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Abstract

The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still

not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular

solution model, we build a database of more than 100 000 BCC and FCC equimolar alloys formed using 27

common elements. We statistically study how enthalpic and entropic contributions evolve with the number of

elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a

growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic

contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy

increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions

prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given

lattice with the absence of strongly competing intermetallics.
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High-entropy alloys (HEAs) [1, 2] and the holistic view of complex concentrated alloys [3] have attracted great

attention in recent years because they offer new degrees of freedom to design alloys with attractive combinations

of properties [4, 5, 6, 7]. Contrary to traditional alloys which rely on one dominant base metal and small additions

of other elements, HEAs are concentrated solutions of 5 or more principle elements forming single-phase solid

solutions [8]. This represents a paradigm shift from the edges of the hyperdimensional compositional space to

the vast and unexplored central regions [9]. It could look surprising that thermodynamics allows such single-

phase multicomponent alloys to form instead of multiple phases. Indeed, numerous attempts of forming alloys at

equiatomic compositions have led to multiphase microstructures and it is likely that only specific combinations

of elements such as the Cantor alloy (CoCrFeMnNi) could lead to single phase HEAs [8]. The prevalent rational

explaining the formation of these multi-component single phase alloys considers that the configurational entropy

increases with the number of components and is maximized at equimolarity, promoting in this way the formation

of the solid-solution phase [2, 8, 10, 11]. The factors promoting the formation of HEAs are still heavily discussed

in the literature. From a more applied point of view, being able to understand the formation of disordered solid

solutions would enable the prediction of specific combinations of elements that tend to form single-phase HEAs.

This would help navigate more efficiently the gigantic space of potential HEAs. To investigate phase stability and

phase formation in HEAs, atomic descriptors such as electronegativity or valence electron concentration have been

used [12, 13, 14, 15, 16, 17] as well as thermodynamics modeling based on experimental data and the CALPHAD

approach [11, 18, 19]. Approaches based on descriptors rely on the appropriateness of the chosen descriptors

while CALPHAD-built phase diagrams rely on experimental data that can be sparse. On the other hand, ab initio

methods have been extremely successful in predicting formation enthalpies of materials and alloys [20, 21, 22].

In this work, we use a large database of ab initio computations to assess the reasons for the stability of HEAs.

A regular solution model based on binary interactions fitted on ab initio computed enthalpies is developed together

with a database of formation enthalpies covering more than 100 000 BCC and FCC equimolar compositions (up

to quinaries) resulting from the combinations of 27 common elements. This database is used to statistically assess

how the HEAs thermodynamic stability (based on both contribution of enthalpy and entropy) changes as the

number of elements increases, offering a rationalization of the stability of these unique alloys.

At a given temperature and pressure, the thermodynamic stability of an alloy results from the competition

between the Gibbs free energies of all possible phases. The Gibbs free energy (G) of a phase depends on its

enthalpy (H) and entropy (S) following G = H − TS. Assuming that configurational effects dominate the

entropy and can be approximated by an ideal mixing, the molar entropy of an n-component alloy is Sideal =

−R
∑n

i xi lnxi, where R is the gas constant and xi the molar fraction of the ith element. In the case of an

equimolar alloy, the ideal mixing entropy becomes Sideal = R lnn. Figure 1 presents the evolution of the ideal

entropy (-TSideal) as a function of the number of elements n. As the number of species in the alloy increases, the

entropy contribution grows.

This simple analysis of high configurational entropy overcoming the enthalpy and stabilizing single phase

multi-component solid solutions is still present in the literature even though it shows some major limitations.

Indeed, since the configurational entropy monotonically increases with the number of elements, this rationale

predicts that there will always be a number of species for which entropy overcomes enthalpy. It is contradicted

by the experimental results [23, 24] that show a decrease of the number of single phase HEAs with the number of
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Figure 1: Dependence of thermodynamic quantities with the number of species in the solid solution. A temperature of 1 000 K was assumed

for all quantities. In addition to the entropy with respect to elements −TSn (blue triangles), we show the energy difference between the

solid solution with n elements and the competing solid solutions with n − 1 elements for the entropy −T∆Sn−(n−1) (green squares),

the (average) enthalpy ∆Hn−(n−1) (black circles), and the (average) free energy ∆Gn−(n−1) (red diamonds). The energy difference of

enthalpy of mixing is determined using Eq. (4), whereas the binary interaction Ω is calculated using Eq. (3) and averaged over all binary

systems. The phase diagram in the inset demonstrates the competition between phases containing different number of elements.

elements [11]. As previously mentioned in the literature [8, 11, 25], it can be argued that this simple analysis is in

fact misleading. Indeed, the equilibrium state of an alloy results from the comparison of the Gibbs free energies

of all the potential phases. It is thus of primary importance to compare the different possibilities. In that sense,

when the ideal configurational entropy of an n elements alloy increases, the entropy of the other competing alloys

(with the number of elements lower than n) increases as well. Therefore, in the case of equimolar alloys, the

true estimation of the entropy contribution to stability of an n components solid solution is its difference with

the entropy of the n − 1 solid solutions. For instance, a ternary solid solution ABC competes directly with the

formation of three binary solid solutions AB, AC, BC (see the inset of Fig. 1). The difference in entropy between

the n and n− 1 components solid solutions can be shown to be (see Supplementary Materials 1)

∆Sn−(n−1) = R ln

(
n

n− 1

)
. (1)

The quantity ∆Sn−(n−1) can be referred to as the ideal entropy of competition. Figure 1 shows how −T∆Sn−(n−1)

evolves with the number of elements in the alloy. Its evolution is drastically different from the ideal configura-

tional entropy (−TSideal). Even though both Sideal and ∆Sn−(n−1) favor mixing, the driving force for mixing in

the case of ∆Sn−(n−1) decreases with an increasing number of elements (tending to zero for an infinite number

of elements). This evolution is more physically intuitive as it is unlikely that the stabilization due to the entropy

increases indefinitely with the number of elements.

While the ideal configurational entropy is the same for any equimolar alloy with the same number of ele-

ments, the enthalpy of mixing depends on the nature of the constitutive elements. The enthalpies of random solid

solutions can be calculated by density functional theory (DFT) using the special quasi random structures (SQS)

approach [26] which provides a series of representative structures on a given lattice that are the closest to a random

solid solution. This SQS approach thus offers the possibility to build a database of enthalpies of equimolar random

solid solutions using DFT. However, this task remains formidable. Indeed, the 27 common elements (Al, Co, Cr,

Cu, Fe, Hf, Mn, Mo, Nb, Ni, Ta, Ti, W, Zr, V, Mg, Re, Os, Rh, Ir, Pd, Pt, Ag, Au, Zn, Cd, Hg), would give rise
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to 2 925 ternary, 17 550 quaternary, and 80 730 quinary equimolar random solutions. For each of these alloys, the

pertinent SQS needs to be computed. Alternatively, the regular solution method is widely used. The enthalpy of

mixing of an equimolar n-component alloy system on a given lattice (e.g.m, FCC or BCC) can be described by

the binary interactions (Ωij) as

∆Hmix
n =

∑
i

∑
j>i

Ωijxixj =
∑
i

∑
j>i

Ωij

(
1

n

)2

, (2)

where the atomic fraction xi = xj = 1
n , and the sum over i and j runs through all combinations of two elements

and Ωij are interaction terms related physically to the bonding of those two elements. For instance, the enthalpy

of a quaternary alloy A0.25B0.25C0.25D0.25 would be the result of 6 binary interaction terms ΩAB , ΩBC , ΩCD,

· · · , weighted equally. The binary interaction parameters were obtained from the enthalpy of mixing of the binary

systems ∆Hmix
ij as

Ωij =

(
1

xixj

)
∆Hmix

ij = 4

[
ESQS

ij − 1

2
(Ei + Ej)

]
, (3)

where xi = xj = 1
2 for an equimolar binary. ESQS

ij is the DFT total energy of the binary SQS, and Ei is

the total energy of the constituent unary system i with the same parent lattice of the SQS. For each binary, we

consider the permutation in the atomic positions of the two elements and take the average total energies of the

two SQS structures for ESQS
ij . The SQS were obtained using the Alloy Theoretic Automated Toolkit (ATAT)

software [27]. The pair interactions for the SQS structures have been set up to the 5th nearest neighbor while the

triplet interactions have been chosen to be up to the 3rd nearest neighbor. DFT calculations were performed with

the generalized-gradient approximation within the Perdew-Burke-Ernzerhof (GGA-PBE) implementation using

the Vienna ab initio simulation package (VASP) [28, 29]. Enthalpies are considered equal to the DFT total energies

as the pressure times volume component is small in solids and can be neglected. The magnetic moments were

initialized in a ferromagnetic state for magnetic elements. A grid density of 100 k-points/Å−3 was considered.

The plane-wave energy cutoff was set to 400 eV. The atomic positions were considered relaxed when the forces

on each atom were less than 0.02 eV/Å. All input generation and analysis including the convex hull constructions

were performed using the pymatgen software [30, 31].

We found that a simple regular solution with only binary interactions reproduces very well the enthalpies

obtained from the full SQS of a series of quinary and quaternary systems. Figure 2(a) compares the enthalpy of

some quaternary and quinary FCC and BCC systems computed with our regular solution model to the enthalpy of

the same alloy computed by the full SQS. The agreement is reasonably good despite the simplicity of the model.

The adequacy of the proposed approach can also be seen in Fig. 2(b) which compares the binary regular solution

model enthalpy with the full SQS enthalpy for the FCC and BCC alloys (R2 value of 0.977). The root mean

square error from the regular solution model compared to the full SQS is around 16 meV/atoms. This value is

in the order of magnitude of the typical DFT errors as well as other contributions neglected in this work such

as the vibrational entropy [21, 32, 33, 34]. We also tested a ternary regular solution model and no significant

improvement with respect to the full SQS model was observed as the root mean square error was not further

improved (see Supplementary Materials 2).

From this analysis, it can be concluded that for the enthalpy of multi-component random solid solutions it is

sufficient to use the enthalpy of binary SQS with the regular solution model. In total, only 1 404 computations of
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Figure 2: (a) Comparison between the enthalpy value obtained by the binary regular solution model and calculated with full SQS for quaternary

and quinary alloys. (b) Correlation between the enthalpy values obtained by the binary regular solution model [cf. Eqs. (2) and (3)] and

calculated through SQS for the FCC (in red) and BCC (in blue) alloys. For both plots the bar indicates the spread in energy between all the

different SQS.

SQS of 16 atoms had to be performed to generate a database covering all 101 205 ternary, quaternary, and quinary

combinations of the 27 elements for both BCC and FCC structures. Owing to the regular solution model, it is

now possible to investigate how the enthalpy competition between n components equimolar alloys and their lower

equimolar n− 1 components alloys evolves as the number of components increases. As the enthalpy depends on

the nature of the elements, the proposed analysis is statistical and is based on the database of ab initio estimated

binary interactions. It is found that the competition between the enthalpy of mixing of the n element equimolar

alloy and that of its lower n− 1 element equimolar alloys is (see Supplementary Materials 3):

∆Hn−(n−1) =
Ω

2n(n− 1)
, (4)

where Ω is the average of the different binary interaction terms in the database of the FCC or BCC alloys. The en-

thalpic competition is plotted in Fig. 1. This term is always negative in our dataset, indicating a general tendency

for mixing of any number of components. In other words, mixing in random solid solutions is overall favored

for FCC or BCC lattices. However, the magnitude of the enthalpic driving force varies strongly with the number

of elements. It decreases as the number of species in the alloy increases, tending towards zero for increasing

number of elements. Finally, the evolution of the Gibbs free energy with the number of species at a representative

synthesis temperature of 1 000 K is plotted in Fig. 1 by adding the enthalpic and entropic contributions. The ten-

dency present both in the entropy and enthalpy contributions of a favored mixing which becomes weaker with the

number of elements is of course also present in the resulting Gibbs free energy evolution.

So far, we have analyzed trends in stability assuming that an n-component alloys only competes with the n−1

component alloys. However, the enthalpy of an n-component alloys is not only in competition with the n − 1

alloys but also with the n − 2 or lower orders alloys. Fortunately, a full stability analysis taking into account

all competing equimolar solid solutions can be performed using the convex hull construction. The convex hull

construction effectively compares all the possible decomposition for a series of phases and indicates the stable
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Figure 3: Free energy and enthalpy relative to the energy hull for all equimolar FCC solid solutions. A negative value indicates stability

(energy below hull) and a positive value indicates instability (energy above hull). The black boxes represent the distribution of the enthalpy

relative to the hull. These boxes correspond to the first and third quartile while the bars correspond the 90th and 10th percentiles. The blue

and red lines plot the median of the free energy relative to the hull at 1 000 K considering only solid solutions and including intermetallics,

respectively.

phase or the combinations of phases (see e.g., Ref. [21]). This full stability analysis for all possible alloys up

to 5 elements based on 27 elements (which represents a total 101 205 equimolar compositions) was performed

based on the regular solution enthalpy and the ideal configurational entropy. For each alloy, a convex hull analysis

was performed to show how stable or unstable the equimolar alloy is with respect to all competing lower orders

equimolar solid solutions. For example, for the quinary alloy A0.2B0.2C0.2D0.2E0.2, the competition with respect

to 10 binaries (A0.5B0.5, A0.5C0.5, · · · ), 10 ternaries (A1/3B1/3C1/3, A1/3B1/3D1/3, · · · ), and 5 quaternaries

(A0.25B0.25C0.25D0.25, A0.25B0.25C0.25E0.25, · · · ) was considered. The results of this convex hull analysis are

presented in Fig. 3. The enthalpy above hull (positive) and the inverse enthalpy above hull (negative) are reported.

Note that a positive value indicates an instability with respect to competing phases and a negative value indicates

a stable phase. The sizable spread of the enthalpy is expected from a strong dependence of the enthalpy of mixing

on the nature of the elements. The enthalpy above/below hull increases as the number of elements increases.

The strongest formers are binary alloys with the higher orders alloys for which the enthalpic driving force for

mixing become increasingly unfavorable. By adding an ideal configurational entropy component at a temperature

representative of alloy processing (1 000 K), we can compute a similar convex hull using the Gibbs free energy.

The median values of the free energy above/below hull is plotted in Fig. 3. The Gibbs free energy is shifted towards

higher stability (more negative values) compared to the enthalpy as expected from the entropic stabilization. We

note that the trends are very similar for both the FCC and BCC lattices (see Supplementary Materials 4 and 5).

With this stability analysis, the proportion of quinary systems that would be thermodynamically stable at 1 000 K

can be estimated. Figure 4 plots the percentage of equimolar compositions that would thermodynamically form a

single-phase HEA in our model at 1 000 K as a function of the number of elements. About 20% (16 469 alloys) and

14.5% (11 729 alloys) of the quinary alloys are found to be thermodynamically stable at 1 000 K for the FCC and

the BCC lattices, respectively. This indicates that randomly mixing elements up to quinary alloys on simple FCC
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Figure 4: Percentage of stable FCC (blue points) without and with the intermetallic alloys (red points) versus the number of elements at

1 000 K.

and BCC lattices appears to be not strongly prevented by energetic factors, i.e., the penalty from the enthalpy term

is not very large. It is worth noting that this easy mixing is likely to be strongly related to the nature of the metallic

bond. Compared to the experimental literature, the number of potential multi-component stable alloys appears to

be relatively high in view of the limited number of reported HEAs (less than 300 quaternary and quinary equimolar

alloys) [35, 36]. This suggests that other factors beyond competitions between random solid solutions also prevent

the formation of HEAs. Indeed, intermetallics have hitherto not been included in our analysis. In order to assess

the importance of intermetallics, the enthalpy of the stable binary intermetallics were calculated by DFT and a new

convex hull analysis was performed including the competition from intermetallics. The intermetallic structures

were obtained from the AFLOW database [37]. Since the parameters of present DFT calculations differ from

what is used in the AFLOW database, we selected intermetallic structures with an energy-above-hull value smaller

than 10 meV/atom from the database and performed a full relaxation for these structures. Figure 3 shows the

free energy below/above hull including binary intermetallics. The free energy is very significantly shifted towards

higher values and thus stronger instability. This shift in free energy strongly impacts the percentage of stable

HEAs as shown in Fig. 4. This indicates that the rare combination of elements leading to HEA formation requires

both a favorable enthalpic mixing of the elements on a given FCC or BCC lattice (i.e., a tendency to easily form

solid solutions) and the absence of too strongly forming intermetallics.

We note that our present analysis does not consider the temperature dependence of the enthalpy and the en-

tropy. In addition, we consider only the ideal configurational component of the entropy as it is at the root of the

regular solution model. Taking into account the temperature effect [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]

and, in particular, the vibrational entropy [49, 50, 51] would be computationally too expensive for the present

large-scale study. Nevertheless, we show that the analysis based on the simple regular solution model and ideal

configurational entropy captures the statistical trend on how the increasing number of elements stabilizes the

formation of single-phase HEAs.

In conclusion, motivated by the need to understand the fundamental thermodynamic reasons behind HEAs for-

mation, we studied how the enthalpy and entropy of multi-component equimolar random solid solutions change
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with an increasing number of elements. We demonstrated that the original rational explaining the existence of

HEAs through an increase of ideal configurational entropy with the number of elements is misleading. A more

relevant analysis based on entropy differences between competing solid solutions (e.g., quinary versus quaternary)

indicates a lower entropic driving force when the number of elements increases. The second part of our analy-

sis considered the enthalpic contribution using ab initio computations. We showed that a simple regular binary

solution model using ab initio computed binary SQS leads to an adequate accuracy in computing the enthalpy of

multi-component alloys. Using this approach, a database of more than 100 000 alloys based on FCC and BCC ran-

dom solid solutions was constructed. The enthalpic contribution is overall favorable to solid solution formation,

but with a large spread due to chemistry. As the number of elements increases, the enthalpic driving force for mix-

ing becomes weaker. When combining enthalpy and entropy at a relevant processing temperature, we highlight

that adding more elements makes it statistically more difficult to form random solid solutions. Nevertheless, our

analysis shows that the mixing of elements in equimolar random solution is still favorable enough to lead to tens

of thousands of potential HEAs stable at a reasonable processing temperature of 1 000 K. However, when compet-

ing intermetallics are taken into account, the number of potential stable HEAs is significantly limited. Therefore,

in addition to maximizing the configurational entropy, the formation of a single-phase HEA further requires a

chemistry that do not present strongly competitive intermetallics.
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