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Abstract

This article reports on numerical simulations of detonation propagation in
channels that contain one or more porous obstructions. The porous media
considered herein have high porosity and are of fine microstructure, i.e. the
diameter of the fibres of the solid matrix is smaller than the characteristic
chemical length scale. Our study is based on a thermo-mechanical model for
flows in superposed porous and pure-fluid regions. According to it, the solid
matrix is represented as a rigid continuum and its porosity is introduced as
a distribution that varies in space. With regard to chemical kinetics, two
different three-step chain-branching schemes are considered; their difference
being in the termination reaction. Our simulations predict that, even at
high porosity, the porous obstructions act as a highly efficient momentum
sink, thereby causing the detonation to attenuate significantly. In the case
of a single porous section, the detonation re-initiates downstream via chain-
branching explosion. However, arrays of porous zones that span the entire
cross section of the domain produce a decoupling of the reaction zone from the
leading shock, thereby effectively suppressing the detonation. Also, our study
reveals that in domains with arrays of porous blocks that only partially cover
the cross section of the channel, the detonations do not quench. Instead, they
propagate as low-velocity detonations, the properties of which are elaborated
herein as well.
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re-initiation

1. Introduction

A gaseous detonation that propagates in a tube or a channel can be at-
tenuated via chemical or mechanical means. Chemical means involve the use
of diluents or chemical inhibitors; see, for instance, [1–4]. The latter ones are
compounds that participate in endothermic reactions with radicals. Mechan-
ical means typically involve detonation diffraction into a much larger area or
the use of solid obstacles. In the case of diffraction, the detonation attenu-
ates via its interaction with the rarefaction that is formed as the reacting gas
expands into the larger area [5–8]. On the other hand, in the case of solid
obstacles, the main factor for detonation attenuation is the force exerted by
the obstacles which acts as a sink of momentum and kinetic energy for the
reactive mixture; see, for example, [9–12] and references therein.

Quite often, arrays of discrete, sparsely spaced solid obstacles fixed to
the tube walls result in quasi-detonations. These are detonations that prop-
agate at velocities significantly lower than those of the equivalent Chapman-
Jouguet (CJ) detonations, i.e. they exhibit a velocity deficit. In the past,
various researchers investigated the structure and propagation mechanism of
quasi-detonations theoretically [13, 14], numerically [14, 15] or experimen-
tally [10, 16–21]. These investigations established that quasi-detonations are
sustained due to re-ignitions through shock reflections from the tube walls.
However, it is not yet clear if the principal factor contributing to re-ignition
is adiabatic compression by the reflected shocks or turbulent mixing.

On the other hand, ensembles of densely spaced obstacles can macroscop-
ically be assimilated as a porous medium. The propagation characteristics
of gaseous detonations through porous media have also been the topic of
various research efforts in the past. Experimental studies have been pre-
sented, among others, in [9, 22–24]; see also the review article [25]. These
studies confirmed the large amounts of momentum loss and the transition
to quasi-detonation caused by porous obstacles. Further, they provided in-
sight about the re-initiation mechanism of the detonation downstream of the
porous medium.

More recently, experimental investigations have been presented in [26] on
detonation suppression in rectangular channels with highly porous coatings
on the walls. In this study, different equivalence ratios were considered, while
the coatings were made of polyurethane foam (with porosity of 95 %) or steel
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wool (with porosity of 99 % and average fibre size of 30 µm). It was reported
that, in both cases, the detonation in the porous coating decouples into a
shock and a subsonic flame. Subsequently, the same authors studied the
effect of polyurethane coatings of different pore size on stoichiometric H2/air
mixtures [27, 28].

With regard to theoretical analyses and numerical simulations, in earlier
models [9, 11, 14, 29–31] the presence of the porous medium was represented
as a volumetric momentum sink whose amplitude is set by a constant friction
factor. Such models, however, cannot accommodate spatially varying poros-
ity and, therefore, cannot be used to study multi-dimensional flows. More
recently, the authors of [32] presented detailed numerical simulations of det-
onation transmission through an array of solid cylindrical obstacles. In that
study, the obstacles were represented in a discrete manner, which allowed
the authors to elucidate the details of the flow structure in the region of the
cylinders and the mechanism for detonation re-initiation downstream.

In all the aforementioned studies, the size of the micro-elements (spheres
or fibres) comprising the solid matrix was comparable to or much larger
than the length of the reaction zone. By contrast, the present paper is
concerned with porous media whose fibres are considerably smaller than the
reaction-zone length; for example, at the order of a micrometer. These are
referred to herein as porous media of “fine microstructure”. They can readily
be produced by modern manufacturing technologies and can potentially be
used in detonation arrestors or as means to modulate detonation behaviour.
Nonetheless, to the author’s knowledge, results for their effect on detonations
are currently unavailable.

The present study consists of numerical simulations of unsteady flows
via shock-capturing algorithms. Due to the small size of the fibres of the
solid matrix, the porous obstacles are modelled as rigid solid continua and
their porosity is introduced as a field variable that is constant in time but
varies in space. With regard to chemical kinetics, two different three-step
chain branching mechanisms are considered. Their difference lies on the
termination reaction; one is suitable at high- and the other one at lower-
pressure conditions. The paper is organized as follows. In Section 2, we
present the governing equations and outline their basic characteristics. Also,
we elaborate on the chemical kinetics mechanisms employed in our study.
In Section 3, we first outline the set up of the numerical simulations and
subsequently present and analyze the numerical results. Finally, Section 4
concludes.
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2. Mathematical model

In the numerical study presented herein we employ the mathematical
model of [33] for flows in superposed porous and pure-fluid regions. This
model is based on the same formalism and principles as the two-phase con-
tinuum theory of [34] for fluid-solid mixtures. According to it, the fluid
and solid phases are treated as separate continuous thermodynamic systems.
However, in the case of the model in [33], the matrix (or skeleton) of the
porous material is assumed to be a rigid solid of zero velocity and constant
mass density. Also, in the present work, the solid matrix is assumed to be
chemically inert and not subject to phase change.

As is typical in two-phase continuum theories, the porosity φ(x) is in-
troduced as a concentration parameter (or distribution) that measures the
density of volume occupied by the fluid. In other words, the porosity is a
field variable that remains constant in time and is defined by,

φ(x) =
dVf
dV

, (1)

where Vf is the volume occupied by the fluid and V is the volume of the
physical space. For the purposes of our study, we assume that φ(x) is a
continuous function. Consequently, macroscopic interfaces of porous and
pure-fluid regions are not sharp but are assumed to be smooth, i.e. they
have a finite thickness. This implies that the number density of the fibres
that constitute the solid matrix does not jump from a finite value to zero but,
instead, decreases continuously to zero. It should be noted that the presumed
smoothness of the interfaces does not pose any modeling or numerical issues
because the interface thickness can be assumed to be as small as desired.

The gaseous reactive mixture is considered to consist of three major
species: reactants F, radicals R and combustion products P. Further, we
assume negligible heat diffusion and viscous dissipation for the gas. Accord-
ingly, the mass, momentum and energy balance laws for the gaseous phase
read, in dimensionless form,

∂

∂t
(φρ) +∇ · (φρu) = 0 , (2)

∂

∂t
(φρu) +∇ · (φρuu) +∇(φp) = f , (3)

∂

∂t
(φρet) +∇ · (φ(ρet + p)u) = f · u+ E , (4)
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where et stands for total energy of the gas, f for the momentum exchange
between the two phases and E for the interphasial heat exchange. According
to [33], the constitutive expressions for f and E are, respectively,

f = p∇φ− β · u , (5)

and
E = h(T − Ts) , (6)

where β is the matrix of interphasial drag parameters, T and Ts are the tem-
peratures of the gas and solid matrix respectively, and h is the interphasial
heat-exchange coefficient. For orthotropic porous media, β is diagonal. Or-
thotropic media are those whose material properties at any point differ along
three mutually orthogonal axes with each axis having twofold rotational sym-
metry. On the other hand, for isotropic porous media, i.e., media whose me-
chanical properties at any point are identical in all directions, β is diagonal
with identical diagonal elements.

Also, the species concentration laws read,

∂

∂t
(φρYj) +∇ · (φρuYj) = ω̇j , j = F, R, P , (7)

where Yj stands for the mass fraction of the species j and ω̇j for the source
term due to the chemical reactions in which this species participates. Since
YF + YR + YP = 1, then only two of the equations (7) have to be solved for.
For simplicity purposes, we assume that F, R and P are perfect gases with
equal heat-capacity ratio γ. As such, the thermal equation of state of the
mixture reads, in dimensionless form, p = ρT . Then, the total energy of the
gaseous phase can be written as,

et =
1

γ − 1

p

ρ
+

1

2
u · u+ q (YF + YR) , (8)

where q is the heat release due to combustion.
Next, by introducing the constitutive relations (5) and (6), respectively,

in the momentum and energy balance laws and by using the fact that the
porosity is not a function of time, the governing system of (2)–(4) and (7)
can be recast in the following form,

∂ρ

∂t
+∇ · (ρu) = −ρ

φ
u · ∇φ , (9)

∂ρu

∂t
+∇ · (ρuu) +∇p = −ρ

φ
(uu) · ∇φ− 1

φ
β · u , (10)
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∂ρet
∂t

+∇ · ((ρet + p)u) = −ρet
φ
u · ∇φ− 1

φ
(β · u) · u+

E
φ
, (11)

∂ρYj
∂t

+∇ · (ρuYj) =
ρYj
φ
u · ∇φ+

ω̇j

φ
, i = F, R . (12)

It is worth noting that the left-hand side of the system (9)-(12) is identi-
cal to that of the compressible Euler equations. Further, since the porosity
distribution φ is assumed to be known, the terms on the right-hand side of
the system that involve the porosity gradient ∇φ are source terms and not
nonconservative products. Accordingly, the above system is strictly hyper-
bolic and has the same eigenvalues and eigenvectors as the compressible Euler
equations. Therefore, this system admits unique weak solutions that can be
computed numerically with shock-capturing algorithms for systems of hy-
perbolic conservation laws with with source terms. This offers a significant
computational advantage because the numerical integration of hyperbolic
laws with nonconservative products is quite challenging [35–37].

As regards the solid matrix, since it is assumed to be rigid and chemically
inert, then its mass and momentum balance laws are identically satisfied.
Further, its energy equation, derived in [33], reads in dimensionless form,

(1− φ)csρs
∂Ts
∂t

= −(γ − 1)E , (13)

where ρs and cs stand for the density and specific heat capacity of the matrix,
respectively. Also, γ stands for the heat-capacity ratio of the gas.

In writing equations (9)-(13), all thermodynamic variables and trans-
port coefficients have been nondimensionalized by the corresponding refer-
ence values of the quiescent state of the reactants F ahead of the detonation.
In particular, the term (γ − 1) appears on the right-hand side of equation
(13) because cs is nondimensionalized by the heat capacity under constant
pressure of the reactants, while the interphasial heat exchange E is nondimen-
sionalized by the pressure-to-density ratio of the reactants at the reference
quiescent state.

In the above mathematical model, the microstructure of the solid ma-
trix is taken into account via the introduction of the porosity distribution
φ and appropriate constitutive relations for β and E . Since the solid ma-
trix is treated as a continuum, this model cannot capture the flow details
at the microscopic (fibre) level. Nonetheless, for the cases where the contin-
uum hypothesis for the solid matrix is valid, this model is deemed capable
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of accurately accounting for the effects of momentum and energy exchange
between the two phases, as well as for the effect of the porosity gradients.
More specifically, the continuum hypothesis is valid when the diameter of
the micro-elements that constitute the solid matrix is much smaller than all
the relevant length scales of the flow; this is indeed the case for all the flows
investigated herein.

2.1. Chemical kinetics mechanisms

In the present study we employ the following chain-branching schemes
involving the 3 participating species F, R and P, plus an inert third body M,

initiation : F
ki−→ R , ki = Aie

−Ei
T , (14)

branching : F + R
kb−→ 2R , kb = Abe−

Eb
T , (15)

termination I : R
ktI−→ P , ktI = AtIe

−
EtI
T , (16)

termination II : R + 2M
ktII−→ P + 2M , ktII = AtIIe

−
EtII
T . (17)

The mechanism with the termination reaction I has been used extensively
in both analytical and numerical studies of hydrogen detonations; see, for
example, [3, 38–42] and references therein. The termination reaction I is
favoured in high-pressure conditions because, in this case, destruction of
radicals at walls is the key termination step [43, 44]. The mechanism with
this termination will be referred to herein as the tI mechanism. On the other
hand, at lower pressures, termination occurs mostly via collisions between
radicals and the third body M [43, 44]. For this reason, the termination
reaction of the type II is mostly favoured at low to moderate pressures. The
mechanism involving the termination reaction II will be referred to herein as
the tII mechanism.

For both mechanisms, tI and tII, the source term ω̇F in the reactant
mass-fraction equation (7) is given by,

ω̇F = −ρφ (YFki + ρYFYRkb) . (18)

Moreover, for the mechanism tI, the source term ω̇R in the radical mass-
fraction equation (7) reads,

tI: ω̇RtI
= ρφ (YFki + ρYFYRkb − YRktI) , (19a)
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whereas for the mechanism tII it reads,

tII: ω̇RtII
= ρφ

(
YFki + ρYFYRkb − ρ2YRktII

)
. (19b)

Upon inspection of the terms in parentheses on the right-hand-sides of equa-
tions (19a) and (19b), we readily infer that the rate of termination reaction tI
scales linearly with ρ, whereas that of termination reaction tII scales quadrat-
ically with ρ.

3. Numerical results

In the present study we performed simulations of gaseous detonations
in 1D and 2D domains partially filled with porous media. The governing
equations for the gaseous phase (9)–(12) are solved via the unsplit scheme
for systems of hyperbolic conservation laws with source terms of [45, 46],
whereas the energy equation of the solid matrix (13) is solved via a second-
order Runge-Kutta method.

3.1. Numerical set up

In our simulations, the initial conditions consisted of ZND detonation pro-
files that obey one of the above chemical kinetics mechanisms. The overdrive
factor, f , of a ZND detonation is defined as,

f =
D2

D2
CJ

, (20)

with D being the detonation velocity and DCJ being the velocity of the
corresponding CJ detonation.

In this study we considered three different cases. In the first one, labelled
tIf1.1, the chemical kinetics is represented by the scheme tI, i.e. it employs
the termination reaction I, while the overdrive factor is set to f = 1.1. In
the second one, tIIf1.1, the overdrive is also set to f = 1.1 but the chemical
kinetics is represented by the scheme tII, i.e. it employs termination reaction
II. Finally, the third case, tIIf1.6, corresponds to a detonation with the ki-
netics scheme tII but with a higher overdrive, f = 1.6. The pre-exponential
factors (Ai, Ab and At) and activation energies (Ei, Eb and Et) of the chemi-
cal reactions for each case are provided in Table 1 below. The corresponding
ZND detonation speeds D, cross-over temperatures Tc and von Neumann
(post-shock) temperatures TN are also provided in Table 1 below.
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Table 1: Parameters of the numerical simulations.

Type f Ai Ab At Ei Eb Et Tc TN D

tIf1.1 1.1 20000 100000 3.0 20.0 15.0 0 1.44 1.4 2.28

tIIf1.1 1.1 37000 185000 1.40 20.0 15.0 0 1.27 1.4 2.28

tIIf1.6 1.6 3959 19795 0.15 20.0 15.0 0 1.27 1.6 2.75

With regard to the physical parameters of the gas, the heat-capacity
ratio is set at γ = 1.2 and the heat of combustion at q = 3.0. The heat
release q is assigned a small value and corresponds to well diluted H2/O2/Ar
mixtures. The rationale for this choice is that the effects of porous obstacles
are expected to be more pronounced in diluted mixtures. Further, in diluted
mixtures, the detonation velocities are moderate, which allows for shorter
computational domains and, therefore, computational savings. Similarly,
the dimensionless values of the activation energies are smaller than usual
for purposes of computational savings and can be justified by assuming pre-
heated reactants.

The cross-over temperature Tc is the temperature at which the branching
and termination rates become equal. When the temperature drops below this
value, the branching reaction becomes slower than the termination reaction
and ignition is suppressed over long time periods [39, 40]. It is noted that
for the detonation tIf1.1, the von Neumann temperature TN is marginally
smaller than Tc and, therefore, this detonation is prone to extinction [39]. In
the context of our study, we conducted 1-D simulations of the evolution of
this ZND wave. According to them, this detonation is subject to multi-mode
instabilities but does not quench and, instead, propagates in a pulsating
mode. The reason for this is that the temperature in the zone with high
radical concentrations is above Tc and, therefore, the branching reaction re-
mains faster than the termination one. The rationale for choosing case tIf1.1
is that the effect of porous obstacles is expected to be more pronounced in
detonations close to extinction. On the other hand, the other two cases,
tIIf1.1 and tIIf1.6 are also subject to longitudinal instabilities and propagate
in a pulsating mode but the post-shock temperature always stays above Tc.

For purposes of nondimensionalization, lengths are scaled by the half-
reaction length of the corresponding ZND wave, l1/2, which is taken to be
the distance between the leading shock and the point where YP = 0.5. Also,
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pressure and density are scaled by their values in the quiescent gas ahead
of the shock, p0 and ρ0, respectively. Consequently, velocities are scaled by
ur =

√
p0/ρ0 and time is scaled by the half-reaction time, t1/2 = l1/2/ur.

With regard to the porous obstacles, the fibres that constitute the solid
matrix are assumed to be identical and randomly distributed circular cylin-
ders. Further, the cylinders are considered to be very thin (i.e. their diameter
is very small) and normal to the plane of the flow. Accordingly, the matrix
of interphasial drag parameters β is diagonal and, moreover, β11 = β22. The
coefficient β11 is approximated as follows. We consider the expression for the
drag per unit length induced by the 2D flow around a single cylinder and
multiply it by the height H and number density Nc of the cylinders,

Nc = 4(1− φ)/(πd2c H) , (21)

where dc is the diameter of a single cylinder. The resulting expression reads,
in dimensionless form,

β11 =
2

π
cD

(1− φ)ρ

dc
|u| , (22)

and is independent of H. In the literature, various correlations for the drag
coefficient cD of arrays of circular cylinders are available; see, for instance,
[47] and references therein. Generally, they are given in terms of the porosity
of the medium and are applicable for a given range of cylinder Reynolds
numbers, Rec. For the types of flows considered herein, the predicted values
of cD lie between 1.2 and 1.6. In the present study, given the uncertainty of
the experiments upon which these correlations are derived and for purposes
of simplicity, we set cD = 1; this is the value of the drag coefficient for a
single cylinder in the expected regime of cylinder Reynolds number Rec.

The approximation of the interphasial heat transfer parameter is per-
formed on the basis of the same reasoning. More specifically, we consider the
expression for the rate of steady-state heat transfer across the surface of a
single cylinder and we multiply it with the number density of cylinders Ns.
This yields the following relation, in dimensionless form,

h =
4(1− φ)

d2c

γ

γ − 1

Nuc
RePr

κ , (23)

with κ being the dimensionless thermal conductivity of the gas. In this
relation, the Reynolds and Prandtl numbers are based on the macroscopic
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reference values, whereas Nuc is the Nusselt number at the microscopic scale,
i.e. the one that corresponds to a single cylinder. Herein we employ a well-
known empirical correlation for Nuc that is applicable for Pr ≥ 0.73,

Nuc = C Remc Pr
1
3 . (24)

The parameters C and m of the correlation (24) depend on Rec and their
values are listed in [48].

With regard to the physical parameters of the porous medium, we assume
that the cylindrical fibers of the solid matrix are made of steel with ρs =
6800 ρ0 and specific heat cs = 2.2R, with R being the gas constant of the
reactive mixture. Also, the diameter of the cylinders is set to dc = 0.05 l1/2.

In all the simulations of the present study, the initial condition is the
profile of the corresponding ZND wave. This profile is placed in front of
the first porous block which is located 5 l1/2 downstream from the inflow
boundary. The thermodynamic variables and velocity of the gas at the end
of the reaction zone, marked by YR = 1.0, are assigned at the rear inflow
boundary. In this manner, the overdrive of a given ZND profile that is used
as initial condition, is supported by the corresponding inflow condition at
the rear boundary.

In the simulations, the resolution of the computational grid is 50 points
per l1/2. According to grid-convergence analysis conducted in the context of
our study, this resolution is deemed sufficient to capture the relevant flow
structures and produce well-resolved results. Finally, the simulations have
been performed with a Courant number equal to 0.7.

3.2. Single porous section

First, we present results from one-dimensional simulations of detonation
attenuation by a single porous section, i.e. an obstacle that spans the entire
cross section of the channel. The length of the porous section is set equal to
10 l1/2. Simulations have been performed with all three different detonation
types mentioned above and with porosity ranging from φ = 0.80 to φ = 0.98.

Our simulations predicted that as soon as the detonation wave enters the
porous section, a reflected shock is formed that moves upstream, thereby
raising the pressure and temperature of the reacted gas close to the rear
boundary. As the detonation wave propagates through the porous medium,
the strength of the leading shock is reduced due to interphasial drag, as
expected. This, in turn, results in lower temperatures and, therefore, lower
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radical concentrations, burning rates and detonation velocities. Nonetheless,
once the leading shock exits the porous section, its strength is stabilised.

At the same time, the combustion zone is advected at lower velocities
and its distance from the leading shock decreases. However, the temperature
inside this zone stays higher than the cross-over temperature Tc and, as a
result, the branching reaction remains faster than the termination one. This
holds true even for the detonation tIf1.1; in this particular case the temper-
ature at the point of maximum radical concentration is 1.5, which is just
above Tc. Consequently, the radical concentration inside the reaction zone
increases with time. This is accompanied by the increase of both temper-
ature and pressure in the vicinity of the reaction zone, which also leads to
a slow increase of the leading-shock pressure ahead. Eventually, the radical
concentration passes a certain threshold, which signals the re-establishment
of the rapid burning of reactants and the onset of a chain-branching explo-
sion. This explosion produces two pressure waves, one travelling upstream
and one downstream, respectively. The downstream-travelling wave evolves
to a shock which ignites the material that it bypasses and eventually reaches
the precursor shock, thereby re-initiating the detonation.
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Figure 1: Pressure profiles at different time instances that depict the re-ignition process
of the detonation tIIf1.1 downstream of a single porous section of φ = 0.95. The shaded
area marks the extent of the porous section, the length of which is 10 l1/2.
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In Figure 1, we present plots of the pressure field at different time in-
stances for the detonation tIIf1.1. The porosity of the porous section in
this simulation is φ = 0.95. In this figure we can clearly observe the mono-
tonic decrease of the pressure inside the porous medium and the formation
of the pressure wave from the chain-branching explosion which re-ignites the
detonation.

Also, for the same case (detonation tIIf1.1 and φ = 0.95), in Figure 2
we present plots of the flow variables in the vicinity of the chain-branching
explosion. More specifically, this figure shows plots of the pressure p, temper-
ature T , reactant concentration YF and radical concentration YR at different
time instances. Therein, one can observe the gradual build-up of radicals
which is accompanied by the simultaneous increase of pressure and temper-
ature. This leads to the aforementioned chain-branching explosion and the
formation of the shock wave that eventually re-initiates the detonation.
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Figure 2: Profiles of flow variables at different time instances that depict the chain-
branching explosion that causes the re-ignition of the detonation tIIf1.1 downstream of a
single porous section. The porosity of the section is φ = 0.95 and its length is 10 l1/2.
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These observations have been corroborated by simulations with the other
two types of detonations considered herein, tIf1.1 and tIIf1.6. According to
them, the detonations always re-ignite at a certain distance from the porous
section. Additionally, we have performed simulations with longer porous
media, namely, 15 and 20 l1/2 long. In all cases, the detonations re-initiate
downstream of the porous section, independently of the type of detonation
or length of the porous section. Also, our simulations predicted that the
re-initiation time, tr, and distance, lr, increase monotonically with the length
of the porous section, as expected.

Within the framework of our investigations, we have also performed a
parametric study of the re-initiation time and distance with respect to the
porosity φ. The results of this study for the detonations tIf1.1, tIIf1.1 and
tIIf1.6, respectively, are presented in Figures 3, 4 and 5. For the porosity
range considered herein, 0.80 ≤ φ ≤ 0.98, both tr and lr decrease linearly
with the porosity φ for detonations tIf1.1 and tIIf1.1, i.e. when the overdrive
factor is f = 1.1.
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0
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t r

0.90.850.8

200

800

1000

1200
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l r

0.90.850.8

600

Figure 3: Attenuation of the detonation tIf1.1 by a single porous section: variation of the
re-initiation time tr and distance lr with porosity. The length of the porous section is 10
l1/2. Left: tr. Right: lr. The star symbol corresponds to the numerical results and the
line to a least-squares fit.

Further, upon comparison of the plots in Figures 3 and 4, we may infer
that the termination reaction I results in proportionally longer re-initiation
times and distances. Moreover, the slopes of the curves tr(φ) and lr(φ) are
steeper for the detonation tIf1.1. In other words, the rate at which tr and lr
decrease with the porosity is higher when the termination reaction is of type
I. This is attributed to the higher dependence of the radical concentration
YR on the gas density in the termination reaction II. Indeed, according to the
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right-hand sides of equations (19a) and (19b), respectively, YR scales with ρ2

for termination I and with ρ3 for termination II.
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Figure 4: Attenuation of the detonation tIIf1.1 by a single porous section: variation of
the re-initiation time tr and distance lr with porosity. The length of the porous section is
10 l1/2. Left: tr. Right: lr. The star symbol corresponds to the numerical results and the
line to a least-squares fit.
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Figure 5: Attenuation of the detonation tIIf1.6 by a single porous section: variation of
the re-initiation time tr and distance lr with porosity. The length of the porous section is
10 l1/2. Left: tr. Right: lr. The star symbol corresponds to the numerical results and the
line to a least-squares fit.

On the other hand, for the detonation with high overdrive, tIIf1.6, the
variation of tr and lr with φ is better approximated by a quadratic curve than
with a linear one. Moreover, the slopes of tr(φ) and lr(φ) are steeper for this
detonation. In other words, as the overdrive factor and the strength of the
detonation increase, so does the sensitivity of tr and lr with the porosity φ.
Also, upon comparison of the plots in Figures 4 and 5, we may infer that
the stronger detonation, i.e. the one with the higher overdrive, has shorter
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re-initiation time tr, as expected. (Note that the half-reaction time t1/2 of
tIIf1.6 is much shorter than that of tIIf1.1, as is evidenced by the fact that
the pre-exponential factors for tIIf1.6 are much smaller than those of tIIf.1.)

The above discussion on detonation re-initiation refers to cases in which
the re-initiation time is sufficiently short so that heat losses due to inter-
phasial heat transfer do not play a significant role. However, when the re-
initiation times become too long (for example, by employing much longer
porous sections), then these heat losses may actually prevent the re-initiation
of the detonation.

3.3. Array of porous sections

In this subsection we present 2D simulations of detonation attenuation by
a perpetual array of porous sections. The length of each porous section is kept
at 10 l1/2 and the distance between neighboring sections is 20 l1/2. In other
words, the flow domain consists of alternating pure-fluid and porous sections,
each one of them being 10 l1/2 long. The width of the computational domain
is 10 l1/2 and periodic conditions are imposed at the lateral boundaries.

In an unobstructed channel of such width, the ZND detonations men-
tioned above develop cellular patterns whose cell size is equal to the channel
width. In other words, there is one cell per period. On the other hand, our
simulations predicted that, in the presence of a perpetual array of porous
sections, the flow structure remains essentially one-dimensional. In other
words, the variations of the flow quantities and detonation properties in the
transversal direction are negligible. This is due to the fact that the porous
sections suppress transversal instabilities.

Further, the array of porous sections causes the suppression of the deto-
nation no matter how high their porosity φ is. More specifically, the strength
of the leading shock attenuates significantly with time and the distance be-
tween the reaction zone and the leading shock increases with time. In other
words, the porous obstacles cause the decoupling of the detonation into a
shock of decreasing strength and a (slower-moving) subsonic flame.

Figure 6 shows the history of the shock pressure, ps, for the detonation
tIIf1.1 and porous sections of porosity φ = 0.95. According to it, the decrease
of the shock pressure is not monotonic but is modulated by the alternation
of porous and pure-fluid zones. In particular, when the shock passes through
a porous section, ps decreases. Equivalently, when it passes through a pure-
fluid section, ps increases albeit moderately.
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Also, in Figure 7 we provide plots of the profiles of the gas pressure p
and reactant concentration YF at three different times for the same case,
i.e. detonation tIf1.1 with porous sections of porosity φ = 0.95. These
plots confirm that the distance between the reaction zone and the precursor
shock increases with time, despite the high porosity of the porous sections.
Further, these plots reaffirm that the shock pressure decreases strongly inside
the porous sections and mildly in the pure-fluid ones, as mentioned above.
Interestingly, in the same figure and in the plot for t = 20, we discern a shock
wave located at x ≈ 22 that propagates upstream. This is the reflected shock
that was formed when the leading shock entered the second porous obstacle.
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Figure 6: Attenuation and suppression of the detonation tIIf1.1 by an array of porous
sections with porosity φ = 0.95. The plot shows the evolution of the shock pressure ps
with time. The segments of the plot in which ps decreases correspond to the time intervals
that the precursor shock is located inside a porous section. Equivalently, the segments in
which ps increases correspond to the time intervals that the precursor shock is located in
a pure-fluid unobstructed region.

The detonation suppression is caused by the interphasial force β11u which
plays the role of a momentum sink for the gas. Due to this force, when the
leading shock passes through a porous section, its strength decreases. This
results in lower temperatures behind the shock. Consequently, the material
behind the leading shock does not burn rapidly and therefore the combustion
zone detaches from the shock and stays at its wake. The reaction zone is then
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advected by the flow and its distance from the leading shock increases with
time. Nonetheless, the temperature inside the reaction zone is still higher
than the cross-over temperature Tc and, therefore, the radical concentration
builds up, thereby leading to chain-branching explosions. In Figure 7 we can
infer that such an explosion has started at t = 40 and in the vicinity of low
reactant concentration YF, at x ≈ 37.5.
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Figure 7: Attenuation and suppression of the detonation tIIf1.1 by an array of porous
sections with porosity φ = 0.95: pressure and reactant concentration profiles at different
time instances. Top: pressure p. Bottom: reactant-concentration YF. The shaded areas
mark the porous sections.

However, the pressure waves that are produced from these explosions
attenuate rapidly once they enter a porous section. As a result, they never
reach the leading shock which continues to attenuate and eventually reduces
to an acoustic discontinuity. The evolution of a pressure wave created by
a chain-branching explosion is depicted in Figure 8 which clearly shows its
rapid attenuation once it enters the porous section ahead of it.

The combustion behind the leading shock does not extinguish because
the temperature is sufficiently high to maintain the production of radicals.
Consequently, the combustion zone is advected by the flow and propagates
at subsonic speeds, which implies that its distance from the leading shock
increases with time. In other words, the porous sections keep the combustion
zone separated from the leading shock. Thus, the detonation is suppressed

18



not because the combustion is shut off but because the distance of the reac-
tion zone from the shock increases with time. This is an example of detona-
tion suppression via mechanical (as opposed to chemical or thermal) means.
Such a detonation decoupling into a leading shock and a fast subsonic flame
has also been reported in recent experiments on a rather different setting,
namely, detonation attenuation via highly porous wall coatings [26].
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Figure 8: Attenuation and suppression of the detonation tIIf1.1 by an array of porous
sections with φ = 0.95: evolution of the pressure waves created by a chain-branching
explosion. At t = 146 the explosion is located at x ≈ 100.5. The pressure waves attenuate
rapidly once the enter a porous section (black line). The shaded areas mark the porous
sections.

During our study, we performed additional simulations with increased
spacing between the porous sections, namely 15 and 20 l1/2. These simula-
tions predicted that the detonations still get suppressed despite the increased
spacing. The reason for this is that the detonation attenuation inside the
porous sections is far too strong for the shock to regain its strength in the
intervening pure-fluid zones. In fact, on the basis of our simulations, we
may conjecture that for the detonation to re-ignite, the spacing between the
porous sections should be at the order of the re-initiation length lr (mentioned
above) for a detonation passing through a single porous section.

Finally, it is worth adding that, according to our simulations, the inter-
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phasial heat exchange plays no role in the evolution of the detonations. This
is mainly due to the small value of the gas conductivity and the large value
of the macroscopic Reynolds number Re that enter equation (23). Thus, the
characteristic time-scale of the interphasial heat exchange is too long with
respect to the hydrodynamic time-scale and consequently it has not effect on
the dynamics of the flow. In other words, the attenuation of detonations by
porous media is due to purely mechanical effects and heat losses do not con-
tribute to it. This is in contrast to the role of the interphasial heat exchange
in particle-laden detonations, which can be considerable [49, 50].

3.4. Biperiodic array of porous blocks

In this subsection we present and analyze 2D simulations of detonation
attenuation by a biperiodic array of porous blocks. The dimensions of each
block are 10× 5 l1/2, which means that the porous obstacles do not span the
entire width of the channel. The streamwise distance between the centers
of neighboring block is set at 20 l1/2. As in the simulations of the previous
subsection, the width of the computational domain is 10 l1/2 and periodic
conditions are applied along the lateral boundaries. Herein, we present results
for the detonation tIIf1.1. Two cases with different values of the porosity of
the blocks have been considered, namely, φ = 0.95 and φ = 0.98.

According to our simulations, the fact that the porous blocks do not span
the entire width of the channel signifies that the detonation wave does not
quench. In other words, the unobstructed pathways that are available to the
fluid particles render the detonation sustainable, at least for the duration of
the simulations. Nonetheless, the force exerted by the solid matrix on the
gas still has a profound effect on the evolution of the detonation wave.

The shock-pressure histories at the lower periodic boundary y = 0 for
these two cases are shown in Figure 9. According to these plots, once the
detonation enters the first block, the shock pressure drops significantly, to
approximately half the value of the corresponding ZND wave. Subsequently,
the detonation propagates down the channel in an oscillatory mode. The
frequency and amplitude of the shock-pressure oscillation are modulated by
the porous blocks. For the two cases examined herein, the amplitude of the
oscillation is approximately 40% of the mean (time-averaged) value of the
shock pressure.

It is noted that the leading-shock pressure is considerably lower than
the maxima of the pressure field; the latter ones correspond to reflected
shocks that are formed upon incidence of the leading shock on the porous
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obstacles. Further, in Figure 9 one can observe that the mean shock pressure
is mildly lower for φ = 0.98 than for φ = 0.95, as one would expect. However,
the oscillation frequency of the shock pressure is almost the same in the
two cases, which corroborates the fact that it is mainly controlled by the
distance between neighboring porous blocks. Further, the oscillation of the
shock pressure is characterized by very steep increases followed by long time
periods of attenuation. These long periods of attenuation correspond to
the passing of the leading shock through obstructed sections, whereas the
sharp peaks occur in the unobstructed sections. In fact, the oscillation of
the leading shock is reminiscent to those of quasi-detonations in tubes with
a dense array of obstacles in [14]. However, as is explained below, there is an
important difference between the low-velocity detonations predicted herein
and quasi-detonations in tubes with solid obstacles.
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Figure 9: Attenuation of the detonation tIIf1.1 by a biperiodic array of porous blocks:
shock pressure histories at y = 0 for blocks with φ = 0.95 and φ = 0.98, respectively.

Contour plots of the pressure p and reactant concentration YF for three
different time instances are plotted in Figure 10. The most striking feature
is that the main reaction front is kept at a distance from the leading shock.
This is due to the attenuation of the shock which results in lower post-shock
temperatures and, therefore, ignition delays. Another important feature is
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that the reaction zone decelerates inside the porous blocks due to the inter-
phasial force and, consequently, is stretched along their lateral boundaries.
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Figure 10: Attenuation of the detonation tIIf1.1 by a biperiodic array of porous blocks
with φ = 0.95: contour plots of the pressure (blue lines) and reactant mass fraction YF (red
lines) at different time instances. The embedded rectangles mark the porous blocks. Two
periods in the y direction are shown. The pressure maxima at t = 108, 112 and 118 are
p = 4.75, 4.54 and 4.65, respectively, and correspond to reflected shocks that propagate
upstream.

Also, from Figure 10 we infer that the leading shock attains the typical
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cellular structure when it propagates in an unobstructed section of the chan-
nel. This structure is characterized by high shock curvature and triple points
that move along the shock and collide with each other. On the contrary, in
the obstructed sections, both the leading shock and the transverse shocks
emanating from its triple points attenuate. As a result, the leading shock
loses almost all of its curvature and essentially flattens out. The attenuation
of transversal shocks has been identified as a key factor to the quenching of
detonations, including those in channels with porous wall coatings [27, 28].
In the flow under study, the suppression of the transversal instabilities and
shocks is temporary because once the leading shock exits a porous block,
then triple points are formed in a very short time. Nonetheless, due to the
low activation energy and heat release (resulting from the preheating of the
reactants) the transverse shocks are weak and, therefore, their impact on the
propagation of the detonation is reduced.

Despite their efficiency as momentum sinks, the porous blocks do not
absorb enough momentum from the gas to prevent the re-establishment of
the detonation cellular structure, at least for the range of porosity examined
herein. As a result, the detonation does not quench but, instead, the com-
bined system of leading shock and combustion zone propagates in the form of
a low-velocity detonation. For φ = 0.95, the mean (time-averaged) detona-
tion velocity is D ≈= 1.6, which is approximately 70% of the corresponding
ZND velocity given in Table 1. Similarly, for φ = 0.98 the mean detonation
velocity is approximately 75% of the corresponding ZND one.

However, there is an important difference between the low-velocity deto-
nations predicted herein and quasi-detonations in tubes with solid obstacles.
More specifically, as mentioned in the introduction, quasi-detonations due to
solid obstacles are sustained via re-ignitions due to reflections of the diffracted
transverse shocks from the tube walls. But as mentioned above, the reflected
shocks in the flows under study are not particularly strong. Moreover, due to
the high porosity of the obstacles, their reflections are even weaker. As a re-
sult, the reflected transverse waves cannot raise the temperature sufficiently
so as to generate chain-branching explosions in the wake of the leading shock.
Further, they attenuate rapidly inside the porous blocks that they encounter.
Instead, the reflected shocks contribute to the slow rise of the temperature
of the unreacted gas in the unobstructed regions and to the establishment a
combustion zone albeit with a certain ignition delay. As a result, the com-
bustion front is maintained at a certain distance from the leading shock, as
can be readily seen in Figure 10.
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Figure 11: Attenuation of the detonation tIIf1.1 by a biperiodic array of porous blocks of
φ = 0.95: temperature profiles along two different horizontal axes. Top: profile along the
line y = 0 which is unobstructed, i.e. it does not “cut through” a porous block. Bottom:
profile along the line y = 5 which cuts through a porous block. The shaded areas mark
the porous blocks. The time instances are the same as those considered in Figure 10.

Additional information about this process can be provided by the tem-
perature profiles shown in Figure 11. The top part of this figure shows
temperature profiles along the horizontal line y = 0 which is unobstructed,
i.e. it does not “cut through” the series of porous blocks. The bottom part
shows temperature profiles along the line y = 5 which cuts through the ar-
rays of porous blocks. We observe that along unobstructed lines, the shock
temperature is below the cross-over temperature Tc = 1.27 but rises slowly
as the distance behind the shock increases. Combustion is initiated at the
points where the temperature surpasses Tc. The main reaction zone is lo-
cated at approximately 15 l1/2 behind the leading front, and is marked by
the sharp temperature gradient. On the other hand, along lines that cut
through the porous blocks, the temperature stays below Tc over much longer
distances behind the leading shock, approximately 30 l1/2. The reason for
this is the deceleration of the combustion front inside porous blocks due to
interphasial drag. Moreover, the reflected shocks in the wake of the leading
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front attenuate rapidly once they enter a porous block and, therefore, cannot
increase the temperature (hence the burning rate) of the gas located therein.

Finally, in Figure 12 we present contour plots of the vorticity field and the
radical concentration YR for the case with φ = 0.95; they correspond to the
third plot of Figure 10. According to this figure, the vorticity distribution
inside the porous blocks is minimal due to the force exerted by the solid
matrix on the gas which suppresses the flow instabilities. On the other hand,
large vortical structures are present in the pure-fluid regions in the wake of the
leading front. Initially, they are part of the vortex sheets that emanate from
the triple points of the leading shock. Once they encounter a porous block,
these large vortices detach from the shock, go around the block and interact
with other vortical structures. Also, these vortices stretch the pockets of
partially unreacted material and break them into smaller ones. This results
in an increase of the overall reaction surface area.
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Figure 12: Attenuation of the detonation tIIf1.1 by a biperiodic array of porous blocks
of φ = 0.95: contour plots of the absolute value of vorticity and radical concentration YR
(magenta lines). The time instance is the same as in the bottom plot of Figure 10. The
embedded rectangles mark the porous sections. Two periods in the y direction are shown.
The figure contains 5 equally spaced contours of YR between 0 and the maximum value
YR = 0.294 and 5 equally spaced contours of the absolute value of vorticity between the
values 0.5 and 1.2.

With regard to Figure 12, it is worth observing that the difference in
the streamwise velocities inside and outside a porous block, leads to the
formation of shear layers along the lateral boundaries of the blocks. These
shear layers become unstable very quickly and interact with the vortex sheets
of the leading front, which tends to increase the reaction surface area as
well. The formation of such shear layers has been reported in combustion
experiments in horizontal partially-filled channels [51]. In incompressible
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flows, the formation and evolution of shear layers at the interfaces between
porous and pure-fluid regions is well documented [52], whereas the dynamics
of equivalent compressible shear layers are less understood.

4. Concluding remarks

In this article, the attenuation of gaseous detonations in channels that
contain porous obstacles of fine microstructure has been studied via direct
numerical simulations. This study was based on a thermo-mechanical model
for flows in superposed porous and pure-fluid regions. According to it, the
solid matrix is represented as a rigid continuum, the porosity of which is
introduced as a distribution parameter. With regard to chemical kinetics, we
employed two different three-step chain-branching schemes. The difference
between them lies on the termination reaction; the rate of the termination
reaction in the first scheme scales linearly with the gas density, whereas that
of the second one scales quadratically.

The basic mechanism for the attenuation of detonations is the interphasial
force exerted by the solid matrix which acts as a momentum sink for the gas.
By contrast, the effect of the interphasial heat exchange is negligible. The
simulations predicted that a single porous section, i.e. a partial blockage
that spans the cross section of the channel, attenuates substantially the det-
onation, even at very high porositites. Nonetheless, once the detonation exits
the porous section, it re-initiates at some distance from it. At low overdrives,
both the re-initiation distance and time decrease linearly with the porosity,
whereas at high overdrives, their decrease scales quadratically with the poros-
ity. Also, according to the simulations, the detonation re-initiation occurs
faster with the second termination reaction than with the first one. This is
attributed to the fact that the rate of the second termination reaction has a
higher dependence on the gas density.

On the other hand, an array of porous sections always causes the sup-
pression of the detonation. This is due to the perpetual decrease of the
shock strength and the low post-shock temperatures that such a decrease en-
tails, which results in a decoupling of the detonation in a shock of decreasing
strength and a subsonic flame.

Further, our simulations predicted that biperiodic arrays of porous blocks
do not quench the detonation, at least for the duration of our simulations,
but nonetheless slow it down significantly. The shock pressure oscillates
in a manner similar to quasi-detonations propagating in tubes with dense
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solid obstacles. However, in the flows examined herein and in contrast to
quasi-detonations, there are no re-initiation events caused by reflections of
transverse shock waves. Instead, the main reaction front is able to follow
the leading shock albeit at a certain distance from it. The combined shock-
reaction zone system propagates at speeds that are much lower than that of
the corresponding ZND wave.
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