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ABSTRACT
Modal choice models used for freight transportation studies cover-
ing inter-regional or international areas are difficult to set upbecause
of the dearth of information about explanatory factors. While cost
and transit time are known as being important explanatory variables,
they are generally correlated to eachother, and their coefficient com-
puted with a Logit model can have unexpected signs.

Box-Cox transformations (BCT) of the independent variables can
help toovercome this problem. If solutions to identify theBCTparam-
eter that maximises the likelihood of a model are well known, the
process is not straightforward once it must respect the constraints
that the variables’ coefficient estimators take the expected signs.

This paper presents a shotgun hill climbing meta-heuristic with
backtracking capabilities, able to quickly identify Box-Cox λ param-
eters to use when multiple variables must be transformed. The
algorithm appears to be efficient and effective and produces stable
and statistically valid solutions.

ARTICLE HISTORY
Received 15 October 2020
Accepted 26 May 2021

KEYWORDS
Freight transport; modal
choice; Multinomial Logit;
Box–Cox transforms; hill
climbing; heuristic

1. Introduction

Modal choice models are important tools supporting transport policy decisions. Used to
compute modal elasticities for instance, they can be very useful in cost–benefit or traffic
impact analysis for planned infrastructure (de Jong, Gunn, and Ben-Akiva 2004; Liedtke
and Carrillo Murillo 2012; Beuthe et al. 2014; Rothengatter 2019). When applied to large
inter-regional or international areas, they mostly rely on basic explanatory variables, such
as transportation costs, transit times or trip lengths.

Other variables, related to the level of service, such as safety, flexibility, frequency, losses
during transport or reliability may also play a role in decision-making. Their relative impor-
tance varies with the type of transport considered (Beuthe and Bouffioux 2008; Arencibia
et al. 2015) but cost and transit time are often cited among themost important explanatory
variables (Cullinane and Toy 2000), while trip length is deemed to be implicitly included in
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these twovariables. Note that, in the context of passenger transport, Gaudry andde Lappar-
ent (2015) have attempted to include distance as an additional explanatory variable which,
they suggest, takes into account a specific ‘attitude todistance’ distinct from the ‘attitude to
time or cost’. In the case of freight transportation, wemay speculate that this variable could
be taken as a proxy for the increased probability of an incident in the course of a longer
transport which affects the security and safety of the cargo as well as the transport relia-
bility, factors of importance for the shippers and consignees. While this is an issue of some
interest worth mentioning, it will not be deeply investigated here because of lack of addi-
tional information needed for a good assessment of this hypothesis. Thus, the focus of this
paper is put on the technique of estimating a freight transport Logit model with one, two
or three variables (cost, transit time and distance) that are, each of them and separately,
Box–Cox transformed. The combination of the three variables is tested in order to assess
the robustness of the proposed heuristic.

Fortunately, transportation costs, transit times and trip lengths are also among the fig-
ures that can be gathered when a model covers extended inter-regional or international
areas with large numbers of origins and destinations. However, these independent vari-
ables may only poorly explain mode choice decisions as they are often correlated, which is
problematic. Indeed, the interpretation of a regression coefficient is that it represents the
mean change in the dependent variable for each unit change in an independent variable
when all of the other independent variables remain constant. When independent variables
are correlated, changes in one variable are associated with shifts in other variables. In such
cases, the coefficient estimates areunstable: their value andeven their sign ‘swing’ between
the independent variables. Moreover, they also may have a weak statistical power (Greene
2012; Adeboye, Fagoyinbo, and Olatayo 2014).

Yet, at the level of aggregation considered in this paper, if one considers the simple
economic concept of own elasticity of demand, the coefficient estimators for cost and tran-
sit time should be negative as well documented in the literature review (Beuthe, Jourquin,
and Urbain 2014; Jourquin and Beuthe 2019). Similarly, it can be expected that a longer
transport distance would have generally a negative impact on the attractiveness (and thus
the probability of choice) of a transportation mode.

Several methods can be found in the literature to overcome multicollinearity. The aim
of this paper is not to present an extensive review of these methods, but to put the focus
on one line of thought, based on Box–Cox transforms (Box and Cox 1964) of independent
variables. Beside the fact that this technique can be useful to improve the Log-Likelihood
of a model, it is sometimes considered as an elegant and efficient way to help overcome
multicollinearity and to re-establish the expected signs of the estimators (Fridstrøm and
Madslien 1994; Gaudry 2016). The Box–Cox transformation (BCT, equation 1) belongs to
the family of power transforms, used to create a monotonic transformation of data using
power functions. The chosen value for λ offers a lot of flexibility.

BC(x, λ) =
{

xλ−1
λ

, if λ �= 0

log(x), if λ = 0
(1)

By ‘bending’ the functional form, BCT providesmore degrees of freedom formodel estima-
tion. For instance, transforming a linear specification into a non-linear function can be used
to be in line with more sophisticated theories such as non-constant values of time.
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In order to estimate the optimal value of the λ parameter(s), toolboxes using different
concepts such as profile likelihood, Bayesian statistics or Newton–Raphson greedy algo-
rithms are most often used (Sakia 1992; Bierlaire 2003; Ishak and Ahmad 2018; Soleymani
2018). Simulated annealing was also used for the maximum-likelihood estimation (Robert
and Casella 2004), and neural networks have been implemented for a fast identification of
Box–Cox transformation parameters (Hong 2006). Unfortunately, to the best of our knowl-
edge, none of these methods explicitly take care of the expected sign of the estimators of
the independent variables (and of their level of significance).

There is thus a need to propose a method that efficiently identifies a set of λ transform
parameters that explicitly integrates the constraints related to the expected signs of the
estimators and their level of significance. The latest constraint is also important as the Logit
model with BCT explanatory variables can for instance be used to compute cost or tran-
sit time elasticities. In such a context, the level of significance of the estimators cannot be
ignored to assess the robustness of the derived elasticities.

Obviously, a brute-force approach canbeused,which tests all thepossible combinations
of lambdas in a given range and for a given step (granularity). However, the number of com-
binations to test growth exponentially with the number of variables that must be Box–Cox
transformed. For instance, if three variables must be transformed, 68,921 runs are needed
to identify the corresponding three lambdas when they are searched in the [−2,+2] range
with a step of 0.1, which is a rather classical range and granularity (Ishak and Ahmad 2018;
Soleymani 2018).

The main contribution of this paper is a heuristic that can quickly identify a good com-
bination of λ’s when several independent variables must be Box–Cox transformed. The
heuristic provides, when possible, estimators for the transformed variables that have the
expected sign and have a least the level of significance chosen by the modeller. As the
introduction of these constraints in the traditional max Log-Likelihood paradigm maybe
questionable, attention is paid to the statistical validity of the identified solutions.

The problem to solve and the proposed heuristic are illustrated using a large real-World
dataset.

After a presentation of the data and themodal choicemodel in sections 2 and 3, section
4 illustrates the benefits of using Box–Cox transforms.

Section 5 explains, demonstrates and discusses the results of a meta-heuristic, which
clearly breaks the combinational nature of the problem. It can be defined as belonging to
the family of shotgun hill climbing algorithms with backtracking capabilities (Russell and
Norvig 2003; Witten, Frank, and Hall 2011; Christian and Griffiths 2016).

2. Dataset description

The dataset used in the context of this paper is gathered from the ETISPlus European
FP7 research programme. It provides an information system useful for assessing European
transport policies: it combines data, analyticalmodellingwithmaps and an online interface
for accessing the data (Szimba et al. 2012). Public access to several deliverables and many
data is provided, amongwhich origin-destinationmatrixes and digitised networks. For this
paper, the Origin-Destination (OD) matrixes for the year 2010, aggregated at the NUTS-2
regional level are used. These matrixes contain annual transported tons for each OD pair,
and are available for road, railway and inlandwaterways (IWW) transport, with figures for 10
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categories of commodities (NST-R chapters1 0–9). It is important to note that thesematrixes
are based on observations (statistics) but are partially constructed using models and tools
for calibration and validation.

This dataset has been imported into an open-source transportation network model
(Nodus, http://nodus.uclouvain.be).

As illustrated in Table 1, the datasets corresponding to the different categories of com-
modities are quite different in sizes (number of OD cells), geographical spread (average trip
length), volumes (average t.km per OD cell) and modal split (market shares). This diversity
is useful to test the robustness of the heuristic that will be presented later.

Nodus allows retrieving, for each OD pair, each mode and each group of commodities,
the loading, unloading, transit and transhipment costs. The cost functions C takes into
account all the carrier’s costs during transport: labour, capital invested in vehicles, fuel,
maintenance, insurance, handling and storage costs, services directly linked to a transport,
plus all residual indirect costs like those of administrative services. Beside these costs, the
software also provides the total transit times T (travel time+ loading and unloading dura-
tion) and trip length L. Actually, the C, T and L values are gathered from the assignment of
each modal OD matrix on its corresponding digitised network. Thus, for each OD relation
and each group of commodities, C, T and L values are computed for each available mode.

The loading and unloading costs ld_cost and ul_cost are fixed costs, though they vary
with the mode and the transported goods. The transhipment costs associated with trans-
port chains are not explicitly modelled in this exercise. The loading factors of the vehicles
are taken from the ECCONET research project (Beuthe et al. 2014). They are exogenous but
specific for each group of commodities and type of vehicle (truck, train or one of the 6 types
of barges included in themodel). The travelling unit cost ormoving cost,mv_cost, depends
on the length and on the average commercial speed for the considered mode, as well as
on the transported commodity g. For a given link l belonging to a network of modem, it is
computed as:

mv_costgl,m = Average speedm
Speedl,m

∗ lengthl ∗ unit mv_costgm (2)

As the unitmv_cost also contains time-related costs, the Average speed / Speed ratio allows
for taking into account higher/lower than average costs on slower/faster segments of the

Table 1. Content of the demand matrixes.

OD cells Avg. trip length (km) Avg. flow (1000 t.km) Market share (%)

NST-R Road IWW Rail Road IWW Rail Road IWW Rail Road IWW Rail

0 14,586 4741 14,519 805 948 877 7561 2308 1039 87.6 4.6 7.8
1 15,195 5085 15,119 795 994 868 8495 1940 258 93.7 4.6 1.8
2 3773 1725 3759 412 743 460 2616 6966 14,677 19.4 13.8 66.8
3 6138 2356 6096 514 763 568 6936 8927 2363 67.4 23.2 9.4
4 6482 2642 6441 460 681 511 17,528 3317 5171 84.6 4.6 10.9
5 11,778 4380 11,731 701 972 766 5003 1096 1775 77.9 4.5 17.6
6 12,913 4481 12,826 635 903 698 17,913 6344 5438 79.1 7.5 13.4
7 4622 2298 4604 476 781 525 2148 969 5913 32.9 4.3 62.8
8 13,608 5106 13,571 737 992 804 6310 2502 1521 80.0 9.7 10.4
9 25,399 6725 25,250 976 1163 1056 13,623 2647 1651 86.5 5.5 8.0

http://nodus.uclouvain.be
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network. Indeed, Average Speedm represents the average speed for mode m on the total
network and Speedl,m is the average speed on link l.

The total cost Cgm of a route between an origin and a destination for a vehicle of typem
transporting commodities of type g is thus equal to:

Cgm = ld_costgm + ul_costgm +
L∑
l

mv_costgl,m, (3)

where L is the set of successive links representing the route.
Similarly, the total transit time has fixed elements (the loading and unloading dura-

tion (ld_duration and ul_duration) and a variable part (the travel duration that depends on
length and speed on the successive links along the route). Thus:

Tgm = ld_durationgm + ul_durationgm +
L∑
l

mv_durationl,m, (4)

with

mv_durationl,m = lengthl/speedl,m. (5)

The exact nature of this dataset (partially constructed OD matrixes containing aggregated
regional yearly transported tonnages and computed values for the independent variables)
must be kept inmind as it has a clear impact on the variance. Thepresence of the length and
speed variables in the definitions of C and T also explain why both variables are correlated.

3. Modal choice model and examples of problematic solutions

As outlined in the previous section, three independent variables, cost C, transit time T and
trip length L, as well as the transport demand (OD matrixes) are available. As they are dif-
ferent for each group g of commodities, it is appropriate to estimate a separate model for
each of these groups.

The explanatory variables being specific to each mode, but not to shippers, the analysis
applies the McFadden’s Conditional Logit model (McFadden 1973). Depending on which
independent variables to include in the utility function, the model can be written as

Prgm = exp(αgCgm + δ
g
m)∑n

j=1 exp(αgCgj + δ
g
j )
, (6)

Prgm = exp(αgCgm + βgTgm + δ
g
m)∑n

j=1 exp(αgCgj + βgTgj + δ
g
j )
, (7)

Prgm = exp(αgCgm + βgTgm + γ gLgm + δ
g
m)∑n

j=1 exp(αgCgj + βgTgj + γ gLgm + δ
g
j )
, (8)

where Prgm is the probability to choose mode m when transporting commodity g, and n
represents the number of modes in the choice set. Parameters αg, βg and γ g are not mode
specific (Conditional Logit). However, since the model is solved separately for each group
of commodities g, these coefficients can vary from group to group. As a cost increase, a
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Table 2. Example of problematic solutions.

NST/R αg βg

0 −1.9607321 (∗∗∗) 0.1071265
1 −1.5512147 (∗∗∗) −1.1649947 (∗∗∗)
2 −4.7085641 (∗∗∗) 0.6887534 (∗∗∗)
3 −0.5562238 (∗∗) −2.3806673 (∗∗∗)
4 −3.0464042 (∗∗∗) −2.3464773
5 −2.3983015 (∗∗∗) 0.4403564 (∗∗∗)
6 −0.3742473 (∗∗) −1.8106375 (∗∗∗)
7 −2.8706081 (∗∗∗) −0.0156810
8 −2.4279871 (∗∗∗) −0.1181572
9 −2.1342931 (∗∗∗) 0.6702142 (∗∗∗)
Signif. codes: 0 ‘∗∗∗ ’ 0.001 ‘∗∗ ’ 0.01 ‘∗ ’ 0.05 ‘.’ 0.1 ‘ ’ 1.

longer transit timeor a longer itinerarywould reduce the attractiveness of a transportmode
we expect that these coefficients have negative values. Finally, δgm are the calculated inter-
cepts for each mode and group of commodities. As one mode must be considered as the
reference mode (road transport in case presented in this paper), its δ

g
m is set to 0.

One could argue that, in some cases, positive estimators for the independent variables
might be accepted. For instance, a company using moving stock may appreciate longer
transit times. However, these cases are specific to transport tasks that can only be identified
at a disaggregated level. This is not expected at the level of aggregation suitable for strate-
gicmodels with annual transported volumes at a regional level, which is the case illustrated
in this paper.

For OD matrixes containing aggregated volumes, a weighted Logit methodology is
applied whereby the transported tonnages weight the mode choice observations in the
Log-Likelihood functions (Rich, Holmblad, and Hansen 2009). The weighted Conditional
Logit problem is solved using the ‘mnLogit’ R package(Hasan et al. 2019), a faster and
parallelised version of the well-knownmLogit R package (Croissant 2019).

As an example of the difficulties of estimation that can be encountered with such a
data set, Table 2 illustrates a problematic set of solutions obtained for the bivariate case
with a classical log transform applied to C and T. It appears that the βg estimator has an
unexpected positive sign for groups of commodities 0, 2, 5 and 9. Moreover, the same βg

estimator has the correct sign but is not significant at all for groups 4, 7 and 8.
Such problematic results find their origin in the nature of the dataset and the rather sim-

ple functional form of the utility functions. Unfortunately, as explained in the introduction,
these are often the only explanatory variables that can be gathered for freight transport
models that cover large geographic areas.

The next section explains how relevant Box–Cox transforms of these variables can help
satisfying the assumption about the signs of the estimators. It also discusses the impact of
the method on the statistical fit of the models.

4. Box–Cox parameters estimation: a brute force approach

The goal of the game is thus to identify the values of λ’s that maximise the Log-Likelihood
of the Logit model, considering two constraints:

(1) The estimators of the independent variables should have the expected sign.
(2) The estimators should have a minimal level of significance, chosen by the practitioner.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 7

Figure 1. Log-Likelihoods of valid solutions and unconstrained max (bivariate model).

The values of Cgm, T
g
m and Lgm can be Box–Cox transformed before their respective esti-

mators αg, βg, γ g being computed. In order to identify the ‘best’ combination of λ’s, one
can use a simple ‘brute force’ approach, during which the transformations are performed
using all the possible λ

g
C ,λ

g
T and λ

g
L combinations taken in the range [−2, 2] with a step of

0.1. For a given λ, 41 values are thus possible, which corresponds to the number of Logit
models that must be computed in the case of the univariate utility function described in
equation (6). For the bivariate case (equation 7), 412 = 1681 Logit models must be com-
puted, and 68,921 runs are needed for the utility function with three variables (equation 8).
As the Logit models are separately solved for the 10 groups of commodities, the number
of runs is obviously multiplied by 10. The number of runs becomes thus rapidly very large,
and this is the reason why a heuristic will later be presented in this paper, which drastically
reduces the λ’s combinations to test while producing results that are equal or very close to
the optimal ones identified by the brute force approach.

The impact of BCT on the Log-Likelihood of the Logit model is illustrated in Figure 1
for the bivariate case with C and T variables. All the possible combinations of λ

g
C and λ

g
T

are tested and only the combinations that produce the expected (negative) sign for the
estimators of the two independent variables are retained, but only if they are significant (at
least at 0.05). Such combinations will henceforth further be referred to as ‘valid’ solutions.
The Log-Likelihood of the Logit of each valid solution is represented along the vertical axis
for the commodities of group NST/R 7.2 The two horizontal axes represent the values of
λ2C and λ2T . Each grey dot represents a valid solution, among which the green dot is the
one with the highest Log-Likelihood. The red dot represents the unconstrained max Log-
Likelihood, i.e. the combination of λ’s that maximises the Log-Likelihood but produces at
least an estimator with the unexpected sign (invalid solution). The red and green dots are
enlarged to make themmore visible.
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Figure 2. Set of solutions tested by the heuristic (bivariate model).

As a step of 0.1 is used between each λ, 1681 dots could be plotted but, excluding the
red one, only 1075 are drawn. Indeed, only 1075 combinations of λ2C and λ2T result in valid
solutions. All the other combinations produce either an unexpected sign or have at least
one estimator that is not significant.

Figure 1 makes clear that no continuum exists between all the valid solutions. It also
shows that the green and the red dots are not necessarily ‘neighbours’. These two char-
acteristics must be tackled by the heuristic presented in the next section, which task is to
quickly converge towards the valid solution with the highest likelihood (the green dot). By
definition, a heuristic doesn’t guarantee that the optimal solution is found (as later illus-
trated by Figure 2). This could have an impact on the effectiveness of the algorithm and the
statistical robustness of the solution. The fact that the optimal valid solution is surrounded
by a series of valid solutions, whose LL’s are practically identical, should, however, facilitate
the work. These aspects will be thoroughly discussed in sections 5.2 and 5.3.

It is worth noting (Table 3) that, for the univariate and bivariate cases, all the λ’s obtained
for the optimal valid solutions are strictly within the recommended [−2, 2] range (Ishak and
Ahmad 2018; Soleymani 2018), showing that there is no need to explore more ‘extreme’
values, that would exaggeratedly distort the data at the risk of suspecting the modeller of
making arrangements so that his model sticks, at all costs, to his data.3 It is also the case
for the trivariate case with an exception for λ2T and λ7T which are equal to 2 (and may be
larger than 2). Again, the trivariate case is only considered in this paper in order to test the
robustness of the heuristic.

The comparison of the max Log-Likelihoods of the models without any BCT of the inde-
pendent variables with those of the models with a constrained BCT of the variables is also
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Table 3. Optimal λ’s for 1, 2 and 3 independent variables.

1 2 3

NST/R λC λC λT λC λT λL

0 0.4 0.4 −1.0 0.5 −1.0 −0.1
1 0.2 0.1 −0.1 0.1 −0.2 1.7
2 0.2 0.4 1.1 0.7 2.0 1.1
3 0.4 0.9 0.7 0.8 0.0 1,7
4 0.2 0.0 0.1 −1.6 −0.4 0.5
5 0.2 0.5 1.1 0.5 1.1 0.6
6 0.5 0.7 0.3 0.8 0.3 0.5
7 0.1 0.1 1.7 0.2 2.0 −0.1
8 0,1 0.3 1.6 0.3 1.5 1.8
9 −0.6 0.2 1.2 0.2 1.2 1.7

Table 4. Log-Likelihood of the models with and without constrained BCT.

Bivariate model Trivariate model

NST/R No BCT Constrained BCT Difference No BCT Constrained BCT Difference

0 (−17387.62) −17157.17 1.33% (−17257.66) −17139.74 0.68%
1 −10482.26 −10103.74 3.61% (−10443.95) −10099.01 3.30%
2 −7722.79 −7577.96 1.88% −7721.49 −7629.89 1.19%
3 −9980.87 −9965.90 0.15% (−9904.08) −10015.38 −1.12%
4 −7541.37 −7310.68 3.06% (−7498.05) −7362.88 1.80%
5 −20440.55 −20357.96 0.40% −20381.83 −20273.65 0.53%
6 −20608.50 −20456.75 0.74% −20608.01 −20454.92 0.74%
7 −10248.36 −10049.80 1.94% (−10172.04) −10032.11 1.38%
8 −22102.26 −21626.12 2.15% −22096.47 −21603.30 2.23%
9 −32383.97 −32182.45 0.62% (−32383.00) −32174.97 0.64%

interesting to assess the statistical validity of the method. Indeed, one must avoid promot-
ing an approach that imposes constraints to force a model to behave as expected without
sufficient statistical control.

As shown in Table 4, the Log-Likelihood of the constrained models are, excepted for
NST/R 3 in the trivariate model, always higher than those of the models without any BCT.
Yet, in the constrained Box–Cox models, all the estimators have the expected sign and
at least a level of significance of 0.05. This is, however, not the case for some of the non-
BCT models: the figures between parenthesis correspond to models producing estimators
with an unexpected sign, and the underlined ones identify models with at least one non-
significant estimator. Note that the non BCT trivariare model for NST/R 3 corresponds
anyway to a non-valid solution.

5. A simple but efficient meta-heuristic

A systematic test of all the values of λ for a Box–Cox transform of a single independent vari-
able in the range [−2, 2] with a step of 0.1, i.e. 41 different values, is undoubtedly feasible.
However, the exhaustive combinations of λ’s in multivariate cases rapidly becomes a very
long computing task because of the combinational nature of the problem. With the objec-
tive to drastically reduce the number of λ’s combinations to test, this section proposes a
simple, efficient and generic heuristic, useable for a combination of N λ’s. It is tested for
cases with N = 2 and 3.
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5.1. Description

Thebasic ideaof this heuristic is to explore theneighbourhoodof agiven combinationofλ’s
in N dimensions, starting from an initial valid combination. Two characteristics previously
outlined must be taken into account:

• The optimal valid combination cannot be considered as being located in the close
neighbourhood of the best unconstrained combinations.

• The continuum of valid solutions is not guaranteed as they can be located in different
‘clusters’.

A specific ‘hill climbing’ algorithm (Russell and Norvig 2003) was developed. It is a math-
ematical optimisation technique which belongs to the family of local searches. It is an
iterative algorithm that starts from an arbitrary solution, and further tries to find better
solutions by making incremental changes to the solution until no further improvement
can be obtained. Since only convergence to a local maximum can be guaranteed, repeated
alternative starting values are tested to have a better chance to locate the global (valid)
maximum, andhence themaximumLog-Likelihood. This is usually referred to as a ‘shotgun’
or ‘random-restart’ hill climbing meta-heuristic (Christian and Griffiths 2016).

Generally, once all the solutions around an initial solution explored, the strategy used in
the hill-climbing algorithms is to pursue the exploration towards the solution that presents
the highest improvement (steepest climb). Such an approach implicitly considers that there
exists a continuum between all the valid solutions. However, it already has been pointed
out that this is not always the case for the problem discussed in this paper. Therefore, the
algorithm tests all the solutions in each dimension and further explores all the solutions
with the expected signs having a higher Log-Likelihood than the current solution. As mul-
tiple search paths are explored, the algorithm must ‘remember’ the solutions to (re)start
from. Consequently, the algorithm belongs to the family of hill climbing with backtracking
capabilities heuristics (Witten, Frank, and Hall 2011).

An important drawback of this strategy is that a same solution has a high probability
to be encountered along several search paths. In order to avoid time consuming recom-
puting of already computed solutions, a hash table – a data structure that implements an
associative array mapping keys (combinations of λ’s) and values (solved model for these
λ’s) – is used to store all the already computed results. It is checked each time the result of
a Logit model is needed during the search. The computing of a λ’s specific Logit model is
thus only performed when it is not yet present in the hash table, while the retrieval of an
already computed solution is almost immediate.

Beside the definition and the initialisation of some global variables (Pseudo-code 1),
the heuristic has two major phases: the identification of an initial combination of λ’s to
start from and the systematic exploration of its neighbourhood until no better solution is
found.

To start with (Pseudo-code 2), a set of nbDraws combinations of λ’s that produce valid
solutions are randomly drawn, among which the solution with the highest Log-Likelihood
is retained as starting solution for further exploration. Our experience shows that 5 random
draws of an initial solution is enoughwhenN = 2 and that 10 draws appear to be sufficient
to obtain efficient results when N = 3 (see the section 5.2 below).
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N number of lambas
range range to search λ’s in (from -range to +range)
step interval between 2 successive values of λ

nbDraws number of valid initial λ combinations to randomly draw
solutionsToExplore list of solutions to explore around (empty)
bestSolution best solution found so far (empty)

Pseudo-code 1. Definition of the global variables.

n = 0
while (n < nbDraws) {

lambdas = random draw of a combination of N lambdas in range;
solution = retrieveOrComputeLogit(lambdas);
if (isValid(solution)) {

n = n + 1;
if (solution$logLik > bestSolution$logLik) {
bestSolution = solution;

}
}

}
initialise solutionsToExplore with bestSolution;

Pseudo-code 2. Identify a good initial combination of λ′.

exploreAround(solution, step) {
for each lambdas around(step) of the solution {
newSolution = retrieveOrComputeLogit(lambdas);

if (isValid(newSolution) and newSolution$logLik > bestSolution$logLik) {
bestSolution = newSolution;

}

if (hasExpectedSigns(newSolution) and newSolution$logLik > solution$logLik) {
add newSolution to solutionsToExplore; }

}
}

Pseudo-code 3. Details of the ‘exploreAround’ function.

repeat {
solution = first element of solutionsToExplore;
exploreAround(solution, step);
remove solution from solutionsToExplore;

} until solutionsToExplore is empty

Pseudo-code 4. Explore the neighbourhood until no better solution is found.

During the exploration process, corresponding to the second phase of the heuristic,
every solution with the expected signs (regardless of their level of significance) and hav-
ing a higher Log-Likelihood than the one of the current start solution is added to the list
of solutions to explore from later. All the encountered valid solutions are compared to the
best one found so far and replace it if better (Pseudo-code 3).4 Once all the solutions around
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for each currentStep in (0.4, 0.2, 0.1) {
repeat {

solution = first element of solutionsToExplore;
exploreAround(solution, currentStep);
remove solution from solutionsToExplore;

} until solutionsToExplore is empty

initialise solutionsToExplore with bestSolution;
}

Pseudo-code 5. Explore the neighbourhood until no better solution is found.

the current starting point explored, it is removed from the list. Consequently, this list grows
and shrinks dynamically, and the exploration ends when the list is empty, meaning that no
better valid solution can be found (Pseudo-code 4).

The particularity of this hill climbing algorithm is that the exploration isn’t limited
towards the steepest direction, but that all the directions in which the slope increases are
tested, as long as the signs of the estimators of the computed solutions are expected.

This strategy can further be optimised (Pseudo-code 5) using successive values for step,
starting fromacoarse valueandendingwith the final granularity of 0.1. Valuesof 0.4, 0.2 and
0.1 were used for the case presented in this paper. This strategy helps to rapidly converge
towards the neighbourhood of an interesting (or even best) solution using large steps, then
exploring the surrounding with gradually smaller steps.

The two phases are repeated several times (shotgun meta-heuristic) in order to try to
locate the global maximum. Again, the use of a hash table helps to limit the number of
Logits to compute as, from run to run, already computed solutions can be directly fetched.

Figure 2 gives an idea on how the heuristic finds its path to a solution. This example, for
NST/R 7, has been chosen because the solution found by the heuristic (blue dot) doesn’t
correspond to the exact solution under constraint (green dot). All the black dots represent
the solutions tested by the heuristic. Some seem to be in the middle of nowhere; they cor-
respond to randomdraws of the first phase, that are not valid solutions. The density of black
dots becomes higher in the neighbourhood of the final solution. In this example, only 146
Logit computations (black dots+ the blue dot) were needed (instead of 1 641) to identify
a solution, which Log-Likelihood is very close to the best solution (green dot).

5.2. Performance of the heuristic

This heuristic is implemented in an R script (Appendix 2) and its results are compared to the
exact solutions computed for the dataset described earlier using the brute force approach.
As the heuristic starts from a randomly drawn solution, it was run 50 times in order to
measure its average and worst-case performances.

The next two tables give some performance indicators for the bivariate and trivariate
cases.5 For each group of commodities, one finds:

• The average, smallest (best-case) and largest (worst-case) number of Logit computations
needed by the heuristic.
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Table 5. Performances indicators for the bivariate model (with 5 shots).

Logit computations
(brute force = 1,681)

Log-Likelihood
(�%with brute force optimal)

NST-R Average Best Worst
Hits
(50) Average� Best-case� Worst-case�

0 80 60 109 50 0% 0% 0%
1 66 44 122 38 0% 0% −0.1%
2 84 65 127 49 0% 0% 0%
3 72 52 97 50 0% 0% 0%
4 63 45 85 11 −0.1% 0% −0.2%
5 69 49 96 49 0% 0% 0%
6 67 51 97 50 0% 0% 0%
7 80 59 115 35 −0.1% 0% −0.2%
8 78 51 132 47 −0.1% 0% −0.9%
9 77 57 111 50 0% 0% 0%

Table 6. Performances indicators for the trivariate model (with 10 shots).

Logit computations
(brute force = 68,921)

Log-Likelihood
(�%with brute force optimal)

NST-R Average Best Worst
Hits
(50) Average� Best-case� Worst-case�

0 704 609 821 50 0% 0% 0%
1 482 394 575 50 0% 0% −1%
2 876 725 1082 1 −0.5% 0% −1.2%
3 977 845 1126 50 0% 0% 0%
4 1391 1208 1592 3 −0.3% 0% −0.8%
5 408 298 480 50 0% 0% 0%
6 538 464 611 50 0% 0% 0%
7 556 431 693 30 0% 0% 0%
8 448 281 548 48 0% 0% −0.3%
9 669 587 795 32 0% 0% 0%

• Thenumber of ‘hits’ (when the solution of the heuristic corresponds to the one identified
by the brute-force algorithm).

• The average, best-case and worst-case differences (in %) between the Log-Likelihood of
the solutions found by the heuristic and the those of the brute force approach.

When the heuristic is applied to the bivariate case (Table 5), it converges after an average
of 74 Logit computations, i.e. about 4%ofwhat is needed to obtain the exact solutionwith a
brute force approach. Even if the final solution candiffer from the exact one (cfr. the number
of hits), its Log-Likelihood is always very close (a difference of less than 1%) to the best one,
even for the worst cases.

Table 6 shows that, when applied to the trivariate case, the heuristic finds a solution
after an average of 705 Logit computations, which represents only 1% of the runs needed
to find the exact solution with the brute force algorithm. The heuristic clearly breaks the
combinational logic of the problem. Nevertheless, the Log-Likelihoods of the solutions are
very close to the best ones, even for the worst cases.

Knowing that, on a decent recent computer, the computing time of one Logit model for
this dataset takes about 1 second, 20 hours are needed to solve the brute force trivariate
case for one group of commodities. The heuristic converges after an average of 11minutes
and 45 seconds. It is thus efficient.



14 B. JOURQUIN

Table 7. Best-case parameters for the bivariate model.

Intercepts Estimators

NST/R Max LL λC λT IWW Rail C T

0 −17157.2 0.4 −1.0 −3.138 ∗∗∗ −1.930 ∗∗∗ −0.453 ∗∗∗ −0.713 ∗∗∗
1 −10103.7 0.1 −0.1 −1.563 ∗∗∗ −3.013 ∗∗∗ −1.233 ∗∗∗ −1.150 ∗∗∗
2 −7578.0 0.4 1.1 −2.710 ∗∗∗ −0.944 ∗∗∗ −1.065 ∗∗∗ −0.003 ∗∗∗
3 −9965.9 0.9 0.7 −0.728 ∗∗∗ −1.128 ∗∗∗ −0.236 ∗∗∗ −0.103 ∗∗∗
4 −7310.7 0.0 0.1 1.373 ∗∗ 2.334 ∗∗∗ −3.099 ∗∗∗ −2.017 ∗∗∗
5 −20358.0 0.5 1.1 −2.764 ∗∗∗ −0.021 −0.376 ∗∗∗ −0.007 ∗∗∗
6 −20456.7 0.7 0.3 2.302 ∗∗∗ 2.017 ∗∗∗ −0.163 ∗∗∗ −0.730 ∗∗∗
7 −10049.8 0.1 1.7 −4.601 ∗∗∗ −1.300 ∗∗∗ −2.054 ∗∗∗ 0.000 ∗
8 −21626.1 0.3 1.6 −3.365 ∗∗∗ −1.318 ∗∗∗ −1.047 ∗∗∗ −0.001 ∗∗∗
9 −32182.5 0.2 1.2 −1.418 ∗∗∗ −0.245 ∗∗∗ −0.687 ∗∗∗ −0.015 ∗∗∗

Table 8. Worst-case parameters for the bivariate model.

Intercepts Estimators

NST/R Max LL λC λT IWW Rail C T

0 −17157.2 0.4 −1 −3.138 ∗∗∗ −1.930 ∗∗∗ −0.453 ∗∗∗ −0.713 ∗∗∗
1 −10111.9 0.2 0 −1.885 ∗∗∗ −3.343 ∗∗∗ −1.010 ∗∗∗ −0.797 ∗∗∗
2 −7578.0 0.4 1.2 −2.734 ∗∗∗ −0.968 ∗∗∗ −1.066 ∗∗∗ −0.002 ∗∗∗
3 −9965.9 0.9 0.7 −0.728 ∗∗∗ −1.128 ∗∗∗ −0.236 ∗∗∗ −0.103 ∗∗∗
4 −7328.5 −1.1 −0.2 3.529 ∗∗∗ 4.547 ∗∗∗ −23.080 ∗∗∗ −5.010 ∗∗∗
5 −20365.9 0.4 0.8 −2.641 ∗∗∗ 0.071 −0.492 ∗∗∗ −0.025 ∗∗∗
6 −20456.7 0.7 0.3 2.302 ∗∗∗ 2.017 ∗∗∗ −0.163 ∗∗∗ −0.730 ∗∗∗
7 −10067.9 −0.1 −0.3 −4.303 ∗∗∗ −0.785 ∗∗∗ −3.355 ∗∗∗ −0.402 ∗∗∗
8 −21811.4 −0.1 −0.4 −3.263 ∗∗∗ −1.179 ∗∗∗ −2.818 ∗∗∗ −0.600 ∗∗∗
9 −32182.5 0.2 1.2 −1.418 ∗∗∗ −0.245 ∗∗∗ −0.687 ∗∗∗ −0.015 ∗∗∗

If solutions with less or nonsignificant parameter values can be valid, the question of
the trade-off between significance and the overall likelihood value obtained by the differ-
ent combinations of the lambda parameters arises. In order to objectify this point Table
7 gives, for the bivariate model, the best-case values (which also correspond to the brute
force solution) of all the estimated parameters and their level of significance. If one except
the significance level for the intercept for NST/R 5 commodities transported by rail, all the
coefficients are at least significant at 0.01.

The corresponding figures for the worst cases can be found in Table 8. Apart from the
transit time coefficient for NST/R 7, all the coefficients have the same level of significance
in both tables, showing that almost no trade-off appears between level of significance and
Log-Likelihood.

5.3. Model results

Once the Logit models using the Box–Cox transformed variables applied to the dataset,
the computed modal split can be compared to the observations. Usually, some goodness
of fit statistics is used to assess the validity of amodel. An interesting review and discussion
about this can be found in Parady, Ory, and Walker (2021). The authors conclude that the
reliance on goodness-of-fit measures rather than validation performance is unwise, espe-
cially because transport models are mostly based on observational studies. Therefore a
‘three-level’ approach (Zhang 2013; Jourquin 2016) is applied here. The first level consists
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Table 9. r computed at the OD level (all groups).

Mode r (best case) r (worst case)

Road 0.95 0.95
IWW 0.73 0.73
Rail 0.87 0.86

Table 10. r computed at the network level (all
groups).

Mode r (best case) r (worst case)

Road 0.97 0.97
IWW 0.89 0.89
Rail 0.88 0.88

of a comparison between the observed and estimated global market shares. At the second
level, the correlation coefficient r between the observed and estimated tonnages for each
ODpair, each group of commodities and eachmode is computed. Finally, an analysis of the
r’s between the observed and computed volumes along the segments of the networks is
presented. Note, however, that this three-level approach was proposed for validation pur-
pose, i.e. when amodel is not run on the same dataset the estimators were computedwith.
Therefore, the first level (comparison of themodal shares at the aggregated level) is useless
and not presented here. It is indeed well known that a Logit model with a complete set of
alternative-specific data always reproduce the sample market shares.

The figures presented in Tables 9 and 10 are obtained using the bivariate utility function
(equation 7)with the Box–Cox transforms identified by the heuristic.More precisely, figures
are given for the best (when the heuristic converges towards the optimal values identified
by the brute force approach) and worst cases (the solution with the lowest Log-Likelihood
identified by the heuristic among 50 runs).

To compute these figures, a specificmodal choicemodule is developed forNodus,which
uses the best- and worst-case λ

g
C and λ

g
T and their corresponding α

g
C , α

g
T , δ

g
m estimators

obtained from the Logit models. The results are gathered from the output of multimodal
assignments of the ODmatrixes6 on the European networks, also performed by Nodus. The
model provides the volume transported bymodembetween each originO and destination
D and for each group of commodities g. This permits the computation of the correlation
coefficients r between the calculated volumes and those found in the ETIS modal matrixes.
The r’s appear in Table 9, and show that the results obtained using the best-case λ’s are
almost identical to those obtained when the ‘worst’ valid λ’s are used.

The figures presented in Table 9 neglect the role that the network topology can play.
As no observed count data is available along the segments of the networks, the results of
separate assignments for eachmode (theobservedODmatrix of amodeassigned to its own
network) are used as a proxy of the actual transport volumes on each link. These reference
flows are then compared to those obtained by the multimodal assignment. Table 10 gives
the resulting correlation coefficients between the two sets of volumes assigned to the same
network segments. At this level also, the heuristic appears to produce very stable results, as
there is no difference between the best and worst cases.
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Table 11. Elasticities computed using the estimated parameters.

Cost elasticities

Computed using best-case λ’s Computed using worst-case λ’s

Road IWW Rail Road IWW Rail

Road −0.10 to−2.65 0.03 to 0.21 0.03 to 1.71 −0.10 to−2.65 0.03 to 0.21 0.03 to 1.71
−0.32 0.07 0.20 −0.27 0.08 0.17

IWW 0.57 to 2.09 −0.42 to−2.31 0.03 to 1.47 0.58 to 1.54 −0.42 to−3.61 0.03 to 1.50
1.15 −0.93 0.24 1.02 −1.08 0.22

Rail 0.65 to 3.25 0.03 to 0.19 −0.65 to−2.65 0.49 to 3.25 0.03 to 0.22 −0.73 to−2.65
1.23 0.10 −1.29 1.02 0.11 −1.15

As the best case λ’s obtained by the heuristic always correspond to the exact solution
identified by the brute force algorithm (Table 5) and that the correlation coefficients pre-
sented in Tables 9 and 10 are (almost) identical for the best and worst cases, one can
conclude that the heuristic is effective and produces stable results.

The estimators obtained with the identified λ’s can further be used to compute elastic-
ities. The values of the own and cross elasticities can indeed be derived directly from the
estimated conditional logit with Box–Cox transformed independent variables (Jourquin
and Beuthe 2019). Table 11 gives the computed own and cross elasticities (extreme val-
ues are printed in italic and average values are underneath) as they can be compared with
the many estimates that are found in the literature. It goes beyond the scope of this paper
to present an in-depth discussion on the obtained elasticities, but there is no doubt that
they are comparable to what is published elsewhere (see for instance the review proposed
by Beuthe, Jourquin, and Urbain 2014). The interesting point here is that the elasticities
obtained using the best-case λ’s are only slightly different from those computed with the
worst-case λ’s, which is another indicator of the robustness of the heuristic. Elasticities
with respect to time and distance also could be computed, but they are of less immediate
interest for assessing the merits of the proposed heuristics.

6. Conclusion

Modal choice models used in the context of strategic freight transportation studies cover-
ing large inter-regional or international areas are generally difficult to set upbecause of lack
of explanatory data. Transportation costs, transit times and trip lengths are often among
the only figures that can be gathered. These variables are rather tightly correlated so that
their estimated coefficients may turn out nonsignificant or even have unexpected signs.
This may even be the case when the model includes only the cost and distance variables,
even though these variables are known as being very important in mode choice decision
and should have a negative effect on the modes’ attractiveness. Indeed, when aggregated
data is used, such as annual transported volumes between European regions, the signs of
the estimators for these explanatory variables are expected to be negative.

Box–Cox transforms are, among other techniques, a useful tool to improve the robust-
ness of Logit model when they are applied to the independent variables of the utility func-
tion. They allow subtle adjustments of the functional relationship between the dependent
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and independent variables, which is an elegant and efficient way to improve the Log-
Likelihood of the model, as well as re-establish the expected signs and their significance.
When several variables have to be transformed, it is, however, difficult to identify the opti-
mal value of the transformation parameter λ to apply to each variable because of the
combinational nature of the problem. This is particularly the problem met in the present
research when a third variable, distance, is introduced for adding up more information in
the analysis.

Several techniques can be found in the literature to (more or less quickly) identify the
optimal Box–Cox transformation parameters, but none is able to take into account the
expected signs of the estimators and their level of significance.

A specific shotgun hill climbing heuristic with backtracking capabilities that consider-
ably reduces the computing effort needed to identify a (nearby) optimal combination of
λ’s is described. It is applied to a series of aggregated origin-destination matrixes made
available by the ETISPlus European Research Project, which cover the European territory.
Additive utility functions are used in a multinomial Logit model in order to compute
the market share of each mode for the OD cells. Appropriate Box–Cox transforms are
applied to the explanatory variables in order to maximise the Log-Likelihood of the model,
with the double constraint of expected signs and level of significance of the estimated
parameters.

The risk, however, exists that forcing themodel to produce expected and significant esti-
mators drives the model away from solid statistical foundations. Using those estimators
in the framework of transport policy studies could therefore lead to unrealistic forecasts.
This is a critical point that is discussed all along this paper. In summary, all the results
presented in this paper are carefully examined from this angle, and the conclusions are
reassuring.

The performance of the heuristic is discussed and the identified Box–Cox transforms
(and their correspondent estimated parameters) are compared against their optimal val-
ues. It comes out that, for the tested datasets, the heuristic is 25 times faster than the brute
force approach when it is applied to bivariate utility functions and 100 times faster with
three variables. Nevertheless, the algorithm often converges towards the optimal solution
and, even in the worst cases, the results of the modal-choice model are nearby equal to
those obtained using the best parameters. The stability of the heuristic is also confirmed by
the fact that own and cross elasticities computed using the best (optimal) and worst-case
estimators proposed by the heuristic are very similar.

Altogether, the algorithm appears to be efficient and effective and produces stable and
statistically solid solutions.

A special attention is devoted to the design of the algorithm, for which an R code is pro-
vided, so that it can be implemented andusedbypractitioners using open-source software.
Therefore, the complete dataset and all the R scripts developed for this paper are available
at https://github.com/jourquin/Box–Cox-Lambdas-Heuristic.

In this paper, the heuristic is applied to a conditional Logit, i.e. for which only one λmust
be estimated for each independent variable. It would be further interesting to test it with
an additional BC transformation of the dependent variable or to use it on a dataset with
shipper dependent instead of mode specific explanatory variables. In the latest a case, a
specific λmust be computed for eachmode and each variable: if threemodes are available,
6 λ’s would be needed for a bivariate case, and 9 λ’s for a trivariate case.

https://github.com/jourquin/Box%E2%80%93Cox-Lambdas-Heuristic
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Notes

1. See Appendix 1 for a description of the content of each category.
2. The ‘spatial distribution’ of the valid solutions (spread and position of the dots) is very different

for each group of commodities. Unfortunately, there is no place to publish the 10 figures in this
paper, but they are available on request.

3. Note that for values of lambda(s) ≥ |2|numerical errors in the computationof the (approximated)
Hessian needed during the estimation of the logit sometimes occur.

4. This can be implemented as a recursive function (called from itself several times, once for each
‘dimension’ of the combination of λ’s). See Appendix 2.

5. While the heuristic can be applied to the univariate case, its usefulness is limited.
6. One matrix per NST/R, each one containing the aggregated demand for the 3 modes.

Acknowledgment

The authorwould like to thankMichel Beuthe for themany constructive discussions during the devel-
opment phase of this research. He also thanks the three anonymous reviewers who carefully read the
submitted manuscript and suggested several improvements.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Bart Jourquin http://orcid.org/0000-0003-3446-1027

References

Adeboye, N. O., I. S. Fagoyinbo, and T. O. Olatayo. 2014. “Estimation of the Effect of Multicollinear-
ity on the Standard Error for Regression Coefficients.” IOSR Journal of Mathematics 10 (4): 16–20.
doi:10.9790/5728-10411620.

Arencibia, Ana Isabel, María Feo-Valero, Leandro García-Menéndez, and Concepción Román. 2015.
“Modelling Mode Choice for Freight Transport Using Advanced Choice Experiments.” Transporta-
tion Research Part A: Policy and Practice 75 (May): 252–267. doi:10.1016/j.tra.2015.03.027.

Beuthe,M., andCh. Bouffioux. 2008. “AnalysingQualitativeAttributes of Freight Transport fromStated
Orders of Preference Experiment.” Journal of Transport Economics and Policy 42 (1): 105–128.

Beuthe, M., B. Jourquin, and N. Urbain. 2014. “Estimating Freight Transport Price Elasticity in Multi-
Mode Studies: A Review and Additional Results from a Multimodal Network Model.” Transport
Reviews. doi:10.1080/01441647.2014.946459.

Beuthe, M., B. Jourquin, N. Urbain, I. Lingemann, and B. Ubbels. 2014. “Climate Change Impacts on
Transport on the Rhine and Danube: A Multimodal Approach.” Transportation Research Part D:
Transport and Environment 27: 6–11. doi:10.1016/j.trd.2013.11.002.

Bierlaire, Michel. 2003. “BIOGEME: A Free Package for the Estimation of Discrete Choice Models.” In
Swiss Transport Research Conference.

Box,G. E. P., andD. R. Cox. 1964. “AnAnalysis of Transformations.” Journalof theRoyal Statistical Society:
Series B (Methodological) 26 (2): 211–243. doi:10.1111/j.2517-6161.1964.tb00553.x.

Christian, Brian, and Tom Griffiths. 2016. Algorithms to Live by: The Computer Science of Human Deci-
sions. First U.S. Edition. New York: Henry Holt and Company.

Croissant, Yves. 2019. Estimation of Multinomial Logit Models in R: The Mlogit Packages (version 1.0-2).
R. https://cran.r-project.org/web/packages/mlogit/index.html.

Cullinane, Kevin, and Neal Toy. 2000. “Identifying Influential Attributes in Freight Route/Mode Choice
Decisions: A Content Analysis.” Transportation Research Part E: Logistics and Transportation Review
36 (1): 41–53. doi:10.1016/S1366-5545(99)00016-2.

http://orcid.org/0000-0003-3446-1027
https://doi.org/10.9790/5728-10411620
https://doi.org/10.1016/j.tra.2015.03.027
https://doi.org/10.1080/01441647.2014.946459
https://doi.org/10.1016/j.trd.2013.11.002
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://cran.r-project.org/web/packages/mlogit/index.html
https://doi.org/10.1016/S1366-5545(99)00016-2


TRANSPORTMETRICA A: TRANSPORT SCIENCE 19

de Jong, Gerard, Hugh Gunn, and Moshe Ben-Akiva. 2004. “A Meta-Model for Passenger and Freight
Transport in Europe.” Transport Policy 11 (4): 329–344. doi:10.1016/j.tranpol.2004.03.001.

Fridstrøm, L., and A. Madslien. 1994. “Own Account or Hire Freight: A Stated Preference Analysis.”
In 7th International Conference on Travel Behaviour. Valle Nevado, Chile. https://www.researchgate.
net/publication/268221233_Own_account_or_hire_freight_a_stated_preference_analysis.

Gaudry, Marc. 2016. “Méthodes Box-Cox, Algorithmes de TRIO et Demande de Transport : Trois Con-
signes Occamiennes Pour Faire Rendre Sens Aux Coefficients de Régression deModèles Simples et
Logistiques Discrets Ou Agrégés.” doi:10.13140/RG.2.1.1102.5044.

Gaudry, Marc, andMatthieu de Lapparent. 2015. “Attitudes to Distance, Time and Cost in Logit Trans-
port Choice Models.” Report TRANSP-OR 150113, Transport and Mobility Laboratory, École Polytech-
nique Fédérale de Lausanne. https://transp-or.epfl.ch/documents/technicalReports/gaudry_lap
parent_150113.pdf.

Greene, William H. 2012. Econometric Analysis. 7th ed., International edition. Pearson: Pearson Series
in Economics.

Hasan, Asad, Sentrana Inc, Wang Zhiyu, Alireza Mahani, and Sentrana Inc. 2019. Fast Estimation of
Multinomial Logit Models: R Package Mnlogit (version 1.2.6). R. https://cran.r-project.org/web/pack
ages/mnlogit/index.html.

Hong, X. 2006. “A Fast Identification Algorithm for Box–Cox Transformation Based Radial Basis
Function Neural Network.” IEEE Transactions on Neural Networks 17 (4): 1064–1069. doi:10.1109/
TNN.2006.875986.

Ishak, Nur Aufa Mazni, and Sanizah Ahmad. 2018. “Estimating Optimal Parameter of Box-Cox Trans-
formation in Multiple Regression with Non-Normal Data.” In Regional Conference on Science, Tech-
nology and Social Sciences (RCSTSS 2016), edited by Nor Azizah Yacob, Nur Asmaliza Mohd Noor,
Nor YuziahMohd Yunus, Rahmah Lob Yussof, and Shaikh Abdul Karim Yamani Zakaria, 1039–1046.
Singapore: Springer Singapore. doi:10.1007/978-981-13-0074-5_102.

Jourquin, Bart. 2016. “Calibration and Validation of Strategic Freight Transportation Planning
Models with Limited Information.” Journal of Transportation Technologies 06 (05): 239–256.
doi:10.4236/jtts.2016.65023.

Jourquin, Bart, and Michel Beuthe. 2019. “Cost, Transit Time and Speed Elasticity Calcula-
tions for the European Continental Freight Transport.” Transport Policy 83 (November): 1–12.
doi:10.1016/j.tranpol.2019.08.009.

Liedtke, Gernot, and David Guillermo Carrillo Murillo. 2012. “Assessment of Policy Strategies to
Develop Intermodal Services: The Case of Inland Terminals in Germany.” Transport Policy 24
(November): 168–178. doi:10.1016/j.tranpol.2012.06.002.

McFadden, D. 1973. “Conditional Logit Analysis of Qualitative Choice Behaviour.” In Frontiers in
Econometrics, edited by P. Zarembka, 105–142. New York, NY: Academic Press New York.

Parady, Giancarlos, DavidOry, and JoanWalker. 2021. “TheOverreliance on Statistical Goodness-of-Fit
and under-Reliance on Model Validation in Discrete Choice Models: A Review of Validation Prac-
tices in the Transportation Academic Literature.” Journal of Choice Modelling 38 (March): 100257.
doi:10.1016/j.jocm.2020.100257.

Rich, J., P. M. Holmblad, and C. O. Hansen. 2009. “A Weighted Logit Freight Mode-Choice
Model.” Transportation Research Part E: Logistics and Transportation Review 45 (6): 1006–1019.
doi:10.1016/j.tre.2009.02.001.

Robert, Christian P., and George Casella. 2004. Monte Carlo Statistical Methods. Springer Texts in
Statistics. New York, NY: Springer New York. doi:10.1007/978-1-4757-4145-2.

Rothengatter, Werner. 2019. “Megaprojects in Transportation Networks.” Transport Policy 75 (March):
A1–15. doi:10.1016/j.tranpol.2018.08.002.

Russell, Stuart J., and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach. 2nd ed. Prentice
Hall Series in Artificial Intelligence. Upper Saddle River, NJ: Prentice Hall/Pearson Education.

Sakia, R. M. 1992. “The Box-Cox Transformation Technique: A Review.” The Statistician 41 (2): 169.
doi:10.2307/2348250.

Soleymani, Samira. 2018. “Exact Box-Cox Analysis.” Electronic Thesis and Dissertation Repository, April.
https://ir.lib.uwo.ca/etd/5308.

https://doi.org/10.1016/j.tranpol.2004.03.001
https://www.researchgate.net/publication/268221233_Own_account_or_hire_freight_a_stated_preference_analysis
https://doi.org/10.13140/RG.2.1.1102.5044
https://transp-or.epfl.ch/documents/technicalReports/gaudry_lapparent_150113.pdf
https://cran.r-project.org/web/packages/mnlogit/index.html
https://doi.org/10.1109/TNN.2006.875986
https://doi.org/10.1007/978-981-13-0074-5_102
https://doi.org/10.4236/jtts.2016.65023
https://doi.org/10.1016/j.tranpol.2019.08.009
https://doi.org/10.1016/j.tranpol.2012.06.002
https://doi.org/10.1016/j.jocm.2020.100257
https://doi.org/10.1016/j.tre.2009.02.001
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1016/j.tranpol.2018.08.002
https://doi.org/10.2307/2348250
https://ir.lib.uwo.ca/etd/5308


20 B. JOURQUIN

Szimba, Eckhard, Markus Kraft, Jan Ihrig, Antje Schimke, Oliver Schnell, Yuko Kawabata, Sean Newton,
et al. 2012. “ETISplus Database Content and Methodology.” doi:10.13140/RG.2.2.16768.25605.

Witten, I. H., Eibe Frank, andMark A. Hall. 2011.DataMining: PracticalMachine LearningTools andTech-
niques. 3rd ed. Morgan Kaufmann Series in Data Management Systems. Burlington, MA: Morgan
Kaufmann.

Zhang, Mo. 2013. A Freight Transport Model for Integrated Network, Service and Policy Design. Delft:
TRAIL Research School.

Appendices

Appendix 1. NST/Rmain chapters

# Description

0 Agricultural products and live animals
1 Foodstuffs and animal fodder
2 Solid mineral fuels
3 Petroleum products
4 Ores and metal waste
5 Metal products
6 Crude and manufactured minerals, building materials
7 Fertilizers
8 Chemicals
9 Machinery, transport equipment, manufactured articles and miscellaneous articles

Appendix 2. R code of the recursive ‘exploreAround’ function

Global variables are underlined:

• range: absolute value of the limits to search the λ’s into. Example: 2 for [−2, +2]
• bestSolution: best solution (combination of λ’s) found so far
• solutionsToExplore: dynamic list of solutions that need to be explored around

Other functions are in italic:

• getLambdas(. . . ): returns a vector with the λ’s of a given solution
• retrieveOrComputeLogit(. . . ): retrieves the results of the Logit model for the given combination of

λ’s. Compute the Logit if not yet done
• isValid(. . . ): returns true if all the estimators of the independent variables of the given solution

have the expected sign and if the estimators have the minimal level of significance desired by
the modeller

• hasExpectedSigns(. . . ): returns true if all the estimators of the independent variables of the given
solution have the expected sign

When called, only the first two parametersmust be passed to the function, the last one being used
during recursiveness.

https://doi.org/10.13140/RG.2.2.16768.25605
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exploreAround <- function(solution, stepSize, dimLevel = 1) {

# Test a step backward in the current dimension, but remain in range
p = getLambdas(solution)
if (p[dimLevel] - stepSize >= -range) {

p[dimLevel] = round(p[dimLevel] - stepSize, 1)
} else {

p[dimLevel] = -range
}
newSolution = retrieveOrComputeLogit(p)

# Is this the best solution found so far?
if (isValid(newSolution) & newSolution$LL > bestSolution$LL) {

bestSolution <<- newSolution
}

# Add this solution to the list to explore later if it has better LL and
expected signs

if (hasExpectedSigns(newSolution) & newSolution$LL > solution$LL) {
solutionsToExplore[[length(solutionsToExplore)+1]] <<- newSolution

}

# Test a step forward in the current dimension, but remain in range
p = getLambdas(solution)
if (p[dimLevel] + stepSize <= range) {

p[dimLevel] = round(p[dimLevel] + stepSize, 1)
} else {

p[dimLevel] = range
}
newSolution = retrieveOrComputeLogit(p)

# Is this the best solution found so far?
if (isValid(newSolution) & newSolution$LL > bestSolution$LL) {

bestSolution <<- newSolution
}

# Add this solution to the list to explore later if it has better LL and
expected signs

if (hasExpectedSigns(newSolution) & newSolution$LL > solution$LL) {
solutionsToExplore[[length(solutionsToExplore)+1]] <<- newSolution

}

# Recursive entrance to next dimension
if (dimLevel < length(p)) {

exploreAround(solution, stepSize, dimLevel + 1)
}

}
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