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Abstract
Robustness evaluationof proton therapy treatment plans is essential for ensuring safe treatment delivery.
However, available evaluationprocedures feature a limited explorationof the actual robustness of the
plan and generally donot provide confidence levels. This study compared established andmore
sophisticated robustness evaluationprocedures, withquantified confidence levels.Wehave evaluated
several robustness evaluationmethods for 5bilateral head-and-neckpatients optimized considering spot
scanning delivery andwith a conventionalCTV-to-PTVmarginof 4mm.Method (1) goodpractice
scenario selection (GPSS) (e.g.+/− 4mmsetup error 3%range uncertainty); (2) statistically sound
scenario selection (SSSS) either only onor both on and inside isoprobability hypersurface encompassing
90%of thepossible errors; (3) statistically sounddosimetric selection (SSDS). In the lastmethod, the 90%
best planswere selected according to either target coverage quantified byD95 (SSDS_D95)or to an
approximationof thefinal objective function (OF)usedduring treatment optimization (SSDS_OF). For
allmethods,wehave considered systematic setup and systematic range errors. Amixof systematic and
randomsetup errorswere also simulated for SSDS, but keeping the same conventionalmarginof 4mm.
All robustness evaluations have beenperformedusing the fastMonteCarlo dose engineMCsquare. Both
SSSS strategies yielded on average very similar results. SSSS andGPSS yield comparable values for target
coverage (within 0.5Gy). Themost noticeable differenceswere found for theCTVbetweenGPSS, on the
onehand, andSSDS_D95 and SSDS_OF, on the other hand (averageworst-caseD98were 2.8 and 2.0Gy
larger than forGPSS, respectively). Simulating explicitly randomerrors in SSDS improved almost all
DVHmetrics.Wehave observed that thewidthofDVH-bands and the confidence levels dependon the
method chosen to sample the scenarios. Statistically sound estimationof the robustness of the plan in the
dosimetric spacemayprovide an improved insight on the actual robustness of the plan for a given
confidence level.

1. Introduction

External beam radiotherapy aims at delivering sufficient dose to tumor tissuewhile preserving surrounding
organs. In order to achieve this goal, sophisticated irradiation techniques, such as the use of protons, have been
developed in order to conformdoses to target volumes.However, radiotherapy treatment delivery can be
affected bymany sources of uncertainties: patient positioning, inter- and intra-fractionmovements, and
imperfect conversion of imaging data into physical quantities. In order to secure target coverage and avoid
accidental organ-at-risk irradiation, robust planningmethods have been developed to ensure that delivered
doses keepmeeting the objectives and constraints despite uncertainties. In conventional x-ray radiotherapy, this
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objective is typically achieved by safetymarginswith the concept of planning target volume (PTV) and planning
risk volume (PRV). In proton therapy, the typicalmargin strategies suffer fromnotorious shortcomings, because
of the sensitivity of proton therapy dose distributions to the uncertainties of the position of theBragg peak and
failure of the static-dose cloud approximation,which assumes that patient shifts do not change the dose
distributions (Albertini et al 2011, Fredriksson 2012).

As a result,manymethods of robust planning and robustness evaluation have been proposed in the literature
for proton therapy (Albertini et al 2011, Fredriksson 2012a, 2012b, Bokrantz and Fredriksson 2013, Casiraghi
et al 2013, Liu et al 2014, Lowe et al 2015,Malyapa et al 2016). In the case of themost advanced intensity
modulated proton therapy (IMPT) techniques, robust planning typically consists of aminimax problem that is
solved by optimizing theworst-case scenario among a set of predefined possible scenarios (Fredriksson 2012).
Generally, this set of scenarios includes (systematic) positioning errors, image conversion errors, and in some
cases themovement of organs represented by additional image sets which are included as additional scenarios
(Chang et al 2014,DeRuysscher et al 2015,Unkelbach et al 2018, Ge et al 2019). Irrespective of the considered
robust planningmethod, it remains necessary to evaluate the actual robustness of the plan. The evaluation can be
donemore thoroughly than during robust optimization. Robustness evaluation often includes, for example,
random errors, organ deformations, interplay effects, etc. This is because robustness evaluation is
computationally less demanding than robust optimization (for instance, no need to store influencematrices).
However, themethods typically reported for robustness evaluation are also based on a relatively simple sampling
of error scenarios, for example some (systematic) positioning errors combinedwith image conversion errors.
Other authors have also incorporated random errors (Fredriksson 2012, Lowe et al 2015).

Most robustness evaluationmethods reported in the literature and used in some commercial planning
systemsmay feature several biases because of pragmatic choices imposed by limited computing resources and
due to a lack of consensus in the involved concepts. Afirst bias lies in the direct combination of pre-sampled
uncertainties, leading to the selection of very unlikely scenarios, for example setup errors of+/−5 mm
combinedwith density errors of+/−3%, i.e. the simultaneous selection of two extremes in the probability
distributions. This amounts to combining extremes ofmarginal probability distributions, while the joint
probability distribution should be sampled instead. Korevaar et alhave already pointed that issue and have
performed robustness evaluation using a statistically consistent but limited set of scenarios (Korevaar et al 2019).
A second bias is the lack of consistently calculated confidence levels, in order to clearly definewhat ismeant by a
‘worst-case’. Indeed, theworst-case scenario is the least favorable scenario among a pre-defined selection set
(otherwise, themost extreme case can always be envisaged). In the best-knownmargin calculation recipe, the
value of thefinalmargin depends on a choice of the number of patients for which onewishes to ensure target
coverage (typically 90%) (vanHerk et al 2000). This confidence level is not always reported in the literature when
it comes to robustness assessments. In addition, a lack of clarity remains on how to calculate this confidence
level. Specifically, should it be calculated in the error space, i.e. as the percentage of possible scenarios covered by
a given robustness test?Or should it be calculated in the dose space, that is, as the percentage of dose
distributionsmeeting a given clinical endpoint?

In this publication, we compare several robustness evaluationmethods, with explicitly calculated confidence
levels in either the error space or the dose distribution space.

2.Materials andmethods

2.1.Definitions andnotations
Wedefine the robustness of a treatment plan as the capability of this plan to continue satisfying clinical
objectives and/or constraints despite uncertainties, for a certain confidence level. As in vanHerk et al (2000),
treatment errors can be classified in treatment preparation errors (e.g. systematic errors) and treatment
execution errors (e.g. random errors). Like vanHerk’s formalisation, we suppose knowledge of the probability
density functions (pdf ) of these errors. In general, these are assumed to be normal (Gaussian)with standard
deviationsS and s for systematic and randomerrors, respectively. For the remaining of thismanuscript, wewill
limit ourselves to the following errors:

1. Setup errors (se; x y z, ,se se se( )) characterized by 3D Gaussian pdfs for both systematic and random errors,
with vector standard deviationsSse and s ,se respectively.

2. Range uncertainties (RU; due for instance to improper image conversion), characterized by a 1D Gaussian
pdfwithSRU as standard deviation.

However, these considerations can be generalized to an arbitrary number of types of uncertainties.When
appropriate, the generalization of the developedmethodswill be addressed.
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2.2. Computation of confidence levels
For a given pdf, confidence intervals define a rangewithinwhich a population parameter resides for a given
confidence level. In vanHerk’smargin recipe, a typical confidence level chosen is 90%which leads to the 2.5
factor thatmultiplies the standard deviation in thewell-known formula for 3D-conformal dose distributions:

s= S +M 2.5 0.7 .PTV Thismeans that 90%of the possible systematic errors within the patient populationwill
be covered by themargin recipe.However, such amargin recipe fails notoriously in proton therapy because it is
based on the static-dose cloud approximation (Stuschke et al 2012, Liu et al 2013, Liu et al 2016).Moreover, the
number of fractions is assumed infinite, which allows a simplemodel to approximate how random errors blur
the dose distributions. This simplification leads to the term s0.7 in themargin recipe, considering a typical 95%
of the dose prescription as theminimumdosimetric coverage. A reduced number of fractions requires either a
more complexmodel or the conversion of part of the random error into a systematic component, as
acknowledged in vanHerk et al (2000). Such approachwill also not hold in proton therapy because of the failure
of the static dose cloud approximation.

Thus,more complexmodels and formalisms are needed in proton therapy to assess the robustness in lieu of
simplisticmargin recipes. First, we need to distinguish occurrences of errors and the combined effect of these
occurrences (the sumover each fraction) over the entire course of a treatment, referred here as treatment
scenarios or, shorter, scenarios. In the simplified contextmentioned here, a scenariowill therefore be
characterized by a systematic error sampled from aGaussian distributionwith a vector of standard deviations
S ,se and a sequence of errors for each treatment fraction that are randomly sampled from aGaussian
distributionwith a vector of standard deviations s .se Second, it is very unlikely to provide closed-form analytical
expressions to characterize howuncertainties affect the dose distributions. Therefore, it is not feasible to derive
simplemargin recipes with satisfactorymathematical grounds.

In general, a confidence interval for an estimator of interest consists in giving the narrowest range of values
for that estimator, such that the pdf integrates to 0.9 (90%) over that range. In practice, the pdf can be sampled
and sorted, after which the suitable bounds can be reported.

2.2.1. Confidence levels in the dosimetric space
A straightforward way to compute a confidence level for a dosimetric estimator is to generate dose
distributions formany scenarios and compute the probability that a certain rule on this dosimetric estimator
will be realized (for instance,D95>xx Gywith a probability of yy (or confidence)). This will be referred as
the computation of a confidence level in the dosimetric space. In such approach, we can provide the
percentage of times, i.e. the confidence level, that each objective/constraint defined by the radiation
oncologist will be satisfied. Another possibility would be to provide a bandwidth for a value of interest and an
associated confidence level. For instance, we could provide the range of D95 for the CTV, corresponding to
the 90%highest D95 values. This is a relevantmetric to estimate the probability of covering the target as
desired. However, thismight cause to focus toomuch on target coverage. In order to provide a fair balance
between target coverage and organs-at-risk exposure, another possibility would be to select the best 90%
objective function (OF) values. The value of the objective function of the accepted plan, with the penalties
(/objective function weights) for each organ included in the objective function, provides a good estimate of
the clinical compromise accepted by the physicist and the physician at the end of the optimization process.
Thus, it provides a quantification of the clinical quality of the plan. Therefore, the classification of the best
simulated dose distributions according to the value of their associated objective functions seems ideal from a
clinical point of view.

Because the confidence levels are estimated from random sampling of the errors, theywill be subject to
statistical noise. Therefore, enough scenariosmust be simulated for estimating confidence levels with sufficient
accuracy. The number of scenarios needed to achieve a given statistical accuracy on the confidence level can be
determined using themethod developed in Souris et alwhere the statistical uncertainty on the estimated
confidence level considered is computed dynamically during the robustness evaluation process (Souris et al
2019). The key difficulty resides in the generation of the dose distributions. FastMonte Carlo dose engines
associatedwith clever statistical stopping criteria (Souris et al 2019) or othermethods like polynomial chaos
expansion (Perkó et al 2016) can help for this task.

2.2.2. Confidence levels in the error space
In current practice, robustness evaluation tools are limited to the generation of some occurrences of systematic
setup and range errors according to parameters defined by the user. Random errors are typically not simulated.
VanDerVoort et al have suggested to consider random errors using empirical relations that can convert a
combination of systematic and randomerrors into pure systematic errors (VanDerVoort et al 2016). Another
method has been suggested by the group of PSI, using a relatively small subset of possible errors, a priori limited
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by an 85% confidence interval line (Albertini et al 2011, Lowe et al 2015). For the reminder of the argument, we
will assume that random errors are either neglected or converted to systematic errors as inVanDerVoort et al
(2016).

If dose distributions are unknown, computing confidence levels in proton therapy is not as straightforward
as in photon therapy. Themain reason is that one cannot easily approximate the effect an errormay have on the
dose distributions. Consequently, each type of error needs to be considered separately. In the context of
independent setup errors and range uncertainties, this leads to the sampling of errors in a 4D space with reduced
axis ¢ = ¢ = ¢ = ¢ =

S S S S
x y z, , , RU ,x y z RU

x y z

se

setup,

se

setup,

se

setup, RU
( ) whereS is the standard deviation. In this space,

equiprobable errors will be located on the surface of a hypersphere with equation ¢ + ¢ + ¢ + ¢ =x y z RU2 2 2 2

a .4D
2 The parameter a D4 denotes the (reduced) radius of the hypersphere. The left side of the last equation

represents a chi-square distributionwith 4 degrees of freedom. The behavior of the cumulative chi-square
distribution is illustrated infigure 1(a) for different numbers of degrees of freedom.

A confidence level in the error space can nowbe approximately computed. To ensure robustness against 90%
of all possible scenarios, we need to select all possible configurations within a hypersphere with radius of
approximately 2.8 as seen fromfigure 1. If we hypothesize that theworst-case scenarios are located on the
surface of the hyper-sphere, then one can assume that this confidence level of 90%will be achieved by only
simulating the points distributed over the hyper-sphere. However, this hypothesis is not necessarily true andwill
be tested in one of the robustness evaluation strategies introduced in section 2.4.

If range uncertainties are removed, we come back to the 3D case and a3D equals thewell-known 2.5 value.
Figure 1(b) displays how aN Dvaries depending on the number of dimensions. It is a direct translation of the
value of the L2 norm in figure 1(a) at 90% cumulative probability.

One thing important to note here is that the selection of the scenarios will strongly depend on the
dimensionality of the problem.More extreme scenarios will have to be selected for a higher number of
dimensions and afixed confidence level (because of the corresponding increase of the radius a of the hyper-
sphere).

2.3. Patient test cases
Five bilateral head-and-neck patients were considered for illustrating the notions described above. Some tumor
characteristics are detailed in the appendix (table S1 (available online at stacks.iop.org/PMB/66/045002/
mmedia)). The patients were treated by conventional radiotherapy. Hence, the proton treatment planswere
optimized for the purpose of this study. The target was the PTV, obtained by expanding theCTVby a 4 mm
isotropicmargin. The treatment plans included two prescriptions, 70 Gy and 54 Gy on tumor and elective
volumes, respectively. The proton treatment planwas composed of 4 scanned beam incidences ((350,60);
(350,120);(10,240):(10,300) in degrees for couch and gantry angles, respectively). Treatment planswere
optimised to ensure adequate coverage of the PTV,without robustness parameters (treatment planswere not
robustly optimized). Theminimum requirements wereD98>90%of prescription dose,D95>95%of
prescription dose,D5<105%of prescription dose.However, when possible to respect OAR constraints, we
tried to achieve at least 95%of prescribed dose forD98. Constraints toOARswere set according to the clinical

Figure 1. (a)Examples of cumulative probabilities for isotropicmulti-dimensional independent normal (Gaussian) distributions with
1 mmstandard deviation; (b) values of the reduced radius aN D of the isoprobability hyper-sphere with respect to the number of
dimensions for 85, 90, and 95% confidence levels (CL). For 3 dimensions and 90%confidence level (CL),a D3 equals the typical 2.5
value found inmargin recipe of vanHerk et al (2000).
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rules of CliniquesUniversitaires Saint-Luc used for conventional photon therapy. TheOARs subject to sparing
and their associated dose limits are listed in table S2 in the supplementalmaterial.When possible, the dose to
OARswere further diminished provided that it did not compromise PTV coverage. The treatment planswere
optimised using RayStation (fromRaySearch, research license 5.99). The achieved dose distributions and the
used beam angles are illustrated in axial slices for each patient infigure 2.

Figure 2.Axial slices of the 5 patients selected for this studywith overlaid dose distributions.
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The spot positions andweights were exported to a local robustness evaluation tool developed by
Souris et al (2019). This robustness evaluation tool is based on a validatedMonte Carlo dose engine called
MCsquare (Souris et al 2016). For the purpose of the present study, systematic setup errors and image
conversion errors were simulated by shifting the patient and applying a density scaling according to sampled
values of setup errors and image conversion errors.

The values chosen for the standard deviationswere as follows. For the tests without random errors,
S = 1.6 mm,setup s = 0 mm,setup andS = 1.8%.RU The values were chosen in order to represent 4 mmand 3%
errors at 90% confidence level in their respective spaces (3D for setup errors (a = 2.53D ), 1D for range
uncertainties (a = 1.674D )). For the tests with random errors, the values chosenwereS = 1.3 mm,setup

s = 1.0 mm,setup andS = 1.8%.RU Such combination of systematic and random setup errors leads to amargin
of 4 mmusing the simplified vanHerk formula ( sS +2.5 0.7 ). It is also in linewith the empirical relationships
shown infigure 3 of Van der Voort et al (2016).

2.4. Robustness evaluation strategies investigated
We summarize here the robustness evaluation strategies investigated. A short overview is also given in table 1. In
all robustness evaluation strategies, the nominal scenario is kept in the simulated set of dose distributions.

2.4.1. Strategy 1: good practice scenario selection (GPSS) of flat systematic setup and range errors
Inmany robust optimization/evaluation approaches, scenarios are selected pragmatically according to good
practice rules. In general, theCTV to PTVmargin is replacedwith a systematic setup error of comparable
magnitude and the range uncertainty parameter takes typically three values,+RU, 0 and−RUwhere RU ranges

Figure 3. Illustration of the scenario selectionmethods in a 2D slice (a)–(c), or in a projection (d), of the 4D iso-probability
hypersphere. Each dot represents a simulated scenario. The hypersphere contains 90%of all possible scenarios. Figure (a) corresponds
to good practice scenario selection (GPSS). Figure (b) corresponds to statistically sound selection of the scenarios (SSSS) at the surface
of the isoprobability hyper-sphere including 90%of possible scenarios (SSSS (ON)). Figure (c) corresponds to SSSS at the surface and
within the isoprobability hyper-sphere including 90%of possible scenarios (SSSS (IN)). Figure (d) corresponds to statistically sound
dosimetric samplingwith selection on best 90%D95 (SSDS_D95)with a projection of all scenarios onto the plane defined by the x and
range dimensions. Red dots correspond to selected dose distributions; black dots to discarded dose distributions.
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Table 1. Summary of the robustness evaluation strategies studied and their associated robustness parameters.

Robustness evaluation strategy Description Ssetup (mm) ssetup (mm) SRU (%)

GPSS Good practice scenario selection in the error space: selection of setup errors onto 90%3D sphere, and a positive and a negative range value 1.6 0.0 3.0a

SSSS (ON) Statistically sound selection in the error space onto 90% isoprobability line of the 4Dhypersphere 1.6 0.0 1.8

SSSS (IN) Statistically sound selection in the error space onto and inside 90% isoprobability surface of the 4Dhypersphere 1.6 0.0 1.8

SSDS_D95 (S) Statistically sound selection in the dosimetric space for the 90%best CTVD95 1.6 0.0 1.8

SSDS_OF (S) Statistically sound selection in the dosimetric space for the 90%best objective function values 1.6 0.0 1.8

SSDS_D95 (R) Statistically sound selection in the dosimetric space for the 90%best CTVD95 1.3 1.0 1.8

SSDS_OF (R) Statistically sound selection in the dosimetric space for the 90%best objective function values 1.3 1.0 1.8

a ForGPSS, only extreme values of the distributions are considered for range errors, not the standard deviations.
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from2.5 to 3.5% inmost publications. Random errors are typically ignored or converted into systematic errors,
for instance using the approach developed byVanDerVoort et al (2016). For this strategy, the setup error and
RUparameters equalled 4 mmand 3% (consistent withS = 1.6 mmsetup andS = 1.8%RU ). In typical clinical
practice, only a few scenarios are sampled in the directions x, y, and z, i.e. positive and negative extreme values
along each axis (no diagonals). By combiningwith range errors, it amounts to 20 scenarios in total, excluding the
nominal scenario. However, it is not possible with such strategy to estimate a confidence level with acceptable
accuracy, as the errors in the spatial directions x, y, and z are sampled too coarsely. Therefore, we have simulated
more scenarios by including those on the diagonals between the x, y, and z axes. In such case, the setup errors are
selected on the 3D-sphere, at 90% confidence level in 3D (using a3D=2.5). The total amount of scenarios then
reaches 80without the nominal scenario.

In this configuration, a confidence level can be estimated by integrating the joint probability density function
inside the 4Dhyper-cylinder defined by the 3D setup errors (distributed over a sphere) and the range errors. This
was approximated numerically by generating randomly setup and range errors and counting the ones that are
inside the hyper-cylinder. This amounts to 81%of possible errors. It is important tomention here that this way
of computing the confidence level assume continuity of the errors in the error space and also that theworst
errors are located on the edges of the explored space.

For the sake of completeness, we have also simulated theGPSS casewith 20 scenarios only. The results are
reported in supplementarymaterials.

2.4.2. Strategy 2: statistically sound scenario selection (SSSS)
Two configurations were tested in this study. In the first configuration, scenarios were sampled uniformly on
the hyper-surface of the 4D hyper-sphere delimited by the equation a+ + + =¢ ¢ ¢ ¢x y z RU ,D

2 2 2 2
4

2 where
a = 2.8D4 to ensure a 90% confidence level in the error space (SSSS (ON) figure 3(b)). In such case, onemay
assume that this confidence level is secured in the error space provided that robustness for scenarios inside
the hyper-surface is also warranted. In the second configuration, scenarios were also uniformly sampled
within the hyper-sphere, in order to better approximate a true 90% confidence level (Perkó et al 2016)
computed in the error space (figure 3(c)). In SSSS (IN), we also sample hypersurfaces within the 90%
hyper-surface with a different radius. The number of scenarios per surface is 80 (34minus the nominal case).
In SSSS (IN), we sample 3 hypersurfaces (at (reduced) radii 2.2 and 1.1) hence 240 scenarios. One can
note that errors and scenarios lead eventually here to the samemeaning, because only systematic errors
are sampled.

2.4.3. Strategy 3: statistically sound dosimetric selection (SSDS)
We consider here aMonte Carlo robustness evaluation tool, i.e. errors are randomly sampled according to
their pdfs. It is worthmentioning that the dose engine associated with this tool can be anything, eitherMonte
Carlo or analytical. A random error sampling approach would be an excellent candidate for performing
robustness evaluation because (1) errors can be sampled without any statistical bias from their actual pdfs; (2)
random errors can be simulated naturally; and (3) it enables an evaluation of the confidence level in the
dosimetric space. Aweakness of this approach is that the number of treatment scenarios to simulatemay be
substantial. To ensure its practical viability, dose computationmust be performed at a low computational
cost. FastMonte Carlo dose enginesmay be used for this task, but, in such case, the number of errors and
scenarios to simulatemust be limited to what is necessary. Therefore, this requires the introduction of a
convergence criteria and variance reduction techniques, as described in Souris et al (2019). For the purpose
of this study, we have tried tominimize the statistical noise asmuch as reasonably achievable. In Souris et al
(2019), it was shown that 300 scenarios were sufficient to ensure convergence of the DVH error bands. In the
present study, we have therefore simulated 1000 scenarios for ensuring low noise levels on the reported
values (for instance, the lowestD95 value at 90% confidence level). The number of particles per scenario was
about 108 to ensure a statistical uncertainty in the target below 2% (one standard deviation). Simulations
were performed on a 2x Intel(R)Xeon(R)Gold 6248 CPU.

The SSDSmethod allowsflexibility in theway the scenarios are selected.We implemented two scenario
selectionmethods. In theD95method, the 90%best scenarios according to target coverage for the high dose
CTV (quantified here by theD95)were selected for reporting. In theOFmethod, the 90%best scenarios
according to the value of the objective functionwere selected for reporting. The value of the objective function
was computed as aweighted sumof all clinical objectives used in the TPS for the treatment plan optimization.
Four objective types, namelyminimumdose,maximumdose,mean dose, andDVHobjectives, were
implemented in the objective function using quadratic terms as described inOelfke andBortfeld (2001) (see
table S2 in the supplementarymaterial).
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For each scenario selectionmethod in the dosimetric space, two tests were performed. In the SSDS (S)
strategy, only systematic errors were considered. In the SSDS (R) strategy, both systematic and random errors
were considered. The standard-deviations selected for both examples are provided in section 2.3.

3. Results

3.1. Results for the nominal plans
The results obtained for PTV coverage, quantified by themetricsD98,D95 andD5, in the nominal plan using
MCsquare are provided in table 2. This computationwas necessary to ensure that the dose distributions in the
nominal configuration computed byMCsquaremet target coverage criteria.

3.2. Comparison of the robustness evaluationmethods
Robustness evaluation has been performed for the strategies described in table 1. Table 3 provides the differences
betweenworst-case and the nominal DVHmetrics averaged over all patients, for each robustness evaluation
strategy. Table 4 displays the same data as table 3, this timewith respect to the results yielded by theGPSS
method (instead of the nominal plans in table 3). Individual DVHmetrics are illustrated for patient 3 infigure 4,
and detailed for the same patient in table 5. The same results for the other patients are available in appendix
(tables S3–6 andfigures S1–4).

For each strategy, the time needed to compute one scenariowas about 150 s.

3.2.1. Considering systematic errors only
As shown in table 3 and in the individual results (table 5,figure 4, tables S3–6 andfigures S1–4), SSSS (ON) and
SSSS (IN)provide very similar DVHmetrics. Therefore, theywill not be distinguished anymore to present the
results. For the high dose CTV,GPSS and SSSS yield similar results, with an average of worst-caseD98,D95, and
D5 within 0.5 Gy. Results for individual patients are also similar for the high doseCTV,with differences within
0.7 Gy (tables 5 and S3–6). For the low dose CTV,GPSS and SSSS yield slightly divergent results, with average
differences within 0.4 Gy and 0.3 Gy forD98 andD95, respectively. Themaximumvariability occurred for
patient 5, with SSSS yielding aD98 and aD95 0.9 Gy larger (table S6).

When comparingGPSS to the SSDSmethods for target coverage (table 4), differences aremore substantial.
Considering systematic errors only (S), andD98 of the high dose CTV, theworst-case scenario is on average

Table 2.Metric assessing PTVdose coverage for the nominal plan used
in this study. The dosewas computedwithMCsquare in the nominal
case. Target coverage objectives were at leastD95>95%and
D98>90%of prescribed dose (70 Gy), thus 66.5 Gy and 63 Gy,
respectively. Overdosagewere limited by the constraintD95<105%
(thus 73.5 Gy).When possible, we tried to achieveD98>95%of
prescribed dose.

PTVmetric (Gy)
Patient results for high dose PTV70 Gy

P1 P2 P3 P4 P5

D98 67.6 64.9 67.2 67.9 66.7

D95 68.2 67.0 67.9 68.4 67.5

D5 71.6 73.4 71.7 72.2 71.6

Table 3.Dose differences between theworst-case and the nominal DVHmetrics for the target and organs-at-risk, averaged over the 5
patients (# of scen=number of scenarios; CL=confidence level). Themeaning of each robustness evaluation strategy is detailed in
table 1. The abbreviation ‘prtd’ stands for ‘parotid’.

Strategy

#
of

scen CL (%)

D98

CTV

70 Gy

(Gy)

D95

CTV

70 Gy

(Gy)

D5

CTV

70 Gy

(Gy)

D98

CTV

54 Gy

(Gy)

D95

CTV

54 Gy

(Gy)

Dmean

left

prtd

(Gy)

Dmean

right

prtd

(Gy)

Dmean

oral

cavity

(Gy)

D2

spinal

cord

(Gy)

D2

brain

stem

(Gy)

GPSS 80 81 −4.9 −3.9 2.0 −3.9 −2.9 6.4 5.8 3.8 6.7 5.3

SSSS (ON) 80 90 −4.4 −3.6 1.8 −3.5 −2.6 6.1 5.7 3.5 7.0 5.6

SSSS (IN) 240 90 −4.4 −3.6 1.8 −3.5 −2.6 6.1 5.7 3.5 7.0 5.6

SSDS_D95 (S) 1000 90 −2.1 −1.3 1.9 −3.9 −3.1 6.7 6.2 4.1 7.0 5.5

SSDS_OF (S) 1000 90 −2.9 −2.2 1.6 −3.5 −2.6 5.3 5.6 3.3 7.0 5.5

SSDS_D95 (R) 1000 90 −2.0 −1.1 1.9 −3.4 −2.6 6.1 5.6 3.6 5.8 4.7

SSDS_OF (R) 1000 90 −2.4 −1.8 1.3 −2.8 −2.2 4.8 4.7 2.8 6.2 4.9
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Figure 4.Results of the robustness evaluation for patient 3. Themeaning of each robustness evaluation strategy (mentioned in the title
of every graph) is detailed in table 1.

Table 4.Average absolute differences of theDVHmetrics for the 5 patients with respect toGPSS taken as a reference (‘# of scen’=number
of scenarios; ‘CL’=confidence level). Themeaning of each robustness evaluation strategy is detailed in table 1. The abbreviation ‘prtd’
stands for ‘parotid’.

Strategy

#
of

scen CL (%)

D98

CTV

70 Gy

(Gy)

D95

CTV

70 Gy

(Gy)

D5

CTV

70 Gy

(Gy)

D98

CTV

54 Gy

(Gy)

D95

CTV

54 Gy

(Gy)

Dmean

left

prtd

(Gy)

Dmean

right

prtd

(Gy)

Dmean

oral

cavity

(Gy)

D2

spinal

cord

(Gy)

D2

brain

stem

(Gy)

SSSS (ON) 80 90 0.5 0.3 −0.2 0.4 0.3 −0.3 −0.1 −0.3 0.3 0.3

SSSS (IN) 240 90 0.5 0.3 −0.2 0.4 0.3 −0.3 −0.1 −0.3 0.3 0.3

SSDS_D95 (S) 1000 90 2.8 2.6 −0.1 0.0 −0.2 0.3 0.4 0.3 0.3 0.2

SSDS_OF (S) 1000 90 2.0 1.7 −0.4 0.4 0.3 −1.1 −0.2 −0.5 0.3 0.2

SSDS_D95 (R) 1000 90 2.9 2.8 −0.1 0.5 0.3 −0.3 −0.2 −0.2 −0.9 −0.6

SSDS_OF (R) 1000 90 2.5 2.1 −0.7 1.1 0.7 −1.6 −1.1 −1.0 −0.5 −0.4
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2.8 Gy and 2.0 Gy larger for SSDS_D95 and SSDS_OF compared toGPSS, respectively. ForD95, it is 2.6 and
1.7 Gy, respectively. ComparingGPSS and SSDS_D95, the differences reported aremaximum5.0 Gy and 4.4 Gy
higher forD98 andD95, respectively (patient 2, table S4). For the lowdose CTV,maximumaverage differences
within 0.4 Gy are observed between both SSDS evaluationmethods andGPSS. SSSS and SSDS_OF yield on
average very similar results for the lowdose target (table 4).

These results are confirmed visually infigure 4, where it can be noticed thatDVH-bands for the high dose
CTV (red) are broader forGPSS and SSSS, than for both SSDS strategies.

For organs-at-risk, the average differences reported are within 1.6 Gy for allmetrics between allmethods
(table 3). It is difficult to distinguish clear trends looking at individual patient results (tables 5 and S3–6).
However, one can notice thatGPSS often reports the lowest values forOARs. SSDS_OF yields in general similar
or lower values than SSSS. Sometimes, SSDS_D95 (S) yields substantially larger values than other evaluation
methods. For instance, for patient 2,Dmean of the left parotid ismore than 1.5 Gy larger for SSDS_D95 than all
othermethods (table S4).

3.2.2. Considering systematic and random errors
Simulating explicitly random errors during robustness evaluation yields similar or improvedDVHmetrics with
respect to their counterparts with systematic error only. One can notice in table 3 an average improved coverage
of the lowdose CTVup to 0.7 Gy forD98 (SSDS_OF). ForOARs, similar observations can bemade, with an
improvement of all OARDVHmetrics when randomerrors are simulated explicitly (i.e. not translated to their
approximatively equivalent systematic errors). For instance, themean to the left and right parotids improved on
average in a range from0.5 Gy to 0.9 Gy.

4.Discussion

The results show that for the patients investigated, SSSS yields the same results whether scenarios are simulated
inside the isoprobability sphere or only on the surface. This is in linewith previous findings (Casiraghi et al 2013,
Malyapa et al 2016). It is, however, impossible to strictly exclude that a few scenarios inside the hypersphere
could lead to unexpected loss of target coverage or unexpectedOAR exposure. For instance, range errors
induced by setup errors and explicitly simulated range errors could compensate for some particular points on
the surface of the hypersphere but not inside, leading to eventually less perturbed dose distributions for some
extreme errors. But checking the interior of the hyperspherewill inevitably lead to an important increase of the
scenarios to simulate (from80 to 240 in our examples). Therefore, onemay consider for practical purposes to
explore only the surface of the hypersphere (i.e. themost extreme errors).

A striking result is that GPSS leads to larger error bands for target coverage, often smaller worst-case doses to
OARs, and a smaller confidence level of 81%. In practice, thismay lead to the decision of replanning because of a
lack of target coverage, with the inevitable downside of increasing the dose toOARs, with some that are already
slightly underestimated (e.g. 0.3 Gy average difference forD2 brainstembetweenGPSS and SSSS). Those results

Table 5.Results of the robustness evaluation for patient 3 (‘# of scen’=number of scenarios; ‘CL’=confidence level). Theworst-case are
shown for each robustness evaluation strategy. For comparison purposes, the nominal values are also displayed. Themeaning of each
robustness evaluation strategy is detailed in table 1. The abbreviation ‘prtd’ stands for ‘parotid’.

Robustness

evaluation

strategy

#
of

scen CL (%)

D98

CTV

70 Gy

(Gy)

D95

CTV

70 Gy

(Gy)

D5

CTV

70 Gy

(Gy)

D98

CTV

54 Gy

(Gy)

D95

CTV

54 Gy

(Gy)

Dmean

left

prtd

(Gy)

Dmean

right

prtd

(Gy)

Dmean

oral

cavity

(Gy)

D2

spinal

cord

(Gy)

D2

brain

stem

(Gy)

Worst-case

GPSS 80 81 62.7 64.8 72.4 50.9 52.7 32.4 30.1 19.1 45.0 32.6

SSSS (ON) 80 90 63.1 65.2 72.6 51.1 52.8 32.4 29.8 19.7 45.3 33.1

SSSS (IN) 240 90 63.1 65.2 72.6 51.1 52.8 32.4 29.8 19.7 45.3 33.1

SSDS_D95

(S)
1000 90 66.8 68.1 72.6 51.2 52.7 32.9 30.1 20.1 45.4 33.4

SSDS_OF (S) 1000 90 66.3 67.7 72.6 51.2 52.7 32.4 29.9 19.5 45.4 33.4

SSDS_D95

(R)
1000 90 67.0 68.3 72.6 51.0 52.7 33.5 30.7 20.4 44.3 32.4

SSDS_OF (R) 1000 90 66.9 68.0 72.4 51.9 53.1 32.1 29.5 19.2 44.9 32.4

Nominal

1 NA 68.7 69 71.9 53.8 54.4 26.2 24.9 17 40.2 27.6
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are intuitively expected. Because theGPSS strategy only explores 81%of the possible scenarios (assuming
robustness against intermediate errors)ANDarbitrarily select extreme scenarios with a very low probability (i.e.
outside the 90%hypersphere, thus inconsistent with generally accepted confidence levels (90%)), this leads to an
over-conservative approach for the target (because of the extreme cases considered) and a possible under-
estimation of theOARs (because of a larger number of unexplored scenarios). An additional source of
inconsistency is the arbitrary selection of scenarios with different probabilities (for instance (x y z RU, , ,se se se )
may equal (4 mm, 0, 0, 0) or (4 mm, 0, 0, 3%) as shown infigure 3(a); thefirst scenario ismore likely to occur). In
clinical practice, GPSS is often implemented differently, with a coarser selection of the scenarios in the directions
x, y, and z. In such case, the computation of a reliable confidence level becomes very problematic. However, we
observe similar results forGPSS either with 20 or 80 scenarios, as it can be seen by comparing tables 3 and S7,
which report average results within 0.3 Gy for the targets and 0.8 Gy for theOARs.

The SSSSmethodwill lead overall to themost conservative approach, as shown in tables 3 and 4. Because of
the effect of dimensionality (figure 1), SSSS forces the exploration of scenarios that are typically not considered in
clinical practice (for photons and protons), for instance an error up to 2.8S ,setup which is larger than themore
familiar 2.5S .setup The effect of the dimensionality has already been addressed byKorevaar et al (2019). Ifmore
errors are included, for instance baseline shifts and/or rotations, the errors to explore would bemore extreme as
shownby figure 4. This is a keyweakness of the SSSSmethod. Becausewe are blind to the effect of the
uncertainties on the dose distributions, the selection can only be performed on orwithin isoprobability
hypersurfaces in order to ensure statistical consistency. As a consequence, the space to explore will increase with
the types of errors to explore. In practical cases, the dimensionality of the error space is typically 4D, which leads
to amild increase of the errors to explore (from2.5 to 2.8Ssetup). But if a robustness evaluation system aims at
improved generalizability of the evaluation, itmay need to exploremore dimensions (inter-fractional
anatomical change, breathing variability, etc), whichwill inevitably lead to an explosion of themagnitude of the
errors and to extremely conservative treatment plans. In the context of the PTVmargin recipe, this blindness is
overcome by assuming a simple hypothesis related to the dose distributions: the static-dose cloud
approximation. This allows a simple sumof the associated randomvariables—i.e. quadratic sumof variances in
margin recipe – so that the problem remains a 3Dproblem. This hypothesis is rightly forbidden in proton
therapy, hence the dimensionality problem that appears here.

The SSDSmethods aimprecisely at overcoming the downsides of GPSS (inconsistency and arbitrariness)
and SSSS (over-conservativeness) discussed above. Because the problemunder consideration is eventually a 3D

Figure 5.Representation of the scenarios selected by the robustness evaluation SSDS_D95. Each scenario is representedwith respect to

the simulated range uncertainty and the normof the sampled setup error (se) ¢ + ¢ + ¢x y z2 2 2 where ¢ = ¢ = ¢ =
S S

x y z, ,x yse

setup

se

setup

S
.zse

setup
Black dots are excluded from theDVH-bandwhile red dots are included in theDVHband. The red dots represent the best 90%

values of theD95. The large black circle represents all equiprobable configurations in the (4D) error space (90% confidence level in the
error space). Diagramnot to scale.
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problem (dose distributions are 3Dobjects), it ismore powerful to explore the scenarios in the dosimetric space.
In such case, all the potential redundancies in the error spacewill be captured.Moreover, extreme errors that
may have a low impact on the dose distribution (for instance, amotion parallel to a highly contributing
treatmentfield), can be included in theDVHbands naturally. This can be observed infigure 5, where substantial
errors, outside the isoprobability hypersphere, could lead to an acceptable dose distribution. Becausewhat is
important in the end is the confidence level (i.e. the probability ofmeeting a criterion or not), statistically unlikely
errors can be included safely provided that the final probability (or confidence level) is correctly computed. This
leads to amore optimistic estimation of target coverage (2.3 and 1.5 Gy higher on average forD98 of the high
dose CTV, for SSDS_D95 (S) and SSDS_OF (S) compared to SSSS, respectively). And amild increase (for
SSDS_D95 or decrease (for SSDS_OF) ofDVHmetrics ofOARswithin 0.8 Gy (on average over the 5 patients)
compared to SSSS. It is interesting also tomention that such considerations were already addressed for
establishing confidence levels for PTVmargin recipes. In vanHerk et al (2000), it is written that ‘themargin for
treatment preparation (systematic) errors is chosen as a confidence interval that is spherically symmetric.
However, an infinite number of 90%confidence intervalsmay be chosen that are not spherically symmetric.
This observation leaves some room for optimization.’ In a follow-up paper,Witte et al (2017) showed byMonte
Carlo simulations how themargin can be optimized to reduceOARdosewhilemaintainingminimum
CTVdose.

However, a new problem that arises is the adequate selection of the scenarios in the dosimetric space. In
otherwords, what is theworst dose distribution?Howdowe define ‘worst’? Tables 3 and 4 show that the
reportedworst-case will differ significantly depending on the scenario selectionmethod. If we focus on target
coverage and select the 90%bestD95 (SSDS_D95), we obtain themost optimistic result for high dose target
coverage, at the expense of generally higherDVHmetrics forOARs. Such approachwould be ideal in cases with
no compromisewith respect toOARs.Wewould then achieve the best estimate of target coverage, for a
confidence level of 90%.However, if there are compromises to bemadewithOARs, then theworst-case dose to
OARwill be on the pessimistic side, whichmay lead to exceed clinical constraints causing the reoptimization of a
plan and eventually a deterioration of target coverage.

A solution to the issue of scenario selection based on target coverage only would be to capture the clinical
compromisemade at the planning level and display the 90% best dose distributions, with respect to both target
coverage andOAR sparing.We propose here to achieve this by computing for each scenario the objective function
as accepted by the radiation oncologist and themedical physicist before robustness evaluation. The objective
function provides a quantitative assessment of the quality of the plan froma clinical point-of-view, since it
integrates clinical objectives and constraints, as well as objective functionweights used for optimization that are
implicitly approved by the radiation oncologist. Such approach could also naturally be translated to amodel-
based dose distribution assessment, for instance using tumor control and normal tissue complication
probabilities.

The SSDS_OFmethod yields less optimistic numbers for high dose target coverage than SSDS_D95, but
those are still significantly larger thanGPSS and SSSS (2.0 and 1.5 Gy larger forD98 on average, respectively).
However, the results obtained forOARs are on average comparable to bothGPSS and SSSS. Interestingly,
SSDS_OF also yields results for the lowdose target comparable to SSSS. Therefore, SSDS_OF seems to better
capture the plans that will lead to the best clinical compromises.

One potential issue of the SSDS_OFmethod is that objective functions vary by nature fromone patient to
another depending on the tuning of objective/constraint weights in order to achieve a clinically acceptable
compromise between target coverage andOAR sparing. Thismay lead to undesired variability in robustness
reporting.However, such feature could also be seen as an advantage. Two identical robustness evaluation results
may lead to different appreciations by a radiation oncologist depending on individual patient characteristics. For
instance,more attention can be given to a particular organ-at-risk in a given patient. Such patient-specific
characteristics are at least partially entailed implicitly in the objective function. As a consequence, selecting the
best dose distributions according to the value of the objective functionwill tend to bemore faithful to the clinical
compromisesmade at the treatment optimization level, and therefore reduce variability in patient reporting
froma clinical perspective. Such approach alsomotivates the radiation oncologist to better formalize the clinical
goals he/she aims to achieve before the robust optimization phase starts. This is in linewith an improved
standardization of the treatment planningworkflow,which is essential for its automation.

It is important to note that the computation of confidence levels in the dosimetric space has already been
illustrated by Perko et al (2016)with the polynomial chaos expansion. Perko et al have also identified the
potential of working in the dosimetric space to estimate themagnitude of the errors to be included in the
robustness evaluation to achieve given statistical criteria, e.g. coverage of theCTV in a given fraction of the
patients. The only requirement towork in the dosimetric space is to have a fast dose engine available in order to
generate enough dose distributions to compute statistical quantities. This is exactly the purpose of the
polynomial chaos expansionmethod that proposes a novel approach to generate a virtually infinite number of
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dose distributions after taking the time to generate a comprehensive dose calculationmodel (based on about 100
pre-computed scenarios). In ourwork, we use a fastMonte Carlo dose engine associatedwith statistically
defined stopping criteria to generate the required scenarios. Another difference with the study by Perko et al is
that the authors evaluate the robustness for each volume of interest separately, while we attempt to evaluate
methods to select scenarios globally. The approach of Perko et al could be trivially adapted to ourmethodology.
An advantage of a global approach is that it naturally takes into account correlations between theDVHmetrics
since a set of dose distributions is selected.

The explicit simulation of random errors leads to results that are on averagemore optimistic than their
counterparts with systematic errors only.We remind here that we have always used sets of sS,( ) that lead to a
consistent CTV-to-PTVmargin of 4 mmusing the simplified formula of vanHerk et al ( sS +2.5 0.7 ). This
indicates that this formulamight be overconservative for the patients investigated in this study.More aggressive
plans could therefore be achieved using a statistically sound robustness evaluationmethod that includes random
errors. For instance, SSDS_OF (R) yields a worst-caseD98 for lowdose target that is on average 0.5 Gy higher
than SSDS_OF (S). For the right parotid, theworst-caseDmean is 0.9 Gy lower for SSDS_OF (R) than SSDS_OF
(S). It is interesting to compare SSDS_OF (R)withGPSS by analyzing the last line of table 4. SSDS_OF (R)
estimates a better target coverage, overallmore optimistic organ-at-risk sparing, and all this for a higher
confidence level (90%versus 81%).

It is not the purpose of this paper to suggest a procedure for robustness evaluation. First of all, such
procedures will strongly depend on the tumor site considered, the advancement of computing technology, the
number of effects wewant to consider, and clinical practice. For instance, the group at PSI has suggested a
robustness evaluation procedure built up acrossmany publications that is well suited for locationswith small
systematic errors (Malyapa et al 2016). The computation of confidence levels was also included for the effect of
fractionation (Lowe et al 2015). Other groups have suggested to include variable radiobiologicalmodels in their
evaluation (Ödén et al 2017). However,most robustness evaluation strategies reported in the literature select
separately setup errors and range errors according to good practice rules, without considering the computation
of confidence levels, neither in the error space nor in the dosimetric space (Liu et al 2014, Liu et al 2016, van de
Water et al 2016). Asmentioned before, Perko et al do compute appropriately confidence levels in the dosimetric
space using the polynomial chaos expansionmethod (Perkó et al 2016). Finally, we have reported hereworst-
caseDVHmetrics for both target volumes andOARs.One could argue that for parallel-likeOAR, like lungs,
DVHmetrics averaged over the entire set of dose distributions could bemoremeaningful. In such case, the
problem ismade trivial for our SSDSmethods sincewe can simply average all DVHmetrics over all simulated
scenarios. SSSS (IN) should alsowork.However, adaptations will be required forGPSS and SSSS (ON) since
those sample only extreme scenarios, whilst the accurate computation of averageDVHmetrics would require
also intermediate values.

The choice of a robustness evaluation procedure entails also pragmatic considerations such as the time
needed to execute the procedure. The SSDSmethods are time consuming because enough scenarios need to be
simulated in order tominimize the impact of the statistical noise on the reported values. In Souris et al (2019),
about 300 scenarios seemed adequate to ensure convergence of the results. An intrinsic advantage ofMonte
Carlo simulations is that the computation time does not scale necessarily with complexity. For instance, random
errors can be simulated comprehensively withminimal impact on computation time. Yet, we report here 153 s
computation time per scenario, which leads to a total computation time of 13 h for 300 scenarios, which is the
maximum limit onemay consider in clinical practice (this would correspond to calculations performed
overnight). However, such computation timewould only be acceptable for afinal check, but not for an iterative
approachwhere treatment plans are re-optimized several times according to the results of the robustness
evaluation. Therefore, significant improvements are needed towarrant dosimetric selection of scenarios in the
clinical practice. Thismay be achieved by improving the speed of theMonte Carlo dose engine, or the
introduction of variance reduction techniques for enablingmore efficient sampling of the scenarios, as
suggested in Souris et al (2019). The polynomial chaos expansionmethod can also be used to reduce somewhat
the number of dose computations needed, and hence speed-up the overall process (Perkó et al 2016).

The distinction between the error space and the dosimetric space has beenmade in the current study for
protons only. In general, such distinction is notmade in photon therapy because of the usual hypothesis of shift
invariance of the dose distributions. If the hypothesis is true, the issue of robustness for target coverage can be
formulated as a geometric problem,which leads to safetymargin recipes. However, such hypothesis is not
necessarily true (for instance,misplaced shoulders in head-and-neck tumors that cause undesired attenuation).
Therefore, photon-based treatment plans could also benefit from comprehensive robustness evaluation
strategies, whichwould also help for defining commondosemetrics to evaluate proton and photon plans. One
can also note that photon-based plansmay still benefit from a comprehensive robustness evaluation in the
dosimetric space under the hypothesis of shift-invariance of the dose distributions, for instance to reveal
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robustness improvements due to non-perfect conformity to the target, or to generateDVH-bands using
advancedmetrics like the value of theOF.

Finally, it is important tomention that the results presented herewere achieved using PTV-based treatment
plans, that is, non-robustly optimized.Many papers have shown that robust optimization ismore suitable to
ensure adequate plan robustness (Unkelbach et al 2018). Qualitatively, our conclusions should remain valid if we
apply our robustness evaluationmethods to robust optimized plans, although thismust be confirmed in further
studies. Quantitatively, robust optimization is expected tomitigate the differences observed during the present
study between the various robustness strategies.

However, complex treatment plans with adjacent target volumes andOARsmight lead to challenging
clinical trade-offs, even in the context of robust optimization. In such case, having at one’s disposal a statistically
fair and comprehensive evaluation strategy will help to provide the patients with the best treatment plans, with
improved safety. Another limitation of our study resides in the computation of the objective function in the
evaluation phase.We have tried to reproduce the best we could the objective function used in the RayStation.
However, hidden terms or unforeseenmathematical expressions could be used in theRayStation’s objective
function andwould not be captured by our computation. It would be interesting to compare our results for
SSDS_OF to those that would be obtained using the objective function usedwithin the RayStation. Another
optionwould be to design objective functions exclusively for evaluation.

5. Conclusions

Robustness evaluation is a critical step in proton therapy treatment planning. Typically, we aim at evaluating
worst-case scenarios within a reasonable set of possible treatment errors. Depending on the outcome of the
robustness evaluation, treatment plan optimizationmay be resumed for enhancing the quality of the plan in
terms of target coverage and/or organs-at-risk dose. Therefore, the information delivered by the chosen
robustness evaluation strategymust be as accurate and as comprehensive as possible.

We have provided several ways to evaluate statistically the robustness of the plan. An approach based on
good practice rules, typically used in current clinical practice, is overall pessimistic for target coverage and
optimistic for organs-at-risk sparing, with a relatively low confidence level (81%). Exploring the possible
scenarios in the error space in a statistically consistent fashion enables a larger andmore familiar confidence level
(90%), but at the cost of conservative evaluations of worst-caseDVHmetrics.

Another approachwould be to select scenarios in the dosimetric space, i.e. to select the best dose
distributions according to a priori defined clinical criteria. Focusing on target coverage provides considerably
more optimistic target coveragemetrics (andmildly pessimistic OAR sparing). This would probably be a good
approachwhenOAR sparing is easily achievable, and onewants to deliver themost conformal dose possible to
achieve target coverage for a given confidence level. Amore balanced approachwould be to classify the best dose
distributions according to the value of the objective function accepted by the radiation oncologist. In such case, a
good balance is obtained between the reportedworst-case target coverage andOAR sparing. Such approach
could be easily implemented in existing commercial solutions.
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