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ABSTRACT

Personal drones are more and more present in our lives and acting as
“flying cameras” is one of their most prominent applications. In this
work, we conduct a synopsis of the scientific literature on human-
drone interaction to identify system functions and corresponding
commands for controlling drone-based aerial photography and
video, from which we compile a dictionary of interactions. We also
discuss opportunities for more research at the intersection of drone
computing, augmented vision, and personal photography.

CCS CONCEPTS

« Human-centered computing — User interface design; « Ap-
plied computing — Avionics.
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1 INTRODUCTION

Applications of drone computing cover a diverse range of industries
and fields, from intelligent transportation systems [3] to live inspec-
tion in constructions [15], emergency situations [45], and delivery
services [39], to name just a few. On a distinct level of scale and
user experience, personal drones, readily accessible and affordable,
deliver functionalities that range from user assistance in taking
selfies [10] to video conferencing [22], social companionship [24],
haptic feedback in VR [40], and navigation in Mixed Reality [20].
One particular application of personal drones is aerial photog-
raphy and video [11,16,23], where new vantage points are opened
to professional and novice photographers alike to capture life’s
moments. Even small and low-cost drones well under $100, such as
the Parrot Mambo Fly illustrated in Figure 1, feature first-person
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Figure 1: What input modalities are convenient and effec-
tive for users to control drone video cameras for aerial pho-
tography? The low-cost Parrot Mambo Fly personal drone is
exemplified in this figure and discussed in the text.

view (FPV) and live video streaming to a connected device. Inter-
actions with drones to take photographs and record videos from
aerial perspectives are usually implemented with flypads or apps
on smartphones and smartwatches.! However, for a novice user
operating Mambo Fly, the experience of taking an aerial photo may
be affected by how difficult it is to control the aerial perspective
with the flypad or the touch Ul For a professional photographer
employing a more advanced drone model,? ineffective interactions
may have direct consequences on the process of taking an artistic
photograph. In contrast to these conventional input devices, prior
work has examined other input modalities to interact with drones,
such as gestures [8,9,13,36], but aerial photography and video have
been rather neglected compared to the emphasis that has been put
on controlling drones in flight, e.g., take off, land, fly sideways,
etc. [1,7,8,13,30]. Consequently, more work is welcome to design
meaningful interactions for drone-based aerial photography.

1.1 Context and Contributions

According to Funk’s [14] overview of flying user interfaces, the
most prominent uses of drones in Human-Computer Interaction
research have been flying cameras, flying screens and projectors,

For instance, the Drone Director app for DJI Drones is available for iPhone, iPad, and
Apple Watch, https://apps.apple.com/us/app/id1144121416

2Unlike the low-cost Mambo Fly drone with a 720HD camera, the Parrot ANAFI models
offer 4K UHD 3840%2160 at 30 fps.
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Figure 2: The intersection among drone computing, mobile and wearable computing, augmented vision, and personal photog-

raphy specifies the scope of investigation of our work.

flying tactile props, and providing in-air companionship. In this
work, we focus on the first category and address human-drone inter-
action design to control aerial photography and video by targeting
a specific category of drone users—photographers, professionals
and hobbyists alike—less voiced in the IMX community. Figure 2
shows the context in which we position our work, as follows:

e Our scope of investigation relates primarily to drone com-
puting regarding live video streaming, high-definition pho-
tography [38], and the privacy of bystanders [3,44].

e We connect to mobile and wearable computing for inter-
action techniques using personal devices, such as smart-
phones—the most ubiquitous type of devices, alongside re-
mote controllers, to interact with personal drones. Interac-
tion techniques based on voice [28] and gesture input [8]
to control drones using such devices fall at the intersection
with drone computing in our Venn diagram.

o Augmented vision, since the majority of drones with embed-
ded cameras feature FPV, enabling users to immerse in the
aerial perspective of the flying drone [29].

o Personal photography, enabled by smartphones [25], tablets [6],
360-degree cameras [21], smartglasses [5], and other devices,
intersects the previous categories over drone photography.

In this context, we conduct a synopsis of the scientific literature
on human-drone interaction, from which we extract system func-
tions and commands for drone photography and video, and compile
a dictionary of interactions. We also present the perspective of three

professionals that use drones as part of their jobs, and reflect on
opportunities for more research on drone photography and video.

2 METHOD

We conducted a synopsis of the scientific literature to identify rel-
evant papers on human-drone interaction addressing drone pho-
tography and controlling the video camera mounted on drones.
Unlike other types of literature surveys, such as systematic liter-
ature reviews, state-of-the-art reviews, or meta-analyses [18], we
see synopses as rapid and systematized,? useful to quickly discover
relevant information about a specific topic; see [4] for an example.
To this end, we ran the following query:

"query": Title: ((drone*) AND (input OR interactionx

OR videox OR photox*))

"filter": NOT VirtualContent: true
in the ACM Guide to Computing Literature.* We preferred this
database since it incorporates references from many publishers:
ACM, Springer-Verlag, IEEE Press, Elsevier, MIT Press, and others.
Running the above query on the abstracts of the papers indexed in
the ACM resulted in a total number of 77 references. We removed
references not relevant to our scope, such as papers not discussing

3 According to Grant et al. [18], a rapid review employs systematic review methods, but
the completeness of searching is determined by time constraints; a systematized review
includes elements of systematic reviews, but does not always include comprehensive
searching (p. 95).

4A total of 2,892,573 records on December 18, 2020; https://libraries.acm.org/digital-
library/acm-guide-to-computing-literature.
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take selfie take selfie
perform the “frame” smartphone points to
gesture with the hands apart the drone

start/stop video recording
perform the “frame” gesture
with both hands together

take picture
perform the “frame” gesture
with both hands together

Figure 3: A dictionary of interactions with system functions and commands for drone-based aerial photography and video.

interactions with drones and papers not addressing drone photog-
raphy or video, according to the following eligibility criteria:

ECy: The work is peer-reviewed, available in full text, written in
English, and about drones. This criterion filtered out papers
for which the word “drone” was mentioned in the abstract
for other reasons.

EC,: The work is about interactions between humans and drones.
Following this criterion, we excluded papers focusing solely
on drone technology, such as streaming high-definition video
[38] without discussing interactions and papers not address-
ing human users, e.g., dogs interacting with drones in the
area of animal-computer interaction [46].

EC3: The work enumerates, explores, discusses, implements, or
evaluates system functions for controlling the video camera
of the drone. We thus excluded papers exploring interactions
with drones for other purposes or application goals, such as
controlling the drone in flight mode [35].

After screening the 77 references according to these eligibil-
ity criteria, we identified 10 papers that discussed, among others,
controlling of the drone video camera [1,7-11,13,30,33,36]. It is
noteworthy that, except Chen et al.’s [11] work on view manipula-
tion for drone photography and Chen et al.’s [10] direct pointing
interaction technique for selfie drones,” none of the other works
identified by our query had photography and/or video as their main
scope of investigation for human-drone interaction.

SBoth works published as posters.

3 RESULTS

We analyzed the ten eligible papers according to the two research
questions (RQs) from Figure 2.

Regarding RQ1, we found that the most frequently implemented
system functions for drone video cameras have been taking pho-
tos [7,8,13,33,36] and selfies [1,8-10,13,30,36], while commands for
recording videos have been addressed to a less extent [7,36]. We
identified six types of system functions relevant to our scope: (1)
take selfie, (2) take picture, (3) take picture of a specified object, (4,5)
start/stop video recording, and (6) stream video from the drone.

Regarding RQ>, mid-air gestures [1,7,8,13,30,33,36], voice com-
mands [1,7,8,13], direct pointing and touch input on mobile de-
vices [10,11] have been the main modalities in the scientific liter-
ature to control drone-based aerial photography and video, com-
plementing conventional flypads and remote controllers.® Figure 3
illustrates a dictionary of interactions representing associations be-
tween system functions and commands extracted from the papers
examined in our survey. For example, taking a picture can be per-
formed with the “frame” gesture with both hands together [13,36]
or apart [8,30,33], and taking a selfie by holding an imaginary cam-
era and clicking the shutter button [8]. Some papers examined
variations of the “take picture” function by instructing the drone
to point at specified objects, such as a tree [13] or a bicycle [36],
or by specifying the number of pictures to take and the time in-
terval between consecutive photos [7]. In the case of E et al.’s [13]
end-user elicitation study, pointing at the target to photograph it
was observed in participants’ behavior before making the “frame”

®For example, pressing the R1 button on the flypad of the Parrot Mambo Fly drone from
Figure 1 takes a picture; see https://support.parrot.com/us/support/products/mambo-
fpv/taking-photos-mambo-fpv.
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gesture. Two papers used mobile devices: Chen et al. [11] proposed
touch and multitouch gesture input on a tablet for controlling the
aerial perspective of the drone, e.g., a two-finger drag rotates the
view, and Chen et al. [10] proposed direct pointing for selfie drones.

Not all of the papers from our survey described the commands to
control drone photography and video. Some of the papers [1,8,13]
analyzed the commands proposed during end-user elicitation stud-
ies as a group and reported the level of consensus among partici-
pants’ preferences. Therefore, our dictionary only includes those
interactions for which commands were explicitly presented in the
corresponding papers. For example, Cauchard et al. [8] reported
users’ preferences for gesture and voice commands to take a selfie in
the form of agreement scores [43]. Their results showed agreement
of .37 (on the unit scale) for gestures and .63 for voice commands.
Abtahi et al. [1] reported similar results in their “drone near me”
study using agreement rates [42]: .31 agreement for gestures, .55 for
voice, and .69 for touch input and safe-to-touch drones (with frames
installed around propellers). For unsafe drones, however, Abtahi
et al. [1] reported .42 agreement rate for gestures and 1.0 (perfect
agreement) for voice commands.” And E et al. [13] found similar
results in their multi-cultural elicitation study by employing agree-
ment rates [41]: .39 and .30 level of agreement for gestures proposed
by participants from China and USA. However, cultural disagree-
ment was revealed for voice commands with .33 and .60 agreement
rates, respectively. In the system designed by Cacace et al. [7], the
user verbally instructs the drone to take a picture, start and stop
video recording, and stream video. Examples of voice commands
are not presented, but a reference is provided to a large-vocabulary
continuous speech recognition engine.

To complement these findings, we conducted informal inter-
views with three professional drone users. Two of them (both male,
40 and 24 years old) had nine and four years, respectively, of ex-
perience with drone aerial photography. The third user (male, 46
years old) had sixteen years of experience with drones for ground
penetrating radar [12] that, although different in goal compared to
drone-based photography, employs imaging sensors mounted on
the drone. The interviewees expressed their preferences for gesture
and voice commands to control the functionality of the sensors
from their drones. However, mid-air gesture control of the drone
in flight mode was perceived less effective compared to using a
flypad, according to their practical experience. Also, simple finger
movements and touch input on the drone’s flypad were considered
faster and less demanding compared to hand and arm gestures.

4 LIMITATIONS AND FUTURE WORK

Synopses of the scientific literature are, by their nature, limited
in depth and breadth. By running our query in other electronic
databases, such as IEEE Xplore, SpringerLink, and Scopus, other
relevant papers are likely to be identified. Moreover, for other types
of interactions with drones, we refer readers to other surveys, such
as Mirri et al.’s [32] discussion of challenges in human-drone inter-
action and Obaid et al’s [34] survey of domestic drones.

7The voice commands, however, are not explicitly mentioned in their paper. However,
a previous study [8] found that almost all of the participants used the word “picture”
when proposing voice commands to take selfies and photos using a drone. Also, in
the study of E et al. [13], participants from two different cultures, Chinese and USA,
frequently spoke the word “picture” to effect the “take a picture” function.
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Based on our findings, we highlight two opportunities for future
work on human-drone interaction for aerial photography and video
at the intersection of the areas illustrated in Figure 2:

(1) Explore diverse input modalities for controlling drone aerial
photography and video. Examples include modalities made
available by emerging wearables, such as smart rings [17],
but also multimodal input, such as combined gesture and
speech for finer control while taking photographs. Other
drone application areas have considered specific input modal-
ities, including brain-computer interfaces [26], emotion recog-
nition [31], and somaesthetic interactions [27], which could
also be examined in the context of the artistic process of
taking photographs and filmmaking.

(2) Integrate aerial photography and video with other applica-
tions of personal video cameras [5], such as lifelogging [19]
and life abstraction [2], where wearable cameras passively
record their users’ lives. Integrating drone video with such
applications, beyond “follow-me” functionality, could enable
new opportunities for drone-powered lifelogging as well as
for lifelogging multiple, distinct perspectives of the user’s
life events. Moreover, integrating drone aerial photography
and video with other consumer video devices, such as smart
cameras [37], may be equally interesting to explore.

We hope that our preliminary results of the little explored area of in-
teractions with drones for aerial photography and video will foster
more work towards more engaging experiences for photographers.
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