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Abstract

The transition towards a sustainable energy sector depends on how we safely

manage the transport and storage of energy to keep up with the demand. Large

storage (TWh) of renewable energy can be accomplished by producing an en-

ergy carrier like ammonia. This power-to-ammonia production process overly

depends on the stability of the ammonia reactor where any variations induced by

uncertainties could have a large impact on the performance during its dynamic

operations. To determine the effect of these variations, we need to identify which

of the uncertainties have to be scrutinized during model design. The current

work carries out the development of a dynamic Haber-Bosch process, imple-

menting uncertainties in the model and performing an uncertainty quantification

analysis on the process. Subsequently, the sensitivity indices quantify the im-

pact of these uncertainties on the design during ramp-up. The global sensitivity

analysis indicated that the reactor inlet temperature has the most considerable

impact on the performance during ramp-up, where the hydrogen/nitrogen ratio

has the second most significant impact. We see that the uncertainty on the
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reactor inlet temperature dominates (87.8%) the overall standard deviation of

the ammonia production. More precise control over the inlet temperature could

reduce this impact on the standard deviation. The work can be extended by

including a hydrogen and nitrogen production process while powering the full

process with renewable power. We can then measure the effect of coupling re-

newables directly to the dynamic power-to-ammonia process and optimize the

design under uncertainty.

Keywords: Stochastic dynamic systems, Uncertainty quantification,

Haber-Bosch process, Seasonal hydrogen storage, Aspen Plus Dynamics

1. Introduction

The full integration of renewables in the power sector relies on two key as-

pects: assuring the grid’s stability and the certainty that demand can be covered

throughout the year. Wind and solar energy affect both aspects because of the

intermittency of these respective energy sources in time over seconds, day-to-day

and months. Therefore, developing and integrating affordable energy storage so-

lutions to moderate this behavior is essential to transition to a sustainable power

sector [1–4]. In general, which type of storage is needed depends on the capacity,

storage time and application (power quality, grid support, load leveling or bulk

storage). Batteries find their way to store solar power as an in-house applica-

tion and improve the power quality in the grid, while pumped hydro storage

offers support to power networks in the form of load-leveling [5, 6]. To cover the

inequality between multiple months, we need to look at electrofuels that will en-

able us to convert Terawatt-hours (TWh’s) of energy into a substance and store

it for multiple months. This Power-to-Fuels (PtX) concept defines the possibil-

ity of performing this large-scale and long-term energy storage that is needed

to avoid the curtailment of excess renewable energy. Hydrogen (H2) created

through water electrolysis is a key element in this PtX concept, allowing for the

production and use of a CO2-free fuel [3, 7–9]. However, the storage of pure

renewable H2 for several months is perceived as expensive where the energy car-
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rier is difficult to transport over large distances [9–11]. Ammonia (NH3) gained

a growing interest due to its less energy-intensive liquefaction and cheaper stor-

age cost than pure H2 [9]. The Haber-Bosch Synthesis (HBS) process allows

us to produce NH3 commercially and maturely by combining renewable H2 and

nitrogen (N2) obtained from the air under high pressures (between 100 bar to

250 bar) and high temperatures (from 350◦C to 550◦C) in the presence of a

metal catalyst [12, 13].

The primary concern of utilizing this Power-to-Ammonia (PtA) process is

assuring the durability of the reactor against fluctuations, e.g. thermal cycling

[14–16], and adapt the design for its implicit off-design operations [17]. Modern

NH3 synthesis plants are conventionally designed for steady-state operations

[18–20]. Traditional research evaluates the PtA design with deterministic linear

models and demonstrates the independent effect of model parameters on the

economic cost or performance with a sensitivity analysis. Morgan et al. per-

formed this methodology on the net present value of an islanded wind-powered

ammonia synthesis plant with design parameters, e.g. wind turbine size and

ammonia plant size, and economic factors, e.g. project lifetime and interest

rate [21]. The study of Nayak-Luke examined the sensitivity of the levelized

cost of NH3 by varying the ramp-up rate of the HBS loop, the ratio of wind

and solar power powering the PtA process and the levelized cost of electricity

[19]. Tripodi et al. examined the effect on the ammonia production by changing

the model parameters and the catalyst configurations of an ammonia reactor

and a Haber-Bosch synthesis loop [22]. As shown by these research papers,

variations in the model and design parameters could significantly impact the

economics and performance of the PtA process. Cheema et al. considered im-

plicit variations (H2/N2 ratio, Argon concentration and mass flow rate) in the

Haber-Bosch loop and ammonia reactor design to improve the flexibility on the

operation and production of NH3 in steady-state [13, 17]. This work considered

that this flexibility provides a stable ammonia production at its off-design per-

formance for large-scale energy storage. However, the dynamic operation of an

ammonia synthesis loop can be significantly affected by changes in the H2/N2
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ratio or by disturbances (in the feed and temperature) at the inlet of the HBS

loop as is shown by Stephens et al. [23]. Gullberg et al. examined how these

disturbances and changes in the inlet feed of the Haber-Bosch loop can be re-

jected and controlled during operation, at the expense of more complex control

structures [24].

When exploiting the PtA system in practice, the simulated performance will

ultimately diverge from the real one. This discrepancy is caused by disregard-

ing the effect of uncertainties on the process [25, 26]. Neglecting the effect of

uncertainties in chemical systems could lead to loss of optimal control [27–29],

decrease in product quality [30], a poor economic system [31] or bad decision

making in operation and planning [32]. Therefore, including uncertainties dur-

ing design optimization, i.e. performing a Robust Design Optimization (RDO),

enhances the model’s reliability while minimizing the effect of uncertainties on

the performance [33–37]. The work of Tejeda-Iglesias et al. [34] shows the bene-

fits of RDO on an industrial sulfuric acid (H2SO4) plant for improving its daily

profits under operating and economic uncertainties in steady-state. The advan-

tages of RDO combined with a multi-scenario approach are also shown for a

steady-state carbon capture process in the paper of Cerrillo-Briones et al. [33].

This RDO approach can be extended to dynamic models, e.g. optimizing the

transient behavior of catalytic flow reactor [38], maximizing the production of

chemicals under stochastic conditions [39] and designing a robust controller for

various chemical processes [27–29, 31, 40]. To quantify the effect of uncertainties

on the performance, we need to minimize the computational cost while attaining

a high accuracy. The study of Bhonsale et al. [39] and Makrygiorgos et al. [41]

show the advantages of using non-intrusive Polynomial Chaos Expansion-based

(PCE) algorithms over brute-force Monte Carlo Simulations (MCS) for uncer-

tainty quantification in dynamic models. This PCE algorithm can be enhanced

by implementing advanced sampling methods to increase the precision of the

UQ analysis [42]. The advanced techniques developed in Paulson et al. can be

implemented to allow the PCE to capture singularities that can occur during a

dynamic process [43]. However, no other study considers and quantifies the ef-
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fect of these uncertainties on a Haber-Bosch plant during its dynamic operation.

The study of Laššák et al. showed that parametric uncertainties cause different

temperature profiles on the steady-state ammonia reactor model [44], leading to

changes in the ammonia production or, worst-case, a shut down of the reactor.

This knowledge gap can be filled by creating a dynamic Haber-Bosch loop and

include operational and parametric uncertainties into the model. With a global

sensitivity analysis, we can then quantify the effect of the uncertainties on the

NH3 production at each timestep during a dynamic simulation. The present

paper describes the HBS loop design in Aspen Plus Dynamics, where opera-

tional and parametric uncertainties are integrated into the process. During a

process ramp-up, the time-frozen PCE algorithm quantifies the effect of these

uncertainties on the NH3 production.

2. Methodology

This section introduces the creation of a flexible Haber-Bosch synthesis loop

and the implementation of a catalyst model into the NH3 reactor to store renew-

able energy. Afterward, operational and parametric uncertainties are described

and justified according to literature. Finally, the global sensitivity analysis

method, which quantifies the effect of the implemented uncertainties on the

ammonia production, is presented.

2.1. Flexible Haber-Bosch synthesis loop

A regular Haber-Bosch plant with an autothermal reactor composes of four

main elements: a compressor which pressurizes the synthesis loop, a reactor to

convert the H2 and N2 gas into NH3, a heat exchanger to heat the inlet stream of

the reactor with the heat from the exothermic ammonia synthesis reaction and

a separation system (via condensation or adsorption) to extract the ammonia

from the process. The following exothermic reaction in the reactor occurs:

N2 + 3H2 
 2NH3 ∆Hreaction = −46.0 kJ/molNH3
, (1)
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where ∆Hreaction is the heat of reaction. A recycle and purge stream are in

place to recuperate the unreacted H2 and N2 gas in the ammonia synthesis

process and remove inert gases that would accumulate in the synthesis loop

(Figure 1) [17, 45–47]. The challenge to operate the Haber-Bosch process for its

renewable purpose (i.e. capture and storage of excess renewable energy) lies in

preserving the integrity of the metal catalyst [6]. This component is sensitive to

temperature fluctuations where the temperature directly affects the ammonia

production throughout the reactor. Load variations will inherently occur for this

storage system to the variable nature of renewables, where industrial Haber-

Bosch plants are not designed for this purpose. These large-scale ammonia

plants are also unable to operate below 50%-60% of their nominal load due to

the temperature increase by the exothermic ammonia reaction exceeding safety

limits [24, 48]. However, the patent of Ostuni [48] provides a way to safely

decrease the reactor load by decreasing the purge flow rate, which accumulates

inert gases and cools down the reaction; preventing the reactor from exceeding

its temperature limit. Besides, a bypass over the heat exchanger provides direct

control over the temperature to the inlet stream of the reactor without external

heating and cooling systems (Figure 1) [49].

To simulate the Haber-Bosch process behavior, we developed an ammonia

synthesis plant in Aspen Plus Dynamics, where the reactor model has been

validated by Tripodi et al. using experimental results [22]. Our adopted Haber-

Bosch model configuration is based on the design of a small-scale ammonia

process described by Reese et al. (Figure 1) [26]. The design of [26] was adapted

with a bypass to control the reactor’s inlet temperature. In practice, the inlet

reactor temperature is measured and rectified with the control valve, which

controls the gas flow through the bypass. A heating system heats the incoming

gas flow when performing a cold start-up of the plant [24, 26]. This entering gas

flow provides a limitation to the valid range of the reactor model when going

below the 50% load (to 10%-20%). Below this load, the reactor model deviates

from the experimental results [22], where the plant performance prediction is

not reliable as discussed in Tripodi et al. [50]. Therefore, the additional control
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Figure 1: A loop compressor pressurizes the feed flow, where the flow is then mixed with the

recycle flow. The combination of a heat exchanger and a bypass flow maintains control over

the reactor’s inlet temperature when load variations occur. Within this reactor, an exothermic

reaction of hydrogen and nitrogen to ammonia takes place. The hot reactor outlet stream is

cooled down and transferred to the condenser, where ammonia condenses. The unreacted

gasses are partially purged and the remaining gas mixture is recycled.

elements to go below this 50% load were not integrated because these elements

would need to control the reactor’s temperature while keeping the flow rate at

the inlet of the reactor within the valid range. For this particular reason, we

considered a load below 50% out of the scope of this work.

The Haber-Bosch model is first created in Aspen Plus with the Redlich-

Kwong-Soave-Boston-Mathias (RKS-BM) property method. Each component

consists of material, energy and composition balances equations [51], where the

convergence solver uses the Broyden method to solve the equations in steady-

state. The parameters of all components were integrated into Aspen Plus and

then exported to Aspen Dynamics with a flow-driven simulation where the Im-

plicit Euler method was chosen as the dynamic solver. During the model sim-

ulations, we provide a feed of pure H2 and N2 at a temperature of 50◦C and

a pressure of 5 bar, where the loop compressor pressurizes the flow to 100 bar

with an isentropic efficiency of 72% and mechanical efficiency of 100% (Fig-

ure 1). The flow is then adiabatically mixed with the recycle flow and heated
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with the heat exchanger. Based on the nominal load size of the plant of 80 kg/h,

an Aspen Plus optimization tool sized the heat exchange area to 6 m2 to provide

a flow of 400◦C at the inlet of the reactor. The reactor sizing is based on the

paper of [22], where we designed a single tube reactor with a length of 8 m, a

diameter of 0.0404 m and 20 kg of wustite (with a density of 3250 kg/m3). Below

a nominal load of 80 kg/h, this temperature increases due to a higher residence

time of the H2/N2 mixture in the reactor, which increases the exothermic reac-

tion. This operation results in a higher temperature outlet flow going the heat

exchanger [22]. The control valve of the bypass adapts the flow through the

heat exchanger to keep the measured inlet temperature at 400◦C. The product

stream leaving the heat exchanger and entering the condenser is cooled down

to a temperature of -20◦C, which condenses the ammonia. The residual gas in

the condenser (mainly H2, N2 and traces of NH3) is purged for 4%, limiting

the magnitude of the recycle flow. The recycled flow is then pressurized with

a recycle compressor to 101 bar. In our dynamic model, we assume that the

operating pressure of 100 bar is kept constant at all instants to avoid the limit

cycle behavior. This assumption can be substantiated by inserting a control

structure to the loop described by Gullberg et al. [24]. We added a PI controller

to adapt the bypass flow over the heat exchanger while measuring the temper-

ature that enters the start-up heater, which is sufficient for this operation [16].

We implemented a controller gain of 11.2% and an integral time of 10 min. The

Aspen tuning process calculated these parameters by the internal model control

tuning rule based on a step disturbance. This method allows to generate the

proportional and integral control actions in the absence of implementing dead

times in a robust way without overshoots and oscillations [51].

2.2. Catalytic reactor model

Different kinds of catalyst materials exist, where in traditional large-scale

ammonia plants, iron-based catalysts are used for their economic benefits. To

transition from a large centralized fossil-fueled HBS loop to a small-scale (iso-

lated) electric Haber-Bosch, this traditional catalyst is incapable of functioning
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under the renewable conditions (lower operational pressure, a dynamic supply

of H2 and higher safety risks) [52]. For this renewable purpose, a ruthenium

catalyst shows better performance than iron catalysts to its higher activity, a

H2/N2 ratio of 1.5 mol/mol (lower than the stoichiometric equilibrium of H2/N2

= 3 mol/mol) [22] and minor poisoning by oxygen [53]. A significant drawback of

the ruthenium-based catalyst is the higher cost than the commercially available

iron catalyst [11, 18]. As an alternative to iron and ruthenium, wustite is cur-

rently seen as the most durable and commercial material to withstand temper-

ature variations at low operating pressures (around 100 bar) for this renewable

purpose [54]. Because of this advantage, we created a dynamic reactor model in

Aspen Plus Dynamics using the fugacity-based Langmuir-Hinshelwood-Hougen-

Watson (LHHW) equation for the reaction rate (Equation 2) and adopted the

kinetic parameters of a wustite catalyst, described by Tripodi et al. (Table 1)

[22].

r = (k e−
E
RT )

(KForward

∏
r f

vr
r −KReverse

∏
p f

vp
p )

(Ki

∑
i f

vi
i )n

(2)

This equation describes the relation between the reaction rate r in kmol/kgcats,

the kinetic factor k in kmol/kgcats, the activation energy E in J/mol, temper-

ature T in K, the gas constant R (8.314) in J/molK, the fugacity of a com-

ponent fvx (vx ∈ {N2, H2, NH3}), the forward KForward, reverse KReverse and

adsorption Ki equilibrium constant. The adsorption equilibrium constant is

non-existent for the wustite material, where this term is negated with the ex-

ponent n = 0. The forward and reverse equilibrium constants are calculated in

Aspen with the following equation:

log(Kz) = Az + Bz/T + Cz ln(T ) + DzT, (3)

where Az, Bz, Cz and Dz are constants described for the driving force Kz

(z ∈ {Forward,Reverse}) in Table 1. We recreated the ammonia synthesis loop

from Tripodi et al. and validated the kinetic reactor models with different cases

described in Table 3 of the paper and Table S1 of the supplementary document.

Here, the most significant relative error of 1.58% was found on the ammonia
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mole fraction in case 4 of Table 3. The sensitivity of the recycle stream invokes

this error on the ammonia mole fraction, as described in the supplementary data

of Tripodi et al. [22]. The design parameters and the region of operation of the

renewable Haber-Bosch are based within the valid region of the kinetic model

of the wustite catalyst.

Table 1: Kinetic parameters for wustite catalyst integrated in Aspen Plus Dynamics [22].

H2 N2 NH3 Remark

Stoichiometry -3 -1 2 LHHW equation

k [kmol/kgcats] n E [J/mol] Remark

Kinetic cst. 7.47 · 108 0 1.88406 · 108 Fugacity based

Driving force A B C D vx = [H2; N2; NH3]

Forward -7.8 9218 -5.42 7.8 · 10−4 [2.25; 1; -1.5]

Reverse 2.88 0 0 0 [-0.75; 0.0; 0.5]

2.3. Implemented uncertainties on the design

The goal of this research is to assess the sensitivity of the NH3 production

under uncertainty during ramp-up. There are two types of uncertainties that

could impact the performance in practice, namely operational and parametric

uncertainties. Operational uncertainties originate from variations that occur

during operation, going beyond the predefined designed process, e.g. different

H2/N2 ratio than the theoretical equilibrium or temperature variations in the

system to measurement errors [40, 45]. Parametric uncertainties are caused by

errors on the model parameter, e.g. reaction enthalpy and catalyst density. This

type of uncertainty affects the prediction of the nonlinear behavior of the model

[30, 38, 40, 44].
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We integrated three operational uncertainties into the design: a variant tem-

perature at the reactor inlet, a variant temperature in the condenser’s cooling

and an uncertain H2/N2 ratio at the HBS inlet feed. Reactor temperature

fluctuations are observed in the experimental results of a small-scale ammonia

synthesis plant described by Reese et al. [26]. The origin of these variations was

associated with the difficult control of the plant [26], which have a considerable

impact on the ammonia plant’s behavior and performance of the ammonia plant

[55]. Because of the sensitivity of a real ammonia plant by the inlet temperature,

we integrated this fluctuation as an uncertainty at the set point of the PI con-

troller, which controls the flow rate through the bypass. We defined the source

of uncertainty here as the combination of temperature measurement uncertainty

[56] and the inadequate control over the plant [26]. We chose a gaussian distri-

bution for the temperature fluctuation at the reactor inlet (Treactor) with a mean

of 400◦C and a standard deviation of 1.67% of the mean (6.67◦C), which cor-

respond to the relative temperature surges of the plant of Reese et al. [26]. We

assumed the same temperature variation could occur at the condenser, where

the incoming flow is cooled to a set temperature, but a measurement error and

difficult control over this temperature can affect the actual temperature. For

the temperature fluctuation in the condenser (Tcondenser), the mean and stan-

dard deviation of this gaussian uncertainty is respectively -20◦C and 1.67% of

the mean (0.33◦C). The uncertainty ranges in the reactor inlet temperature and

the condenser temperature are also corresponding to real temperature uncer-

tainty measurements, where examples can be found in the report of Scheller et

al. [56]. Besides the temperature fluctuations, a H2/N2 ratio variation occurred

during the plant’s operation in Minnesota due to independent fluctuations in

the H2 and N2 supply [26]. It was observed that the buffer tank between the

air separation unit (providing the nitrogen supply) and the HBS process did

not sufficiently damp out the fluctuations. In addition, the electrolyzer feed-

ing the HBS process with H2 did not feed the system with the required rate

(underproduction of H2). A uniform probability density function is adopted for

the H2/N2 ratio with a minimum and maximum range of 2.5 mol/mol to 3.0
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mol/mol.

We want to quantify the effect of small changes on two model parameters

for the parametric uncertainties, namely the reaction enthalpy and the wustite

catalyst density. The work of Laššák et al. tested the effect of a variation of the

heat of reaction (∆Hreaction) on the output temperature of an ammonia reactor

in steady-state conditions [44]. This variation is also adopted as a parametric

gaussian uncertainty in the reactor, where the mean of the reaction enthalpy is

−46 kJ/molNH3
and the standard deviation is 5% of the mean (2.3 kJ/molNH3

).

In Gramatica’s work, we observe that the density of the catalyst can have small

changes according to its real theoretical one, where a maximum variation of 3%

in mass density can occur due to different catalyst particle sizing [57]. For this

reason, we integrated this uncertainty on the wustite catalyst density (ρwustite)

with a gaussian distribution where the mean is 3.25 g/cm3 and the standard

deviation is 1% of the mean (3.25 ·10−3 g/cm3). The implemented uncertainties

in the Haber-Bosch synthesis loop are summarized in Table 2 and visualized in

Figure 2.

Table 2: Summary of the implemented operational and parametric uncertainties into the

dynamic Haber-Bosch synthesis loop in Aspen Plus Dynamics. The uniform distribution

with a mean and standard deviation corresponds to the uniform distribution with a range of

2.5 mol/mol and 3 mol/mol [58].

Operational uncertainty Distribution Mean Standard deviation Unit

H2/N2 uniform 2.75 0.14 mol/mol

Treactor gaussian 400 6.67 ◦C

Tcondensor gaussian 20.0 0.33 ◦C

Parametric uncertainty Distribution Mean Standard deviation Unit

∆Hreaction gaussian −46.0 2.30 kJ/molNH3

ρwustite gaussian 3.25 3.25 · 10−3 g/cm3
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Figure 2: Five uncertain parameters are implemented in the dynamic Haber-Bosch model,

where the H2/N2 ratio has a uniform distribution and the other uncertainties have a gaussian

distribution. The H2/N2 ratio, the temperature at reactor inlet and in the condenser are con-

sidered operational uncertainties and the heat of reaction and wustite density are parametric

uncertainties.

2.4. Global sensitivity analysis

A sensitivity analysis that quantifies the combined effect of all the uncertain

parameters on the performance of simulated systems was performed [41, 59, 60].

The contribution of each uncertainty to the variation of the NH3 production can

analytically be quantified through the so-called Sobol’ decomposition. From this

decomposition, the Sobol’ indices Su can be extracted which are defined as the

ratio of the partial variance Du and the total variance D:

Su =
Du

D
, (4)

where u is the index set of the implemented uncertainties [60]. The total Sobol’

index ST
i quantifies the total impact of each uncertainty i on the total variance

D by considering every possible interaction between all of the stochastic input

parameters that contain uncertainty i [41, 59, 60]:

ST
i =

∑
i∈u

Su. (5)

The partial and total variance are traditionally derived by evaluating the com-

putational model M with an MCS. For a non-intrusive UQ analysis of static

13



deterministic models, MCS takes 104 to 106 evaluations to get accurate statistics

on the moments (mean and standard deviation) [35, 37, 39, 41, 44, 59, 61, 62].

The uncertainty propagation of our dynamic Haber-Bosch model would result

in a computational time of approximately 200 days to converge with 104 runs.

Alternatively, the Polynomial Chaos Expansion (PCE) provides an efficient

alternative over MCS because the Sobol’ indices can analytically be derived

while avoiding the computational cost of running excess time-expensive models

[59, 60, 63] and iteratively determine the Sobol’ indices [64]. PCE creates a

metamodel M̂ by constructing a truncated series of orthogonal polynomials Ψi

and their corresponding coefficients ai with an order P to approximate the real

response of model M to an input ξ [37, 65, 66]:

M̂(ξ) =

P∑
i=0

aiΨi(ξ) ≈M(ξ). (6)

These orthogonal polynomials Ψi are Hermite polynomials for gaussian distri-

bution and Legendre polynomials for uniform distributions following the Askey

scheme [29, 59, 67]. We refer to Example 3.3.3 of Wu et al. on combining differ-

ent orthogonal polynomials when constructing the metamodel [59]. This static

UQ analysis can then be extended to the so-called time-frozen PCE, where the

PCE algorithm creates a metamodel at each timestep [41, 68]. To analytically

determine the mean and standard deviation of the NH3 production at a time

t in a computationally efficient way, we refer to the work of [41, 43, 68–71].

Afterward, the Leave-One-Out (LOO) cross-validation procedure computes the

error between the metamodel M̂ and the computational model M [41, 43].

So obtaining the global sensitivity of complex dynamic systems used in the

field of energy capture and storage provides us with a measure of how the

operational and parametric uncertainties impact the performance of such a plant

during operations [61]. To efficiently determine the Sobol’ indices, the use of

PCE is advantageous over MCS for running computational expensive dynamic

models.
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3. Results and discussion

In this section, we discuss the results of the dynamic Haber-Bosch model in

Aspen Plus Dynamics. We first evaluate the deterministic performance of the

dynamic model during ramp-up. Then we compare the stochastic model with

the deterministic one by describing the change in the evolution of the mean and

standard deviation during ramp-up. Next, the total-order Sobol’ indices and the

probability density functions over time are presented and discussed. Afterward,

we provide a scenario with increased ramp-up rates and discuss the results.

Finally, we provide our suggestions to minimize the impact of the uncertainties

on the dynamic Haber-Bosch process.

3.1. Performance of deterministic model during ramp-up

According to Armijo et al. [10], the ramp-up of the Haber-Bosch process is

limited by 20% of the nominal load per hour. Therefore, we ramped up the

process from a partial load of 50% to 100% (from 40 kg/h to 80 kg/h) over

150 minutes. This ramp-up resulted in an increasing output flow rate of the

Haber-Bosch loop from 30.8 kg/h to 50.4 kg/h, where 99.9% of this mass output

flow rate consists of NH3 (Figure 3). Although a linear increase in supply is

accomplished, the synthesis loop’s non-linear behavior results in the saturation

of the ammonia production around 50.4 kg/h. The saturation originates from

the increasing mass flow inside the loop process, which reduces the contact time

between the H2/N2 mixture and the wustite catalyst. This contact time reduc-

tion affects the process in a twofold aspect: first, it decreases the NH3 synthesis

directly, and second, the accumulation of unreacted gas increases the mass flow

inside the loop process, reducing the contact time furthermore [13, 22, 24]. The

ramification of the two effects is observed inside the wustite reactor, where the

output temperature decreases when the ammonia reactor’s load increases (Fig-

ure 4). The decreasing output temperature is caused by the reduction of NH3

conversion resulting in a lower heat release from the exothermic reaction. To

optimize the ammonia synthesis point of operation, we can shift towards a lower

H2/N2 ratio at higher flow rates [24].
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Figure 3: To the Haber-Bosch’s non-linearity, the system’s output increases in a non-linear

way when ramping up from a load of 40 kg/h to 80 kg/h with a H2/N2 ratio of 3. The output

saturates around a maximum mass flow rate of 50.4 kg/h, where a slight overshoot occurs

when reaching the maximum capacity of the NH3 process.
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48 kg/h
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72 kg/h
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Figure 4: The increasing feed flow rate (with H2/N2 ratio of 3) decreases the contact time

between the gas mixture and the catalyst, reducing the heat release of the exothermic reac-

tion. This effect reduces the ammonia synthesis efficiency and causes a decrease in output

temperature by 50◦C, resulting in the ammonia output’s saturation to 50.4 kg/h.

As observed in the Aspen Plus Dynamics model, reducing the H2/N2 ra-

tio reduces the decreasing temperature output of the reactor, which is bene-
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Figure 5: The increasing feed flow rate at a H2/N2 ratio of 2.5 decreases the contact time

between the gas mixture and the catalyst, but the effect on the output temperature is limited

by 33◦C. The smaller decrease in output temperature by the lower H2/N2 ratio results however

in a reduced NH3 production.

ficial when operating in stochastic conditions preventing a reactor shutdown

(Figure 5). However, a lower H2/N2 ratio impacts the performance of the

Haber-Bosch loop on another aspect, namely the NH3 synthesis decreases to

less favorable equilibrium conditions, which decreases the total NH3 production

(Figure 6). The relative difference between the different NH3 production con-

ditions changes depending on the Haber-Bosch loading. At a load of 40 kg/h,

the relative NH3 production is 11.0%, where at a load of 80 kg/h, this difference

is 4.2%. The reason for this smaller relative difference lies in the influence of

the contact time between the gas mixture and catalyst in combination with a

favorable equilibrium condition of the different H2/N2 ratios, as is previously

explained.

3.2. Performance of stochastic model during ramp-up

In this part, we implemented the operational and parametric uncertainties

on the dynamic Haber-Bosch process and performed a global sensitivity analysis

on the model during ramp-up to quantify the collective effect of uncertainties

on the NH3 production. We carried this global sensitivity analysis out with
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Figure 6: In comparison, less NH3 is produced by the Haber-Bosch synthesis loop at a lower

H2/N2 ratio than when the process operates at the theoretical equilibrium of 3 mol/mol.

However, the relative difference between the NH3 productions is more considerable at a low

flow rate because of higher contact time favoring the reaction of a H2/N2 close to 3 mol/mol

than at higher flow rates (with a relative difference of 4.2%).

our in-house developed PCE Python script [67], which invoked the Aspen Plus

Dynamics model via a Matlab-Simulink connection [72]. In this work, we used

a polynomial order p of 3 to create the PCE metamodel from 112 samples and

extract the necessary information at a timestep of 0.1 min. The highest LOO

that we observe is 0.015, which is found sufficient to extract the mean and

standard deviation accurately.

The sensitivity analysis of each timestep reveals that the mean ammonia

production increases from 29.1 kg/h to 49.1 kg/h during this transition. At

the start of the ramp-up, the mean ammonia production lies symmetrically

between the deterministic values of the NH3 productions for different H2/N2

ratios (Figure 7). This symmetry indicates that the operational uncertainty

on the H2/N2 ratio has a considerable influence over the process’s output at

lower loads. On the other hand, this symmetry disappears for the plant at

its maximum load, where at the same time, the standard deviation increases

from 1.0 kg/h to 5.3 kg/h (Figure 8). This observation implies that the dynamic

Haber-Bosch system is more sensitive to the implemented uncertainties at a
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Figure 7: During the load ramp-up from 40 kg/h to 80 kg/h, the mean ammonia production

elevates from 29.1 kg/h to 49.1 kg/h. The standard deviation around the mean increases due

to the amplifying effect of the uncertainty on the reactor inlet temperature fluctuation. For

the nominal load of 80 kg/h load, the temperature variation has the largest negative effect

over the ammonia synthesis efficiency at this operational point.
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Figure 8: The increase in load from 40 kg/h to 80 kg/h results in a higher standard deviation of

the ammonia production. This increase shows that the Haber-Bosch system is more sensitive

towards the implemented uncertainties at higher loads.

load of 100% than at 50%. This effect originates from the gas mixture’s short

residence time, where the temperature variation at this point of operation affects

the efficiency of the ammonia synthesis inside the reactor the most. Because
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of this significant increase in standard deviation, the NH3 production could be

considerable impacted at higher loads, leading to a larger recycle flow rate and

a higher recycle compressor duty.

This behavior can be explained by looking at the sensitivity indexes of each

timestep (Figure 9). At the beginning of the ramp-up, the H2/N2 ratio (0 min)

dominated the standard deviation with 92.0%, increases shortly (30 min) to

95.2% where it then decreases to 4.4% (150 min). During this evolution, the

reactor’s inlet temperature variation becomes the dominant source of uncer-

tainty due to the short residence time of the H2 and N2 gas mixture in the

reactor. This results in a less efficient NH3 reaction to occur at non-ideal equi-

librium condition (H2/N2 ratio below 3 mol/mol). The residual uncertainties

(condenser temperature, catalyst density and heat of reaction) remain below

5.6%. The uncertainty quantification at different timesteps shows that these

three uncertainties can be excluded for future global sensitivity analyses. The

probability density function of the output changes according to the load sizing

and the dominance of the uncertainties (Figure 10). Throughout the plant’s

0
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Figure 9: The increase in load from 40 kg/h to 80 kg/h results in a higher standard deviation

of the ammonia production due to the more dominant effect of the temperature fluctuation at

the reactor inlet. The Sobol’ indices evolve during the ramp-up, where the H2/N2 ratio domi-

nates the standard deviation with 92.0% and decreases to 4.4%. The temperature fluctuation

becomes then the dominant source of variation with 87.8%.
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Figure 10: The probability density functions change shapes throughout the plant’s ramp-up

over time. At lower loads, the NH3 production lies closer around the mean and is more certain,

while at higher loads, the probability density functions around the mean stretch.

ramp-up, we examine the change in the probability density functions at each

timestep of 30 min. At lower loads, we observe a high probability of produc-

ing NH3 around the mean, where at higher loads, the probability of producing

ammonia around the mean decreases and spreads. We identify that the inlet

reactor temperature has a positive and negative effect on the ammonia produc-

tion. A higher NH3 production is achieved when the temperature at the inlet

of the reactor is increased, when a lower temperature at the inlet reactor is

supplied, the NH3 production decreases due to less favoring ammonia kinetics

under stochastic conditions.

To rule out the dominant effect of the inlet temperature uncertainty, we can

consider operating within the range where the standard deviation has not a

significant impact on the ammonia production. For this reason, we investigate

with a global sensitivity analysis the effect of an increased ramp-up rate below

this load of 64 kg/s. For this case, we assume a hypothetical ramp-up rate of

60% and 120% of the nominal load per hour. We set a load change of 50% to 65%

and 50% to 80% in 15 min each time in this scenario. For the PCE metamodel,

we used a polynomial order p of 3 with 112 samples. The maximum LOO that
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was observed is 0.013, which is considered sufficient to extract the statistics

accurately.

For this case, we notice that the mean and standard deviation do not change

for the higher ramp-up and -down rates while observing no transient responses

(Figure 11). This effect is linked to the size of the Haber-Bosch, which is

0 10 25 8570 135

Time [min]

28.1
29.1

37.5

44.7

46.8

Output NH3
flow rate

[kg/h]

Figure 11: The consecutive ramp-ups from 40 kg/h to 52 kg/h and from 40 kg/h to 64 kg/h

do not show any transient responses to the small reactor volume. The mean and standard

deviation do not deviate from the values observed during the single ramp-up scenario.

considerably smaller than industrial reactors described in literature [16, 73–76].

The paper of Morud et al. shows the ammonia production dynamics is related to

the volume, the number of reactors and the total residence time of the reactant

gas for an industrial HBS process [16]. We distinguish that the implemented

ramp-up and -down rates are slower than the dynamics of the reactor and the

chosen PI controller. Here, we perceive that the HBS process can be used

for higher ramp-ups until 80% while avoiding large standard deviations during

operation. In practice, the sudden increase of the temperature profile could

affect the reactor operation or damage the catalyst [77].

By evaluating the stochastic dynamic system with the time-frozen PCE, we

recognize that the current designed Haber-Bosch system is not suitable for a
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load approximately above 64 kg/s (80%) at this non-ideal condition. Overall,

this process could reach lacking efficiencies at moments when renewables are

abundantly available. The HBS process can only operate quickly and securely

between 50% and 80% of the nominal load. In this range, the H2/N2 ratio

and the reactor inlet temperature have the largest impact but only affects the

ammonia production with a maximum standard deviation of 2.3 kg/h. Above

this limit, the inlet temperature greatly influences the standard deviation of the

ammonia process. To limit the effect of the temperature variation, a more accu-

rate measurement sensor can reduce the effect on the ammonia production [45].

Alternatively, a suitable state estimation process, e.g. (extended) Kalman filters

[78] or moving horizon estimation [79], catches the effect of these measurements

uncertainties on controllers during load changes. The paper of Valipour et al.

demonstrated that these techniques combined with a nonlinear model predic-

tive control provides an effective way to control stochastic processes without

imposing a computational expensive task during real-time operation [79]. For

the uncertainty of the H2/N2 ratio, a shift of the probability density function

around 3 mol/mol can significantly improve the system’s performance. However,

this shift would result in a large electrolyzer stack producing more hydrogen

than necessary to reach the optimal equilibrium condition. Another solution is

to integrate a second reactor after the wustite reactor. This secondary catalyst

can boost the ammonia production at non-ideal chemical equilibrium conditions

[22]. A ruthenium catalyst is seen as the most efficient way to solve this problem

but would increase the cost of the PtA plant [54].

4. Conclusion

Stochastic parameters inherently influence the Power-to-Ammonia process

for the capture and seasonal storage of renewable energy. As observed in the

paper of Reese et al. [26], uncertainties affect the ammonia synthesis process

during operations. The sources of uncertainties constitute measurement errors,

difficult control or stochastic model parameters. Creating a dynamic model
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and introducing the stochastic variables upon the model imitates the unwanted

behavior and the effect on the system’s performance. With the time-frozen

Polynomial Chaos Expansion technique, the effect of these operational uncer-

tainties (variations on the H2/H2 ratio, inlet reactor temperature measurement

and condenser temperature measurement) and parametric uncertainties (heat

of reaction and wustite density) was quantified during the plants’ ramp-up from

50% to 100% of the plants’ nominal load. We observed that the mean NH3

mass flow rate increases, but the Haber-Bosch plant’s sensitivity increases con-

siderably when reaching the nominal load under the non-ideal conditions. The

sensitivity indexes quantify the effect of the uncertainties on the ammonia pro-

duction. We observed that a higher ramp-up rate does not affect these results

within this designed HBS process. The H2/N2 ratio dominates the ammonia

production at the start of the ramp-up, where the inlet temperature begins to

dominate the process during the plants’ ramp-up. This temperature variation

dominates this result and can be reduced by limiting the temperature error with

a more precise sensor or with a state estimation scheme combined with a suit-

able process controller. On the other hand, solving the effect of the H2/N2 ratio

uncertainty would require a higher investment cost, where a higher supply of

H2 is needed to increase the range of this uncertainty. An alternative solution

is the use of a second reactor with a ruthenium catalyst. Future work entails

the Haber-Bosch plant’s global sensitivity ramping up from lower loads (below

50%) and performing combinations of increasing and decreasing the plants’ load

according to a renewable power supply profile. Also, a more robust design (i.e.

less sensitive to uncertainties) is sought to allow an efficient Haber-Bosch pro-

cess under variable load, so the application of this process for seasonal hydrogen

storage can advance.
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