ wn] = 1/2

and limn→∞ π
SL
i,n = 0. We would also deduce that limn→∞Bi,n = 0 with probability 1. This

case can therefore be viewed as an intermediary case.
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Appendix: Proofs of the main results

A Proof of Proposition 3.1

Without loss of generality, we only focus on the case where i = 1. Let us first show that, for
h ∈ H1,n,

E[X1|Sn = αn] = E[X
(h)
1 |S(h)

n = αn].

First note that X
(h)
i has a zero-augmented absolutely continuous distributions, that is,

P[X
(h)
i = 0] = P[Xi = 0]/mXi (h) > 0 where

mXi (h) = P[Xi = 0] + P[Xi > 0]mXi|Xi>0 (h)

and X
(h)
i possesses a probability density function f

X
(h)
i |X

(h)
i >0

over (0,∞) such that

f
X

(h)
i |X

(h)
i >0

(x) =
ehx

mXi|Xi>0 (h)
fXi|Xi>0 (x) .

Then, we have

E [X1|Sn = αn]

=

∫ αn

0

xdFX1|Sn=αn (x)

=
P[X1 > 0]P [Sn −X1 > 0]

P [Sn > 0]

∫ αn

0

x
fX1|X1>0 (x) fSn−X1|Sn−X1>0 (αn− x)

fSn|Sn>0 (αn)
dx

=
P[X1 > 0]mX1|X1>0 (h) P [Sn −X1 > 0] mSn−X1 (h)

P [Sn > 0] mSn|Sn>0 (h)

×
∫ αn

0

x
(ehxfX1 (x) /mX1|X1>0 (h))(eh(αn−x)fSn−X1 (αn− x) /mSn−X1 (h))

ehαnfSn (αn) /mSn|Sn>0 (h)
dx

=
(mX1 (h)− P[X1 = 0]) (mSn−X1 (h)− P[Sn −X1 = 0])

(mSn (h)− P[Sn = 0])

×
∫ αn

0

x
f
X

(h)
1 |X

(h)
1 >0

(x) f
S
(h)
n −X

(h)
1 |S

(h)
n −X

(h)
1 >0

(αn− x)

f
S
(h)
n |S

(h)
n >0

(αn)
dx

=
mX1 (h) P[X

(h)
1 > 0]mn−X1 (h) P[S

(h)
n −X(h)

1 > 0]

mSn (h) P[S
(h)
n > 0]

×
∫ αn

0

x
f
X

(h)
1 |X

(h)
1 >0

(x) f
S
(h)
n −X

(h)
1 |S

(h)
n −X

(h)
1 >0

(αn− x)

f
S
(h)
n |S

(h)
n >0

(αn)
dx

=
P[X

(h)
1 > 0]P[S

(h)
n −X(h)

1 > 0]

P[S
(h)
n > 0]

∫ αn

0

x
f
X

(h)
1 |X

(h)
1 >0

(x) f
S
(h)
n −X

(h)
1 |S

(h)
n −X

(h)
1 >0

(αn− x)

f
S
(h)
n |S

(h)
n >0

(αn)
dx

= E[X
(h)
1 |S(h)

n = αn],
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as announced.
Let hα be such that (3.2) holds true. We have

E [X1|Sn = αn] = E[X
(hα)
1 |S(hα)

n = αn] = E[X
(hα)
1 |S(hα)

n = mn,α + (αn−mn,α)].

Since (3.6), (3.7) and (3.8) hold true, we deduce from Theorem 4 in Zabell (1993) that

lim
n→∞

E[X1|Sn = αn] = E[X
(hα)
1 ],

as announced. This ends the proof.

B Proof of Proposition 3.2

Again, we only focus on the case where i = 1. We split the proof into three parts.

i) Following the proof of Proposition 3.1 in Lu et al. (2013) (taking x = an −mn), we
have, for a > µ, and 0 < θ < 1 < λ

λ−γ = lim inf
n→∞

F (λ(a− µ)n)

F ((a− µ)n)
≤ lim inf

n→∞

P [Sn ≥ an]

nF ((a− µ)n)

and

lim sup
n→∞

P [Sn ≥ an]

nF ((a− µ)n)
≤ lim sup

n→∞

F (θ(a− µ)n)

F ((a− µ)nx)
= θ−γ

It follows in particular that

lim
n→∞

P [Sn ≥ an]

nF ((a− µ)n)
= 1, (B.1)

letting λ and θ tend to 1.

Let T1,n = Sn − X1 + X̃1. Following the same reasoning as in the proof of Proposition
3.1 in Lu et al. (2013), we can show that for any κ1 > 0, there exists N0 > 0, such that for
n > N0

P [T1,n ≥ an] ≥

(
F X̃1

(λ(a− µ)n) +
n∑
k=2

FXi (λ(a− µ)n)

)

×

(
(1− κ1)−

(
F X̃1

(λ(a− µ)n) +
n∑
k=2

FXi (λ(a− µ)n)

))
.

Since (by Karamata theorem)

F X̃1
(x) =

1

E [X1]

∫ ∞
x

udFX1 (u) ∼ x

E [X1] (1− γ−1)
FX1 (x) ∼ xδ1

E [X1] (1− γ−1)
F (x) ,
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we have

lim inf
n→∞

P [T1,n ≥ an]

nF ((a− µ)n)
≥

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
lim inf
n→∞

F (λ(a− µ)n)

F ((a− µ)n)

=

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
λ−γ.

For the upper bound, we can also derive using the same arguments as in the proof of Propo-
sition 3.1 in Lu et al. (2013) that

lim sup
n→∞

P [T1,n ≥ an]

nF ((a− µ)n)
≤

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
lim sup
n→∞

F (θ(a− µ)n)

F ((a− µ)nx)

=

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
θ−γ.

It follows in particular that

lim
n→∞

P [T1,n ≥ an]

nF ((a− µ)n)
=

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
, (B.2)

letting λ and θ tend to 1.

ii) We assume that P [Xi = 0] = 0 for all i ≥ 1. Let 0 < κ < 1 < β such that κλ < βθ.
We consider the ratio

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
.

By Cauchy’s mean value theorem, there exists a constant δn ∈ [κ, β] such that

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
=
fT1,n (δnan)

fSn (δnan)
.

We have

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
=

P [T1,n ≥ κan]− P [T1,n ≥ βan]

nF ((a− µ)n)

nF ((a− µ)n)

P [Sn ≥ κan]− P [Sn ≥ βan]
.

Let

B (κ, β, θ, λ) =
(κλ)−γ − (βθ)−γ

(κθ)−γ − (βλ)−γ

and note that 0 < B (κ, β, θ, λ) < 1. Using Step i), we have

lim inf
n→∞

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
≥
(

1 +
(a− µ)δ1

E [X1] (1− γ)

)
B (κ, β, θ, λ)

and

lim sup
n→∞

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
≤
(

1 +
(a− µ)δ1

E [X1] (1− γ)

)
B−1 (κ, β, θ, λ) .
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Let us choose β = 1/κ and λ = 1/θ to simplify the functional form of B, we have

B
(
κ, κ−1, θ, θ−1

)
=

1− κ2γθ−2γ

1− κ2γθ2γ
.

If now, we reparametrize with κ = 1− u and θ = 1− v such that 0 < v < u < 1, we have, if
u→ 0 and v → 0 such that v = o (u)

B
(
1− u, (1− u)−1 , 1− v, (1− v)−1

)
→ 1.

We can therefore conclude that

lim
n→∞

fT1,n (an)

fSn (an)
=

(
1 +

(a− µ)δ1
E [X1] (1− γ−1)

)
.

Using Proposition 2.2 i) in Denuit (2019), we finally deduce that

lim
n→∞

E [X1|Sn = an] = E [X1] +
δ1

(1− γ−1)
(a− µ).

iii) We assume that 0 < P [Xi = 0] < 1. Note that T1,n is strictly postive and absolutely
continuous, and that Sn has a zero-augmented absolutely continuous distributions such that

P [Sn = 0] =
n∏
i=1

P [Xi = 0] < 1.

Cauchy’s mean value theorem provides the existence of a constant δn ∈ [κ, β] such that

P [T1,n ∈ an[κ, β]]

P [Sn ∈ an[κ, β]]
=

fT1,n (δnan)

P [Sn > 0] fSn|Sn>0 (δnan)

and Proposition 2.2 iii) in Denuit (2019) that, for s > 0,

E [X1|Sn = s] = E [X1]
fT1,n (s)

P [Sn > 0] fSn|Sn>0 (s)
. (B.3)

Therefore was can conclude in the same way as in Step ii).

C Proof of Proposition 3.3

Let hα and ηα be such that (3.2) and (3.20) hold true. We have

P [Sn ≥ αn] = e−ηα,nnE
[

exp
(
− hα(S(hα)

n − αn)
)
I[S(hα)

n ≥ αn]
]

where
ηα,n = αhα − n−1 log mSn (hα) .

Note that limn→∞ ηα,n = ηα and that (|ηα,n − ηα|) = o (n−1) by condition (3.16).
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Recall that mn,α =
∑n

i=1 µi,α and s2n,α =
∑n

i=1 σ
2
i,α where µi,α = E[X

(hα)
i ] and σ2

i,α =

Var[X
(hα)
i ]. Let

Zn,α =
S
(hα)
n −mn,α

sn,α
and

Hn,α (x) = P[Zn,α ≤ x].

We have

E
[

exp
(
− hα(S(hα)

n − αn)
)
I[S(hα)

n ≥ αn]
]

= ehαn(α−mn,α/n)E
[

exp
(
− hαsn,αZn,α

)
I[Zn,α ≥ (αn−mn,α) /sn,α]

]
= ehαn(α−mn,α/n)

∫ ∞
(nα−mn,α)/sn,α

e−hαsn,αxdHn,α (x)

by (3.8). By Theorem 2 in Petrov (1956), for all n sufficiently large the derivative of Hn,α

exists and
H ′n,α (x) = ϕ (x) +O

(
n−1/2

)
for some constant η where ϕ is the probability density function of the standard Gaussian
distribution. Thus with gn (x) = e−hαsn,αx/

√
n we have

E
[

exp
(
− hα(S(hα)

n − αn)
)
I[S(hα)

n ≥ αn]
]

= ehαn(α−mn,α/n)
∫ ∞
(nα−mn,α)/sn,α

gn
(
n1/2x

)
dHn,α (x)

= ehαn(α−mn,α/n)
∫ ∞
(nα−mn,α)/sn,α

gn
(
n1/2x

)
ϕ (x) dx+ o

(
n−1/2

)
= ehαn(α−mn,α/n)

1√
n

∫ ∞
n1/2(nα−mn,α)/sn,α

gn (x)ϕ
(
x/
√
n
)

dx+ o
(
n−1/2

)
∼ 1√

2πn

∫ ∞
0

e−hασαxdx ∼ 1√
2πn

1

hασα

and therefore

P[Sn ≥ αn] ∼ 1√
2πn

1

hασα
e−ηαn,

as announced.

D Proof of Proposition 4.1

Under conditions A’, B and C of Proposition 3.6 in Denuit and Robert (2020b), we have

lim
n→∞

E[Xi|Sn] = E[Xi] with probability 1.

Moreover

E[Xi|Sn] = wi,n −
(
wi,n − E[Xi|Sn]

)
I[Sn ≤ wn] +

(
E[Xi|Sn]− wi,n

)
I[Sn ≥ wn]

and therefore
E[Xi] = wi,n − E[(wi,n − E[Xi|Sn])I[Sn ≤ wn]] + πSL

i,n.
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Case 1: if α < µ, we have from Proposition 3.1

lim
n→∞

πP2P
i,n = lim

n→∞
wi,n = E[X

(hα)
i ] = wi (α) .

Since
Bi,n =

(
πP2P
i,n − E[Xi|Sn]

)
I[Sn ≤ wn],

and P [Sn ≤ wn] converges to 0 with exponential rate, we deduce that

lim
n→∞

Bi,n = 0 with probability 1,

and that
lim
n→∞

πSL
i,n = E[Xi]− wi (α) .

Case 2: if α > µ, we have from Proposition 3.1 and Proposition 3.2

lim
n→∞

πP2P
i,n =

{
E[X

(hα)
i ]

E[Xi] + (α− µ) δi
1−γ

and from Proposition 3.3 and Proposition 3.4

lim
n→∞

P [Sn ≥ wn] = 0.

Since supn E[|E[Xi|Sn]|1+ε] <∞, we deduce that supn E[|wi,n−E[Xi|Sn]|1+ε] <∞, and
that (wi,n − E[Xi|Sn])n are uniformy integrable. It follows that

lim
n→∞

E[(wi,n − E[Xi|Sn])I[Sn ≤ wn]] = wi (α)− E[Xi]

and that limn→∞ π
SL
i,n = 0. Finally

lim
n→∞

Bi,n = wi (α)− E[Xi] with probability 1

since limn→∞ I[Sn ≤ wn] = 1 with probability 1 because
∑∞

n=0 P [Sn ≥ wn] <∞.
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