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Université Evangélique en Afrique, Bukavu, DR

Congo

N.L. Cizungu
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Abstract
In the Lake Kivu region, water erosion is the main driver for soil degradation, but observational data to
quantify the extent and to assess the spatial-temporal dynamics of the controlling factors are hardly available.
In particular, high spatial and temporal resolution rainfall data are essential as precipitation is the driving force
of soil erosion. In this study, we evaluated to what extent high temporal resolution data from the TAHMO
network (with poor spatial and long-term coverage) can be combined with low temporal resolution data
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(with a high spatial density covering long periods of time) to improve rainfall erosivity assessments. To this
end, 5 minute rainfall data from TAHMO stations in the Lake Kivu region, representing ca. 37 observation-
years, were analyzed. The analysis of the TAHMO data showed that rainfall erosivity was mainly controlled by
rainfall amount and elevation and that this relation was different for the dry and wet season. By combining
high and low temporal resolution databases and a set of spatial covariates, an environmental regression
approach (GAM) was used to assess the spatiotemporal patterns of rainfall erosivity for the whole region.
A validation procedure showed relatively good predictions for most months (R2 between 0.50 and 0.80),
while the model was less performant for the wettest (April) and two driest months (July and August) (R2

between 0.24 and 0.38). The predicted annual erosivity was highly variable with a range between 2000 and
9000 MJ mm ha�1 h�1 yr�1 and showed a pronounced east–west gradient which is strongly influenced by
local topography. This study showed that the combination of high and low temporal resolution rainfall data
and spatial prediction models can be used to improve the assessments of monthly and annual rainfall erosivity
patterns that are grounded in locally calibrated and validated data.
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I Introduction

In the Lake Kivu region (LKR), the larger cross-

border region between the DR Congo, Rwanda,

Uganda and Burundi, soil conservation faces

challenges stemming from landslides and flood-

ing, population growth, and limited access to

resources, as well as a limited regulatory frame-

work to impose prevention. With an average

density of 160 inhabitants per square kilometer

(Courtois and Manirakiza, 2015), the LKR is

among the most densely populated areas of the

African continent, relying largely on subsis-

tence farming for food production and charcoal

for energy. The increasing demand for food and

energy puts large pressure on physical land

resources in the region inducing land degrada-

tion. Soil loss by water erosion is one of the

most important land degradation processes in

the LKR (Karagame et al., 2016), but it is chal-

lenging to quantify its extent and impact. Lim-

ited local field observations make it difficult to

gain a precise understanding and quantification

of the phenomenon for the wider region (Vriel-

ing et al., 2010). Achieving a thorough quanti-

fication of the spatiotemporal patterns of soil

loss and their underlying drivers in the region,

as well as the application of tools to predict

changes in soil loss, response to land manage-

ment and climate change are paramount.

In a landscape with a steep topography, such

as the LKR, precipitation is the driving force of

soil erosion, and knowledge on rainfall erosivity

is useful to contextualize the soil loss problem.

The total kinetic energy of the rain exerted on

the soil surface controls how much soil is being

detached, while the amount of rainfall is an

important control on transport of eroded mate-

rials. Rainfall erosivity is therefore typically

described as the product of rainfall energy and

maximum 30-minute intensity, such as in the R-

factor (MJ mm ha�1 h�1 yr�1) of the RUSLE

(Wischmeier and Smith, 1978) and its predeces-

sor the USLE (Wischmeier and Smith, 1958). It

is well established that a few erosive events can

contribute to a significant share of erosion (Van-

tas et al., 2019). However, long-term dense time

series, i.e. with 5- to 30-minute logging inter-

vals, from pluviographs are required to accu-

rately estimate rainfall erosivity. These data

are not always available, particularly in tropical

Africa. Therefore, models have been developed

that correlate rainfall erosivity with more read-

ily available data (such as daily, monthly and

annual precipitation amounts) to estimate

2 Progress in Physical Geography XX(X)



rainfall erosivity (e.g. Bonilla and Vidal, 2011;

Vantas et al., 2019). For Africa, parametric

equations relating R-factor estimates to the

monthly values of rainfall depth have been

developed for North Africa (Smithen and

Schulze, 1982), Morocco (Arnoldus, 1977),

Nigeria (Igwe et al., 1999) and Sudan (Elagib,

2011). Other studies have used parametric equa-

tions for the estimation of daily R-values based

on daily rainfall depths. Those equations were

developed for Kenya (Angima et al., 2003),

Nigeria (Salako, 2010) and North Africa (Le

Roux et al., 2008). For West Africa, Roose

(1977) developed a simple linear relation

between the yearly R-factors and rainfall, while

Arnoldus (1977) used the modified Fournier

index to estimate rainfall erosivity in Morocco.

However, in general, these empirical equations

provide only a rough indication of rainfall ero-

sivity, and they cannot be applied outside the

region of calibration without considerable

uncertainty (e.g. Verstraeten et al., 2006).

Furthermore, rainfall erosivity is typically char-

acterized by a large inter- and intra-annual

variability, and a representative R-factor there-

fore requires evaluation over a longer period

(Renard and Freimund, 1994; Wischmeier and

Smith, 1978). Reliable estimates of rainfall ero-

sivity not only require high temporal resolution

gauges recording but also good spatial coverage

to assess its spatial variability. This is particu-

larly relevant for the LKR, as the region is

marked by a highly variable topography, with

an elevation range between ca. 500 and 5000 m,

active volcanoes and large low-land plains

located within the inter-tropical convergence

zone (ITCZ) resulting in strong rainfall season-

ality with a large regional variability (Figure 1).

The availability of rain gauges that operate at

high temporal resolution as part of a dense spa-

tial network is an issue in tropical Africa. A

recent literature review showed that less than

30 reliable weather stations reporting high-

resolution rainfall data are available for the

African continent as a whole (Ballesteros

et al., 2018; Panagos et al., 2017). A gray liter-

ature study by Ryumugabe and Berding (1992)

is, to the best of our knowledge, the only assess-

ment of rainfall erosivity that is based on local

high-resolution rainfall data for the LKR. High-

resolution data for the LKR covering more than

a decade are available for only six stations

(Ryumugabe and Berding, 1992; Rutebuka

et al., 2020). However, stations in the study are

all clustered in Rwanda at relatively low alti-

tudes, and the underlying factors controlling

variability in rainfall erosivity have not been

quantified so far. Hence, data is also lacking for

a large part of the LKR, including large and

densely populated parts of the region (i.e. DR

Congo, Burundi and Uganda).

Until now, studies have relied on relation-

ships developed elsewhere (e.g. Lo et al.,

1985) using coarse temporal scale data

(monthly or even annual) (e.g. Muhire et al.,

2015). Other approaches, based on remote-

sensing or on continental-scale spatial models,

have been proposed to improve erosivity assess-

ments for Africa and have estimated the spatial

patterns of erosivity in the Kivu region. These

studies have shown that satellite-derived rain-

fall products typically do not represent high-

intensity erosive events, but may, at least to

some extent, represent the spatial variability of

long-term average annual rainfall erosivity

(Vrieling et al., 2010). However, these coarse-

scale approaches are associated with consider-

able uncertainty at the local scale due to the lack

of high temporal-resolution data for model cali-

bration and evaluation.

Therefore, spatial and temporal patterns of

rainfall erosivity in the LKR and tropical

Africa in general are not well understood and

poorly documented. However, there are some

developments to help close crucial data gaps.

In recent years, high-quality data collection

efforts are being conducted across Africa for

climate monitoring (TAHMO: Trans-African

HydroMeteorological Observatory; www.tah

mo.org). A dense network of meteorological
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stations has been installed since 2017 across

Africa with the objective to have 20,000 opera-

tional stations. This type of effort has substan-

tially increased the spatial coverage of high

temporal resolution rainfall data across Africa

but, so far, the potential of these data-sources

for erosivity assessments has remained unex-

plored. Nevertheless, estimates of rainfall ero-

sivity grounded in local observations are key to

increase the confidence in rainfall and runoff

erosivity as well as soil erosion assessments.

Although the TAHMO network provides data

for 20 stations in the LKR, the short observa-

tion period (max. 3 years) does not allow con-

structing reliable spatiotemporal models of

rainfall erosivity. However, low temporal res-

olution rainfall data at the monthly timescale is

available for 24 stations in the LKR covering

the period 1970–2000 (e.g. FAO Climwat data-

base; CROPWAT Software, FAO, 2018).

Although this dataset has an excellent spatial

coverage in the LKR, its low temporal resolu-

tion does not allow it to be used directly for

rainfall erosivity estimations.

Figure 1. General topography and pluviometry of the study area with locations of the Lvl1 and Lvl2
meteorological stations (see text for explanation). Note that for visualization purposes, two Lvl2 sites are
outside the area shown. The panel on the right represents the long-term average rainfall patterns (1970–
2000) for six sub-regions (indicated in gray boxes on the left panel). The rainfall data is derived from the
WorldClim data base (Fick and Hijmans, 2017). The white lines represent national borders. N, S, W and E
indicate wind directions, while M represents ‘middle or central area’.
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The objective of this study is therefore to

evaluate to what extent recent high temporal

resolution data (but with poor spatial and

long-term coverage) can be combined with low

temporal resolution (but high spatial density

covering long periods of time) data to improve

rainfall erosivity assessments. To this aim, we:

(a) analyze the factors controlling rainfall ero-

sivity in the LKR based on new high temporal

resolution data from the TAHMO network; (b)

develop geostatistical models, which combine

low- and high-resolution data to quantify the

spatiotemporal patterns of both monthly and

annual rainfall erosivity in the LKR; and (c)

confront these new estimates, grounded in local

observations, with existing estimates.

II Materials and methods

2.1 Study area

The Lake Kivu region is located in the highest

part of the Albertine Rift and covers an area of

ca. 180,000 km2 in Central–East Africa (Fig-

ure 1). The lowlands, lying between 1000 and

1500 m, receive rainfall of between 1000 and

1200 mm yr-1 (Muhire et al., 2015; Ndayiru-

kiye and Sabushimike, 2015). With altitudes

ranging between 2000 and 3500 m, the high-

land region, which includes the Congo–Nile

ridge and volcanic chains of Virunga, has a

mean annual rainfall of 1300 to 1550 mm

(Ilunga et al., 2004; Karagame et al., 2016).

As illustrated in Figure 1, the meridional trans-

lation of the ITCZ leads to a bimodal distribu-

tion of the annual precipitation cycle over

much of the region. The regions located in the

most southerly parts of the study area are fur-

ther away from the equator and at the limit of

the extent of the ITCZ migration, resulting in a

unimodal cycle of rainfall, with a dry period

during boreal summer. This defines a latitudi-

nal gradient in rainfall where the southern part

receives more rain but has a more pronounced

dry period (Figure 1).

Figure 2. Flowchart of the methods used for this study.
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2.2 Precipitation data

A flowchart of the data and approaches used is

presented in Figure 2. Precipitation data at high

temporal resolution (5-minute intervals), cover-

ing September 2017 to March 2020, were

obtained from the TAHMO network for 20 sta-

tions available around Lake Kivu (5 in the DR

Congo, 1 in Uganda and 14 in Rwanda) using

the TAHMO web API (Figure 1). The TAHMO

network uses ‘ATMOS 41 All-in-one’ weather

stations (Meter Environment, Pullman, USA)

and measures precipitation with a resolution

of 0.017 mm and an accuracy of ca. 5%. Rain-

fall measurement is based on an acoustic disd-

rometer. Note that stations have been installed

at different dates and therefore do not cover the

same time period. We added another high-

resolution dataset, the Goma Volcano Obser-

vatory (OVG) meteorological database, with

continuous 30-minute interval data from one

station in Goma (DRC) for the period 2012–

2017 to the database. The different time reso-

lutions (5 minutes vs 30 minutes) are explicitly

addressed in Section 3.2. Together this database

(called Lvl1) contains a total of 445 station-

months, representing ca. 37 observation-years

from 20 different stations. However, due to

battery issues or internet connection problems,

there are data gaps. To address this, we only

considered observations from months where

data were recorded more than 95% of the time.

The observation months are equally distributed

over the year, and the Lvl1 stations cover an

elevation range that spans between 1352 and

2424 m.

Secondly, low temporal resolution data

(daily to monthly), but covering several years

to decades and having a good spatial coverage

of the LKR, were gathered from different

sources. This dataset is called Lvl2. First, we

selected the 18 meteorological stations that

were available for the LKR from the FAO

CLIMWAT 2.0 for CROPWAT meteorological

database (Table S1). The database presents

long-term average monthly rainfall for the

period 1970–2000. In a second step, we added

data from five stations extracted from the

Rwanda meteorological database from the

Rwandan Meteorological Center based in

Kigali and the LWIRO meteorological database

from Lwiro Meteorological Station based at

LWIRO-C.R.S.N. The daily data for LWIRO

and the Rwanda meteorological databases were

aggregated to monthly observations and long-

term monthly averages. In total, the Lvl2 dataset

has 24 stations with long-term monthly rainfall

data for the period 1970–2010. Details are pro-

vided in Table S1.

2.3 Erosivity calculations

To calculate the erosion index (EI) for a given

rainfall event in the Lvl1 database we used the

Rainfall Intensity Summarization Tool (RIST)

software (USDA, 2019). In this method, the ero-

sion index is calculated as a product of the

kinetic energy of an event (E) and its maximum

rainfall intensity over 30 minutes (I30) for a

period of 30 minutes (Renard and Freimund,

1994):

EI30 ¼
X0

r¼1

er vr

 !
I30 ðEq:1Þ

Where er represents rainfall energy per unit

depth of rainfall in MJ ha�1 mm�1, vr is the

volume of rainfall (mm) during a given time

interval (r) and I30 is the maximum rainfall

intensity over a 30-minute period of the rainfall

event (mm h�1). In an assessment of rainfall

events in Rwanda, Rutebuka et al. (2020)

showed that rainfall events with less than 8

mm cumulative rainfall experienced limited soil

losses and identified these events as non-

erosive; thus we did not include events with less

than 8 mm cumulative rainfall in the estimation

of monthly erosivity. Storm events were broken

up when there was less than 1.27 mm rainfall in

a 6-h period (Renard and Freimund, 1994). Rain

energy per unit depth of rain for each increment

6 Progress in Physical Geography XX(X)



(er) (MJ ha�1 mm�1) is often calculated using

relation that was developed by Brown and Fos-

ter (1987):

er ¼ 0:29 1� 0:72�0:05ir
� �

ðEq:2Þ
This empirical equation was originally devel-

oped for the United States. We evaluated the

representativeness of this equation for the LKR

by analyzing published raindrop size distribu-

tion data from Butare, Rwanda (Adetan and

Afullo, 2014). For six rainfall events with inten-

sities ranging between 1 and 79 mm h�1, we

obtained a relative difference of only 13%
between the observed rainfall energy and equa-

tion (2). This suggests that equation (2) can be

reliably used to approximate rainfall energy also

for the tropical conditions in the LKR. Monthly

(Rm.Lvl1) erosivity factors were then calculated

by summing the EI30 values for each month.

The calculation of the maximum rainfall

intensity during an erosive rainfall event (equa-

tion (1)) is influenced by the recording interval,

and coarser intervals will lead to lower values.

We evaluated how coarser measurement inter-

vals (10, 30 and 60 minutes) affect the estima-

tion of the rainfall erosivity by aggregating the

5-minute interval data to coarser temporal reso-

lutions (Figure S1).

To analyze the factors controlling rainfall

erosivity, we used regression models with

Rm.Lvl1 as the target variable. We explored the

use of rate modifiers for elevation and season in

equation (3) to represent the effect of environ-

mental co-variables. We used a nonlinear

regression to estimate the monthly erosivity. A

similar approach has been used before to predict

Rm.Lvl1 (McGregor et al., 1995). Here we add

two modifiers that represent topography and

seasonality:

Rm:Lvl1 ¼ aPb
m Eg Sd ðEq:3Þ

where Pm is the measured total monthly rainfall

(mm) reported in the Lvl1 database, E is the

reported elevation (m) and S is a dummy vari-

able to account for seasonality (S equals 1 for

the dry season, i.e. the months June to August,

and 2 for the wet season). We used Lvl1 data to

train the model. A cross-validation procedure

was used to assess the robustness of equation

(3). We used 100 different and randomly

selected calibration and validation datasets

where 70% of the data was used for calibration

and 30% for validation. We report the regres-

sion parameter median and ranges as well as

indicators of model performance (Nash Sutcliff

model efficiency, root mean square error

(RMSE) and R2). We then used the 100 different

calibration models to predict a distribution of

100 rainfall erosivities for each individual

month using the observed monthly rainfall data

from the Lvl2 dataset (Rm.Lvl2) (Figure 3).

2.4 Environmental covariates

Spatially continuous environmental covariates

were used in both mapping procedures tested in

this study (see Section 2.5) based on their

known or potential influence on rainfall or

rainfall erosivity patterns. After downloading

the environmental covariates, bilinear interpo-

lation was applied to the original layers in

order to create homogeneous 1-km resolution

layers. The environmental covariates consid-

ered in this study and their original sources are:

(a) Monthly mean precipitation derived from

the WorldClim database (Fick and Hijmans,

2017) reported for the period 1970 – 2000 at

30 arcsec resolution; (b) Monthly NDVI (nor-

malized difference vegetation index) layers at

1-km resolution for the year 2017 derived from

MODIS. Data were downloaded from the

NASA website (lpdaac.usgs.gov/products/

mod13a2v006), as the vegetation density

affects evapotranspiration and rainfall intensi-

ties that are susceptible to rainfall erosivity; (c)

Elevation from the 90 m resolution Digital Ele-

vation Model (DEM) from Shuttle Radar

Topography Mission (SRTM) of NASA (Jarvis

et al., 2008). At the regional scale, precipita-

tion varies strongly with elevation (Barry and

Bagalwa et al. 7



Chorley, 2009) as relief features can induce

different precipitation-elevation gradients

depending partially on their ability to block

and uplift moisture-bearing air (Daly et al.,

2002). At the local scale, different climate

regimes can occur depending on the orientation

relative to air currents at larger scales (i.e. lee-

ward and windward sides of mountains) and

solar radiation. Hence, areas located at similar

elevations may have different precipitation

intensities. To address this, the 90 m resolution

DEM was smoothed to two wavelengths of 5

and 20 km with a Gaussian filter. Slope and

aspect layers were derived from the 20-km

wavelength smoothed DEM to account for

potential impact of large relief features (i.e.

mountains range), and their main orientation

toward moisture-bearing air. Then, eastness

and northness were derived from the 5-km

wavelength smoothed DEM to represent the

degree to which hillslope aspect is close to the

east and the north at smaller scale. Eastness and

northness were computed following the

description in Zar (2010).

2.5 Spatial models of monthly and annual
rainfall erosivity

Two different approaches (Nonlinear Least

Square and Generalized Additive Models) were

used and evaluated to model the spatial varia-

bility of both monthly and annual rainfall ero-

sivity. Both approaches are environmental

regressions supported by spatially continuous

covariates that cover the LKR (see Section 2.4).

2.5.1 Nonlinear Least Square Model (NLS). The

first approach, called the NLS model, is based

on the direct application of equation (3) using

spatially continuous environmental covariates

instead of raw observed data. Hence, the 1-km

resolution layers derived from the WorldClim

2.0 maps for the 1970–2000 period and the

SRTM topography were used to estimate P, E

Figure 3. Predicted monthly Rm.Lvl2 based on the Lvl2 dataset using the 100 different parameter estimates
from equation (3). The boxplots represent Rm.Lvl2 distribution from the 100 different model estimates. The
color scale corresponds to the six regions defined in Figure 1.
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and S to be used in the model (equation (3)). We

used the 100 different model parameter esti-

mates for equation (3), as informed by the

cross-validation procedure described above, to

construct 100 monthly and annual rainfall ero-

sivity maps. Based on these 100 spatial estima-

tions, we computed the mean and the upper

(Q95) and lower (Q5) percentiles for each pixel.

The resulting mean prediction was used to map

rainfall erosivity for the entire LKR, whereas

the uncertainty was estimated as the difference

between the Q95 and the Q5 percentiles. The

advantage of this approach is that it is directly

informed by the analysis of the high temporal

resolution Lvl1 dataset. However, the factors

controlling rainfall erosivity, which are used

as spatially continuous model inputs, are

derived from global scale products, which may

not fully capture the local spatial variability

(particularly rainfall patterns).

2.5.2 Generalized Additive Models (GAM). The sec-

ond approach is an environmental regression

technique called GAM (Hastie and Tibshirani,

1986), and we applied it to the relationships

between Rm.Lvl2 and the environmental covari-

ates described above. This approach was used to

produce 13 models: one per month and one annu-

ally. The GAM approach is a generalization of

linear regression models (GLM) in which the

coefficients are a set of smoothing functions,

accounting for the non-linearity that could exist

between the dependent variable (Y) and the cov-

ariates (X). As for GLMs, GAMs specify a dis-

tribution for the conditional mean m (Y) along

with a link function g relating the latter to an

additive function of the covariates (equation (4)):

g½m Yð Þ� ¼ aþ f1 x1 þ f2 x2 þ . . . þ fp xp

ðEq:4Þ
where Y is the dependent variable, x1, x2, . . . , xp

represent the covariates and fi’s are the smooth

(non-parametric) functions and a constant.

For each monthly and aggregated annual

time step, a model linking spatial variability of

rainfall erosivity to the most significant covari-

ates was fitted. A Gaussian distribution model

incorporated the conditional mean m(Y) and a

log-linear link function g(m) ¼ log(m) was

implemented. The smoothing functions of the

models were built using regression splines, and

the smoothing parameters were estimated by

penalized Maximum Likelihood to avoid an

over-fitting (Wood, 2001). An extra penalty

added to each smoothing term allowed each

of them to be set to zero during the fitting

process in case of multi-collinearity or multi-

concurvity. The spatial coordinates of the sta-

tions were added explicitly in each model as a

two-dimensional spline on latitude and longi-

tude in order to account for the spatial depen-

dence and trends of the target variable at the

regional scale. First, a model including all the

covariates was fitted, which included precipita-

tion, elevation, slope, aspect, eastness, north-

ness and NDVI. Then, the covariates with a p-

value > 0.05 were dropped, and the model

refitted. To finish, a leave-one-out cross-

validation procedure was applied, and coeffi-

cient of determination (R2) and RMSE were

calculated to quantify their goodness of fit. The

mean model fitted as described above was suc-

cessively readjusted to the corresponding 100

estimated Rm.Lvl2 sub-sets to produce 100

independent representations of the monthly and

annual rainfall erosivity all over the study area.

Based on these 100 spatial estimations, we com-

puted the median, Q95 and Q5 for each pixel. The

resulting mean prediction was used to map rain-

fall erosivity for the entire LKR, whereas the

uncertainty was estimated as the difference

between the Q95 and the Q5 percentiles. The

GAM models have the advantage that they are

directly fitted on measured monthly and annual

rainfall patterns (i.e. the 24 Lvl2 stations) to give

insights on the environmental covariates driving

the spatial distribution of rainfall erosivity for

each period of interest. However, the full poten-

tial of the GAM approach was not reached due to

the relatively small number of Lvl2 stations.

Bagalwa et al. 9



2.5.3 Comparison with existing large-scale
estimations. Other studies have provided esti-

mates of rainfall erosivity for the LKR, and

these assessments are typically informed by

coarser-scale observations as they target much

larger spatial scales (continental or even glo-

bal). Here, we evaluate the similarities and dif-

ferences with our approach based on local and

high-resolution observations in combination

with spatial predictive models. We evaluate

three models, presented by Vrieling et al.

(2010), Karagame et al. (2016) and Panagos

et al. (2017). We interpolated these three mod-

els to a 1-km grid resolution using a bilinear

interpolation to facilitate a comparison with our

predictions to consider the central area of the

study region, which had a dense cover of Lvl1

stations. In the study of Karagame et al. (2016),

they used the equation of Lo et al. (1985) to

predict rainfall erosivity in the Lake Kivu basin

(see Figure 7); however, this equation only

accounts for the mean annual precipitation

based on observations from Hawaii. Panagos

et al. (2017) used a global dataset of long-term

high-resolution rainfall data using sub-hourly

and hourly pluviographic records for the

1950–2015 period (GREA model). The TRMM

Multi-satellite Precipitation Analysis (TMPA)

Model (Vrieling et al., 2010) examined

erosivity for Africa using 3-hourly and monthly

TMPA precipitation data products for the period

1998–2008 at a 0.25� spatial resolution.

III Results

3.1 Data quality of the Lvl1 dataset

Out of the 445 station-months for which observa-

tions were available, 71% fulfilled the first data

quality criteria stipulating that during more than

95% of the time data should be recorded. The

resulting data set covers 315 station-months,

equivalent to more than 26 observation years.

A second quality assessment was based on the

erosivity density, aggregated at a monthly time-

scale. This analysis showed that a small number

of meteorological stations were characterized by

an exceptionally low erosivity density, although

they received a similar amount of rainfall as

nearby stations. An analysis of the distribution

of erosivity densities per station (Figure S2)

shows that four stations have a very low inter-

quantile range with median erosivity density val-

ues below 0.5 MJ ha�1 h�1. Published

observations on monthly erosivity densities for

the region (Ryumugabe and Berding, 1992) show

that these typically range between 1 and 5.5 MJ

mm ha�1 h�1. We interpreted the much smaller

ranges and absolute values for these four stations

Figure 4. Rainfall erosivity of single events based on the TAHMO-5-min dataset. Cumulative distribution (a)
and relationships between the rainfall erosivity and maximum 30-minute rainfall intensity (I30) (b) and rainfall
amount (c). Colors show values of individual stations.
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as biased observations, most likely due to poor

maintenance where the rainfall collector was

clogged, which resulted in a large underestima-

tion of rainfall intensities, but not rainfall

amounts. We therefore excluded these four

meteorological stations, representing 47 station-

months, from the Lvl1 database. In the analysis

reported below, 268 station-months were used.

3.2 Event-scale erosivity

During the observation period, 918 erosive

events were identified in the Lvl1 dataset (Fig-

ure 4). All stations showed a similar distribution

of rainfall erosivities per event with an average

event erosivity of 194 MJ mm ha�1 h�1. The

distributions are right-skewed where ca. 7% of

the erosive events have an erosivity above 500

MJ mm ha�1 h�1. When considering all the sta-

tions, 6% of the most erosive events contributed

to 50% of the total erosivity and 3% of the ero-

sive events had an erosivity >1000 MJ mm ha�1

h�1. This shows that a few extreme events have

a disproportionally high contribution to the total

rainfall erosivity. The main factor controlling

the event erosivity is the maximum rainfall

intensity (I30), while the rainfall amount is less

important (Figure 4 (b) and (c)).

We analyzed the effect of the temporal reso-

lution of the data acquisition on the estimation

of rainfall erosivity. When aggregating the

original 5-minute rainfall data to 10, 30 and

60 minutes, we observed that rainfall data with

a 10-minute resolution provided similar esti-

mates of daily rainfall erosivity to that obtained

with 5-minute interval data (Figure S1). How-

ever, a substantial underestimation of rainfall

erosivity occurs when using data at 30 minutes

(ca. 15% underestimation) and especially 60

minutes (ca. 46% underestimation). This is

Figure 5. Mean monthly erosivity (1970-2000) based on the NLS (left) and the GAM (right) model. The
crosses indicate the location of the Lvl1 (for NLS) and the Lvl2 (for GAM) meteorological stations.
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related to the fact that the maximum rainfall

intensity is substantially underestimated when

using longer observation intervals. This analysis

shows that high-resolution rainfall records, i.e.

10 minutes or less, are required to accurately

estimate rainfall erosivity. However, the high

predictive power of the regression models sug-

gests that correction factors can be applied when

using low temporal resolution data. For the Lvl1

dataset, we applied a correction factor of 1.15

(due to the 15% underestimation shown in Fig-

ure S1 middle panel) to the EI30 estimates

derived from Goma-OVG rainfall data (tem-

poral resolution of 30 minutes) and added the

Goma-OVG dataset to the Lvl1 database.

3.3 Monthly rainfall erosivity

For the 268 station-months observations of Lvl1,

we could not detect a significant effect of latitude

or longitude on Rm.Lvl1. Using equation (3) to

predict trends in monthly erosivity, we obtained a

median nash-sutcliffe efficiency (NSE) and

RMSE of 0.75 and 459, respectively, with an

interquartile range of 0.74–0.77 and 448–471.

The regression coefficients of equation (3) were

well constrained with median parameter esti-

mates for a, b, g and d of 4.947, 1.895,

�0.5789 and �0.6808, respectively. The nega-

tive values for b and g imply that for the same

amount of monthly rainfall, erosivity is higher at

lower altitudes and during the dry season.

The 100 different monthly rainfall-Rm models

(equation (3)) were then applied to the Lvl2 data-

set to estimate the variability of the monthly ero-

sivity in the study region (Figure 3). The

estimated monthly rainfall erosivity for the Lvl2

stations ranged between 0 and 2000 MJ mm�1

ha�1 h�1 month�1. The regional variability is

high, with an average monthly coefficient of var-

iation of ca. 50% for the wet season. It should be

noted that the uncertainty associated with the

predictions, as estimated from the cross-

validation, is much smaller than the regional and

seasonal variability. As expected, the erosivity

follows the general rainfall patterns with a pro-

nounced period with low erosivity, i.e. from June

to August. The cumulative annual erosivity for

the Lvl2 stations ranges between ca. 3000 and

9000 MJ mm�1 ha�1 h�1 yr�1 with a mean of

ca. 5683 MJ mm�1 ha�1 h�1 yr�1 (Table S2).

3.4 Spatial patterns of rainfall erosivity

3.4.1 NLS model. The rainfall erosivity follows

the north–south translocation of the thermal

Figure 6. Left: External validation of Equation 3 using the data presented in Ryumugabe and Berding (1992).
The boxplots represent the prediction uncertainty as derived from the 100 different parameter sets for
equation (3). Right: Monthly EI30 versus monthly precipitation for the Lvl1 dataset. Different colors indicate
different meteorological stations.
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equator during the wet seasons (Figure 5). In

general, the highest values of rainfall erosivity

are found in the highland part of the LKR and

surrounding Lake Kivu (Figure 5). In April, the

highlands of the eastern part are the most ero-

sive, while in November and December erosiv-

ity migrates to the western highlands. These

east–west erosive movements are driven by the

seasonal rainfall patterns. The annual rainfall

erosivity in the region ranges between 2000 and

9000 MJ mm�1 ha�1 h�1 yr�1 and has a pro-

nounced east–west gradient, where the highest

values occur in the East. This is mainly con-

trolled by local topography. In the central part,

erosivity is lower due to the lower altitudes near

the lakes. The uncertainty, as estimated from the

interquantile range of the 100 model scenarios,

follows the same pattern as the annual erosivity,

with an average relative error of ca. 20 to 35%.

3.4.2GAM model. Table 1 presents parameters

describing the goodness of fit of the 13 GAM

models. The amount of variance explained by

the models during the calibration procedure

Table 1. Parameters related to the calibration
and validation procedure of the generalized addi-
tive models (GAM) predicting the annual and
monthly rainfall erosivity (Rm) in the Lake Kivu
region. R2 is the coefficient of determination
and RMSE the root mean square error obtained
from the LOOCV procedure (Leave-One Out
Cross-Validation).

Calibration
Validation (LOOCV)

Variance
explained

(%) R2

RMSE
(MJ mm ha�1 h�1

month�1)

Year 88 0.65 1122
January 92 0.71 135
February 91 0.7 147
March 96 0.86 139
April 77 0.38 355
May 74 0.48 167
June 90 0.82 41
July 90 0.23 42
August 95 0.24 226
September 81 0.54 128
October 93 0.61 179
November 61 0.44 178
December 93 0.61 191

Table 2. Significance level of the environmental covariates selected in the final generalized additive models
(GAM) predicting annual R and monthly (Rm) rainfall erosivity in the Lake Kivu region.

Month Precipitation Elevation Slope Aspect Eastness Northness NDVI

January *** * *** - - - -
February *** *** ** - - - **
March *** *** *** - - * -
April *** - *** * - - -
May *** - *** - - - -
June - - - - *** * -
July - *** - - * - **
August - * * ** *** *
September *** - - - - - -
October *** ** - - - - **
November *** - - - - - -
December *** * *** ** - - -
Year *** - *** - - * -

NDVI: normalized difference vegetation index.
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varied from 61% for November to 93% for

December, and equaled 88% for the annual data.

While the validation procedure produced R2

between 0.44 and 0.86 for most of the monthly

models, two of the driest months (July and

August) showed much lower R2 of 0.23 and

0.24, and the wettest month April a R2 of 0.38.

It should be noted that the dataset of 24 stations

is relatively small and that there are not many

stations in high-altitude areas (Figure 1). This

influences a larger residue in the LOOCV

(Leave-One Out Cross-Validation) procedure

and leads to a lower R2, particularly for months

with low erosivity (Table 1). The GAM model

at the annual timescale showed a good perfor-

mance with an R2 of 0.65 and an RMSE of 1122

MJ mm�1 ha�1 h�1 yr�1 during the validation.

Table 2 presents the environmental covari-

ates kept in each final model after the calibra-

tion procedure. As expected, the mean monthly

precipitation was selected as one of the most

influential covariates explaining Rm variabil-

ity. Indeed, it was selected to spatialize Rm for

the whole year and for 9 of the 12 months

which covered the period from September to

May, which included the rainy season for

southern stations and both rainy seasons for

center and northern stations (Figure 1). The

slope, derived from the 20-km wavelength fil-

tered DEM, was also selected in the final mod-

els for six of the nine wettest months cited

above (particularly during the most erosive

months) highlighting the influence of large

relief features on rainfall erosivity in the LKR.

For the months June to August (including the

dry season occurring all over the study area),

the mean precipitation was not selected, but ele-

vation and/or eastness and northness appeared as

important covariates here. Hence, spatial variabil-

ity of erosivity during the dry season was influ-

enced by local morphology. GAM models

developed for June, July and August showed that

hillslopes subject to highest erosivity were mainly

oriented SE, E and NE. However, it should be

noted that as explained by Laceby et al. (2016),

the inconsistent selection of some covariates in

the GAM models does not signify that they do not

influence rainfall erosivity, as the covariates

could not have been retained in the final model

if there are multi-collinearity or concurvity

between covariates. Therefore, the non-selection

of covariates can mean that other covariates likely

have a similar, though stronger, mathematical

relationship with the target variable.

Erosivity predictions based on the GAM

model show, overall, that the spatial and temporal

trends are consistent with those derived from the

NLS model, although the GAM predictions show

more spatial variability, particularly in regions

with steep topography and lowlands. This is also

shown in the uncertainty maps, as reflected by the

Q95–Q5 range (Figure S3).

IV Discussion

Rainfall erosivity studies are inherently con-

fronted with a tradeoff between high-

resolution temporal and spatial rainfall erosivity

data. This is particularly the case for data-poor

regions such as the Lake Kivu region. In this

study, we evaluated to what extent the combi-

nation of high temporal resolution data (but with

poor spatial and long-term coverage) and low

temporal resolution (but high spatial density

covering long periods of time) data can address

this issue. In the following section, we discuss

the potential and limitations of the two different

approaches adopted in this study and confront

our estimates with existing studies.

4.1 Erosivity estimation

Although the TAHMO observations were very

informative for rainfall erosivity assessments,

we observed issues with data gaps, and most

stations only provide data for a relatively short

period of time. Our data analysis clearly demon-

strated that high temporal resolution (<10 min-

utes) data is critical to correctly estimate rainfall

erosivity. At coarser resolutions (30 or 60 min-

utes) maximum rainfall intensities become
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substantially underestimated. The underestima-

tion of the rainfall erosivity when using hourly

data (ca. 50%) is consistent with those reported

by other studies from Europe (Panagos et al.,

2015) and globally (Panagos et al., 2017).

Furthermore, we demonstrated that high tem-

poral resolution data can be used to develop

models that relate monthly total rainfall with

estimates of erosivity. We found that monthly

erosivity estimators (Rm) exploiting monthly

rainfall data (Pm) in a power model relationship

described the observed erosivity relatively well,

consistent with findings of other studies (Kara-

game et al., 2016). However, we observed that

rainfall erosivity was not only controlled by pre-

cipitation, but that elevation and season are also

significant controls, and these factors were there-

fore included in the prediction model. The results

of a cross-validation to predict monthly rainfall

erosivity show that the prediction models are

robust. An external validation was performed

using monthly rainfall erosivity estimates for

four stations in Rwanda (Ryumugabe and Berd-

ing, 1992) (Figure 6). The external validation,

with an RSME of 136 MJ mm ha�1 h�1 month�1

and a NSE of 0.67, shows that our monthly model

based on rainfall, elevation and season is capable

of describing the regional trends relatively well,

but that substantial uncertainties remain associ-

ated with point predictions. However, it should

be noted that the stations used by Ryumugabe

and Berding (1992) are located at low altitudes

and have a low erosivity, relative to the stations

used in this study (Lvl1 dataset).

4.2 Spatial and temporal patterns of
erosivity

We tested two approaches to model the spatio-

temporal variability of rainfall erosivity in the

region. The first approach consisted of applying

the NLS model (equation (3); developed on the

Lvl1 dataset) using spatially explicit global

datasets that estimate elevation and long-term

monthly rainfall. The predictions therefore

largely depend on the quality of the spatial input

data, which are both global data products. We

also used an alternative approach where rainfall

erosivity was first estimated at points for which

high-quality long-term monthly rainfall was

available and which has a good spatial regional

coverage (Lvl2 dataset) compared to the Lvl1

dataset. An environmental regression approach

(GAM) was then applied to assess the season-

ality and spatial patterns. The overall patterns of

monthly erosivity were similar for the two

approaches (Figure 5), with the GAM putting

more emphasis on topographical features con-

sidering different spatial scales (mountain

ranges and local hillslopes). The GAM predic-

tions show, however, much more spatial varia-

bility at short scales due to the inclusion of more

environmental covariates. The LKR shows

highest erosivity values in the months March

and April, and November and December (Fig-

ure 5). The highest mean rainfall erosivity is

observed in April, while the lowest mean rain-

fall erosivity occurs in the middle of the dry

season in July (Figure 5). In general, rainfall

erosivity follows the thermal equator and the

ITCZ, while at a more local scale the highest

values of rainfall erosivity are found in the high-

lands. The average regional annual erosivities

Figure 7. Comparison of the GAM model with
existing estimates from the literature.
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derived from the NLS and GAM modeling for

the study region are similar with a mean of 5482

and 5523 MJ mm ha�1 h�1 yr�1, respectively.

Lower values are observed for the eastern part of

the region and at lower altitudes. The maximum

values predicted for the region are found in the

western highlands (ca. 10,000 MJ mm ha�1 h�1

yr�1), and are consistent with estimates from

other tropical mountain areas. For example,

Goçalves et al. (2006) and Montebeller et al.

(2007) found mean values of between 10,000 and

12,000 MJ mm ha�1 h�1 yr�1 for the Mountai-

nous Region of Rio de Janeiro state.

4.3 Prediction uncertainties

We explicitly assessed the uncertainties associ-

ated with the estimation of rainfall erosivity.

Using the Q5–Q95 percentile range of the 100

model simulations for both the NLS and GAM

models, we obtained mean relative errors in the

order of 20 to 35% for the study region, where

the uncertainty was highest in the highlands and

lowlands areas near Lake Tanganyika and Lake

Edward. However, the GAM model resulted

locally in higher uncertainties in regions where

no observations were present to constrain the

spatial model. The uncertainty of the spatial

predicted values are a combination of the uncer-

tainties associated with the estimation of

Rm.Lvl1 and Rm.Lvl2, i.e. the erosivity at the

meteorological stations, and the approximation

of the controlling variables by a set of simplified

covariates. Although at present the field-based

data to corroborate our two spatial model

approaches are not available, we suggest that

the GAM model has more predictive power as

it relies on regional data for both EI30 calcula-

tions and measured spatial patterns of monthly

rainfall. The NLS model required usage of a

global product for the estimation of rainfall pat-

terns. The quality of the spatial models will sub-

stantially benefit from more data, i.e. from a

denser network of stations covering longer peri-

ods of time, particularly in the highlands where

uncertainties are highest. With respect to the

length of the data series, it is generally accepted

that a minimum of 20 years is desirable for rain-

fall erosivity analysis (Curse et al., 2006; Ver-

straeten et al., 2006) without data gaps. It should

be noted that we used long-term averages and did

not capture changes in rainfall erosivity due to

climate change or decadal trends. At present, the

required data to do so is not available. TAHMO

network has the potential to continuously

increase the performance of spatial prediction

models and to assess temporal changes as well.

The spatial model approaches developed here

have the potential to improve the quantification

of rainfall erosivity in Africa, but this will require

the expansion of the database where more sta-

tions will have long-term rainfall records.

4.4 Comparison with existing large-scale
estimates

Comparison with other published estimates shows

that there are substantial differences particularly

with the coarse-scale Vrieling et al. (2010) model,

which substantially underestimates rainfall ero-

sivity by ca. 40% relative to our estimates (Figure

S4). The other two approaches have spatial pat-

terns which are more consistent with our

approach, as they use similar environmental cov-

ariates. Nevertheless, there is substantial scatter,

and the R2 between the GAM model and the

GREA model is only 0.25 (Figure 7). There is also

a consistent bias with an under prediction of about

20 to 25% of the annual rainfall erosivity, when

compared to our approach. The underestimation

occurs mostly at higher rainfall erosivities. This

shows that the regions with higher rainfall erosiv-

ities, particularly in the highlands, are not well

represented in existing estimates.

V Conclusion

For a better understanding of the spatial and

temporal variability of rainfall erosivity in the

understudied region of the LKR we used freely
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available geospatial datasets. Despite some lim-

itations (limited observation period, limited

spatial coverage) in the datasets, several conclu-

sions can be drawn:

1. Using data from the Trans-African Hydro-

Meteorological Observatory for the period

2017–2020, we analyzed rainfall erosivity

for 20 meteorological stations in the LKR

and found that rainfall amount, elevation

and season were the main factors control-

ling rainfall erosivity. Based on an observa-

tional database covering more than 260

station-months in the LKR, equivalent to

more than 22 observation years, we devel-

oped a predictive model that had a model-

ing efficiency of 75%.

2. By combining high and low temporal reso-

lution databases, we developed monthly

and annual spatial prediction models to pro-

vide regional assessments based on locally

calibrated and validated data. This

approach addresses the tradeoff between

spatial and temporal resolution and limita-

tions related to short observation periods

and can serve as a template for other

regions and can be continuously improved

when more data becomes available.

3. Existing approaches are able to represent,

to some extent, the general spatial patterns

of rainfall erosivity in the Lake Kivu

region, but consistently underestimate rain-

fall erosivity, particularly in the highlands.

4. Community-based meteorological observa-

tories can be used to substantially improve

the spatial and temporal assessment of rain-

fall erosivity in data-poor regions. This

requires a careful consideration of data

quality and methods to address the occur-

rence of data gaps.
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Goçalves FA, Silva DD, Pruski FF, et al. (2006) Índices e
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