
Ontology-Driven Audit Using the REA Ontology 1 | P a g e

Ontology-Driven Audit
using the REA-ontology

Graham Gal1 [0000-0001--6526-9367] , Monique Snoeck2[0000-0002-3822-3214] and Wim Laurier3

[0000-0002-9448-248X]

1 Isenberg School of Management, University of Massachusettes Amherst, MA 01003 USA
2 Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Leuven, Belgium

3 NODES, Université Saint-Louis–Bruxelles, Brussels, Belgium

gfgal@isenberg.umass.edu
monique.snoeck@kuleuven.be
wim.laurier@usaintlouis.be

Abstract. While blockchains are not yet ubiquitous in business practice, they are expected to
serve as a platform to handle an increasing number of business transactions in a not too distant
future. Smart contracts can be used to code and to enforce agreements between business parties.
A significant difference between traditional and smart contracts is that once the actual events of
the smart contract become part of a block in the blockchain, they are almost impossible to undo.
Therefore, it is important that critical validity aspects of these smart contracts are explicitly rep-
resented. As smart contracts are software products too, it is therefore also critical that the cod-
ing of these critical validity aspects guarantees a faithfull implemenation of the validity checks.
This project combines two approaches (i.e. ontology engineering and model-driven engineer-
ing) applying them to the design and the implementation of smart contracts, in order to facili-
tate their audit through a clear separation of concerns. More precisely, this paper discusses the
example of the REA ontology to provide the ontological commitment of the critical validity as-
pects of a contract, while MDE provides a tool to unambiguously translate the REA ontology’s
contracting terms into a well-designed Smart Contract. This paper argues how the resulting
Smart Contract can support auditors’ assertions regarding exchanges between business partners,
and support the audit process.

Keywords: Software Audit, Model-Driven Engineering, Ontology, Smart con-
tracts.

1 Introduction

In the audit of a company's financial statements the independent auditor conducts a
substantive audit of account balances and a test of controls over the processes that create
these balances [1]. Auditing Statement (AS) 5 requires two types of control reviews
[2]. First is the design of the controls (para. 42 – 43) and second is their operational
effectiveness (para. 44-45). For certain types of processes, such as computer mediated
processes, the testing of the design becomes crucial as deploying flawed software can
result in ubiquitous errors accross all of a business’s operations. Various software

2

testing regimes discuss the generation and use of test cases [3–5] . As software in-
creases in size and complexity model-based testing has been suggested [6]. For appli-
cations which create transactions to be mined into blockchains this approach has some
promise; particularly for the audit of these blockchain applications as once a transaction
has been mined it becomes an immutable part of the chain. This presents a problem for
companies and auditors as incorrect transactions cannot be “backed out” and corrected.
The use of smart contracts to create these immutable transactions becomes even more
problematic as inconsistences or errors within a smart contract could result in many
incorrect transactions. What is needed is an approach that allows for an ex-ante audit
of smart-contracts’ validity at run-time, as ex-post audits seem to lose their rationale in
a world where even substantial errors are almost impossible to reverse.

This paper proposes that a particular model, the resource-event-agent (REA) ontol-
ogy [7], be used to design smart contracts, and thus support the auditor’s requirement
to test and confirm the design of controls. Additionally, it argues that model-driven
engineering (MDE) could allow auditors to assess the design quality (i.e. ontological
commitment) of smart contracts that operationalize the REA and other ontologies.

Section 2 offers an introduction to ontology-aware MDE, with an introduction to the
MDE development chain, an introduction on ontology-engineering a platform-inde-
penent model, and the need for generating ontology-aware smart contracts. Section 3
describes a concrete realisation as a combination of the MERODE MDE methodology
and the REA-ontology, while discussing their combined potential. Section 4 concludes
this paper, with the support this combination can offer auditors at three different levels.

2 Model-driven Engineering

2.1 The MDE Development Chain

In model-driven engineering (MDE), software is created from models rather than hand-
coded. The development chains start with a computation-independent model (CIM),
which is “a domain model developed by domain experts that does not show the details
of the structure of the system”[8]. A platform-independent model (PIM) is derived from
this CIM, showing the structure of the system independent of the peculiarities of a spe-
cific computer platform. The PIM is the result of the analysis phase, which follows the
requirements elicitation phase. Although requirements engineering [9] is a discipline in
its own right, requirements are considered as given and hence outside the scope of this
paper. Here, we assume that the PIM results from the assembly of domain and task
ontologies into an application ontology, in which the application ontology components
are determined by the requirements, as first described by Guarino [10]. Where infor-
mations systems are generally tailored to a specific audience or application and thus
require discovering specific requirements, we believe that in public chains requirements
are of lesser importance to smart contracts as the requirements for smart contracts
should be as generic as possible and supported by the largest community possible given
that they are generally accessible. In private chains, we assume that a traditional MDE

3

development chain could be applied, in which the analysis phase can still be supported
by application ontologies.

In the further MDE development chain, the plaform-specific model (PSM) is derived
from the PIM with a set of validated model-to-model transformation rules taking into
account platform specificities. Subsequently, the PSM is transformed in code with a set
of validated model-to-code transformation rules. Direct PIM-to-code transformations
are possible as well.

2.2 Ontology Engineering a Platform Independent Model

Smart contracts (as with any other software artefact) need to reliably represent a rele-
vant part of reality. Hence the domain model on which they are based needs to be a
truthful representation of reality, preferably supported by an as large as possible com-
munity of domain experts. As it is our aim to use domain models as input for a formal
transformation process they also need to be formal. The construction of such shared
and formal domain models lays in the realm of ontology engineering, since ontologies
are “formal and explicit conceptualizations of a shared conceptualization” [11, 12].
Like requirements engineering, ontology engineering is considered outside the scope
of this paper as we consider ontologies a given.

As ontology engineering is a mostly human [13] and hence costly endeavour, and
because they are also validated throught their use in practice, their reuse should be pro-
moted through interoperability. Guarino [14] requires the formalizations of domain and
task ontologies to be specializations of top-level ontologies to operationalize this in-
teroperability and distinguish between valid and invalid combinations of domain and
task ontology concepts in an application ontology. Top-level ontologies (e.g. UFO,
SUMO) describe generic concepts (e.g. space and time). Domain and task ontologies
(e.g. REA) capture domain knowledge about a specific domain (e.g. food) or task (e.g.
sales) by specializing top-level ontology constructs. Application ontologies then com-
bine and specialize domain and task ontology constructs to form an application-specific
ontology (e.g. catering, which is food sales), while respecting the logic of the domain,
task and top-level ontologies they specialize.

Fig. 1. Guarino’s [14] ontology Aufbau principle.

Summer School on Information Extraction, Frascati, July 14-19, Frascati, Italy.
To appear in a volume edited by M. T. Pazienza, published by Springer Verlag.

top-level ontology

domain ontology task ontology

application ontology

Fig. 6. Kinds of ontologies, according to their level of dependence on a particu-
lar task or point of view. Thick arrows represent specialization relationships.

• Top-level ontologies describe1 very general concepts like space, time, matter, ob-
ject, event, action, etc., which are independent of a particular problem or domain: it
seems therefore reasonable, at least in theory, to have unified top-level ontologies
for large communities of users.

• Domain ontologies and task ontologies describe, respectively, the vocabulary related
to a generic domain (like medicine, or automobiles) or a generic task or activity
(like diagnosing or selling), by specializing the terms introduced in the top-level
ontology.

• Application ontologies describe concepts depending both on a particular domain and
task, which are often specializations of both the related ontologies. These concepts
often correspond to roles played by domain entities while performing a certain activ-
ity, like replaceable unit or spare component.

The interested reader may refer to [Uschold and Gruninger 1996, Van Heijst et al.
1997] for a general introduction on the use of ontologies in the practice of knowledge
engineering, and [Guarino 1997b, Van Heijst et al. 1997] for an account of the current
debate about the role and the nature of task ontologies and application ontologies.

3.3 Ontologies and KR languages

A further, separate kind of ontology is constituted by what have been called representa-
tion ontologies [Van Heijst et al. 1997]. They are in fact meta-level ontologies, describ-

1 I prefer to use the verb “describe” rather than “define”, since very rarely it is possible to
completely define the meaning of a term.

4

As requirements engineering is an integral part of the ontology engineering process
[15, 16], ontology engineers deliver and maintain ontologies that formalize expert do-
main knowledge. Hence, an auditor can rely on the expertise and reputation of the on-
tology engineer to cover the requirements engineering and analysis phase of smart-
contract (and software) design that result in a CIM (i.e. the ontology) supported by a
community of experts. Additionally, the auditor can rely on the respect of the formal
combinatory rules coined by Guarino [14] to evaluate the face validity of the con-
structed application ontology, as it is virtually impossible to design ontologies for every
possible application.

2.3 Generating ontology-aware smart contracts

In order to guarantee that the semantics of the ontology are reliably represented by the
smart contract (or any other software artefact), the ontology needs to be refined into a
PIM, that is then transformed into code. The transformation rules need to be transparent
and reproducible. As a programer’s ways of transforming a PIM in code are not always
transparent and human creativity might hamper reproducibility, it is from the perspec-
tive of the auditor better to entrust machines with this transformation, limiting the ap-
plication of human creativity to the rigorous design and maintenance of a set of trans-
formation rules that is validated and improved through repeated use.

As with the ontology, the auditor can rely on the expertise and reputation (e.g. track-
record, certificates, brand) of the software engineer responsible for the design and
maintenance of the code-generators and the transformation rules to evaluate the quality
of the product. As the ontology engineering and PIM-to-code engineering are orthogo-
nal (i.e. the PIM-to-code transformation is a linguistic instantiation, where the applica-
tion ontology development is an ontological instantiation according to [8]), both engi-
neers should be able to trace undesirable smart contract behaviour back to either the
ontology or the PIM-to-code transformation. For example, when smart contracts that
are generated using the same ontology but different code-generators all exhibit unde-
sirable behavior, the origin of the defect must lay in the ontology (unless in the unlikely
case that all code generators exhibit the exact same error), while if different contracts
generated by means of the same PIM-to-code transformation exhibit undesirable be-
haviour, the origin of the defect must reside within the PIM-to-code transformation.

3 Generating REA-based smart contracts with MERODE

3.1 MERODE

MERODE [17] is an enterprise information systems engineering method focusing on
domain modelling. It uses existence dependency graphs (i.e. a sub-language of UML
class diagrams) and finite state machines to model business objects and their behaviour,
complemented with an object-event table (i.e. a version of a CRUD matrix [18]) to
model object interaction. The method has been formalized by means of process algebra
[19, 20], which ensures the consistency of the existence dependency graphs and the
finite state machines [21] before transforming them to code. MERODE-models are

5

stored as xml-files, and can be transformed to working Java-applications in just three
clicks. The transformations have been designed so as to support the transformation of
high-level models by means of built-in defaults and PIM-to-PSM transformation rules
[22], thus freeing the business analysts from the need of providing lots of details prior
to code generation. Code-generation has proved a powerful instrument to validate mod-
els through fast prototyping [23]. While the default code generator can be used to vali-
date an ontology (i.e. as “a formal and explicit specification of a shared conceptualiza-
tion” [11, 12]) as has been demonstrated by the authors of [24], the generation of Smart
Contracts using Blockchain technology requires and extention of the MERODE
method. In [25], the authors develop B-MERODE as an artefact-centric approach to
smart contracts. B-MERODE adds an extension to address permissions and to distin-
guish between the model aspects that result in code on and off the blockchain [26].

3.2 The REA ontology

The REA Ontology [7] is a domain ontology which specifies the objects and relations
for the accounting and business domain. Fig. 2 provides a graphical representation of
the core concepts of the ontology. The ontology is organized around three conceptual
layers. The top-layer, which is colorcoded yellow in REA models, incorporates a de-
scription of what could or should be. The classes in this layer are “types”. These are
similar to Plato’s forms [27]. The middle or contracting layer, which is colorcoded red
in REA models, includes classes for contracts and their bundled commitments. For
example, a contract to build a house includes commitements to pour the foundation,
frame the house, put on the roof, etc. while the reciprocal commitments include a pay-
ment schedule. Finally, the bottom layer, which is colorcoded green in REA models,
includes classes for what economic events have occurred, who was involved in them,
and what resources were affected.

This section looks at how smart contracts can be modeled as bundles of Economic
Commitments and how their correct execution can be verified by the independent au-
ditor examining the semantic associations of the REA ontology (e.g. specify and typ-
ify). The typify association between the Economic Event Type and Economic Event
classes in conjunction with the specify association between the Economic Commitment
and Economic Event classes allows auditors to check wether the Economic Event that
fulfils the Economic Commitment matches the type specified in the contract. For ex-
ample, the contract to build a particular type of house (two bedroom) would include a
commitment that specifies the Economic Resource Types (lumber, concrete, roofing
shingles, etc.) that are to be included in the finished house. The typify association be-
tween the Economic Recourse Type and Economic Resources classes would allow for
the verification that the acutual components of the house are of the type specified in the
contract. The association between an Economic Commitment and the Economic Event
Types would specify the steps that should be used to build the house while the Typify
association between the Economic Event Types and Economic Events allows for the
determination that the steps specified in the contract’s commitment are actually fol-
lowed. In addition to these specify associations,the stockflow association between the
Economic Resources and Economic Events can allow auditors to check the materials

6

to build the house were used in the indicated stepts (Economic Events). Finally, the
typify association between the Economic Agent Type and Economic Agent classes in
conjunction with the specify association between the Economic Commitment and Eco-
nomic Agent classes allows auditors to check wether the Economic Agent associated
through a inside- or outsideParticipate association with the Economic Event that fulfils
the Economic Commitment match the type specified in the contract. For example, be-
fore fulfilling the commitment to make the Economic Event Type of “final payment”,
the Economic Event Type – “final inspection” – must be completed by the Economic
Agent Type of a “certified engineer.” The buyer of the house could simply accept that
the person actually performing the inspection Economic Event met these criteria, or the
could verify this by asking for the inspector’s credentials. In the development of a
smart contract this could be accomplished with an oracle that examines the builder’s
human resources information system for example [28, 29]. This ability of a smart con-
tract to use oracles as software connectors could allow the contract to verify that indi-
viduals fulfilling certain commitments are in fact of the type specified in the contract.

Fig. 2. - REA Metamodel [7)]

3.3 REA-aware smart contracts for economic networks

The authors of [24] published a proof-of-concept for the ontology-aware model-driven
engineering approach advocated by this paper. They model the REA2-ontology that is

7

equivalent to the green layer in Fig. 2 and an REA2 interpretation of the REA axioms.
They subsequently validate their model with a Java-application generated using
MERODE’s Merlin modeling tool and the associated code generator. Where the green
layer in Fig. 2 is valid for a single trading-partner at a time, REA2 is simultaneously
valid for all stake-holder perspectives in a business transaction (i.e. buyer, seller and
third-party (e.g. governing body)) [30].

The authors of [31] argue that REA-aware blockchains and smart contracts could
improve resilience of and interoperability in economic networks, and especially in de-
centralized economic networks such as the peer-to-peer economy, through (1) an ex-
plicit representation of an agreed upon business vocabulary (i.e. the shared conceptual-
ization in [11, 12]’s definition of ontology) that is an inherent characteristic of ontolo-
gies and indespensible for trade and (2) the use of the REA2-ontology, of which the
unified semantics are claimed to promote interoperability, throught the elimination of
stovepipe architectures for the information systems, blockchains and smart contracts
that operate economic networks. The economic networks considered in [31] are value
networks - defined as any set of roles and interactions by [32] - of collaboration spaces
in which people participate in both tangible and intangible exchanges of economic re-
sources (i.e. goods, services and rights) to achieve economic or social benefit. The au-
thors of [31] also list potential application of the ontology-aware model-driven engi-
neering approach for blockchain development for the sharing economy as an example
of external-facing value networks, collaboratives of independent workers as an example
of internal-facing value networks, wood and vaccine traceability. Based on these ex-
amples, we can conclude that the ontology-aware model-driven engineering approach
for blockchain development and particularly the REA2-aware model-driven engineer-
ing approach for smart contract and blockchain development has considerable potential
for audit in many domains of the traditional and the new economy.

4 Conclusion

In conclusion, this paper argues that the application of ontology-aware model-driven
engineering practices has the potential to enable the ex-ante (i.e. that is before the are
published) audit of smart contracts. Additionally, it argues that the REA ontology aug-
ments this potential with the ex-post (i.e. that is after the transation data have been
recorded) audit of transaction data both on and off-blockchain resulting from the exe-
cution of these smart contracts. Finally, it argues that the design of REA-aware model-
driven design has the potential to enable run-time monitoring of smart-contract execu-
tion (e.g. through the use of oracles).

First, ontology-aware model-driven engineering is expected to allow auditors to
achieve a clear separation of concerns through the definition of clear deliverables (i.e.
ontologies and code-generators) and a clear scoping of the tasks that lead to them. The
auditor can rely on ontology engineers for the design of well-formed formal top-level,
domain, task and application ontologies that truthfully represent a relevant part of real-
ity through the application of ontology engineering methods. Subsequently, the auditor
can rely on software engineers and their methods to design trustworthy code-generators

8

that transform these formal ontologies in smart contracts (and other types of software
code) that truthfully reflect a relevant part of reality.

Second, the work of McCarthy et al. [7] as discussed above shows the potential of
the REA-ontology for ex-post auditing the transaction data both on- and off-blockchain
resulting from the execution of these smart contracts.

Third, the implementation of the REA axioms in [24] demonstrates the potential of
the REA axioms and REA2-aware MDE for monitoring the execution of smart-con-
tracts at runtime.

References

1. Rittenberg, L.E., Bradley J. Schwieger: Auditing Concepts for a Changing
Environment. Harcourt College Publishers, Orlando, Florida (2001).

2. Public Company Accounting Oversight Board: Auditing standard no. 5 – An
audit of internal control over financial reporting that is integrated with an audit
of financial statements. Exch. Organ. Behav. Teach. J. (2007).

3. Emam, S., Miller, J.: Test Case Prioritization using Extended Digraphs. ACM
Trans. Softw. Eng. Methodol. 25, 1–41 (2015).

4. Demillo, R.A.: Software Testing, (2003).
5. Fraser, G.: Gamification of Software Testing. In: IEEE/ACM 12th International

Workshop on Automation of Software Testing. pp. 2–7 (2017).
6. Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based testing

through test case diversity. ACM Trans. Softw. Eng. Methodol. (2013).
https://doi.org/10.1145/2430536.2430540.

7. McCarthy, W.E., Geerts, G.L., Gal, G.: The REA Ontology. (2021).
8. Gašević, D., Djurić, D., Devedžić, V.: Model driven engineering and ontology

development. (2009). https://doi.org/10.1007/978-3-642-00282-3.
9. Dick, J., Hull, E., Jackson, K.: Requirements engineering. (2017).

https://doi.org/10.1007/978-3-319-61073-3.
10. Guarino, N.: Understanding, building and using ontologies. Int. J. Hum.

Comput. Stud. 46, 293–310 (1997). https://doi.org/10.1006/ijhc.1996.0091.
11. Guarino, N., Oberle, D., Staab, S.: What Is an Ontology? Handbook on

Ontologies. In: Handbook on Ontologies SE - International Handbooks on
Information Systems (2009).

12. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles
and methods. Data Knowl. Eng. 25, (1998). https://doi.org/10.1016/S0169-
023X(97)00056-6.

13. Iqbal, R., Murad, M.A.A., Mustapha, A., Sharef, N.M.: An analysis of ontology
engineering methodologies: A literature review. Res. J. Appl. Sci. Eng.
Technol. 6, 2993–3000 (2013). https://doi.org/10.19026/rjaset.6.3684.

14. Guarino, N.: Semantic matching: Formal ontological distinctions for
information organization, extraction, and integration. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). pp. 139–170 (1997).

9

https://doi.org/10.1007/3-540-63438-x_8.
15. Al-Arfaj, A., Al-Salman, A.: Ontology Construction from Text: Challenges and

Trends. Int. J. Artif. Intell. Expert Syst. 6, 15–26 (2015).
16. Cimiano, P., Völker, J., Studer, R.: Ontologies on demand? A description of

the state-of-the-art, applications, challenges and trends for ontology learning
from text. Information-wiss. und Prax. 57, 315–320 (2006).

17. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE
Approach. Springer (2014).

18. Martin, J.: Information engineering. Prentice Hall, Englewood Cliffs, N.J.
(1989).

19. Snoeck, M., Dedene, G.: Existence dependency: The key to semantic integrity
between structural and behavioral aspects of object types. IEEE Trans. Softw.
Eng. 24, 233–251 (1998).

20. Dedene, G., Snoeck, M.: Formal deadlock elimination in an object oriented
conceptual schema. Data Knowl. Eng. 15, 1–30 (1995).

21. Snoeck, M., Michiels, C., Dedene, G.: Consistency by Construction: The Case
of MERODE. In: Jeusfeld, M. and Pastor, Ó. (eds.) Conceptual Modeling for
Novel Application Domains SE - 11. pp. 105–117. Springer Berlin Heidelberg
(2003).

22. Monsieur, G., Snoeck, M.: PIM to PSM transformations for an event driven
architecture in an educational tool. Milestones, Model. Mappings Model.
Archit. 55–63 (2006).

23. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effectiveness of
feedback enabled simulation in teaching conceptual modeling. Comput. Educ.
78, 367–382 (2014). https://doi.org/10.1016/j.compedu.2014.06.014.

24. Laurier, W., Horiuchi, S., Snoeck, M.: An executable axiomatization of the
REA2 ontology. J. Inf. Syst. ISYS-19-026. (2021).
https://doi.org/https://doi.org/10.2308/ISYS-19-026.

25. Amaral de Sousa, V., Burnay, C., Snoeck, M.: B-MERODE: A Model-Driven
Engineering and Artifact-Centric Approach to Generate Blockchain-Based
Information Systems. Springer International Publishing (2020).
https://doi.org/10.1007/978-3-030-49435-3_8.

26. Scheynen, N.: Construction of web services using the MERODE approach,
(2016).

27. Tarnas, R.: The passion of the western mind: Understanding the ideas that have
shaped our world view. In: The Passion of the Western Mind (1991).

28. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The Blockchain as a Software Connector. In: 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA). pp. 182–191 (2016).

29. Chen, Y., Liu, J.: Distributed Community Detection Over Blockchain
Networks Based on Structural Entropy. In: ACM International Symposium on
Blockchain and Secure Critical Infrastructure. pp. 3–12 (2019).

30. Laurier, W., Kiehn, J., Polovina, S.: REA2: A unified formalisation of the
resource-event-agent ontology. Appl. Ontol. 13, 201–224 (2018).
https://doi.org/10.3233/AO-180198.

10

31. Laurier, W., Collet, R., Desguin, S., Fauconnier, B.: Ontology-aware Model-
driven Architecture A Resource-Event-Agent implementation for the
Blockchain. 日本情報経営学会誌. 41, 1–12 (2021).

32. Allee, V.: Value network analysis and value conversion of tangible and
intangible assets. J. Intellect. Cap. 9, 5–24 (2008).
https://doi.org/10.1108/14691930810845777.

