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Abstract. While blockchains are not yet ubiquitous in business practice, they are expected to  
serve as a platform to handle an increasing number of business transactions in a not too distant 
future. Smart contracts can be used to code and to enforce agreements between business parties. 
A significant difference between traditional and smart contracts is that once the actual events of 
the smart contract become part of a block in the blockchain, they are almost impossible to undo. 
Therefore, it is important that critical validity aspects of these smart contracts are explicitly rep-
resented. As smart contracts are software products too, it is therefore also critical that the cod-
ing of these critical validity aspects guarantees a faithfull implemenation of the validity checks. 
This project combines two approaches (i.e. ontology engineering and model-driven engineer-
ing)  applying them to the design and the implementation of smart contracts, in order to facili-
tate their audit through a clear separation of concerns. More precisely, this paper discusses the 
example of the REA ontology to provide the ontological commitment of the critical validity as-
pects of a contract, while MDE provides a tool to unambiguously translate the REA ontology’s 
contracting terms into a well-designed Smart Contract. This paper argues how the resulting 
Smart Contract can support auditors’ assertions regarding exchanges between business partners, 
and support the audit process. 

Keywords: Software Audit, Model-Driven Engineering, Ontology, Smart con-
tracts. 

1 Introduction 

In the audit of a company's financial statements the independent auditor conducts a 
substantive audit of account balances and a test of controls over the processes that create 
these balances [1].  Auditing Statement (AS) 5 requires two types of control reviews 
[2].  First is the design of the controls (para. 42 – 43) and second is their operational 
effectiveness (para. 44-45).  For certain types of processes, such as computer mediated 
processes, the testing of the design becomes crucial as deploying flawed software can 
result in ubiquitous errors accross all of a business’s operations. Various software 
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testing regimes discuss the generation and use of test cases [3–5] .  As software in-
creases in size and complexity model-based testing has been suggested [6].  For appli-
cations which create transactions to be mined into blockchains this approach has some 
promise; particularly for the audit of these blockchain applications as once a transaction 
has been mined it becomes an immutable part of the chain.  This presents a problem for 
companies and auditors as incorrect transactions cannot be “backed out” and corrected.  
The use of smart contracts to create these immutable transactions becomes even more 
problematic as inconsistences or errors within a smart contract could result in many 
incorrect transactions. What is needed is an approach that allows for an ex-ante audit 
of smart-contracts’ validity at run-time, as ex-post audits seem to lose their rationale in 
a world where even substantial errors are almost impossible to reverse.  

This paper proposes that a particular model, the resource-event-agent (REA ) ontol-
ogy [7], be used to design smart contracts, and thus support the auditor’s requirement 
to test and confirm the design of controls. Additionally, it argues that model-driven 
engineering (MDE) could allow auditors to assess the design quality (i.e. ontological 
commitment) of smart contracts that operationalize the REA and other ontologies.  

Section 2 offers an introduction to ontology-aware MDE, with an introduction to the 
MDE development chain, an introduction on ontology-engineering a platform-inde-
penent model, and the need for generating ontology-aware smart contracts. Section 3 
describes a concrete realisation as a combination of the MERODE MDE methodology 
and the REA-ontology, while discussing their combined potential. Section 4 concludes 
this paper, with the support this combination can offer auditors at three different levels.  

2 Model-driven Engineering 

2.1 The MDE Development Chain 

In model-driven engineering (MDE), software is created from models rather than hand-
coded. The development chains start with a computation-independent model (CIM), 
which is “a domain model developed by domain experts that does not show the details 
of the structure of the system”[8]. A platform-independent model (PIM) is derived from 
this CIM, showing the structure of the system independent of the peculiarities of a spe-
cific computer platform. The PIM is the result of the analysis phase, which follows the 
requirements elicitation phase. Although requirements engineering [9] is a discipline in 
its own right, requirements are considered as given and hence outside the scope of this 
paper. Here, we assume that the PIM results from the assembly of domain and task 
ontologies into an application ontology, in which the application ontology components 
are determined by the requirements, as first described by Guarino [10]. Where infor-
mations systems are generally tailored to a specific audience or application and thus 
require discovering specific requirements, we believe that in public chains requirements 
are of lesser importance to smart contracts as the requirements for smart contracts 
should be as generic as possible and supported by the largest community possible given 
that they are generally accessible. In private chains, we assume that a traditional MDE 
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development chain could be applied, in which the analysis phase can still be supported 
by application ontologies. 

In the further MDE development chain, the plaform-specific model (PSM) is derived 
from the PIM with a set of validated model-to-model transformation rules taking into 
account platform specificities. Subsequently, the PSM is transformed in code with a set 
of validated model-to-code transformation rules. Direct PIM-to-code transformations 
are possible as well.  

 
2.2 Ontology Engineering a Platform Independent Model 

Smart contracts (as with any other software artefact) need to reliably represent a rele-
vant part of reality. Hence the domain model on which they are based needs to be a 
truthful representation of reality, preferably supported by an as large as possible com-
munity of domain experts. As it is our aim to use domain models as input for a formal 
transformation process they also need to be formal. The construction of such shared 
and formal domain models lays in the realm of ontology engineering, since ontologies 
are “formal and explicit conceptualizations of a shared conceptualization” [11, 12]. 
Like requirements engineering, ontology engineering is considered outside the scope 
of this paper as we consider ontologies a given.  

As ontology engineering is a mostly human [13] and hence costly endeavour, and 
because they are also validated throught their use in practice, their reuse should be pro-
moted through interoperability. Guarino [14] requires the formalizations of domain and 
task ontologies to be specializations of top-level ontologies to operationalize this in-
teroperability and distinguish between valid and invalid combinations of domain and 
task ontology concepts in an application ontology. Top-level ontologies (e.g. UFO, 
SUMO) describe generic concepts (e.g. space and time). Domain and task ontologies 
(e.g. REA) capture domain knowledge about a specific domain (e.g. food) or task (e.g. 
sales) by specializing top-level ontology constructs. Application ontologies then com-
bine and specialize domain and task ontology constructs to form an application-specific 
ontology (e.g. catering, which is food sales), while respecting the logic of the domain, 
task and top-level ontologies they specialize.  

 
Fig. 1. Guarino’s [14] ontology Aufbau principle. 
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Fig. 6. Kinds of ontologies, according to their level of dependence on a particu-
lar task or point of view. Thick arrows represent specialization relationships.

• Top-level ontologies describe1 very general concepts like space, time, matter, ob-
ject, event, action, etc., which are independent of a particular problem or domain: it
seems therefore reasonable, at least in theory, to have unified top-level ontologies
for large communities of users.

• Domain ontologies and task ontologies describe, respectively, the vocabulary related
to a generic domain (like medicine, or automobiles) or a generic task or activity
(like diagnosing or selling), by specializing the terms introduced in the top-level
ontology.

• Application ontologies describe concepts depending both on a particular domain and
task, which are often specializations of both the related ontologies. These concepts
often correspond to roles played by domain entities while performing a certain activ-
ity, like replaceable unit  or spare component.

The interested reader may refer to [Uschold and Gruninger 1996, Van Heijst et al.
1997] for a general introduction on the use of ontologies in the practice of knowledge
engineering, and [Guarino 1997b, Van Heijst et al. 1997] for an account of the current
debate about the role and the nature of task ontologies and application ontologies.

3.3 Ontologies and KR languages

A further, separate kind of ontology is constituted by what have been called representa-
tion ontologies [Van Heijst et al. 1997]. They are in fact meta-level ontologies, describ-

                                                
1 I prefer to use the verb “describe” rather than “define”, since very rarely it is possible to
completely define  the meaning of a term.
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As requirements engineering is an integral part of the ontology engineering process 
[15, 16], ontology engineers deliver and maintain ontologies that formalize expert do-
main knowledge. Hence, an auditor can rely on the expertise and reputation of the on-
tology engineer to cover the requirements engineering and analysis phase of smart-
contract (and software) design that result in a CIM (i.e. the ontology) supported by a 
community of experts. Additionally, the auditor can rely on the respect of the formal 
combinatory rules coined by Guarino [14] to evaluate the face validity of the con-
structed application ontology, as it is virtually impossible to design ontologies for every 
possible application.  

 
2.3 Generating ontology-aware smart contracts 

In order to guarantee that the semantics of the ontology are reliably represented by the 
smart contract (or any other software artefact), the ontology needs to be refined into a 
PIM, that is then transformed into code. The transformation rules need to be transparent 
and reproducible. As a programer’s ways of transforming a PIM in code are not always 
transparent and human creativity might hamper reproducibility, it is from the perspec-
tive of the auditor better to entrust machines with this transformation, limiting the ap-
plication of human creativity to the rigorous design and maintenance of a set of trans-
formation rules that is validated and improved through repeated use.  

As with the ontology, the auditor can rely on the expertise and reputation (e.g. track-
record, certificates, brand) of the software engineer responsible for the design and 
maintenance of the code-generators and the transformation rules to evaluate the quality 
of the product. As the ontology engineering and PIM-to-code engineering are orthogo-
nal (i.e. the PIM-to-code transformation is a linguistic instantiation, where the applica-
tion ontology development is an ontological instantiation according to [8]), both engi-
neers should be able to trace undesirable smart contract behaviour back to either the 
ontology or the PIM-to-code transformation. For example, when smart contracts that 
are generated using the same ontology but different code-generators all exhibit unde-
sirable behavior, the origin of the defect must lay in the ontology (unless in the unlikely 
case that all code generators exhibit the exact same error), while if different contracts 
generated by means of the same PIM-to-code transformation exhibit undesirable be-
haviour, the origin of the defect must reside within the PIM-to-code transformation.  

3 Generating REA-based smart contracts with MERODE  

3.1 MERODE 

MERODE [17] is an enterprise information systems engineering method focusing on 
domain modelling. It uses existence dependency graphs (i.e. a sub-language of UML 
class diagrams) and finite state machines to model business objects and their behaviour, 
complemented with an object-event table (i.e. a version of a CRUD matrix [18]) to 
model object interaction. The method has been formalized by means of process algebra 
[19, 20], which ensures the consistency of the existence dependency graphs and the 
finite state machines [21] before transforming them to code. MERODE-models are 
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stored as xml-files, and can be transformed to working Java-applications in just three 
clicks. The transformations have been designed so as to support the transformation of 
high-level models by means of built-in defaults and PIM-to-PSM transformation rules 
[22], thus freeing the business analysts from the need of providing lots of details prior 
to code generation. Code-generation has proved a powerful instrument to validate mod-
els through fast prototyping [23]. While the default code generator can be used to vali-
date an ontology (i.e. as “a formal and explicit specification of a shared conceptualiza-
tion” [11, 12]) as has been demonstrated by the authors of [24], the generation of Smart 
Contracts using Blockchain technology requires and extention of the MERODE 
method.  In [25], the authors develop B-MERODE as an artefact-centric approach to 
smart contracts. B-MERODE adds an extension to address permissions and to distin-
guish between the model aspects that result in code on and off the blockchain [26].   

3.2 The REA ontology 

The REA Ontology [7] is a domain ontology which specifies the objects and relations 
for the accounting and business domain.  Fig. 2 provides a graphical representation of 
the core concepts of the ontology.  The ontology is organized around three conceptual 
layers.  The top-layer, which is colorcoded yellow in REA models, incorporates a de-
scription of what could or should be.  The classes in this layer are  “types”.  These are 
similar to Plato’s forms [27]. The middle or contracting layer, which is colorcoded red 
in REA models, includes classes for contracts and their bundled commitments.  For 
example, a contract to build a house includes commitements to pour the foundation, 
frame the house, put on the roof, etc. while the reciprocal commitments include a pay-
ment schedule.  Finally, the bottom layer, which is colorcoded green in REA models, 
includes classes for what economic events have occurred, who was involved in them, 
and what resources were affected.   

This section looks at how smart contracts can be modeled as bundles of Economic 
Commitments and how their correct execution can be verified by the independent au-
ditor examining the semantic associations of the REA ontology (e.g. specify and typ-
ify).  The typify association between the Economic Event Type and Economic Event 
classes in conjunction with the specify association between the Economic Commitment 
and Economic Event classes allows auditors to check wether the Economic Event that 
fulfils the Economic Commitment matches the type specified in the contract. For ex-
ample, the contract to build a particular type of house (two bedroom) would include a 
commitment that specifies the Economic Resource Types (lumber, concrete, roofing 
shingles, etc.) that are to be included in the finished house. The typify association be-
tween the Economic Recourse Type and Economic Resources classes would allow for 
the verification that the acutual components of the house are of the type specified in the 
contract.  The association between an Economic Commitment and the Economic Event 
Types would specify the steps that should be used to build the house while the Typify 
association between the Economic Event Types and Economic Events allows for the 
determination that the steps specified in the contract’s commitment are actually fol-
lowed. In addition to these specify associations,the stockflow association between the 
Economic Resources and Economic Events can allow auditors to check the materials 
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to build the house were used in the indicated stepts (Economic Events). Finally, the 
typify association between the Economic Agent Type and Economic Agent classes in 
conjunction with the specify association between the Economic Commitment and Eco-
nomic Agent classes allows auditors to check wether the Economic Agent associated 
through a inside-  or outsideParticipate association with the Economic Event that fulfils 
the Economic Commitment match the type specified in the contract. For example, be-
fore fulfilling the commitment to make the Economic Event Type of “final payment”, 
the Economic Event Type – “final inspection” – must be completed by the Economic 
Agent Type of a “certified engineer.”  The buyer of the house could simply accept that 
the person actually performing the inspection Economic Event met these criteria, or the 
could verify this by asking for the inspector’s credentials.  In the development of a 
smart contract this could be accomplished with an oracle that examines the builder’s 
human resources information system for example [28, 29].  This ability of a smart con-
tract to use oracles as software connectors could allow the contract to verify that indi-
viduals fulfilling certain commitments are in fact of the type specified in the contract. 

 
Fig. 2. - REA Metamodel [7)] 

3.3 REA-aware smart contracts for economic networks 

The authors of [24] published a proof-of-concept for the ontology-aware model-driven 
engineering approach advocated by this paper. They model the REA2-ontology that is 
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equivalent to the green layer in Fig. 2 and an REA2 interpretation of the REA axioms. 
They subsequently validate their model with a Java-application generated using 
MERODE’s Merlin modeling tool and the associated code generator. Where the green 
layer in Fig. 2 is valid for a single trading-partner at a time, REA2 is simultaneously 
valid for all stake-holder perspectives in a business transaction (i.e. buyer, seller and 
third-party (e.g. governing body)) [30].  

The authors of [31] argue that REA-aware blockchains and smart contracts could 
improve resilience of and interoperability in economic networks, and especially in de-
centralized economic networks such as the peer-to-peer economy, through (1) an ex-
plicit representation of an agreed upon business vocabulary (i.e. the shared conceptual-
ization in [11, 12]’s definition of ontology) that is an inherent characteristic of ontolo-
gies and indespensible for trade and (2) the use of the REA2-ontology, of which the 
unified semantics are claimed to promote interoperability, throught the elimination of 
stovepipe architectures for the information systems, blockchains and smart contracts 
that operate economic networks. The economic networks considered in [31] are value 
networks - defined as any set of roles and interactions by [32] - of collaboration spaces 
in which people participate in both tangible and intangible exchanges of economic re-
sources (i.e. goods, services and rights) to achieve economic or social benefit. The au-
thors of [31] also list potential application of the ontology-aware model-driven engi-
neering approach for blockchain development for the sharing economy as an example 
of external-facing value networks, collaboratives of independent workers as an example 
of internal-facing value networks, wood and vaccine traceability. Based on these ex-
amples, we can conclude that the ontology-aware model-driven engineering approach 
for blockchain development and particularly the REA2-aware model-driven engineer-
ing approach for smart contract and blockchain development has considerable potential 
for audit in many domains of the traditional and the new economy.  

4 Conclusion 

In conclusion, this paper argues that the application of ontology-aware model-driven 
engineering practices has the potential to enable the ex-ante (i.e. that is before the are 
published) audit of smart contracts. Additionally, it argues that the REA ontology aug-
ments this potential with the ex-post (i.e. that is after the transation data have been 
recorded) audit of transaction data both on and off-blockchain resulting from the exe-
cution of these smart contracts. Finally, it argues that the design of REA-aware model-
driven design has the potential to enable run-time monitoring of smart-contract execu-
tion (e.g. through the use of oracles). 

First, ontology-aware model-driven engineering is expected to allow auditors to 
achieve a clear separation of concerns through the definition of clear deliverables (i.e. 
ontologies and code-generators) and a clear scoping of the tasks that lead to them. The 
auditor can rely on ontology engineers for the design of well-formed formal top-level, 
domain, task and application ontologies that truthfully represent a relevant part of real-
ity through the application of ontology engineering methods. Subsequently, the auditor 
can rely on software engineers and their methods to design trustworthy code-generators 
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that transform these formal ontologies in smart contracts (and other types of software 
code) that truthfully reflect a relevant part of reality.  

Second, the work of McCarthy et al. [7] as discussed above shows the potential of 
the REA-ontology for ex-post auditing the transaction data both on- and off-blockchain 
resulting from the execution of these smart contracts.  

Third, the implementation of the REA axioms in [24] demonstrates the potential of 
the REA axioms and REA2-aware MDE for monitoring the execution of smart-con-
tracts at runtime. 
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