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The role of grain boundary mobility in diffusional deformation
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Abstract

The model of diffusional deformation is revisited by accounting for the dependence of the
diffusion potential on grain boundary curvature. The issue is developed through the analysis of
two case-studies: the deformation of a lattice of columnar grains in conditions of Coble creep,
and the rotation of a grain embedded in a polycrystal in conditions of either Nabarro-Herring
creep or Coble creep. The analysis reveals that, unless grain boundary mobility is infinite, grain
boundary curvature is dynamically induced by strain rate. A link is established between the
curvature distribution and the transfer of diffusion fluxes across grain boundaries. For the two
case-studies, the equation expressing the balance of grain boundary motions at steady-state is
solved for calculating, within a range of grain boundary mobilities, the grain boundary profiles,
the diffusion fluxes, and the contributions to power dissipation arising from curvature. The
latter contributions are found to scale closely as the square of grain size. It follows that the
dissipation contribution due to curvature is larger in conditions of Nabarro-Herring creep. In
conditions of Coble creep, the dissipation contribution due to curvature translates into a lower
bound for the apparent boundary viscosity parameter to be used in numerical simulations. This
lower bound is consistent with previous identifications of the parameter in the literature. The
classical model assuming flat grain boundaries with transfer of fluxes via triple junctions
emerges as a particular case involving the implicit assumption of an infinite grain boundary

mobility.

Keywords: grain boundaries (A), diffusion, bulk (A), diffusion, surface (A), creep (A),
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1. Introduction

“Diffusional deformation” commonly designates the deformation of a polycrystal generated
without dislocation activity by diffusion fluxes to and from vacancy sources and sinks located on
grain boundaries (GBs). This deformation mode was initially analysed in the pioneering papers
of Nabarro, Herring, and Coble (Coble, 1963; Herring, 1950; Nabarro, 1948). The diffusion
potential gradients driving diffusion fluxes arise from the fact that the addition/removal of
lattice species to/from a GB involves a work proportional to the local traction normal to the GB,
Tn (Herring, 1950). The main governing parameters are the average grain size (commonly
represented by the radius, Rg, of a cylinder (in 2D) or sphere (in 3D) with volume equal to the
average), the diffusion coefficient in the bulk of the grain, D;, and the product, DyJ, of the

diffusion coefficient in a layer close to the GB times the layer thickness (units in the list of

oD
symbols and notations). Bulk diffusion is dominant when —= << D, (Nabarro-Herring creep),

oD
and GB-layer diffusion is dominant when — > D, (Coble creep). Diffusional deformation is

considered to be a major contributor to the rheology during creep under low stress as well as
during sintering processes or during the deformation of crystalline rocks in the Earth’s mantle.
If GBs act as perfect vacancy sources and sinks, strain rate is linear with respect to macroscopic
stress (Ashby, 1969). The engineering of superplastic alloys largely exploit the low stress
exponent characterising diffusional deformation (Masuda and Sato, 2020). Diffusional
deformation may become dominant below a threshold strain rate which decreases with
decreasing temperature. At given temperature, the threshold increases when hardening

against dislocation activity increases. Diffusional deformation is thus also considered to
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Grain boundary mobility in diffusional deformation 3

contribute to the deformation of nanocrystalline materials close to room temperature when

small grain size hinders dislocation activity (Kim et al., 2000; Shah and Chokshi, 1998).

Lifshitz (Lifshitz, 1963) was the first to point out that, as the addition/removal of lattice
species to/from the GB brings a velocity difference between adjacent lattices only in the
direction normal to the GB, diffusional deformation necessitates a mechanism of sliding

bringing a lattice velocity difference, Au_ , tangent to the GB. Lifshitz proposed to represent

sl 2

the GB as consisting of a thin amorphous layer across which Al is driven by shear stress

tangent to the GB, T;, according to the linear law
.1
Al :7_7T//- (1)

where 77 results from the mechanisms governing sliding. Although 77 does not have the
conventional units for a viscosity (Pas), Lifshitz proposed to call 7 the “grain boundary viscosity”
(Lifshitz, 1963). According to Lifshitz, 77 = 0 for a “sufficiently defective” GB but slip may be
greatly impeded if the GB is “insufficiently amorphous”. Evidence of the occurrence of GB
sliding in polycrystals having undergone creep under low-stress or superplastic deformation has
been obtained by observation of offsets at the crossing of GBs with fiducial lines drawn on
metallographic sections (Bell and Langdon, 1967; Cannon and Sherby, 1977; Fukutomi et al.,
1999; Gifkins and Langdon, 1970; Langdon, 1981; Liu and Ma, 2010; Masuda et al., 2019;
McNee et al., 2001; McNee et al., 2002; Reynolds et al., 1975; Thorsen and Bilde-Sgrensen,
1999). Recently, the GB sliding phenomenon has also been monitored in-situ by high resolution
digital image correlation (Linne et al., 2019; Venkataraman et al., 2019). As stated by Ashby
(Ashby, 1972), diffusional deformation may thus be regarded either as deformation by

diffusional flow of lattice species with GB sliding to accommodate the incompatibilities that
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Grain boundary mobility in diffusional deformation 4

would otherwise appear at GBs, or as deformation by GB sliding with diffusion of lattice species
to accommodate the incompatibilities. Yet, two different modes of grain deformation can
ensue from this same mechanism: the “Lifshitz” mode observed at small strain, during which
grain deformation is close to affine (Delannay and Brassart, 2020; Wei et al., 2008) and the
“Rachinger sliding” mode (also quite improperly called “grain boundary sliding (GBS)” mode)
observed at large strain, during which deformation proceeds by large relative displacements of
grains that remain globally equiaxed (Cannon, 1972; Rachinger, 1952). The conditions
governing the transition between these two modes have not been fully elucidated in the

literature.

The shear viscosity of a polycrystal, denoted G, is the ratio of macroscopic shear-stress

to macroscopic shear-strain rate. If the volume-average of the strain rate is identical for all
grains, G is proportional to the work power per unit volume, Q, dissipated by the microscopic

mechanisms bringing deformation (it follows from variational principles that Q is then an
upper bound of the effective power dissipation in a random polycrystal (Brassart and Delannay,

2019; Cocks, 1996; Delannay and Brassart, 2020)). According to the diffusional deformation

hypotheses, Q is the sum of a contribution,Qdiff , due to diffusion fluxes and a contribution,

) ) - R?
Q*, due to GB sliding. While Q* scales as 7R, Q™" scales either as D—G when bulk diffusion
|

3

is dominant or as —2

when GB-layer diffusion is dominant (Beere, 1976; Brassart and
b

Delannay, 2019; Delannay and Brassart, 2020; Kim et al., 2004; Lifshitz, 1963; Mori et al., 1997;
Mori et al., 1998a; Mori et al., 1998b; Onaka et al., 2001; Riedel et al., 1994). For example, in

the case of Coble creep,
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QSl ~ 1 O Q5Db77

: (2)

Q‘diff =1V, kTRé
where k denotes Boltzmann’s constant, T the absolute temperature, Q2 the volume per atom,

and 77, expresses a non-dimensional GB-viscosity parameter (Delannay and Brassart, 2020; Kim

et al., 2004; Riedel et al., 1994). Measurement of the grain size sensitivity exponent of G can
thus, in principle, reveal whether dissipation is dominated by bulk diffusion, GB-layer diffusion,
or GB sliding. The exponent measured experimentally being most frequently close to 2, GB

sliding is not considered to be likely to bring a major contribution to dissipation.

At the scale of the crystal lattice, GB sliding is nowadays apprehended in terms of
nucleation and glide of disconnections (Han et al., 2018; Hirth, 1994; Hirth and Pond, 1996;
Hirth et al., 2016). Accordingly, in a pure polycrystal, the dissipation arising intrinsically from
GB sliding is linked to the activation barriers for disconnection nucleation and glide. It was early
advocated that this intrinsic dissipation is expected to amount to a negligible fraction of the
overall dissipation because the nucleation and glide of disconnections (or GB-dislocations)
requires only “shuffling” displacements of lattice constituents in the vicinity of the GB. The
length scale of these displacements is much smaller than the length scales of diffusional
vacancy transfer between different faces of the grain and/or between the bumps and holes of
the undulations created by the ledges and precipitates on the GB (Ashby, 1972; Gibbs, 1965,
1968). According to the analysis of Ashby and co-workers, for a flat, high-angle GB between
grains with Rg = 1um, the intrinsic GB-viscosity arising from shuffling displacements

~intrinsic

corresponds to 7, ~ 107, whereas, for a serration equivalent to a typical distribution of GB
precipitates, the contribution to diffusional transport amounts to 7, =~ 107 (Ashby, 1972;

Ashby et al., 1970; Raj and Ashby, 1971). Many authors have thus been prompted to adopt the
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Grain boundary mobility in diffusional deformation 6

approximation of free sliding (77 = 0) (Burton and Greenwood, 1985; Cocks, 1994; Ford et al.,
2002; Greenwood, 1985; Greenwood, 1992; Hazzledine and Schneibel, 1993; Pan and Cocks,
1993; Raj and Ashby, 1971; Riedel et al., 1994; Rudge, 2018; Spingarn and Nix, 1978). A few
authors have however shown that the free sliding approximation can bring poor agreement
between simulations and experimental observations (in particular when deformation is
anisotropic), undetermined grain rotation rate, and instability in numerical computations
(Beere, 1977; Pan and Cocks, 1993; Wakai and Nikoli¢, 2011; Wheeler, 2010; Wonisch et al.,

2007). This has justified the consideration of values for 7}, ranging up to 10 (Wakai and

Nikoli¢, 2011), up to 0.5 (Brassart and Delannay, 2019; Delannay and Brassart, 2020), up to 2
(Henrich et al., 2007), or even up to 10° (Kim et al., 2005; Kim et al., 2004; Kim et al., 2009; Wei
et al., 2008). Unfortunately, owing to the lack of experimental method giving access at grain
scale to the phenomenon of GB sliding, very little data can be found in the literature to validate
the value to be ascribed to 7. Hence, in numerical models for the simulation of creep,
sintering, or Earth’s mantle rheology, # is introduced as a phenomenological parameter, which
can potentially be identified via a reverse procedure. r then represents an equivalent,
apparent GB-viscosity gathering all dissipation phenomena that cannot be ascribed to diffusion

fluxes according to the diffusional deformation model.

The present work is motivated by the wish to better apprehend the dissipation
contributions that may be hidden behind parameter . A novel insight is gained by accounting
for the dependence of the diffusion potential on GB curvature (Herring, 1953). A non-null
curvature implies the parallel occurrence of GB migration (Balluffi et al., 2005). GB mobility
then emerges as an additional governing parameter. The analysis reveals that GB curvature is

dynamically induced by strain rate. In the literature, the role of GB curvature is at the core of
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models for grain growth (Riedel and Svoboda, 1993) whereas the role of pore surface curvature
is at the core of models for the first stages of sintering (Delannay and Brassart, 2018; Delannay
and Missiaen, 2009; Svoboda and Riedel, 19953, b). Yet, the models proposed for diffusional
deformation did scarcely account for GB curvature. The reason for this neglect is that diffusion
fluxes driven by gradients of GB curvature bring no velocity jump between the two adjacent
lattices. To our knowledge, the only authors having considered GB curvature are Pan et al.
(Ch'ng and Pan, 2004; Pan et al., 1997) who included GB curvature in a finite element
formulation of diffusional creep assuming free GB sliding, and Bower and Wininger (Bower and
Wininger, 2004) who introduced the full coupling of diffusion and GB sliding with non-zero GB-
viscosity in a general finite element scheme for the simulation of the superplastic deformation

of columnar polycrystals.

The paper is organized as follows. Section 2 presents the principles of the continuum
theory of diffusive GB motion and conservative GB motion assuming isotropic material
properties. Based on these principles, two “case-studies” are investigated. Section 3 analyses
the small strain deformation of a regular lattice of columnar grains in conditions of Coble creep.
Section 4 analyses the steady-state rotation of a particular grain embedded in a columnar
polycrystal in conditions of Coble creep or Nabarro-Herring creep. In both Sections, the key
equations are established by considering the balance of GB motions and the interactions
between GBs and diffusion fluxes. These equations are exploited for calculating GB profiles,
diffusion fluxes, and the different contributions to dissipation. In Section 5, the outcomes of
the work are evaluated by referring to literature data on GB mobility and GB-viscosity and to

microstructural observations.
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List of symbols and notations

Subscripts

b relevant to GB-layer diffusion

e relevant to external grain with respect to reference grain for GB curvature definition
f relevant to face labelled f

gb value on the grain boundary

I relevant to bulk diffusion

n normal to GB

S tangent to GB

slor// parallel to sliding direction

T) relevant to triple junction

Superscripts

X relevant to point designated by capital letter X

diff relevant to diffusion fluxes

mig relevant to GB migration

sl relevant to grain boundary sliding

T relevant to diffusion driven by gradient of GB traction
K relevant to diffusion driven by gradient of GB curvature

Material properties and physical constants

k
Dy
D,

i)

iS)

Q%V§

nintrinsic
Mo » 10y

7
Q

Boltzmann’s constant (J.at1.K?)
GB-layer diffusion coefficient (m2.s?)
bulk diffusion coefficient (m2.s!)

Q0D (m>.N1.s?)

GB-layer diffusion parameter @, =

Bulk diffusion parameter @, =% (m*.N1s?)
KgT

grain boundary mobility (m3.N1.s%)

grain boundary tension (N.m)

thickness of grain boundary diffusion layer (m)

apparent grain boundary viscosity (N.s.m™3)

intrinsic grain boundary viscosity (N.s.m3)
Q6D,

non-dimensional GB-viscosity parameters: 77, = ——-17, 7}, =

KTRZ
dihedral angle (rad)
volume per atom (m3.at?)

Scalars and scalar functions
a, ap, a; non-dimensional factors in Eqgs. (34), (70), and (76) (-)

h

JJe
mp, My
u,u

n’ ne

step height of a grain boundary disconnection (m)
diffusion flux in GB-layer (m2.s?)

QD,

KTR, 0

non-dimensional parameters defined in Eqgs. (35), (71), and (78) (-)
normal component of the grain boundary velocity with respect to lattice (m.s)
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Au

sl

Au

n

~ @) 2
e °

RAVRSQ[Y A9I3p0.07Z2Tom
I3

velocity jump at GB between adjacent lattices brought by grain boundary sliding
(m.s?)

velocity jump at GB between adjacent lattices in the direction normal to grain
boundary (m.s)

Cartesian coordinates (m)

half face width of a hexagonal prismatic grain (m)

sub-grain centroids (-)

principal tensile component of strain rate tensor in pure shear (s*)
shear viscosity of a polycrystal (N.m=2.s)

distance from grain face to grain centroid (m)

middle of a grain face (-)

triple junctions (-)

centroids of adjacent grains (-)

energy dissipation per unit time and unit volume (J.s1.m?3)

radial coordinate of a polar system with origin at grain centroid O (m)
radius of cylinder with volume equal to average (m)

absolute temperature (K)

normal and tangent components of grain boundary traction

torque (N.m)

volume of grain or portion of grain (m?3)

orientation of principal tensile axis of strain rate tensor (Fig. 1) (rad)
slope of GB profile (-)

grain boundary curvature (m)

diffusion potential (J.at™%)

Latom, Ly chemical potential of atom and vacancy (J.at?)

14

o

0
Vectors,
b

E

J, Je

n,s

V)

U

Au

coordinate along normal vector n defined positive outward with respect to
reference grain (m)

azimuthal coordinate of a polar system with origin at grain centroid O (rad)
angular grain rotation velocity (rads™)

tensors, and matrices

Burgers vector of a grain boundary disconnection (m)
macroscopic strain rate tensor (s)

diffusion flux in the bulk of the grain (m.s?)

unit vectors normal and tangent to grain boundary (m)
position vector (m)

velocity of a material point inside the grain (m.s)

velocity jump between adjacent lattices at GB (m.s?)

traction on grain boundary (N.m2)

unit vectors of a Cartesian coordinate with origin at grain face centroid M and z

oriented in direction of vector OO, (m)

local stress tensor (N.m™)
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2. Diffusive and conservative grain boundary motions.

Before introducing the theoretical basics at the continuum scale, we first outline the

phenomena at the crystal scale.

2.1. Physics at the microscale

Figure 1 represents the cross-section of three columnar grains, labelled A, B, and C, sharing a
common TJ. The grains are taken to be identical mono-component phases differing only by the
orientation of the lattice. White squares depict vacancies. Geometrically, GBs are two-
dimensional entities of which the crystallography is characterised by five degrees of freedom.
At crystal scale, the GB consists in a succession of terraces containing plateaus and steps: the
continuous lines in Fig. 1 represent the three GBs at a scale at which the concept of GB
curvature can apply. In the present work, crystalline anisotropy is neglected and all material

properties are assumed isotropic. The three dihedral angles at TJs will be supposed to always
keep the isotropic equilibrium value y = ? GBs contain a distribution of linear defects

which, today, are apprehended via the concept of “disconnections” (Hirth, 1994; Hirth and
Pond, 1996) (details on the role of disconnections in GB kinetics can be found in the recent
review of Han et al (Han et al., 2018)). Disconnections have a mixed character: they combine a
dislocation character defined by a Burgers vector and a step character defined by a step height.
Disconnections having the same Burgers vector can differ by step height, and conversely. A
general disconnection can dissociate into sessile disconnections having Burgers vector
perpendicular to the GB (depicted in red in Fig. 1) and glissile disconnections having Burgers

vector parallel to the GB (depicted in green).
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Figure 1: Cross-section of three columnar grains sharing a common TJ. Disconnections having
Burgers vector perpendicular and parallel to GB are depicted in red and green, respectively.
green). Blue arrows denoted J represent diffusion fluxes flowing through the bulk of the grain.
Magenta arrows denoted j represent diffusion fluxes inside GB-layers of thickness o. Black

arrows represent total GB motion velocity u " +u™ .

Diffusion fluxes in the bulk of the grain, denoted J (blue arrows in Fig. 1), are defined as
volumes of atoms (or lattice components) transported per unit surface and per unit time. They

are driven by the gradient of the diffusion potential, denoted x = s, ., — 4, where tiatom and

Lv denote the chemical potential of atom (or lattice component) and of vacancy, as (Balluffi et

al., 2005; Herring, 1950)

D D D
J=——ly )=y =—y 3
T (Loom — 1) o VH=T o VK (3)

o D
5’ = ﬁ is the Onsager diffusion coefficient. In a mono-component polycrystal, gradients of u

arise from the presence of vacancy sources and sinks. The Nabarro-Herring-Coble model
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assumes that the vacancy sources and sinks are located only on GBs, which implies that the
divergence of J is null in the grain interior, i.e. density is uniform and xis harmonic. The
vacancy sources and sinks are the cores of disconnections having a Burgers vector
perpendicular to the GB (depicted in red in Fig.1), which can be brought to climb along the GB
by absorbing or emitting a vacancy. We consider in the present work that this mechanism is
“perfect”, i.e. we assume the absence of activation barrier for the capture/emission of
vacancies by the core of climbing disconnections. Equilibrium vacancy concentration is thus

assumed to always be maintained at GBs.

Owing to the internal stress field arising from disconnections and other sources of
lattice distortion, the diffusion coefficient is larger close to the GB than in the bulk of the grains.
This is commonly modelled by assuming the existence of a GB-layer of thickness o (Fig. 1) inside
which the average diffusion coefficient, Dy, is larger than the diffusion coefficient D) in the bulk
(Fisher, 1951). As Dy depends on ¢, only the product oDy, is @ meaningful material property: a
frequent assumption is & = 1 nm (Herzig and Mishin, 2005). Vacancies travel from sources to

sinks via either of the two lattices (Balluffi, 1982). Like for bulk diffusion fluxes, we may thus

distinguish two fluxes flowing along half-layers of thickness g separated by the GB (magenta

arrows in Fig. 1). These fluxes, denoted j, are parallel the GB and are defined in units of volume
per unit length and per unit time. The distinction between two fluxes makes possible an
account for the effect of a potential difference between the two sides. As Jis small, xinside
the GB-layer is very close to the diffusion potential on the GB, denoted .4, and, based on Eq.
(3),

. S 16D 1D
J :‘]//5/252 ) ka sHgp = _Eﬁbvs:ugb (4)
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Grain boundary mobility in diffusional deformation 13

where J is the bulk flux component parallel to the GB inside the half layer, V  denotes the

11512

QoD
gradient operator on the GB surface, and O, = ?b (@, and @, have thus different units).

Both types of diffusion fluxes, J and j, can transport matter between different grain faces or
between different points on the same face. A priori, neither J norj are identical on the two

sides of the GB.

By definition, GB motion designates the displacement of a GB with respect to a crystal
lattice. The motion of disconnections brings a displacement of the GB with respect to the two
adjacent lattices together with a displacement of the two lattices with respect to one another
(except when disconnections have a pure step character, i.e. when the Burgers vector is null).
Three types of GB velocity can be distinguished, which we call “diffusive GB velocity”, “GB
sliding velocity”, and “GB migration velocity”.

(i) The climbing of a disconnection with Burgers vector perpendicular to the GB brings the
addition/subtraction of one lattice plane in one or the other of the two adjacent lattices.

This amounts to a normal displacement of the GB with respect the lattice. We denote u ¢}’

the displacement velocity of the GB with respect to lattice A on one side of the GB. The
superscript “diff” reminds that this type of GB motion results from diffusional transport.

+ diff
unA

is the volume of matter per unit surface and per unit time that deposits onto, or
leaves from, a particular point on the side A of the GB. The normal velocity jump between
the two lattices at the GB, denoted Au,, is the sum of the two contributions:

AU, =0y +ud . Inthe literature, ("

is sometimes called “diffusive GB migration”: we
call it “diffusive GB velocity” because it is important to not to confuse 2" with the GB

velocity arising from the migration phenomenon.



[EEN

10

11

12

13

14

15

16

17

18

19

20

21

22

(ii) Asintroduced already in Section 1, the GB sliding velocity, Au

Grain boundary mobility in diffusional deformation 14

i.e. the tangent velocity

sl 7
jump at the GB, results from the glide of disconnections having a Burgers vector parallel to
the GB (depicted in green in Fig.1). In contrast to climb, disconnection glide requires only
small-range shuffling displacements of the lattice constituents on the two sides of the GB,
without contribution of long-range diffusion. For this reason, GB sliding is qualified as
conservative GB motion (Balluffi et al., 2005). The Burgers vector of the gliding
disconnections defines the GB sliding direction whereas the step height multiplied by the
disconnection density defines the direction of the GB with respect to the sliding direction. If
grain rigidity is infinite, the sliding direction as well as the sliding velocity are uniform on the
GB. This means that, in the case of a curved GB, the sliding direction is not locally tangent

to the GB.

(iii) The displacement of a step along the GB amounts to the direct transfer of a lattice

constituent from one grain to the adjacent grain. This mode of GB motion, which is also
conservative, is called GB migration. The GB migration velocity will be denoted u'r']nig . The

+ diff s mig

total normal velocity of the GB (depicted by black arrows in Fig. 1) is thus u;" + U . In

contrast to u "

, UM does not amount to a drift velocity of the material points on the GB.
The GB migration velocities being opposite with respect to the two lattices, GB migration

does not contribute to a normal velocity jump Au, at the GB.

Owing to the mixed character of a disconnection, the climb of a sessile disconnection or

the glide of a glissile disconnection both involves the displacement of a step, i.e. they bring

about concomitantly GB migration. In particular, when both U™ % 0 and Au, # 0, GB motion

is said to be “shear-coupled” (Cahn et al., 2006; Cahn and Taylor, 2004). Pure GB sliding (
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smig _

Au, #0, U™ =0)and pure GB migration (Au, =0, U™ % 0) can be apprehended as
resulting from the motion of a collection of disconnections having the same Burgers vector with
different (positive and negative) step heights, and conversely. Simulations based on molecular
dynamics indicate that the shear coupling effect tends to vanish when temperature increases
above 0.5 Tr (Cahn et al., 2006). The continuum theory of GB motion assuming isotropic
material properties can deal only with the phenomena of pure GB sliding and pure GB

migration.

2.2. Continuum theory
At the continuum scale, it is possible to define the traction vector on the GB, T, and the
curvature of the GB, k. T and xare independent quantities. Vector T (with units of force per

unit surface) at a particular point can be derived from the local stress, o, via Cauchy’s law:

T =0o.n. (5)

where n denotes a unit vector normal to the GB and summation over repeated indices is
implied. The local stress is the sum of two contributions: the stress due to the load remotely
applied on the polycrystal and the internal stresses due to the population of crystal defects (i.e.
disconnections). The continuum scale is assumed to be large enough for considering that
internal stresses arise from a continuous distribution of defects rather than from isolated
singular defects. The (mean) curvature, x, at a point is defined by reference to one of the two
adjacent grains:

1 1
K=t — G
Py P

where p1 and p; are the local principal radii of curvature, which are defined positive or negative

when the reference grain is, respectively, convex or concave. Curvature is thus opposite on the
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Grain boundary mobility in diffusional deformation 16

two sides of the GB. At the microscale, GB curvature is generated by a gradient of the product
of the disconnection density times the average disconnection step height. In order to account
for the change of sign of x; subscript e is used in the following when designating a quantity

pertaining to the grain on the external side of the GB with respect to the reference grain. The
absence of subscript e thus denotes a quantity pertaining to the internal side: for example, we

write ke = - K.

In the presence of T, and «, the absorption/desorption of vacancies at sinks/sources on
the GB generates a work. It follows that the diffusion potential, 4, is affected by both T, and «.

On the GB, Uy, EXpresses differently on the two sides (Herring, 1950, 1953):

Hop = H° = pgy + Hg, = —QT, + Qyx (7)
and  pg —p° = ,Ugb + Hgpe = —QT, —Qyx (8)
( £ is a reference potential that may be taken null without loss of generality and subscript gb
designates a value on the GB). There is thus a change of diffusion potential Ax = -2Qyx when
a curved GB is crossed from the internal side to the external side. This change operates across
a thickness of a few unit cells inside which the distortion of chemical bonds gives rise to the GB

excess energy. This thickness size plays no role in continuum models as long as it is much

smaller than grain size.

Being quantities defined for a continuous medium, T, and x lose meaning at small
distances from a triple junction (TJ) (just like stress field loses meaning inside a dislocation
core). The size of the TJ core inside which T, and x cannot be defined (depicted by a dashed
circle in Fig 1) amounts to a few unit cells. Like GB thickness, the TJ core size plays no role in

continuum models as long as it is much smaller than the grain size. Egs. (7) and (8) do thus not
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apply inside the TJ core. Otherwise, continuity of xz would require (i) that, at any TJ, T, should
be identical for the three GBs (this may be postulated only if the activation barrier for the
nucleation of disconnections at Tls is neglected), and (ii) that GB curvature should always tend
to zero at TJs. Scrutiny must thus be exercised for the interpretation of the tendencies close to

TJs of the results derived from the continuum theory.

At zero strain rate, the thermodynamic equilibrium of a polycrystal without porosity

implies the uniformity of the sum T, + yx within the whole GB network. This condition cannot

be achieved in the presence of GB curvature because the field of tractions T,, needed to
compensate for the non-uniformity of GB curvature would not be equilibrated.
Thermodynamic equilibrium at zero strain rate would thus imply flat GBs together with a purely
hydrostatic macroscopic stress. If the macroscopic stress has a deviatoric component, the T,
field on GBs is not uniform, which, in the presence of vacancy sources and sinks, brings about a

field of diffusion potential gradient driving diffusional transport from GB to GB.

» diff » diff

Diffusive GB velocities, u;" and u ', are the sum of two contributions: the normal

component of bulk fluxes J and Je, and the opposite of the divergence (in the GB plane) of GB-

layer fluxes jand je. U™ and U2 can moreover be decomposed into contributions due to T,

n

andto x: U =ul +us; U =4l +ur, (useis made in the following of superscript T for

ne
denoting a quantity that is a function of the normal traction component T, and superscript xfor
a quantity that is a function of GB curvature). Denoting vthe coordinate in the direction of the
normal vector n defined positive outward from the reference grain, these contributions write,

according to Egs. (3), (4) (7), and (8),
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.
u: = _g(%j _1@bV§Tn_
Ql ov o 2

.
ot =D o4 —1@bV§Tn
Qi ov gbe 2

iy =2 2]+ T ().
gb

Ql ov 2

and L'lr’fezﬂﬁi —1®bV§(7/K)
Qv ), 2

18

(9)

(10)

(11)

(12)

Egs (9) to (12) imply that u 2" is positive if oriented along the outgoing normal with respect to

+ diff

the internal grain whereas u_ is positive if oriented along the outgoing normal with respect

to the external grain. The first term on the rhs may be neglected with respect to the second

oD
term in conditions of Coble creep (R; << ?b ), and reversely in conditions of Nabarro-Herring

oD
creep, (Rg >> ?b) (Raj and Ashby, 1971). At the temperature relevant for creep or for

oD,
sintering, the characteristic length — s commonly considered to be of the order of 1 um. In

the following, quantities valid only under either of the two conditions of diffusion dominance

will be designated by subscripts b and |, respectively.

It results from Egs. (4), (7), and (8) that j = j! whereas j* =—j¥. As a consequence,

. o . . .
the two GB-layers of thickness E may, in the absence of curvature, be considered as a single

layer of thickness & in which the diffusion fluxis j = j* + jI . The emission or absorption of
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.
vacancies on the GB affects uin the same way on the two sides of the GB. The gradients 8_
14

in the vicinity of a flat GB are thus opposite:

T T
[%j :_[%j , (13)
ov o ov gbe

and, it follows from to Eqgs. (9) and (10) that
ul =ur’. (14)

In contrast, GB curvature affects x in opposite ways on the two sides, hence

(%j [%J | (15)
ov " ov gbe

and U’ =-u’. (16)
Diffusion driven by GB curvature does thus not generate a normal velocity jump at the GB:

AUS =0, +UY =0.

n

The driving force for GB migration is the difference of chemical potential of the atom,

Hom » N the lattices on the two sides of the GB. In the case of isotropic grains of the same
phase without internal stresses, /4, — Lyom = —C2yK . The migration velocity, ume, is
commonly expressed in the form

. - Hatom, — M.
u:“g — _Urr:]e|g — M atomeQ atom — _9‘/[7/’{ (17)

where 9 is the GB mobility (the same convention of sign applies as for u ™ and 4" ). If
negative, U™ represents the velocity of transfer of lattice components across the GB from the

interior side to the exterior side. Hence, Eq. (17) implies that no transfer of matter across a GB

can occur without GB curvature. Owing to the fact that they both have equal and opposite
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* mig

values on the two sides of the GB, it is tempting to assimilate U, and u;;. The fundamental

difference between these two types of GB velocity (which is attested by their different

dependence on xin Egs. (11), (12) and (17)) is a key feature in the context of the present work.

M is the isotropic GB mobility under zero shear traction, which can be characterized via
measurement of grain growth rate during heat-treatment. Comparison of Egs. (17) and (1)
shows that s and 77! have the same units. Like 7", g is the average of the intrinsic
resistance to conservative GB motion which depends on the local GB crystallography. 9 does
thus not depend on grain size and microstructure. In contrast, as mentioned in Section 1,
parameter 17 may, in the practice, represent an apparent GB-viscosity involving, in addition to

pntinsic. the effect of dissipation phenomena that cannot be ascribed to diffusion fluxes.

3. Deformation of a regular lattice of columnar grains

3.1. The classical model

In the following, vector U denotes the position of a material point and vector U the velocity of
the point (whereas, as mentioned in Section 2, U denotes the GB velocity with respect to the

lattice and Au the lattice velocity jump at the GB). In the case of the diffusional deformation

mode, the deformation of a polycrystal may be said to be affine if grains do not rotate with

respect to one another while the velocity difference U° —UP° between the material points

located at centroids O and O’ of two grains remains linked to the macroscopic strain rate tensor
E via

u° -U° =E,R° (18)
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where RO denotes vector OO'. The deformation of a periodic lattice of grains is affine by
definition. In the case of a random polycrystal, it follows from variational principles that the
hypothesis of affine deformation brings only an upper bound for the power dissipated during
deformation. This upper bound is nevertheless realistic because, within the limits of small
deformation, the departure from periodicity does not bring the average velocity field to differ
very much from the affine approximation (Delannay and Brassart, 2020). The affine hypothesis

does not apply for the Rachinger mode of deformation which proceeds by large relative
displacements of grains that remain globally equiaxed. If grain rotation is null, U° —WP =Au.
During diffusional deformation, the component of Au normal to GB, Au,,, is driven by the
gradients of ,uT arising from the dependence of T, on GB orientation, whereas the tangent

component is the GB sliding velocity, Au_ , driven by T;; according to Eq. (1).

sl 7

Figure 2: Geometrical parameters for the analysis of the affine deformation of a lattice of

hexagonal grains

Although the analysis could apply as well to a 3D polycrystal, we limit ourselves to a

columnar polycrystal. As only three GBs meet at each TJ, the grains are polygonal prisms
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having six faces on average. If grains are equiaxed, the representative grain at zero strain rate
is a regular hexagonal prism with flat faces. The effect of the GB curvature (which drives grain
growth in a random polycrystal at rest) is thus ignored. As represented in Figure 2, we consider
a purely deviatoric macroscopic strain rate with principal tensile direction, of amplitude E,
oriented along an angle a with respect to the normal to one of the grain faces. H is the initial
distance from grain centroid to GB middle. As we limit the analysis to small deformation, this

distance will be approximated as remaining equal to H. The distance between the two Tls at

the ends of a GB is denoted 2B = 21. In the following, B will be used as reference length,

N

which can be converted into the radius of the equivalent cylinder via

Re = MB =1.82B (19)
T

Letter O designates the centroid of the grain used as reference for the definition of x whereas
O. designates the centroid of an adjacent grain. Faces are designated by subscript 1<f <6,
which are taken to increase anticlockwise, with faces f = 3 and f = 6 horizontal. For each face, a
Cartesian coordinate system with origin at GB middle is defined by unit vectors x and z, with z
oriented in direction O—Oe and x defined positive anticlockwise with respect to O. Whatever
the GB shape during straining, the direction of GB sliding (i.e. the direction of the Burgers
vector of the GB disconnections of which glide is activated) is thus parallel to x. This also means

T, =T, (Eq. (1)). Via Eq.(18), the components of the velocity jumps at the six GBs express

(Au,) =(Au,) =2V3BE cos(Za —2f %} (20)

(Au, ) =(Auy) = 2\/3BE sin(Za—Zf %) (21)
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The middle of the horizontal GB labelled f = 6 is designated by letter M whereas the two TJs at

the ends are designated by letters P and N, for x positive and negative, respectively.

In the literature, it has always been assumed that, during diffusional deformation, GBs
remain flat and parallel to their direction at zero strain (we will show in section 3.2 that the flat
GB is only one of the possible GB shapes). Based on this assumption, several authors have
calculated the shear viscosity of a regular lattice of hexagonal prismatic grains: Spingarn and Nix
for Coble creep with free sliding (77 = 0) (Spingarn and Nix, 1978); Kim et al for Coble creep with
n#0 (Kim et al., 2004); Rudge (Rudge, 2018) for Nabarro-Herring creep with 77=0. The
distribution of T, along GBs is parabolic and, if the activation barrier for the nucleation of
disconnections at TJs is neglected, T, = 0 at TJs. In the following, the novel features that
emerge when GB curvature is accounted for will be highlighted without reiterating the

developments for flat GBs: the latter keep holding and can be found in the literature.

3.2. GB curvature and transfer of diffusion fluxes across GBs during quasi-steady-state
deformation
When a polycrystal is deformed under strain rate control, the application of the
macroscopic strain rate initiates a transient stage followed by a stage of quasi-steady-state.

During the transient stage, a curvature distribution grows progressively along the GBs while the

relative velocity of the TJs evolves consistently with the constraint that the equilibrium dihedral

angle y = 2?7[ be always maintained. During the stage of quasi-steady-state, the curvature

distribution along the GBs remains homothetical while the relative velocities of TJs comply with

Eq. (18). This means that, during quasi-steady state, the component U of the diffusional GB

velocity (Egs. (9)and (10)) brings the evolution of the relative GB sizes according to strain rate
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while the coupling of the component u; with the migration velocity u :”g (Egs (11), (12), and
(17)) brings the GB shapes to remain stationary. Stationarity of GB shapes implies that the
resultant of U* and U™ is null during quasi-steady-state:

us+u™ =0, (22)

i.e., via Egs. (11) and (17),

D, [ ou* 1 2
=] —=—oV +Myx =0 23
Q(av]gb 5D 2 () + My (23)

Eq. (23) establishes a link between diffusivities ®, and @, and GB mobility M during quasi-

steady-state. We assume that the strain rate is small enough for allowing the validity of the
small strain approximation to apply when the quasi-steady-state is reached. Eq. (22) means

that any volume of matter u/ or u;, that deposits on one side of the GB is, via GB migration,

transferred to the other side from which it diffuses away owing to the opposite sign of the
divergence of the curvature gradient. The transfer of diffusion fluxes across GBs is thus

triggered by the presence of curvature.

The GBs across which diffusion fluxes are transferred are the GBs along which sliding
occurs. Before developing the mathematics, we illustrate this feature by depicting in Figure 3
an enlarged view of the area around the TJ denoted P in Fig. 2 (area circumscribed by a dotted
circle in Fig. 2). The curvature of the GBs is not drawn: the actual GB profiles during straining
will be represented in Figs. 7a and 7b. Assuming the conditions of Coble creep, the trajectories

of the atom fluxes in the GB-layers (magenta arrows denoted j) are sketched for two

orientations of loading: @ =0 and o = _Z (similar trajectories could be drawn for bulk fluxes

in conditions of Nabarro-Herring creep). When a =0, identical fluxes are emitted on the two
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sides of GBs f=1 and f = 2 whereas identical fluxes adsorb on the two side of GB f= 6. This

process brings some of the flux trajectories to cross GBs f = 1 and f = 2, for which Aug #0,

whereas no flux crosses GB f = 6, for which Au, = 0. The trajectories drawn in Fig. 3a will be

justified in Fig. 8b. When o = —%, GB f = 6 is under pure shear, identical fluxes are emitted on

the two sides of GB f = 1, and identical fluxes are adsorbed on the two side of GB f= 2. In that

case, AUy # 0 for all three GBs, which are all crossed by some flux trajectories.

Figure 3: Enlarged view of the area around the TJ denoted P in Fig. 2: the trajectories of the

atom fluxes in the GB-layers (magenta arrows denoted j) are sketched for loading orientations

a=0and g =-=
4

Let us consider, as represented in Figure 4, the cross-section of two triangular grain

portions with apexes at O, P, and N and Oe, N, and P, which are submitted to an arbitrary strain

rate, i.e. an arbitrary velocity jump Au = (Alj Aun) at GB PN. If adjacent grains have the

sl?

same size, the GB profiles under straining present central symmetry with respect to GB middle,

+ mig

i.e. x(S) is an odd function of s, hence also U} (S) and Uy (S). The six GB profiles moreover
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present central symmetry with respect to grain centroid. The centroids of the grain portions

OPN and O¢NP are denoted by letters C and Ce. The link between GB curvature and the flow of
matter across the GB can be established by considering the components Uf and Ufe of the

velocity of C and Ce.

Figure 4. Parameters for the calculation the velocity of the centroids of adjacent sub-grains

Via the divergence theorem, the velocity, u° , of the centroid of a body of non-

compressible matter with uniform density can be expressed as (Wakai and Brakke, 2011)
Ue =2 fuav = 1 [v-(uuv = u, (0-njs (24)
Vy Vy Vg

where V denotes the body volume and dS denotes a surface increment. We take the origin at
point M (Fig. 4) and, as represented in Fig. 4, we assume the conditions of Coble creep

(Nabarro-Herring conditions will be analysed in Section 4). For the centroid of sub-grain OPN,

. AU . ] ]
us =-— 25' . On faces OP and ON, (U-n("’)zA—-nOP =———_—sl ___""n and

X
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(U.nON):A_“ _V3Ady 14Aq,

. NON

. The sum of the terms of integration along OP and ON
2 2 2 2 2

Au .
thus yields _TSI' which is equal to Uf . This implies that the sum of the terms of integration

along the GB and across the two GB-layers of thickness /2 is null. Along the GB, (U~n) =4
(migration velocity U,Tig does not represent a velocity of matter) whereas, across the diffusion

layers, I U, (U-n)ds =~ Bj. Hence, denoting jf the diffusion flux at P that flows to/from the
gbl

GB-layer f = 1 (Figure 4), may be approximated as

B(jf +i5 ) =] xug"ds =— [ x(u] +uy)ds. (25)
GB

GB

Eqg. (25) does not depend on the geometry of the grain portion bounded by GB PN on which Eq.
(24) is applied. j1P and j5N are the sum of flux contributions arising from GB tractions and from
GB curvature: j; =" +jF; ja =" + ja" . As symmetry imposes that j' =0 at GB middle,

ji and j.' can, based on Egs (20) and (21), be expressed in terms of AU, and AU, as

i = %(—Aun +3Ad )+ P (26)

i = %(Aun +3Ad, )+ 2" (27)

Eq. (25) thus translates into

S g, +B(j” i) = ] (i G s (28)

GB

Conversely, considering the grain portion OcNP, one obtains accounting for Eq.(16),

gszmg +B(if +1a) = [ x(uf —uy)ds (29)

GB
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Being parallel, the pairs of GBs (f=1 and 4) and (f = 2 and 5) have the same profile. In addition,
due to the facts that x(S) is odd and &, (S)=—«(S), js =—i" and j; =—j;7 . Hence,

summing Eqs (28) and (29) yields, via Eq (11)

Au = 2 _[ xuids = —#@ I XV: (yx)ds (30)

J3B? & 2382 "

i.e. also, via Eq. (23),

Aug = \/_ . Myj xxds (31)
Eq. (31) expresses the key feature that the amplitude of GB curvature is related to the
amplitude of GB sliding. As suggested in Fig. 3, this relationship arises from the link between

GB sliding and flux transfers across the GB. GB curvature is thus dynamically induced by strain

rate. As U;, = —U_, thereis no restriction on the form of the function i} (s) (in contrast to
ur (s) which, owing to grain rigidity, can only be the sum of a constant term and a term linear

with x). There thus exists, for a given value of Aug, an infinity of functions « (s) that can

sl 2
comply with Egs. (30) and (31). In particular, one of these functions may be such that

K (s) = 0 everywhere except inside the TJ cores where the applicability Egs. (30) and (31)

breaks down. In that case, the GB is flat in the part where curvature may be defined and the
divergence of diffusion fluxes transiting from one grain to the other is non-null only inside TJ
cores. The classical model assuming flat GBs is thus a particular case of a more general model

accounting for GB curvature.

3.3. GB curvature, GB profile, and diffusion fluxes in conditions of Coble creep
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Grain boundary profiles during straining can be calculated by solving Eq. (23), with Eq. (30) as
boundary condition. We limit ourselves to small strain rate. In conditions of Coble creep, if GB

curvature is small enough for allowing the approximation ds = dx , Egs. (23) and (30) become

A @bdz—wa =0 32
LR (32)

Al = - (33)

ii D Txﬁdx
\/5827/ R G

The general solution of Eq. (32) complying with the condition that xis odd may be expressed as

K= 1 —am; smh[ (34)

J3

1 x \B’Auy
m, B 7D,

9—\/7 (35)

Eq. (34) is written is such a way as to allow the use of the non-dimensional parameter mj, for

where m, =

analysing the influence of GB mobility in the deformation of a polycrystal with given grain size

and given diffusivity, ®, . The key-role played by parameter m, will be highlighted in the

following. Cahn and Taylor (Cahn and Taylor, 1994) also pointed out the role of the length scale

D,
"Wh in their analysis of surface motion by coupling of surface diffusion and surface migration

in a system in which the sole driving force is surface energy reduction. In Section 5.1, it will be

shown that, according to experimental data for ©, and % in metals and ceramics that can be

. ) /Q) .
retrieved from the literature, ,|[—= commonly amounts to a few nanometres, which means
M

that mp < 0.5 even in the case of a nanocrystalline microstructure. We will thus analyse the role

of mp only in the range 0 < my < 0.5.



10

11

12

13

Grain boundary mobility in diffusional deformation 30

Assuming that the integral in Eq. (34) may be carried out up to X =B, i.e. also inside

TJ cores, Eq. (34) yields, based on Eq. (33)

a=_> (36)

Unless m, =oo, Cosh[ij—mb sinh(i] >0, hencea<0. As sinh(ij tends to
mb mb mb

1
1 3 1
cosh| — | when m, decreases, a tends to —| m, cosh| — when my £ 0.05, which
m, 2 m,

makes possible approximations that largely simplify the expressions of the equations ensuing
from Eqs. (34) and (36). In the following, the full expressions will be given and the

approximations valid for mp < 0.05 will be introduced only when useful.

0.2 —

A/mb =0.1
B°E L
MRCIRN -
VD, m, =0.05

-0.2—

Figure 5: Curvature «, , , (x) calculated for m, = 0.2, 0.1, and 0.05.

Figure 5 presents the curves for curvature «, ,_, (x) (i.e.,in Fig. 2, for GB f=1 when a =

0) calculated using my =0.2, 0.1, and 0.05. Curvature tends to a maximum at TJs. Strictly

speaking, the curves «, (x) have no meaning close to x = +B because the concept of GB
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curvature has no meaning inside the TJ core. Nevertheless, according to Egs. (34) and (36),

33  B°E

(K140 ),_, tendsto £+——m, —— when m, decreases: the curvature at TJs thus tends to zero
X=x j/q)b

when 9 tends to «.

The slope of the profiles, denoted ¢, can be derived from Eq. (34) as

B® (AU
( Ug )f,a (37)

X 1 X
=g, - | x ,dx =¢’ ——=am’ cosh
Pro = Pra _([f,a Pra J3 b m,B Dy

where ¢” is the slope at x = 0. The profile itself, z(x), is obtained in turn as

B*(Au
(AUS' )f,a . (38)

t 1 4 X
z, . =|¢ dx=¢’ x——am smh( j
T e e

The three profiles, z, (x) , to be calculated thus differ by their slope at x =0, (pfoa . The latter

three parameters can be identified based on three independent conditions:

. (gpfa )X:B = ((P(m)a )x:_B for maintenance of the equilibrium dihedral angle at TJs (which

brings two conditions)

* (z,)._ ., (Zua) _, +(2Z.2.),_, =0 forconsistency of the three departures from the
initial, static TJ position.
For illustration, Figure 6a compares the profiles z, , . (x) calculated for my =0.2, 0.1, and 0.05
whereas Fig. 6b compares the curves z, . .. (X), Zg 450 (X)) Z1,4s- (X),a0d z, 4o (X)
calculated for mp = 0.1. The profiles tend to be flat when 9« tends to infinity: in Fig. 6a,

33
2

B°E
VD,

(21,a:0° )X:iB tends to m. when my decreases whereas the slope at x =0, ((om:oo )

x=0
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3J3 ,B‘E
b

m . The flat GB profiles considered classically thus correspond to
YDy,

1 , approximates as

2 the particular solution valid for the case % = « .

01 f

m, =0.1

m, = 0.05 \

0.04 T T T b

0.02|— —]

.
ZM[B EJ o
7Dy

-0.02(—

-0.04 | | |
1 . 0.

4 Figure 6: GB profiles z, (x) calculated via Egs. (37) and (38) (a) for m, = 0.2, 0.1, and 0.05 with

5 a=0, and (b) for «=0°, - 45°, and + 45° with mp = 0.1.

6 The curves of Fig. 6b are used in Figure 7 for drawing the grain profiles (red curves)
7  during deformation for the orientations a=0°, o =-45°, and a = 90° with mp = 0.1 (orientations
8 a=0° a=-45° are the same as in Fig. 3). In the three cases, blue lines represent the GB
9 position when equilibrium at rest has been recovered after unloading. GBsf=3 and f=6
10  remain flat when a =0 (Fig. 7a) and a = 90° (Fig. 7c). The three cases are drawn in a somewhat

11 different manner in order to illustrate the main features.
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In Fig. 7a, black lines represent the initial grains at equilibrium. Centroid O is considered
static and four-pointed stars drawn in black and red localize the adjacent grain centroids (O
and Og) and the GB centroid (M) before and after deformation. Relative centroid velocities

(sketched by red arrows) were calculated via Eq. (18) for an arbitrary finite strain rate. The

GB sliding amplitude (Ausl ) . is figured by a black arrow.

1a=
In Fig. 7b, the GB slope at TJs during deformation is the same as at static equilibrium

because z, 45 (Fig. 6b).

—450 = Ly
In Fig. 7c, layers of thickness 2u in grey shade represent mass addition along GBs f= 1 and
f=2, whereas dotted arrows sketch the directions of mass exchanges between GBs. As u]

is uniform along the GB, the frontiers of the shaded layers follow the same profile as the
GB. When equilibrium at rest has been recovered after unloading, the profiles (blue lines)
get an inclined orientation inside the layers of mass inflow. This feature will be discussed in

Section 5.2.

P
Ll

Ll

Figure 7: Grain shapes during deformation for a = 0°, - 45°, and 90° (Fig. 2) with my, =0.1. The

red curves are the GB profiles during straining whereas the blue lines are the GBs after

relaxation to equilibrium at rest.
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The diffusion fluxes in the reference grain driven by gradients of xare, from Eq. (34),

d .
i = 2, d(m) _am, cosh| X |B%E sin[2a—2f f) (39)
' 2 dx m, B 3

J* does not depend on y. Conversely, the diffusion fluxes due to GB tractions are obtained via

Eqgs (20) as

T 1X e _ T\ X 2~
i _—EIAude——ﬁcos 20 - 212 |2B°E (40)
0

(j; =0atx=0). jfTﬂ is thus linear with x. Figure 8a presents the curves for the total flux

(jT (x)+j" (X)) _calculated using m =0.2, 0.1, and 0.05. The shape of these curves is

f,a=0

justified in Figure 8b by a sketch of the trajectories of the diffusion fluxes (the trajectories in

Fig. 8b reproduce the trajectories drawn in Fig. 3a). Owing to the flux contributions due to the
gradients of x (Eq. (39)), the total flux presents sharp negative cusps at both TJs. As suggested
in Fig. 8b, this results from the transfer of flux across the GB: flux transfer causes the total flux
to be increased (i.e. to be more negative) close to TJ x = -B, and to be decreased (i.e. to be less
positive, and even to become negative) close to TJ x = B. These phenomena concentrate in the
part of the GB where curvature is the highest. In Fig. 7a, the orientation and magnitude of the

main fluxes according to the curves of Fig. 8a are represented by blue arrows.
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(0717,

Figure 8: (a) total flux (jT + j’“)1

. calculated for m=0.2, 0.1, and 0.05. (b) sketch of the

A=

trajectories of the diffusion fluxes close to GB f=1 with =0

3.4. Contributions to energy dissipation - apparent GB-viscosity
In the case of affine deformation under pure shear, the shear viscosity, G, is related to

the dissipation rate per unit volume, Q , via

Q
G=—=3
4E? 1)

Q is the sum of three contributions: Q =Q’ +Q™? +Q®, where Q ! arises from diffusion

fluxes, Qmig arises from GB migration, and QS' , arises from GB sliding.

e Q| iscalculated as

(42)

= i+im2a2 m, sinh a cosh "t +1 B°E”
J3 3 ° ° m, m, D,

The two components of Q| are thus uncoupled. The fact that Q/ does not depend on

6 6
angle o follows from the relationships »' cos? (205 - 2f %j = sin? [20{ - 2f %j =3. The
f=1

f=1
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first term in Eq. (42) is

.. 2 B%E?
or = , 43
* 3 D, “3)

which, via Eq. (41), agrees with the shear viscosity calculated by Spingarn and Nix assuming

flat GBs with free sliding (Kim et al., 2004; Spingarn and Nix, 1978).

< mig

e GB migration brings a dissipation power u; % = 2u;"ig yk on each unit area of the GB.

This dissipation being equally shared between the two adjacent grains, Qg”‘g is obtained as

. . . 6 B
oo z\% j uryxds = \%9\/[7/22 j K7 dx
s EE (44)

32
= im,fa2 {mb sinh[iJcosh[ij - 1} BE
V3 m, my D,

QM thus differs only slightly from QF (Eq. (42).

e Accounting for the intrinsic GB-viscosity associated to the nucleation and glide of

. . gl
disconnections, Q>

s 1S Obtained as

i nintrinsic

. 1 6.8
Qinltrinsic = \7 2 21 _L(AuSlf )2 dx

36 s B’E® (45)
— 2\/§nintrinsicBE'2 — _ﬁiiantrinsic P
2 b

~intrinsic

, is defined in Eq. (2)). Via Eq. (41), Eq. (45) reproduces the contribution to shear

viscosity at zero strain ensuing from the equations developed by Kim et al (Kim et al., 2004).
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i . 5
Q. orQ™

BE?
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0.5
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0.005 0.05 0.5
1 [o
m, =1.29— |—&
R, VM

Figure 9: Variation of dissipation rates Qg and Qmig as a function of m according to Eqs (42)
and (44)
Figure 9 presents on a log-log scale the variation as a function of m,, of Q{f (Eq. (42)) and

QnTig (Eq. (44)). Qr and Qt')"ig are very nearly identical as long as mp < 0.05. They tend to

32
3\/§mbBE

2 when mj decreases (dashed line). As my varies as B%, this means that Qg and
(Db

| mig
b

are closely proportional to Ré, in contrast to QbT and QS' which vary as Ré’ and R,
respectively. The lower bound for the additional dissipation brought by strain-induced GB

curvature is thus

32
lower bound 2 (Db

(Qs +Qye

Based on Eq. (45), Eq. (46) may be translated into a lower bound for a non-dimensional

apparent GB-viscosity arising from the occurrence of GB curvature:

- oz B B 1 |D,
(77b )Ib —mmb = 023mb —OZQE W (47)



10

11

12

13

14

15

16

17

18

19

20

21

22

Grain boundary mobility in diffusional deformation 38

Eqg. (47) highlights the key role played by GB mobility in diffusional deformation. It provides a
precious clue on the value of apparent GB-viscosity 77 to be used in numerical simulation of

diffusional deformation. This result will be further discussed in Section 5.1. As Q" and Q'g“‘g

vary as Ré whereas Qg vary Rg, it follows from Eqs. (43), (46), and (47) that, when GB-layer
diffusion is dominant, the relative contribution to dissipation due to GB curvature decreases

linearly with Ry . In contrast, the relative contribution due to GB curvature can be anticipated

not to depend on R; when bulk diffusion is dominant. This feature will be highlighted in

Section 4.

4. Rotation of a grain embedded in a polycrystal
4.1. The classical model

Many authors have reported experimental evidence of the occurrence of random grain
rotations during superplastic deformation of fine-grained polycrystals (Geckinli and Barrett,
1976; Harris et al., 1998; Hotz et al., 1975; Kashyap et al., 1985). Such grain rotations are
intrinsic to the mechanism of diffusional deformation (Burton, 2002). Based on the latter
mechanism, it has been predicted in the literature that, during deformation or during heat-
treatment, a torque inducing the rotation of a grain can arise owing to an anisotropy of grain
shape (Delannay and Brassart, 2020; Kim et al., 2009; Wheeler, 2010), to an anisotropy of GB
tension, y, (Harris et al., 1998; Kim et al., 2005; Moldovan et al., 2001), to an anisotropy of GB-
viscosity, 7, (Beere, 1978), or to the shear coupling effect (Cahn et al., 2006). In the present
paper, the origin of the torque inducing grain rotation is left undetermined: the steady-state

rotation of a grain with respect to its neighbours is viewed as “thought experiment” for the
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assessment of the role of GB curvature and mobility in diffusional deformation. The rotation of
a hexagonal grain embedded in a columnar polycrystal is a convenient case-study because,
owing to the in-plane symmetry, rotation occurs without displacement of grain centroid. The
grain rotation phenomenon was modelled by Harris et al (Harris et al., 1998) and Moldovan et
al (Moldovan et al., 2001) assuming flat GBs with 7=0. The model was extended to the case 7
# 0 by Kim et al (Kim et al., 2005; Kim et al., 2009). Beeré (Beere, 1977), Kim et al (Kim et al.,
2009) and Wheeler (Wheeler, 2010) also considered the simultaneous rotation of all grains in a
lattice of columnar grains submitted to a uniform strain rate. Wheeler (Wheeler, 2010)
demonstrated that such grain rotation brings no change of the shear viscosity unless grain
shape is anisotropic and 77 # 0. The particular case of simultaneous rotation of the grains will be

briefly treated in the Appendix.

Figure 10 outlines the grain rotation process in a columnar polycrystal with isometric

grains. Capillary equilibrium implies (i) that GB shapes are such that the equilibrium dihedral

angle y = 2?” always maintains at TJs, and (ii) that GB curvature is null everywhere at rest: GB

profiles at rest are figured by dotted straight lines. Notations H, B, O, M, P, N have the same
meaning as in Section 3. Again, a Cartesian coordinate system with origin at M is defined by

unit vectors x and z, with z oriented outward and x defined positive anticlockwise with respect

to O. The angular velocity of the grain, 0 , is also defined positive anticlockwise: 0 is thus
positive in Fig. 10. The rotation of the grain with respect to its neighbours brings the existence
of traction forces along its GBs. It follows from mechanical equilibrium that reaction forces act
on the adjacent grains, which cause these grains to also rotate with respect to their neighbours,

and so on for grains further away from the central grain. Hence, unless one considers that the
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adjacent grains do not move because the diffusional deformation mechanism does not operate
at their GBs, a model that considers a grain that rotates with respect to static neighbours does
not yield to an exact solution complying with mechanical equilibrium. Nevertheless, according
to variational principles, such a model constitutes an admissible kinematic approximation,
which provides an upper bound for the dissipation power (Brassart and Delannay, 2019; Cocks,
1996; Delannay and Brassart, 2020). This upper bound approximation was implicit in previous

work in literature: it is adopted in the following of this section.

If one assumes that adjacent grains do not rotate, the GB sliding velocity, i.e. the
velocity jump between the two lattices at point M, is
AU = ulatticeM _ ulatticeM _ _He (48)
sl = He - :
Whatever the GB shape during grain rotation, Au, is parallel to x, hence T, =T, . If the torque

bringing the rotation of the grain is constant, a stage will be reached during which GBs and TJs

remain static while the grain is rotating. We define this stage as steady-state. The continuous

black curves in Fig. 10 represent possible shapes for GB profiles at steady-state. These shapes

will be justified in Fig. 14. It will be shown that it results from the assumption that adjacent

grains are static

e that the position of TJs as well as the orientation of the tangents to the three GBs meeting
at TJs are not affected by grain rotation,

e and that the “outgoing” GBs separating the six surrounding grains remain flat during the
rotation of the central grain.

The GB profiles present central symmetry with respect to grain centroid and, as adjacent grains

keep the same size, they present also central symmetry with respect to GB middle, M. « (x),
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u, (x ), and 4™ (x) are thus odd functions of x. In Fig. 10a, the continuous red lines aim at
depicting the deformation incompatibilities arising from grain rotation: the rotation of the grain
with respect to adjacent grains brings a normal velocity jump, Au, , which, if GB curvature is
not too large, may be approximated as linear with x:

AU, =ul +ul =x@. (49)
This velocity jump amounts to the insertion/withdrawal of wedges along the GB. The wedges
are represented In Fig. 10b the by the gap between the dotted blue curve and the GB position
during steady-state rotation (continuous black curve). As indicated by the blue arrows,

accounting for the fact that u] =u'_ (Eq. (14)),

Uy =Up =X (50)

If the effect of GB curvature is neglected, diffusion fluxes reduce to the contributions J" and
J1 inthe case of Nabarro-Herring conditions, or j' and j! in the case of Coble conditions. J'
and J[ are sketched by red arrows in Fig. 10b. As emphasized in Section 4.3, these arrows do

not represent the total fluxes J and J, because the total fluxes involve also a contribution due

to GB curvature.
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,,,,,,,,,,,,

+

Figure 10: Rotation of a grain embedded in a columnar polycrystal.

Let us first consider the case of dominance of Coble conditions. The diffusion flux,

j" (x),and the normal traction, T, (x) (subscript b denotes Coble conditions), can be derived

from Eq. (50) as

iT=i0 :—J'uIdx :—%x2'9'+Cst1 (51)
2 . 2 1 35,
and T, =— Jde=—£——x30+ax+Cst j (52)
° @bj o, 12 ?

where Cst1 and Cst; are integration constant. If adjacent grains are static, there is no velocity
jump along the six outgoing GBs and normal tractions on these GBs are thus uniform. This
implies that, if the activation barrier for the nucleation of disconnections at TJs is neglected,

T, (x=B)=T,,(x=-B)=0. Hence,

11 ., 5
T, =65b¢9(—x +B%x) (53)
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and 7o -—tpg[ X1 (54)
=~74° B 3

Eqg. (53) is identical to the equation derived by Kim et al (Kim et al., 2005). The contribution Q;
to the dissipation rate per unit volume that arises from the diffusive GB motions u! and u/,
can then be calculated via two equivalent methods:

e either by equating Qg to the work spent by the tractions on the GB: if 77, =0, T, =0

and
1 - T
=—| [ulT, ds+ [ulT,ds urT,, dx (55)
Qb V|:GJ.B n ' bn GJ.B bn :| (— J. bn

e or by equating QT to the dissipation associated to diffusion fluxes

B
Qr =1ij[ il }ds LT (56)
Vo, ]

BB, -

Based on Egs. (50), (53), and (54), both Eq. (55) and Eq. (56) yield

: 2 B%¢?
Q =—+— (57)
° 45J3 O,

It can be verified that Eq. (57) agrees exactly with the value derived by Kim et al (Kim et al.,

2005) for the dependence of 0 on the driving force for rotation when 77=0 (Eq. (23) in the
reference). In their paper, Kim et al also discuss the (small) difference between their result and
the results obtained via different approximations by Harris et al (Harris et al., 1998) and by

Moldovan et al (Moldovan et al., 2001).

In the case of dominance of Nabarro-Herring conditions, the problem requires solving

T

the Laplace equation, sz =0, inside the hexagonal grain and inside adjacent grains,

subjected to Egs. (9) and (50) as boundary conditions. Owing to the geometry of the problem,
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accurate solutions for #' and for field of lattice flux J’ require resorting to a numerical
method. By analogy with Eq. (57), Q[ (subscript | denotes Nabarro-Herring conditions) may be
expressed as

2 B 14D,

\T
Q= 45\/_@ - BD

Q (58)

where g is a non-dimensional factor. The principle of minimum dissipation implies that,

according to Eq. (58), the transition between the two diffusion modes occurs when

D
B=q, —2 For the uniform deformation of a lattice of hexagonal grains, Raj and Ashby (Raj
DI

and Ashby, 1971) have calculated equivalent shear viscosities for the two modes of diffusion via
an analytical method considering sliding along a corrugated GB. These shear viscosities, which

they show to be consistent with previous work in the literature, translate into g, =0.9 in Eq.
(58). This g1 value turns out to be fairly close to the value ¢, =1.2 that ensues from the full

numerical calculations developed by Rudge (Rudge, 2018) for the shear viscosity of a regular
lattice of hexagonal grains. No similar numerical solution of the Laplace equation has been
proposed in the literature for the rotation of a grain with respect to its neighbours. For the
latter case, we can only rely on the work of Moldovan et al (Moldovan et al., 2001) who applied
the method of Raj and Ashby for analysing the phenomenon of grain rotation assuming either
of the two modes of diffusion. The value derived by Moldovan et al for the critical grain size at

the transition between the two diffusion modes translates into g, =1.6. In Section 4.4, this q

value will be used as reference for comparison with the dissipation contributions arising from

strain-rate-driven GB curvature.

4.2. GB curvature and transfer of diffusion fluxes across GBs during steady-state rotation
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The definition of steady-state rotation implies a rotation centred in M of the GB with respect to
the lattice of the rotating grain. The dashed red curve in Fig. 10b represents the GB position
resulting only from the wedge insertion/withdrawal whereas the dotted blue curve shows

where the GB would be positioned in the absence of GB rotation. In order to keep its steady-
state position, the GB moves with respect to the lattice with a velocity Xé, i.e. with an angular

velocity -6 (magenta arrow). This GB velocity X8 results from the sum of the three

contributions:
ul +ur +u™ = x0 (59)

which, via Eq. (50), yields
. i 0
us +u™ = XE (60)

Eqg. (59) means that curvature governs simultaneously the rotation of the GB with respect to
the lattice and the transfer across the GB of the matter, U, transported by diffusion driven by

curvature. Via Eqs (11) and (17), Eq. (60) becomes

D, ( ou* 1 2 0
——L | +=-0,V - Myr = X—. 61
Q{ﬁngb 5 DoV (1) - My =% (61)

Previous authors who modelled the grain rotation process assumed Au, = 2u! = xé and

disregarded the GB migration bringing GB rotation (Harris et al., 1998; Kim et al., 2005;

Moldovan et al., 2001).
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Figure 11. Parameters for calculating the displacement of sub-grain centroids.

Like in Section 3.2, based on Eqg. (24), the relationship between the rotation velocity 0

and the distribution along the GB of the diffusional GB velocities i (x) = -/, (x) can, be

established by calculating the displacement of the centroids, C and Ce, of the two adjacent sub-
grains OPN and OcNP represented in Fig. 11 (in contrast to Fig. 4, Fig. 11 depicts bulk fluxes J,
i.e. Nabarro-Herring conditions). Let us first apply Eq. (24) on sub-grain OPN. In Fig. 11, the
arrows labelled U™ represent the velocity of the external surface of sub-grain OPN, and the
dashed triangle represents the displacement brought by the rotation of the grain. It can be

verified that, in direction x,

\%(jux(um‘ n)ds+ [U, (U° -njs+ U, (0" n)de:%Hé. (62)

oP

As %H 6 is the velocity of centroid C, the balance of the other contributions to the integral on
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the righthand side of Eq. (24) is null:

jx(J-n)dS+ungi“dS+J‘X(J-n)dS:O (63)
GB NO

OoP

The normal component of the diffusion flux across faces OP and ON, J, =J! +J/, is sketched

s5J .
by blue arrows in Fig. 11. In the case of dominance of Coble conditions, T“ = JI and we may

write, accounting for Eq. (54),

. PR 1_,. 83"
‘fx(J.n)ds+J‘x(J-n)ds;28{(J )x:B+ 5 }:ZB _6829+Tj (64)

OoP NO

In the case of Nabarro-Herring conditions, 28(—%829 +&

> may be considered as a valid

approximation because J is then expected to be significant only in the vicinity of TJs. Hence,

whatever the dominant diffusion mode, Eq. (63) yields

_23[%529_%:} j x(Uy +0y)ds =0 (65)

GB

Similarly, the application of Eq. (24) on sub-grain OcPN yields

23(%529_%&‘} [ x(u7 —ur)ds =0 (66)

GB

As J* =-J , it follows from Egs. (11), (65), and (66)

6= [ xirds =— [ x| -2[ 2] L Lo v2 (n) [as (67)
B” & B” s Q\l ov ob 2

Eq. (67) is the collateral of Eq. (30). Again, the classical model assuming flat GBs with diffusion

fluxes transiting only across TJ cores corresponds to a particular function u* (s) complying

with Eqg. (67).
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4.3. GB curvature and GB profiles

In this Section, solutions based on Eqs (61) and (67) are developed while considering either the
dominance of GB-layer diffusion or the dominance of bulk diffusion. Subscripts b and | are used
for distinguishing the two cases. The absence of subscript means that the expression is valid for
both cases. For the case of bulk diffusion, a method is proposed that brings an approximate
expression for x presenting a similar analytical form as for the case of GB-layer diffusion. This
similarity will make possible a comprehensive view of the rotation process across the full range

of diffusion conditions.

In conditions of dominance of GB-layer diffusion, Eqs (61) and (67) reduce to

1 d’x,
2" gl

7
> - Myic, =X— (68)

2

and

dx == 0, (69)

dx? 3 yD,

Txdeb 2 B®

-B
The general solution of Eq. (68) complying with the condition that xis odd can be written

b =) % m,B/) 2B |yMm

with, like Eq. (35),

L Y
mb_\/EB\/;' (71).

Egs. (69) to (71) yield

1 1
a, =—

e el
m, | cosh| — |-m, sinh| —
rﬂb mb

(72)
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Figure 12. Parameters for the solution of the Laplace equation in polar coordinates

In conditions of dominance of bulk diffusion, the problem requires solving the Laplace
equation V24~ =0 inside a regular hexagon, subjected to Egs. (61) and (67) as boundary
conditions. A precise solution can be obtained only via a numerical method. In the present

paper, we proceed via an analytical approximation based on polar coordinates (R, &) centred at

O (Fig. 12). The approximation consists in applying conditions Egs. (61) and (67) along the arc

of circle of length 2B defined as (R :G—B, < 032): we thus approximate x = s = EBé’
V4 6 6 V4
and ou ~ ou . Egs. (61) and (67) then translate into
ov OR )_ sB
gb R=——
D g j
D (ou cur =18,y 0B0 (73)
M\ OR ), 68 " R-— 271 M
% K 2 0
and Ie ou dgz_l 7| QBO (74)
. \OR ) _e8 3\ 6 D,
6

As the gradients of diffusion potential due to GB curvature vanish beyond a certain distance

from the GB, we denote Ro a critical radius from centroid O below which bulk diffusion fluxes
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due to GB curvature are null: J* = _ Dy o _ 0 when R<R, (Fig. 12). A general solution of
® Q 6R

the Laplace equation complying the latter condition as well as with Eqg. (73) may be written

u* =0 for R<R, (75)
1, R).., 160, 160|BQd
d * =|/2a, cos| —In— |sinh(— ) - =~ for R>R 76
an H |: a ( | Rg] (m| 7z') 2 7 | By or 0 (76)
ith R =08 (m”j' cos 1In6B_ 1 (77)
Wi =—Bexp| -m — |, i.e. —In|——||=—F=
° P "4 m 7R, ) V2
and m oAl w20 [0, (78)
6BM 6 o, \M

The crudeness of the approximations underlying Egs. (75) and (76) is reflected by the

discontinuities of y“at R=R, and at 6 = ig =+— when R>R,. Egs. (74) and (76) yield

z
6

1 L (79)

SRR

Based on Eq. (76), GB curvature then expresses
o (1 1x | B
K :@: a, sinh _i __i _H (80)
Qy mB) 2B |yM

Egs. (70) and (80) show that xtends to zero when % tends to o=: the assumption that

GBs remain flat during grain rotation is thus a particular case of the more general model
accounting for GB curvature. This indicates that previous models based on the classical
hypothesis of flat GBs (Harris et al., 1998; Kim et al., 2005; Moldovan et al., 2001) involved also
the implicit assumption that GB mobility is infinite. Eqs. (70) and (76) yield, via Eq. (11), the

same expression for the diffusive GB velocities driven by curvature gradients:
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e e . 1 X\, -
u) =-u;, =asinh| —— |B6 (81)
m B
Although more approximate than Eq. (70), Eq. (80) will be considered as correct enough for the
purpose of apprehending the essential of the rotation phenomenon across the full range of

diffusion conditions. The only difference between Egs. (70) and (80) is the different definition

D, D,
of parameters my and my (Eqs. (71) and (78)). As Eb ~1um whereas ,/Wb ~ 1nm (confer
|

Section 5.1), it follows from Eq. (78) that m, <<m,. mp and m, both vary as R(j whereas

dominance of bulk diffusion is favoured when Rg increases at a given temperature. In the
following, the outcomes of Egs. (70) and (80) are analysed over the range 0 < m<0.5. The
lowest part of this range is thus representative for the case of dominance of bulk diffusion and

the highest part for the case of the dominance of GB-layer diffusion.
. o BoO .
Figure 13 presents the curves x (x) in units of _9\/1 for m (i.e. mporm))=0.2, 0.1, and
4
0.05. According to Eq. (17), Fig. 13 also represents the variation of the migration velocity u™®

along the GB. The linear variation of xin the central part of the GB is brought by the rotation of

the GB around M. When m decreases (e.g. because grain size increases), the departure from

B&
this linear variation localises closer to TJs. When m <0.05, K tends to J_r——m when x tends
my

to £ B (again, strictly speaking, xhas no meaning at x =+B).
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BO
K‘ —_—
My | 2 7
m=0.1
0—&/______,//””'&—
mI:O.OS
2
I I I
1 0.5 0 0.5 1

Figure 13. Curvature x'(X) according to Egs. (34) and (80) for m=0.2, 0.1, and 0.05.

Based on Egs. (70) and (80), the slope of the profile expresses

X 2 2 A
p=0¢° —IK‘dX =¢° {am Cosh(iij—lﬁij :IB 0 (82)
0

mB,) 4\B yM

where ¢’ is the slope at GB centroid M. The profile itself is obtained as

X 3 3/
z:j¢dx:¢°x— am?sinh| —i(ij B (83)
5 mB) 12\B yM

By symmetry, GB profiles must comply with the boundary condition z(x) =0 at x = + B. It thus

follows from Eq. (83) that the slope of the profile at x =0 is

iy
@’ = amzsinh(ij—i B 9. (84)
m) 12| ym

and the equation for the profile becomes

o= oo ) -son( 5 -3 5

3,

Figure 14 presents the curves for z(x) in units of form=0.2,0.1, and 0.05. Strikingly, the

Y M
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slope at Tls, i.e. the angle of rotation of TJs at steady state, is null: ((p)k+B = 0. The absence of

rotation of TJs indicates that outgoing GBs remain flat, which is consistent with the absence of
rotation the adjacent grains (this point is further highlighted in Section 4.4). The GB profiles
presented in Figs 10, 11, and 12 have been drawn based on the curve for m = 0.1 in Fig. 14. As

shown in the Appendix, the profiles z(x) would be completely different if all grains rotate

simultaneously with the same angular velocity.

0.04

MY ) 0,02+ —

-0.02

-0.04 | | |
1

Figure 14. GB profile z(X) according to Eq. (85) for m=0.2, 0.1, and 0.05.

4.4. Diffusion fluxes

In the case of GB-layer diffusion, the flux components driven by curvature gradients are

obtained via Egs. (70) as

, . @, d(yx) 1 1 x) 1|52,
e =2 ——2=—m —cosh| —— [——|B“0 86
J Je 2 dX b abmb mb B 2 ( )

Figure 15a presents the curves j* (x ) in units of B26 for mp=0.2,0.1,and 0.05. " is slightly

positive in the middle of the GB and presents sharp negative cusps at both TJs. When my,
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decreases, (JK) _, tendsto 1mthzé?, whereas (JK)

, tends to —%Bzé. Reference to Eq.

(54) shows that this means (j’()x_ . E(jT )X_+B. Figure 15b presents the curves for '

according to Eq. (54), together with the curves for the total diffusion fluxes, j" + j* and jZ + s
, calculated using mp = 0.1. GB curvature brings the total diffusion flux to be larger on the

internal side of the rotating grain than on the external side. In particular, (Jg +is )X_+B =0.

The GB curvature close to TJs thus brings the total diffusion flux on the external side to cross
the GB close to the TJ in such a way as to circumvent the TJ on the internal side. This is
consistent with the fact that outgoing GBs are flat and can thus not be crossed by diffusion

fluxes.

In the case of bulk diffusion, the expression of " by Eq. (76) is too approximate to

allow accurate mapping of the J* field inside the grain. Nevertheless, the curves for j and je
presented in Fig 15 suggest the outlines of a map for lattice fluxes J and Je. Fig. 16 presents
such a map drawn qualitatively in accordance with Figs. 10, 14, and 15. Likejand jein Fig. 15, J
and Je are taken to change direction at X =20.6B: this point corresponds to either a saddle or
a minimum in the g field. J and Je cross the GBs close to TJs in such a way as to flow only on the
internal side of the TJ core. Notice that the mapping of J and Je in Fig. 15 does not invalidate

the red arrows drawn in Fig. 10b for sketching the lattice flux components J™ and J[ .
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J* (Bzé) m, =0.05

m, =0.1

-0.1

Figure 15: (a) Diffusion flux j*(x) for my=0.2, 0.1, and 0.05 ; (b) total diffusion fluxes, " +

and j! + ¥, calculated using m, = 0.1.

Figure 16: Outlines of a map of bulk diffusion fluxes J and Je

4.5. Contributions to energy dissipation

K
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It must be remembered that the assumption that adjacent grains do not rotate constitute a

kinematical approximation which can yield only an upper bound for the dissipation power. Like

in Section 3.4, we may distinguish four contributions to the dissipation power per unit volume:

Q = QT + QK + Qmig + Q.isnltrinsic '

Qg and QIT have already been expressed in Egs. (57) and (58).
Like QbT , Q* can be obtained either by calculating the work spent by the tractions on the

GB (Eqg. (55)), or by calculating the dissipation brought by diffusion fluxes (Eq. (56)). The
first method writes

Q" +0O" :l“ as" (T, +yx)ds + j ug (T, —}/K)dS:|
V GB GB

2 1% &7
=Q" +——2ju:;fxdx

e

Using Eq. (81) for U, and Egs. (70) or (80) for k', one obtains whatever the diffusion mode,

w2 (1 1) | 1B
Q —\/g{a {msmh(mjcosh(mj 1} 6} o (88)

For Ql", the second method cannot be used owing to the lack of a precise expression for the

fields J* and J; . For Q,;‘, the method writes
2 T2 (T )2
— |:(jT+j )+(Jl+]e)st

8 1 8
— J5edx
N

Q +Qp =
(89)

Coupling with Eq.(86), Eq. (89) yields

2
Qr = %{aﬁ {1 +m, cosh [mij sinh(miﬂ —2a,m? sinh(mi) +%m§} Bgi (90)
b b b

Eq. (90) differs from Eq. (88). The difference is however small as long as m, < 0.1 (see Fig.
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17 below). We believe that it may be ascribed to the inaccuracies in the integrals and

derivatives due to the approximation s = X .
e Whatever the diffusion mode, Qmig , can be obtained via Eq. (17) coupled to either Eq. (70)

or Eq. (80):

- 2 ‘ 2
QM =—=— | uMykds = —uy? | x’ds
Vv G‘L \ GIB

_ %{aZB[m sinh(%]cosh[%] _1} _%} Bgiz

According to Eq. (88), Q™ is equal to Qk’;, but according to Eq. (90) Q™ differs somewhat

(91)

from Qt’,‘

e Q° is obtained via Eqgs (1) and (48),

intrinsic

Q.iiltrinsic :\% J T//Al':ISI dS = Lﬂintrinsic (AUSI )2 = 2\/5 77intrinsicBg.2 (92)
GB

J3B

It follows from Eqgs. (88), (90) and (91) that, when m decreases,

: - 1 1 B#?
QK Eleg_>__
183 m M

(93)
As moc B, this means that Ql’“, Qk’)‘, leig ,and Qk')"ig all vary nearly as B?, like QlT (Eq. (58)).

sl

Given an average grain size, if Qinmnsic is neglected, the temperature dependence of the

dissipation rate, Q =Q" +Q* +Q™?, is determined by the dependence on temperature of the

oD,

D, D,
characteristic lengths and ‘/Wb (which combine into the characteristic length %'). In

|
principle, this dependence can be derived from the exponential pre-factor and the activation

energy in the Arrhenius law for 6D, , D,, and 9. Reliable data for this set of parameters in
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metals and ceramics in the temperature range at which diffusional deformation is expected to

. . . ob, . . e .
prevail are however scarce in the literature. For o it is commonly admitted in the literature
|

devoted to creep and sintering that the transition between dominance of bulk diffusion and

D
dominance GB-layer diffusion occurs at a grain size R = b

of the order of one um. The
|

activation energy being lower for 6D, than for D, , the transition occurs at a critical grain size

that decreases when temperature increases. On the other hand, as detailed in Section 5.1,

D
. /Wb typically amounts to a few nm. Data available in the literature do however not allow to

ascertain whether the activation energy for M is, in general, closer to the activation energy for

either 6D, or D, (Akiva et al., 2014; Dillon and Harmer, 2006; Huang and Humphreys, 1999;

Riedel and Blug, 2001; Schmidt and Kraft, 2010; Wonisch et al., 2007). Accounting for the

uncertainty about the temperature dependence of the characteristic lengths, Figs 17a and 17b
present on two different log-log graphs the dependence on B of the dissipations Qb = Qg +Ql’j

and Q| :QlT +Ql" according to Egs. (57), (58) with g; = 1.6 (Egs. (88), (90), and (91)). Whereas

2 A2
the units for Q are

D, D,
in both cases, the units for B are ‘/Wb in Fig. 17a and EI in Fig.

oD, _ , , oD, D, . .
17b. For 5 three values are considered which are defined as o =0, o in Fig. 17a
| I

sD,

D
and as = %' in Fig. 17b, with & or & =10, 100, and 1000. An increase of & or A

represents in both graphs the effect of a decrease of temperature without change of grain size.

For Q| only the curve for & or & =10 is represented because the curves become (slightly)
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different only at very low B. For Qb, two curves are drawn using either Eq. (88) or Eq. (90): the
departure between these curves attests for the difference between the two equations. The

dashed black line represents QlT expressed by Eqg. (58) with g1 = 1.6 (Moldovan et al., 2001)
whereas the dashed red lines represents Qg according to Eq. (57). The crossing of the curves

Q| and Qb corresponds to the B value at the transition between the two diffusion modes.

10

103

10—4 I I I I I I
1 10 10? 103 10 1 10 10? 103 104

Figure 17: Dependence on length scale B of total dissipations Q| = QlT +Ql" fordwor 6=10

. . . D
and Q, =Q] +Q/ for & or & =10, 100, and 1000. (a) The units for B are ,/Wb and

oD D, oD
5, =— ﬂ (b) The units for Bare — and =—b%.
D, \ @, 9 D D

As Q] varies as B®, the dependence on B of the ratio of the dissipation due to x'and to

T» tends to
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This is reflected in Fig. 17 by the fact that the curves Qb tend asymptotically towards the
straight lines Qg when B increases: in the case of GB-layer diffusion, the dissipation
contribution arising from GB curvature becomes significant with respect to Q; only at very
small grain size. In contrast, as Q,", leig ,and Q' all vary as B?, the curve Q| shows little

dependence on B in Fig. 17. The difference between the curve Q| and the horizontal line QlT

represents the ratio of the dissipations due to xand to T,, which tends in that case to
= —— (95)
V4

If g, =1.6 (as reported by Moldovan et al (Moldovan et al., 2001)), the ratio is about 3. Hence,

in the case of bulk diffusion, GB curvature brings, whatever the grain size, an increase by a
factor 4 of the dissipation with respect to the dissipation due solely to normal tractions T,. The
critical grain size up to which GB-layer diffusion is predicted to prevail increases by the same
factor. In the case of bulk diffusion, the larger dissipation arising from the presence of GB
curvature can be qualitatively justified by referring to the J field drawn in Fig. 16: the fact that
fluxes do not transfer across outgoing GBs strongly affects the J field, which is likely to yield a

significantly larger dissipation than predicted via the classical model.

Via Eqg. (92), the dissipations contributions Q’“ and Qmig arising from GB curvature may

be translated into an apparent GB-viscosity

1 QK +Qmig

T2z B .
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In the case of GB-layer diffusion, Eq. (96) yields a non-dimensional GB-viscosity

7, =0.011 m, (97)
The latter is lower by a factor 20 than the result obtained in Eq. (47) for the case of affine
deformation. This illustrates the fact that the apparent GB-viscosity ascribed to curvature is not
a material property but depends very much on the loading configuration. As shown in the

Appendix, if all grains forming the hexagonal lattice rotate simultaneously with the same

angular velocity, QT = Q" =0, Qmig is linear with B, and the apparent GB-viscosity is simply

5. Discussion

5.1. Comparison with data for GB mobility, GB diffusivity, and apparent GB-viscosity

According to the analyses presented in Sections 3 and 4, the role of M in diffusional

D, D,
deformation emerges via the length scales ,f%b and EI Gottstein and co-workers have

documented the fact that, even though the activation energies may be similar, mobility, %, and
diffusivities, oDy and Dy, are unrelated material properties because they involve distinct
mechanisms (Gottstein and Shvindlerman, 2009; Rollett et al., 2004; Winning et al., 2002;
Winning et al., 2010). In spite of the wealth of work based on simulations by molecular
dynamics, theoretical estimates of the dependence of 97 on the crystallography of the GB
remain little validated. We can thus rely only on experimental data derived from grain growth
rate measurements. Such experiments have demonstrated that, with respect to pure

polycrystals, % can be strongly reduced in solid solutions and alloys owing to solute-drag,
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precipitate-drag, or pore-drag effects (Gottstein and Shvindlerman, 2009; Powers and Glaeser,
1998). From Egs. (2) and (47), the lower bound for the value to be ascribed to the apparent GB-

viscosity in continuum models for the simulation of creep, sintering, or Earth’s mantle rheology

translates into

(1),

_Rg

Dy,

(77, )Ib =0.29 R,

1

DM

(98)

(1), scalesas R; whereas (77, ) scales as RS (17), would be the actual value of 7 if the

intrinsic GB-viscosity may be neglected. Eq. (98) suggests that it should be possible to increase

n with respect to its value in pure polycrystals by tuning the alloy composition in such a way as

to decrease 9 via the solute-drag or precipitate-drag effect (assuming that oDy is less affected

(Herzig and Mishin, 2005)). This GB strengthening effect would add to the diffusional

contribution that can arise from GB serration caused by the presence of GB precipitates (Raj

and Ashby, 1971).

Table 1. Data for Al, a-Fe, and Al,03

T(K) | 9(skg'm®) ref] oD, (m’s™)  fref] o, (m'*skg ™) % (nm)
-11 (Winning et al.) 19 (BrOVYn and Ashby e
823 | 7x10 2010) 2.5x10 1980; Gustetal., | 3.5 x 10 2
1985)
Al
-13 (Winning et al., 1 (Bronn and Ashby -
560 |3x10 2010) 2.5x10 1980; Gust etal., | 3 x 10 3
1985)]
1 X 10-17 8 X 10-27 400
a-Fe 1073 | 5x 10 (zzohzaor;g el (Inoue et al., 2007
1x10% 8 x 1029 40
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Al,O3 | 1423 |5x101

5 x 10726 (Wonisch et al., 2 x 10735 2
(Wonisch et al. 2007)
2007)
3.5x10% (Li et al., 2010) 1.5x 10736 0.5

Experimentally validated data for 9, oDy and D, for a given material at a given

temperature are scarce in the literature. Table 1 presents data for % and oDy, retrieved for

three typical “pure” polycrystals: aluminium, a-iron, and alumina, together with the

D
corresponding values for the length scale , /Wb .

For aluminium at 823 K and 560 K, the 9 values are derived from the Arrhenius law

experimentally measured by Winning et al (Winning et al., 2010) whereas the 6D, values

are the average ensuing from the empirical correlations proposed by Brown and Ashby

D,
(Brown and Ashby, 1980) and Gust et al. (Gust et al., 1985). The weak dependence of , /%b

on T follows from the similarity of the activation energies.
For a-iron at 1073 K, % is derived, assuming y= 1Jm=2, from the average of the data points

for the product yM measured by Zhang et al (Zhang et al., 2020) using a method coupling
phase-field modelling with x-ray diffraction contrast tomography (the work revealed no

correlation between yM and the five parameters characterizing GBs). The 6D, values are

borrowed from the measurements by Inoue et al (Inoue et al., 2007): two different values

are mentioned because the authors show that their values for 6D, are two-orders of

magnitude larger than previous experimental data in the literature, a difference that they

D
attribute to a probable effect of impurities in former work. The ensuing , /Wb values thus

differ by a factor of 10.
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e Foralumina at 1423 K, o is the value used by Wonisch et al (Wonisch et al., 2007) in a
simulation by the discrete element method of experimental curves for the isothermal
sinter-forging of an alumina green with average grain size R = 75 nm. For 6D, , two values
are given, both based on the activation energy proposed by Ruano et al (Ruano et al., 2003):
either the value used by Wonisch et al (Wonisch et al., 2007), or the value used by Li et al (Li
et al., 2010) in a simulation via an anisotropic constitutive model of the same experimental

curves for Al,O3 with Rg = 75 nm as in ref (Guillon et al., 2007; Wonisch et al., 2007).

D
According to Table 1, ,be may vary between 0.5 nm and 400 nm. The larger value for a-Fe at

1073 K may be related to the larger diffusivity in a bcc lattice than in a fcc lattice. Although the
available data are limited, Table 1 justifies the choice made in Sections 3 and 4 to consider my,
values in the range 0 < my < 0.5 (Eq. (35)). In particular, for Al,03 at 1423 K with Rg = 75 nm, my,

= 3.5 x 102 according to the data for D, used by Wonisch et al whereas mp = 0.9 x 10

according to the data used by Li et al.

In the case of Al,O3 at 1423 K with Rg = 75 nm, the validity of Egs. (47) and (98) can be
evaluated by reference to the papers of Wonisch et al (Wonisch et al., 2007) and Li et al (Li et
al., 2010) in which optimum values for r or 77 in simulation codes were identified via a reverse
procedure:

e the optimum for 7 identified by Wonisch et al was 77= 6 x 108 kg.s1.m"2; in comparison,

with Rg = 75 nm, the data for & and ©, in Table 1 yield via Eq. (98)

(7)b=2x 10 kg.st.m™2.
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e the optimum for 7, identified by Li et al was 7, =5 x 10°3; in comparison, the data in

Table 1 with Rg = 75 nm yield, via Eq. (47), (77, ) =2x107.

Ib

Considering the uncertainty on the accuracy of data retrieved from the literature for & and ®©,

, the consistency between the present work and these previous results is conspicuous.

5.2. Possibility of observation of GB curvature at grain scale

The GB curvature coupled to GB sliding is a dynamic, out-of-equilibrium phenomenon which
vanishes while capillary equilibrium at rest restores after unloading. Direct observation is likely
to be very difficult for at least two reasons: (i) it would imply the possibility of high-resolution
microstructural observation during straining, and (ii) the strain-rate-induced curvature adds to
the curvature that intrinsically exists in a static polycrystal with anisotropic interface properties
and random grain shapes. Moreover, the strain-rate-induced curvature would be hard to
notice because it concentrates close to TJs. Nevertheless, for the GBs submitted to a traction
having both a shear component and a positive normal component, the occurrence of curvature
during straining can, in principle, be attested after unloading by a dissymmetrical distribution of
the layer of mass deposition between the two sides of the relaxed GB profile (confer the blue
lines in Fig. 7c). Experimentally, mass deposition along GBs under tension has commonly been
invoked to justify the observation by electron microscopy of dispersoid-free layers (Burton and
Reynolds, 1995; McNee et al., 2002) and surface striation layers (Masuda et al., 2019; Rust and
Todd, 2011) in metallographic sections of specimens having undergone diffusional creep or
superplastic deformation. A recent example is the study by Masuda et al (Masuda et al., 2019)
of the GB microstructure evolution during superplastic deformation at 900 °C of an oxide
dispersion strengthened ferritic steel with columnar grains: scanning electron microscopy

coupled to backscatter electron diffraction reveals frequent asymmetry in the mass deposition
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layers along GBs under tension (see Figs. 3 to 6 in the reference). The authors interpret this
asymmetry as due to diffusional transfers from convex to concave sides of GBs, driven by the
reduction of the grain boundary energy. The present work suggests that the GB curvature
gradients that drive these transfers did not pre-exist before deformation but were dynamically

generated during the deformation process.

6. Conclusion

Proper account of the dependence of the diffusion potential on both the normal component of
the traction vector on grain boundaries and the curvature of grain boundaries provides a novel
insight into the interactions between the different types of grain boundary motion during
diffusional deformation. Grain boundary curvature being a condition for the transfer of
diffusion fluxes across grain boundaries, grain boundary migration and grain boundary mobility
are necessary ingredients in the diffusional deformation model. The main outcomes of the
analysis can be summarized as follows.

e Alink is established between the distribution of curvature and the magnitude of the
diffusion fluxes to be transferred across grain boundaries. This link constitutes a boundary
condition for the solution of the equation expressing the balance of the different types of
grain boundary motion during steady-state or quasi-steady-state deformation.

e The solution of this equation is developed in 2D for the affine deformation of a polycrystal
and for the rotation of a grain embedded in a polycrystal. The analysis provides expressions

for the dependence, on grain boundary mobility, of (i) the strain-rate-induced curvature, (ii)
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the grain boundary profiles, (iii) the diffusion fluxes, and (iv) the contributions to energy
dissipation.

e Inthe case of the rotation of a grain, the conditions of dominance of GB-layer diffusion and
dominance of bulk diffusion are compared via an approximate solution of the Laplace
equation.

e The contribution of grain boundary curvature to the dissipation reveals to scale nearly as
the square of grain size. It follows that the relative influence of grain boundary curvature is
larger in conditions of Nabarro-Herring creep than in conditions of Coble creep.

e Inthe case of Coble creep, the contribution of grain boundary curvature to dissipation may
be translated into a lower bound for the apparent grain boundary viscosity parameter to be
used in numerical simulations. This lower bound is consistent with previous identifications
of the parameter in the literature.

e The classical model assuming flat grain boundaries emerges as a particular case involving

the implicit assumption of an infinite grain boundary mobility.

Appendix: simultaneous rotation of the grains

In the hypothetical case where all grains in a regular lattice of hexagonal grains would rotate
simultaneously with the same angular velocity @, Al = —2H#6 and Au, =0 (thisis not true if

grains are not equiaxed or if adjacent grain sizes are different). Eq. (59) then reduces to

U™ = My = x0 (99)

! )
Such a hypothetical phenomenon would thus involve no diffusion fluxes. GB curvature is then

linked only to the migration bringing the steady-state rotation of the GBs with respect to grain
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: : : 1( x x*\B% .
lattices. Instead of Eq. (85), the solution of the problemyields z = —| - = + = with
6\ B B®)ywm
1B%0 . .
(¢)X_+B = 5 o which means a rotation of the steady-state orientation of the tangents the
- v

GBs meeting at TJs in the same direction as & . The dissipation rate per unit volume then arises

2
solely from GB migration and GB sliding. One obtains via Egs. (99) and (91), Q™ = i BO .
33 w

Qmig thus varies linearly with B and, according to Eq.(96), the apparent GB-viscosity would

write simply 7" = %%
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