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Abstract

Robustness evaluation of proton therapy treatment plans is essential for ensuring safe treatment delivery.
However, available evaluation procedures feature a limited exploration of the actual robustness of the
plan and generally do not provide confidence levels. This study compared established and more
sophisticated robustness evaluation procedures, with quantified confidence levels. We have evaluated
several robustness evaluation methods for 5 bilateral head-and-neck patients optimized considering spot
scanning delivery and with a conventional CTV-to-PTV margin of 4 mm. Method (1) good practice
scenario selection (GPSS) (e.g. +/— 4 mm setup error 3% range uncertainty); (2) statistically sound
scenario selection (SSSS) either only on or both on and inside isoprobability hypersurface encompassing
90% of the possible errors; (3) statistically sound dosimetric selection (SSDS). In the last method, the 90%
best plans were selected according to either target coverage quantified by Dgs (SSDS_Dys) or to an
approximation of the final objective function (OF) used during treatment optimization (SSDS_OF). For
all methods, we have considered systematic setup and systematic range errors. A mix of systematic and
random setup errors were also simulated for SSDS, but keeping the same conventional margin of 4 mm.
All robustness evaluations have been performed using the fast Monte Carlo dose engine MCsquare. Both
SSSS strategies yielded on average very similar results. SSSS and GPSS yield comparable values for target
coverage (within 0.5 Gy). The most noticeable differences were found for the CTV between GPSS, on the
one hand, and SSDS_Dys and SSDS_OF, on the other hand (average worst-case Dog were 2.8 and 2.0 Gy
larger than for GPSS, respectively). Simulating explicitly random errors in SSDS improved almost all
DVH metrics. We have observed that the width of DVH-bands and the confidence levels depend on the
method chosen to sample the scenarios. Statistically sound estimation of the robustness of the plan in the
dosimetric space may provide an improved insight on the actual robustness of the plan for a given
confidence level.

1. Introduction

External beam radiotherapy aims at delivering sufficient dose to tumor tissue while preserving surrounding
organs. In order to achieve this goal, sophisticated irradiation techniques, such as the use of protons, have been
developed in order to conform doses to target volumes. However, radiotherapy treatment delivery can be
affected by many sources of uncertainties: patient positioning, inter- and intra-fraction movements, and
imperfect conversion of imaging data into physical quantities. In order to secure target coverage and avoid
accidental organ-at-risk irradiation, robust planning methods have been developed to ensure that delivered
doses keep meeting the objectives and constraints despite uncertainties. In conventional x-ray radiotherapy, this

© 2021 Institute of Physics and Engineering in Medicine
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objective is typically achieved by safety margins with the concept of planning target volume (PTV) and planning
risk volume (PRV). In proton therapy, the typical margin strategies suffer from notorious shortcomings, because
of the sensitivity of proton therapy dose distributions to the uncertainties of the position of the Bragg peak and
failure of the static-dose cloud approximation, which assumes that patient shifts do not change the dose
distributions (Albertini et al 2011, Fredriksson 2012).

As aresult, many methods of robust planning and robustness evaluation have been proposed in the literature
for proton therapy (Albertini et al 2011, Fredriksson 2012a, 2012b, Bokrantz and Fredriksson 2013, Casiraghi
etal2013, Liuetal 2014, Lowe et al 2015, Malyapa et al 2016). In the case of the most advanced intensity
modulated proton therapy (IMPT) techniques, robust planning typically consists of a minimax problem that is
solved by optimizing the worst-case scenario among a set of predefined possible scenarios (Fredriksson 2012).
Generally, this set of scenarios includes (systematic) positioning errors, image conversion errors, and in some
cases the movement of organs represented by additional image sets which are included as additional scenarios
(Chang et al 2014, De Ruysscher et al 2015, Unkelbach et al 2018, Ge et al 2019). Irrespective of the considered
robust planning method, it remains necessary to evaluate the actual robustness of the plan. The evaluation can be
done more thoroughly than during robust optimization. Robustness evaluation often includes, for example,
random errors, organ deformations, interplay effects, etc. This is because robustness evaluation is
computationally less demanding than robust optimization (for instance, no need to store influence matrices).
However, the methods typically reported for robustness evaluation are also based on a relatively simple sampling
of error scenarios, for example some (systematic) positioning errors combined with image conversion errors.
Other authors have also incorporated random errors (Fredriksson 2012, Lowe et al 2015).

Most robustness evaluation methods reported in the literature and used in some commercial planning
systems may feature several biases because of pragmatic choices imposed by limited computing resources and
due to alack of consensus in the involved concepts. A first bias lies in the direct combination of pre-sampled
uncertainties, leading to the selection of very unlikely scenarios, for example setup errors of +/—5 mm
combined with density errors of +-/—3%, i.e. the simultaneous selection of two extremes in the probability
distributions. This amounts to combining extremes of marginal probability distributions, while the joint
probability distribution should be sampled instead. Korevaar et al have already pointed that issue and have
performed robustness evaluation using a statistically consistent but limited set of scenarios (Korevaar et al 2019).
A second bias is the lack of consistently calculated confidence levels, in order to clearly define what is meant by a
‘worst-case’. Indeed, the worst-case scenario is the least favorable scenario among a pre-defined selection set
(otherwise, the most extreme case can always be envisaged). In the best-known margin calculation recipe, the
value of the final margin depends on a choice of the number of patients for which one wishes to ensure target
coverage (typically 90%) (van Herk et al 2000). This confidence level is not always reported in the literature when
it comes to robustness assessments. In addition, a lack of clarity remains on how to calculate this confidence
level. Specifically, should it be calculated in the error space, i.e. as the percentage of possible scenarios covered by
agiven robustness test? Or should it be calculated in the dose space, that is, as the percentage of dose
distributions meeting a given clinical endpoint?

In this publication, we compare several robustness evaluation methods, with explicitly calculated confidence
levels in either the error space or the dose distribution space.

2. Materials and methods

2.1. Definitions and notations

We define the robustness of a treatment plan as the capability of this plan to continue satisfying clinical
objectives and/or constraints despite uncertainties, for a certain confidence level. As in van Herk et al (2000),
treatment errors can be classified in treatment preparation errors (e.g. systematic errors) and treatment
execution errors (e.g. random errors). Like van Herk’s formalisation, we suppose knowledge of the probability
density functions (pdf) of these errors. In general, these are assumed to be normal (Gaussian) with standard
deviations X and o for systematic and random errors, respectively. For the remaining of this manuscript, we will
limit ourselves to the following errors:

1. Setup errors (s€; (Xge> %> Zse)) characterized by 3D Gaussian pdfs for both systematic and random errors,
with vector standard deviations 3. and o, respectively.

2. Range uncertainties (RU; due for instance to improper image conversion), characterized by a 1D Gaussian

pdfwith Xgy as standard deviation.

However, these considerations can be generalized to an arbitrary number of types of uncertainties. When
appropriate, the generalization of the developed methods will be addressed.
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2.2. Computation of confidence levels

For a given pdf, confidence intervals define a range within which a population parameter resides for a given
confidence level. In van Herk’s margin recipe, a typical confidence level chosen is 90% which leads to the 2.5
factor that multiplies the standard deviation in the well-known formula for 3D-conformal dose distributions:
Mpry = 2.5% + 0.70. This means that 90% of the possible systematic errors within the patient population will
be covered by the margin recipe. However, such a margin recipe fails notoriously in proton therapy because it is
based on the static-dose cloud approximation (Stuschke et al 2012, Liu et al 2013, Liu et al 2016). Moreover, the
number of fractions is assumed infinite, which allows a simple model to approximate how random errors blur
the dose distributions. This simplification leads to the term 0.7¢ in the margin recipe, considering a typical 95%
of the dose prescription as the minimum dosimetric coverage. A reduced number of fractions requires either a
more complex model or the conversion of part of the random error into a systematic component, as
acknowledged in van Herk et al (2000). Such approach will also not hold in proton therapy because of the failure
of the static dose cloud approximation.

Thus, more complex models and formalisms are needed in proton therapy to assess the robustness in lieu of
simplistic margin recipes. First, we need to distinguish occurrences of errors and the combined effect of these
occurrences (the sum over each fraction) over the entire course of a treatment, referred here as treatment
scenarios or, shorter, scenarios. In the simplified context mentioned here, a scenario will therefore be
characterized by a systematic error sampled from a Gaussian distribution with a vector of standard deviations
3> and a sequence of errors for each treatment fraction that are randomly sampled from a Gaussian
distribution with a vector of standard deviations o,. Second, it is very unlikely to provide closed-form analytical
expressions to characterize how uncertainties affect the dose distributions. Therefore, it is not feasible to derive
simple margin recipes with satisfactory mathematical grounds.

In general, a confidence interval for an estimator of interest consists in giving the narrowest range of values
for that estimator, such that the pdfintegrates to 0.9 (90%) over that range. In practice, the pdfcan be sampled
and sorted, after which the suitable bounds can be reported.

2.2.1. Confidence levels in the dosimetric space

A straightforward way to compute a confidence level for a dosimetric estimator is to generate dose
distributions for many scenarios and compute the probability that a certain rule on this dosimetric estimator
will be realized (for instance, Dgs > xx Gy with a probability of yy (or confidence)). This will be referred as
the computation of a confidence level in the dosimetric space. In such approach, we can provide the
percentage of times, i.e. the confidence level, that each objective/constraint defined by the radiation
oncologist will be satisfied. Another possibility would be to provide a bandwidth for a value of interest and an
associated confidence level. For instance, we could provide the range of Dys for the CTV, corresponding to
the 90% highest Dy values. This is a relevant metric to estimate the probability of covering the target as
desired. However, this might cause to focus too much on target coverage. In order to provide a fair balance
between target coverage and organs-at-risk exposure, another possibility would be to select the best 90%
objective function (OF) values. The value of the objective function of the accepted plan, with the penalties

(/ objective function weights) for each organ included in the objective function, provides a good estimate of
the clinical compromise accepted by the physicist and the physician at the end of the optimization process.
Thus, it provides a quantification of the clinical quality of the plan. Therefore, the classification of the best
simulated dose distributions according to the value of their associated objective functions seems ideal from a
clinical point of view.

Because the confidence levels are estimated from random sampling of the errors, they will be subject to
statistical noise. Therefore, enough scenarios must be simulated for estimating confidence levels with sufficient
accuracy. The number of scenarios needed to achieve a given statistical accuracy on the confidence level can be
determined using the method developed in Souris et al where the statistical uncertainty on the estimated
confidence level considered is computed dynamically during the robustness evaluation process (Souris et al
2019). The key difficulty resides in the generation of the dose distributions. Fast Monte Carlo dose engines
associated with clever statistical stopping criteria (Souris et al 2019) or other methods like polynomial chaos
expansion (Perké et al 2016) can help for this task.

2.2.2. Confidence levels in the error space

In current practice, robustness evaluation tools are limited to the generation of some occurrences of systematic
setup and range errors according to parameters defined by the user. Random errors are typically not simulated.
Van Der Voort et al have suggested to consider random errors using empirical relations that can convert a
combination of systematic and random errors into pure systematic errors (Van Der Voort et al 2016). Another
method has been suggested by the group of PSI, using a relatively small subset of possible errors, a priori limited
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Figure 1. (a) Examples of cumulative probabilities for isotropic multi-dimensional independent normal (Gaussian) distributions with
1 mm standard deviation; (b) values of the reduced radius cyp of the isoprobability hyper-sphere with respect to the number of
dimensions for 85, 90, and 95% confidence levels (CL). For 3 dimensions and 90% confidence level (CL), asp equals the typical 2.5
value found in margin recipe of van Herk et al (2000).

by an 85% confidence interval line (Albertini et al 2011, Lowe et al 2015). For the reminder of the argument, we
will assume that random errors are either neglected or converted to systematic errors as in Van Der Voort et al
(2016).

If dose distributions are unknown, computing confidence levels in proton therapy is not as straightforward
as in photon therapy. The main reason is that one cannot easily approximate the effect an error may have on the
dose distributions. Consequently, each type of error needs to be considered separately. In the context of
independent setup errors and range uncertainties, this leads to the sampling of errors in a 4D space with reduced
axis (x' = =, y/ = S Je = _Z< RU = ;—i), where ¥ is the standard deviation. In this space,

ey Sreups

equiprobable errors will be located on the surface of a hypersphere with equation x'2 + y’2 + z/2 + RU? =
ayp 2 The parameter ayp denotes the (reduced) radius of the hypersphere. The left side of the last equation
represents a chi-square distribution with 4 degrees of freedom. The behavior of the cumulative chi-square
distribution is illustrated in figure 1(a) for different numbers of degrees of freedom.

A confidence level in the error space can now be approximately computed. To ensure robustness against 90%
of all possible scenarios, we need to select all possible configurations within a hypersphere with radius of
approximately 2.8 as seen from figure 1. If we hypothesize that the worst-case scenarios are located on the
surface of the hyper-sphere, then one can assume that this confidence level of 90% will be achieved by only
simulating the points distributed over the hyper-sphere. However, this hypothesis is not necessarily true and will
be tested in one of the robustness evaluation strategies introduced in section 2.4.

If range uncertainties are removed, we come back to the 3D case and a;3p equals the well-known 2.5 value.
Figure 1(b) displays how aypvaries depending on the number of dimensions. Itis a direct translation of the
value of the L2 norm in figure 1(a) at 90% cumulative probability.

One thing important to note here is that the selection of the scenarios will strongly depend on the
dimensionality of the problem. More extreme scenarios will have to be selected for a higher number of
dimensions and a fixed confidence level (because of the corresponding increase of the radius « of the hyper-
sphere).

Ssetup,x

2.3. Patient test cases

Five bilateral head-and-neck patients were considered for illustrating the notions described above. Some tumor
characteristics are detailed in the appendix (table S1 (available online at stacks.iop.org/PMB/66/045002 /
mmedia)). The patients were treated by conventional radiotherapy. Hence, the proton treatment plans were
optimized for the purpose of this study. The target was the PTV, obtained by expanding the CTV bya4 mm
isotropic margin. The treatment plans included two prescriptions, 70 Gy and 54 Gy on tumor and elective
volumes, respectively. The proton treatment plan was composed of 4 scanned beam incidences ((350,60);
(350,120);(10,240):(10,300) in degrees for couch and gantry angles, respectively). Treatment plans were
optimised to ensure adequate coverage of the PTV, without robustness parameters (treatment plans were not
robustly optimized). The minimum requirements were Dgg > 90% of prescription dose, Dgs > 95% of
prescription dose, Ds < 105% of prescription dose. However, when possible to respect OAR constraints, we
tried to achieve at least 95% of prescribed dose for Dog. Constraints to OARs were set according to the clinical
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Figure 2. Axial slices of the 5 patients selected for this study with overlaid dose distributions.

rules of Cliniques Universitaires Saint-Luc used for conventional photon therapy. The OARs subject to sparing
and their associated dose limits are listed in table S2 in the supplemental material. When possible, the dose to
OARs were further diminished provided that it did not compromise PTV coverage. The treatment plans were
optimised using RayStation (from RaySearch, research license 5.99). The achieved dose distributions and the
used beam angles are illustrated in axial slices for each patient in figure 2.
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Figure 3. [llustration of the scenario selection methods in a 2D slice (a)—(c), or in a projection (d), of the 4D iso-probability
hypersphere. Each dot represents a simulated scenario. The hypersphere contains 90% of all possible scenarios. Figure (a) corresponds
to good practice scenario selection (GPSS). Figure (b) corresponds to statistically sound selection of the scenarios (SSSS) at the surface
of the isoprobability hyper-sphere including 90% of possible scenarios (SSSS (ON)). Figure (c) corresponds to SSSS at the surface and
within the isoprobability hyper-sphere including 90% of possible scenarios (SSSS (IN)). Figure (d) corresponds to statistically sound
dosimetric sampling with selection on best 90% Dys (SSDS_Dys) with a projection of all scenarios onto the plane defined by the x and
range dimensions. Red dots correspond to selected dose distributions; black dots to discarded dose distributions.

The spot positions and weights were exported to alocal robustness evaluation tool developed by
Souris et al (2019). This robustness evaluation tool is based on a validated Monte Carlo dose engine called
MCsquare (Souris et al 2016). For the purpose of the present study, systematic setup errors and image
conversion errors were simulated by shifting the patient and applying a density scaling according to sampled
values of setup errors and image conversion errors.

The values chosen for the standard deviations were as follows. For the tests without random errors,
Yisetup = 1.6 MM, Oyeryp = 0 mm, and Ypy = 1.8%. The values were chosen in order to represent 4 mm and 3%
errors at 90% confidence level in their respective spaces (3D for setup errors (azp = 2.5), 1D for range
uncertainties (cup = 1.67)). For the tests with random errors, the values chosen were ¥geryp, = 1.3 mm,
Ogetup = 1.0 mm, and Ypy = 1.8%. Such combination of systematic and random setup errors leads to a margin
of 4 mm using the simplified van Herk formula (2.5% + 0.70). Itis also in line with the empirical relationships
shown in figure 3 of Van der Voort et al (2016).

2.4.Robustness evaluation strategies investigated
We summarize here the robustness evaluation strategies investigated. A short overview is also given in table 1. In
all robustness evaluation strategies, the nominal scenario is kept in the simulated set of dose distributions.

2.4.1. Strategy 1: good practice scenario selection (GPSS) of flat systematic setup and range errors

In many robust optimization/evaluation approaches, scenarios are selected pragmatically according to good
practice rules. In general, the CTV to PTV margin is replaced with a systematic setup error of comparable
magnitude and the range uncertainty parameter takes typically three values, +RU, 0 and —RU where RU ranges

6



Table 1. Summary of the robustness evaluation strategies studied and their associated robustness parameters.

Robustness evaluation strategy Description Yserup (Mm) Oetup (MM) Yru (%)
GPSS Good practice scenario selection in the error space: selection of setup errors onto 90% 3D sphere, and a positive and a negative range value 1.6 0.0 3.0°
SSSS (ON) Statistically sound selection in the error space onto 90% isoprobability line of the 4D hypersphere 1.6 0.0 1.8
SSSS (IN) Statistically sound selection in the error space onto and inside 90% isoprobability surface of the 4D hypersphere 1.6 0.0 1.8
SSDS_Days (S) Statistically sound selection in the dosimetric space for the 90% best CTV Dy 1.6 0.0 1.8
SSDS_OF (S) Statistically sound selection in the dosimetric space for the 90% best objective function values 1.6 0.0 1.8
SSDS_Dys (R) Statistically sound selection in the dosimetric space for the 90% best CTV Dys 1.3 1.0 1.8
SSDS_OF (R) Statistically sound selection in the dosimetric space for the 90% best objective function values 1.3 1.0 1.8

* For GPSS, only extreme values of the distributions are considered for range errors, not the standard deviations.
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from 2.5 to0 3.5% in most publications. Random errors are typically ignored or converted into systematic errors,
for instance using the approach developed by Van Der Voort et al (2016). For this strategy, the setup error and
RU parameters equalled 4 mm and 3% (consistent with ey, = 1.6 mm and Xgy = 1.8%). In typical clinical
practice, only a few scenarios are sampled in the directions x, y, and z, i.e. positive and negative extreme values
along each axis (no diagonals). By combining with range errors, it amounts to 20 scenarios in total, excluding the
nominal scenario. However, it is not possible with such strategy to estimate a confidence level with acceptable
accuracy, as the errors in the spatial directions x, y, and zare sampled too coarsely. Therefore, we have simulated
more scenarios by including those on the diagonals between the x, y, and zaxes. In such case, the setup errors are
selected on the 3D-sphere, at 90% confidence level in 3D (using azp = 2.5). The total amount of scenarios then
reaches 80 without the nominal scenario.

In this configuration, a confidence level can be estimated by integrating the joint probability density function
inside the 4D hyper-cylinder defined by the 3D setup errors (distributed over a sphere) and the range errors. This
was approximated numerically by generating randomly setup and range errors and counting the ones that are
inside the hyper-cylinder. This amounts to 81% of possible errors. It is important to mention here that this way
of computing the confidence level assume continuity of the errors in the error space and also that the worst
errors are located on the edges of the explored space.

For the sake of completeness, we have also simulated the GPSS case with 20 scenarios only. The results are
reported in supplementary materials.

2.4.2. Strategy 2: statistically sound scenario selection (SSSS)

Two configurations were tested in this study. In the first configuration, scenarios were sampled uniformly on
the hyper-surface of the 4D hyper-sphere delimited by the equation x? + y? + z2 + RU”? = ayp?, where
aup = 2.8to ensure a 90% confidence level in the error space (SSSS (ON) figure 3(b)). In such case, one may
assume that this confidence level is secured in the error space provided that robustness for scenarios inside
the hyper-surface is also warranted. In the second configuration, scenarios were also uniformly sampled
within the hyper-sphere, in order to better approximate a true 90% confidence level (Perké et al 2016)
computed in the error space (figure 3(c)). In SSSS (IN), we also sample hypersurfaces within the 90%
hyper-surface with a different radius. The number of scenarios per surface is 80 (3* minus the nominal case).
In SSSS (IN), we sample 3 hypersurfaces (at (reduced) radii 2.2 and 1.1) hence 240 scenarios. One can

note that errors and scenarios lead eventually here to the same meaning, because only systematic errors

are sampled.

2.4.3. Strategy 3: statistically sound dosimetric selection (SSDS)

We consider here a Monte Carlo robustness evaluation tool, i.e. errors are randomly sampled according to
their pdfs. It is worth mentioning that the dose engine associated with this tool can be anything, either Monte
Carlo or analytical. A random error sampling approach would be an excellent candidate for performing
robustness evaluation because (1) errors can be sampled without any statistical bias from their actual pdfs; (2)
random errors can be simulated naturally; and (3) it enables an evaluation of the confidence level in the
dosimetric space. A weakness of this approach is that the number of treatment scenarios to simulate may be
substantial. To ensure its practical viability, dose computation must be performed at alow computational
cost. Fast Monte Carlo dose engines may be used for this task, but, in such case, the number of errors and
scenarios to simulate must be limited to what is necessary. Therefore, this requires the introduction of a
convergence criteria and variance reduction techniques, as described in Souris et al (2019). For the purpose
of this study, we have tried to minimize the statistical noise as much as reasonably achievable. In Souris et al
(2019), it was shown that 300 scenarios were sufficient to ensure convergence of the DVH error bands. In the
present study, we have therefore simulated 1000 scenarios for ensuring low noise levels on the reported
values (for instance, the lowest Dys value at 90% confidence level). The number of particles per scenario was
about 10° to ensure a statistical uncertainty in the target below 2% (one standard deviation). Simulations
were performed on a 2x Intel(R) Xeon(R) Gold 6248 CPU.

The SSDS method allows flexibility in the way the scenarios are selected. We implemented two scenario
selection methods. In the Dos method, the 90% best scenarios according to target coverage for the high dose
CTV (quantified here by the Dys) were selected for reporting. In the OF method, the 90% best scenarios
according to the value of the objective function were selected for reporting. The value of the objective function
was computed as a weighted sum of all clinical objectives used in the TPS for the treatment plan optimization.
Four objective types, namely minimum dose, maximum dose, mean dose, and DVH objectives, were
implemented in the objective function using quadratic terms as described in Oelfke and Bortfeld (2001) (see
table S2 in the supplementary material).
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Table 2. Metric assessing PTV dose coverage for the nominal plan used
in this study. The dose was computed with MCsquare in the nominal
case. Target coverage objectives were at least Dgs > 95% and

Dqgg > 90% of prescribed dose (70 Gy), thus 66.5 Gy and 63 Gy,
respectively. Overdosage were limited by the constraint Dgs < 105%
(thus 73.5 Gy). When possible, we tried to achieve Dgg > 95% of
prescribed dose.

Patient results for high dose PTV 70 Gy

PTV metric (Gy)

P1 P2 P3 P4 P5
Dogg 67.6 64.9 67.2 67.9 66.7
Doys 68.2 67.0 67.9 68.4 67.5
Ds 71.6 73.4 71.7 72.2 71.6

Table 3. Dose differences between the worst-case and the nominal DVH metrics for the target and organs-at-risk, averaged over the 5
patients (# of scen = number of scenarios; CL = confidence level). The meaning of each robustness evaluation strategy is detailed in
table 1. The abbreviation ‘prtd’ stands for ‘parotid’.

Dog Dys Ds Dog Dy Diean Dmean Dimean D, D,

# CTV CTV CTvV CTV CTvV left right oral spinal ~ brain

of 720Gy  70Gy 70Gy 544Gy  54Gy prtd prtd cavity cord stem

Strategy scen  CL(%)  (Gy) (Gy) (Gy) (Gy) (Gy) (Gy) (Gy) (Gy) (Gy) (Gy)
GPSS 80 81 —4.9 -39 2.0 —-3.9 —-2.9 6.4 5.8 3.8 6.7 5.3
SSSS (ON) 80 90 —4.4 —3.6 1.8 —3.5 —2.6 6.1 5.7 3.5 7.0 5.6
SSSS(IN) 240 90 —4.4 -3.6 1.8 -3.5 —2.6 6.1 5.7 3.5 7.0 5.6
SSDS_Dys (S) 1000 90 -2.1 -1.3 1.9 —-3.9 —3.1 6.7 6.2 4.1 7.0 5.5
SSDS_OF (S) 1000 90 —2.9 —2.2 1.6 —3.5 —2.6 5.3 5.6 3.3 7.0 55
SSDS_Dys (R) 1000 90 -2.0 -1.1 1.9 —3.4 —2.6 6.1 5.6 3.6 5.8 4.7
SSDS_OF (R) 1000 90 —2.4 —1.8 1.3 —2.8 —2.2 4.8 4.7 2.8 6.2 4.9

For each scenario selection method in the dosimetric space, two tests were performed. In the SSDS (S)
strategy, only systematic errors were considered. In the SSDS (R) strategy, both systematic and random errors
were considered. The standard-deviations selected for both examples are provided in section 2.3.

3. Results

3.1. Results for the nominal plans

The results obtained for PTV coverage, quantified by the metrics D98, D95 and D5, in the nominal plan using
MCsquare are provided in table 2. This computation was necessary to ensure that the dose distributions in the
nominal configuration computed by MCsquare met target coverage criteria.

3.2. Comparison of the robustness evaluation methods
Robustness evaluation has been performed for the strategies described in table 1. Table 3 provides the differences
between worst-case and the nominal DVH metrics averaged over all patients, for each robustness evaluation
strategy. Table 4 displays the same data as table 3, this time with respect to the results yielded by the GPSS
method (instead of the nominal plans in table 3). Individual DVH metrics are illustrated for patient 3 in figure 4,
and detailed for the same patient in table 5. The same results for the other patients are available in appendix
(tables S3—6 and figures S1-4).

For each strategy, the time needed to compute one scenario was about 150 s.

3.2.1. Considering systematic errors only
As shown in table 3 and in the individual results (table 5, figure 4, tables S3—6 and figures S1-4), SSSS (ON) and
SSSS (IN) provide very similar DVH metrics. Therefore, they will not be distinguished anymore to present the
results. For the high dose CTV, GPSS and SSSS yield similar results, with an average of worst-case Dgg, Dys, and
Ds within 0.5 Gy. Results for individual patients are also similar for the high dose CTV, with differences within
0.7 Gy (tables 5 and S3-6). For the low dose CTV, GPSS and SSSS yield slightly divergent results, with average
differences within 0.4 Gy and 0.3 Gy for Dog and Dys, respectively. The maximum variability occurred for
patient 5, with SSSS yielding a Dgg and a Dy5 0.9 Gy larger (table S6).

When comparing GPSS to the SSDS methods for target coverage (table 4), differences are more substantial.
Considering systematic errors only (S), and Dgg of the high dose CTV, the worst-case scenario is on average

9



I0OP Publishing Phys. Med. Biol. 66 (2021) 045002 E Sterpin etal

g

g

Volume (%)

8 8 8 8 8 3 8 8
Volume (%)

8 8 8 8 8 3 8 8

s
3

(a)

100 =
20
80
70
= —CTV 700y
£ 8 ——CTV 54 Gy
= = Parotid_L
§ 50 ~ Parotid_R
— Brainstem
2 Spina cord
40 Oral cavity
30
20}
10/
0
] 40 80
Dose (Gy)
()
100 100
20
80 80
70 0
= 60
= 60
g 2
(]
f« £
o >
> 40 40
30
30
20
200
10
10
0
0 ]

o

Dose (Gy)
(e)

Figure 4. Results of the robustness evaluation for patient 3. The meaning of each robustness evaluation strategy (mentioned in the title
of every graph) is detailed in table 1.

Table 4. Average absolute differences of the DVH metrics for the 5 patients with respect to GPSS taken as a reference (‘# of scen” = number
of scenarios; ‘CL” = confidence level). The meaning of each robustness evaluation strategy is detailed in table 1. The abbreviation ‘prtd’
stands for ‘parotid’.

Dog Dos Ds Dy Dys Dmean Dmean Dmean D, D,

# CTvV CTvV CTvV CTV CTvV left right oral spinal ~ brain

of 70Gy 70Gy 70Gy 54Gy 54 Gy prtd prtd cavity cord stem
Strategy scen  CL(%)  (Gy)  (Gy) Gy Gy Gy Gy Gyp Gy Gp Gy
SSSS (ON) 80 90 0.5 0.3 -0.2 0.4 0.3 -0.3 —0.1 -0.3 0.3 0.3
SSSS(IN) 240 90 0.5 0.3 -0.2 0.4 0.3 -0.3 —0.1 —-0.3 0.3 0.3
SSDS_Dys (S) 1000 90 2.8 2.6 -0.1 0.0 -0.2 0.3 0.4 0.3 0.3 0.2
SSDS_OEF (S) 1000 90 2.0 1.7 —-0.4 0.4 0.3 —-1.1 -0.2 —-0.5 0.3 0.2
SSDS_Dys (R) 1000 90 2.9 2.8 —0.1 0.5 0.3 —-0.3 -0.2 —0.2 —-0.9 —0.6
SSDS_OF (R) 1000 90 2.5 2.1 -0.7 1.1 0.7 —-1.6 -1.1 —1.0 -0.5 —0.4
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Table 5. Results of the robustness evaluation for patient 3 (‘# of scen” = number of scenarios; ‘CL” = confidence level). The worst-case are
shown for each robustness evaluation strategy. For comparison purposes, the nominal values are also displayed. The meaning of each
robustness evaluation strategy is detailed in table 1. The abbreviation ‘prtd’ stands for ‘parotid’.

Dog Dys Ds Dog Dys Dimean Dmean Dmean D, D,

Robustness # CTv CTvV CTvV CTV CTV left right oral spinal ~ brain
evaluation of 70 Gy 70 Gy 70 Gy 54 Gy 54 Gy prtd prtd cavity cord stem
strategy scen  CL(%)  (Gy) (Gy) (Gy) (Gy) Gy) (Gy) Gy) Gy) (Gy) Gy)
Worst-case
GPSS 80 81 62.7 64.8 72.4 50.9 52.7 32.4 30.1 19.1 45.0 32.6
SSSS (ON) 80 90 63.1 65.2 72.6 51.1 52.8 324 29.8 19.7 45.3 33.1
SSSS (IN) 240 90 63.1 65.2 72.6 51.1 52.8 32.4 29.8 19.7 45.3 33.1
SSDS_Dys 1000 90 66.8 68.1 72.6 51.2 52.7 329 30.1 20.1 45.4 33.4

)
SSDS_OE (S) 1000 90 66.3 67.7 72.6 51.2 52.7 32.4 29.9 19.5 45.4 33.4
SSDS_Dys 1000 90 67.0 68.3 72.6 51.0 52.7 33.5 30.7 20.4 44.3 32.4

®)
SSDS_OF (R) 1000 90 66.9 68.0 72.4 51.9 53.1 32.1 29.5 19.2 449 32.4
Nominal

1 NA 68.7 69 71.9 53.8 54.4 26.2 24.9 17 40.2 27.6

2.8 Gyand 2.0 Gy larger for SSDS_Dys and SSDS_OF compared to GPSS, respectively. For Dys, itis 2.6 and

1.7 Gy, respectively. Comparing GPSS and SSDS_Dsys, the differences reported are maximum 5.0 Gy and 4.4 Gy
higher for Dgg and Dys, respectively (patient 2, table S4). For the low dose CTV, maximum average differences
within 0.4 Gy are observed between both SSDS evaluation methods and GPSS. SSSS and SSDS_OF yield on
average very similar results for the low dose target (table 4).

These results are confirmed visually in figure 4, where it can be noticed that DVH-bands for the high dose
CTV (red) are broader for GPSS and SSSS, than for both SSDS strategies.

For organs-at-risk, the average differences reported are within 1.6 Gy for all metrics between all methods
(table 3). It is difficult to distinguish clear trends looking at individual patient results (tables 5 and S3-6).
However, one can notice that GPSS often reports the lowest values for OARs. SSDS_OF yields in general similar
or lower values than SSSS. Sometimes, SSDS_Dys (S) yields substantially larger values than other evaluation
methods. For instance, for patient 2, Dy, of the left parotid is more than 1.5 Gy larger for SSDS_Dgs than all
other methods (table S4).

3.2.2. Considering systematic and random errors

Simulating explicitly random errors during robustness evaluation yields similar or improved DVH metrics with
respect to their counterparts with systematic error only. One can notice in table 3 an average improved coverage
of thelow dose CTV up to 0.7 Gy for Dgg (SSDS_OF). For OARSs, similar observations can be made, with an
improvement of all OAR DVH metrics when random errors are simulated explicitly (i.e. not translated to their
approximatively equivalent systematic errors). For instance, the mean to the left and right parotids improved on
average in arange from 0.5 Gy to 0.9 Gy.

4. Discussion

The results show that for the patients investigated, SSSS yields the same results whether scenarios are simulated
inside the isoprobability sphere or only on the surface. This is in line with previous findings (Casiraghi et al 2013,
Malyapa et al 2016). It is, however, impossible to strictly exclude that a few scenarios inside the hypersphere
could lead to unexpected loss of target coverage or unexpected OAR exposure. For instance, range errors
induced by setup errors and explicitly simulated range errors could compensate for some particular points on
the surface of the hypersphere but not inside, leading to eventually less perturbed dose distributions for some
extreme errors. But checking the interior of the hypersphere will inevitably lead to an important increase of the
scenarios to simulate (from 80 to 240 in our examples). Therefore, one may consider for practical purposes to
explore only the surface of the hypersphere (i.e. the most extreme errors).

A striking result is that GPSS leads to larger error bands for target coverage, often smaller worst-case doses to
OARs, and a smaller confidence level of 81%. In practice, this maylead to the decision of replanning because of a
lack of target coverage, with the inevitable downside of increasing the dose to OARs, with some that are already
slightly underestimated (e.g. 0.3 Gy average difference for D, brainstem between GPSS and SSSS). Those results
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are intuitively expected. Because the GPSS strategy only explores 81% of the possible scenarios (assuming
robustness against intermediate errors) AND arbitrarily select extreme scenarios with a very low probability (i.e.
outside the 90% hypersphere, thus inconsistent with generally accepted confidence levels (90%)), this leads to an
over-conservative approach for the target (because of the extreme cases considered) and a possible under-
estimation of the OARs (because of a larger number of unexplored scenarios). An additional source of
inconsistency is the arbitrary selection of scenarios with different probabilities (for instance (xye, 3> Zses RU)
may equal (4 mm, 0, 0,0) or (4 mm, 0, 0, 3%) as shown in figure 3(a); the first scenario is more likely to occur). In
clinical practice, GPSS is often implemented differently, with a coarser selection of the scenarios in the directions
x, y, and z. In such case, the computation of a reliable confidence level becomes very problematic. However, we
observe similar results for GPSS either with 20 or 80 scenarios, as it can be seen by comparing tables 3 and S7,
which report average results within 0.3 Gy for the targets and 0.8 Gy for the OAR:s.

The SSSS method will lead overall to the most conservative approach, as shown in tables 3 and 4. Because of
the effect of dimensionality (figure 1), SSSS forces the exploration of scenarios that are typically not considered in
clinical practice (for photons and protons), for instance an error up to 2.8 ey, which is larger than the more
familiar 2.5 ¥qequp. The effect of the dimensionality has already been addressed by Korevaar et al (2019). If more
errors are included, for instance baseline shifts and/or rotations, the errors to explore would be more extreme as
shown by figure 4. This is a key weakness of the SSSS method. Because we are blind to the effect of the
uncertainties on the dose distributions, the selection can only be performed on or within isoprobability
hypersurfaces in order to ensure statistical consistency. As a consequence, the space to explore will increase with
the types of errors to explore. In practical cases, the dimensionality of the error space is typically 4D, which leads
toamild increase of the errors to explore (from 2.5 t0 2.8 X(p). Butifa robustness evaluation system aims at
improved generalizability of the evaluation, it may need to explore more dimensions (inter-fractional
anatomical change, breathing variability, etc), which will inevitably lead to an explosion of the magnitude of the
errors and to extremely conservative treatment plans. In the context of the PTV margin recipe, this blindness is
overcome by assuming a simple hypothesis related to the dose distributions: the static-dose cloud
approximation. This allows a simple sum of the associated random variables—i.e. quadratic sum of variances in
margin recipe — so that the problem remains a 3D problem. This hypothesis is rightly forbidden in proton
therapy, hence the dimensionality problem that appears here.

The SSDS methods aim precisely at overcoming the downsides of GPSS (inconsistency and arbitrariness)
and SSSS (over-conservativeness) discussed above. Because the problem under consideration is eventually a 3D
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problem (dose distributions are 3D objects), it is more powerful to explore the scenarios in the dosimetric space.
In such case, all the potential redundancies in the error space will be captured. Moreover, extreme errors that
may have alow impact on the dose distribution (for instance, a motion parallel to a highly contributing
treatment field), can be included in the DVH bands naturally. This can be observed in figure 5, where substantial
errors, outside the isoprobability hypersphere, could lead to an acceptable dose distribution. Because what is
important in the end is the confidence level (i.e. the probability of meeting a criterion or not), statistically unlikely
errors can be included safely provided that the final probability (or confidence level) is correctly computed. This
leads to a more optimistic estimation of target coverage (2.3 and 1.5 Gy higher on average for Dog of the high
dose CTV, for SSDS_Dys (S) and SSDS_OF (S) compared to SSSS, respectively). And a mild increase (for
SSDS_Dygs or decrease (for SSDS_OF) of DVH metrics of OARs within 0.8 Gy (on average over the 5 patients)
compared to SSSS. It is interesting also to mention that such considerations were already addressed for
establishing confidence levels for PTV margin recipes. In van Herk et al (2000), it is written that ‘the margin for
treatment preparation (systematic) errors is chosen as a confidence interval that is spherically symmetric.
However, an infinite number of 90% confidence intervals may be chosen that are not spherically symmetric.
This observation leaves some room for optimization.” In a follow-up paper, Witte et al (2017) showed by Monte
Carlo simulations how the margin can be optimized to reduce OAR dose while maintaining minimum

CTV dose.

However, a new problem that arises is the adequate selection of the scenarios in the dosimetric space. In
other words, what is the worst dose distribution? How do we define ‘worst’? Tables 3 and 4 show that the
reported worst-case will differ significantly depending on the scenario selection method. If we focus on target
coverage and select the 90% best Dy5 (SSDS_Dys), we obtain the most optimistic result for high dose target
coverage, at the expense of generally higher DVH metrics for OARs. Such approach would be ideal in cases with
no compromise with respect to OARs. We would then achieve the best estimate of target coverage, for a
confidence level of 90%. However, if there are compromises to be made with OARs, then the worst-case dose to
OAR will be on the pessimistic side, which maylead to exceed clinical constraints causing the reoptimization of a
plan and eventually a deterioration of target coverage.

A solution to the issue of scenario selection based on target coverage only would be to capture the clinical
compromise made at the planning level and display the 90% best dose distributions, with respect to both target
coverage and OAR sparing. We propose here to achieve this by computing for each scenario the objective function
as accepted by the radiation oncologist and the medical physicist before robustness evaluation. The objective
function provides a quantitative assessment of the quality of the plan from a clinical point-of-view, since it
integrates clinical objectives and constraints, as well as objective function weights used for optimization that are
implicitly approved by the radiation oncologist. Such approach could also naturally be translated to a model-
based dose distribution assessment, for instance using tumor control and normal tissue complication
probabilities.

The SSDS_OF method yields less optimistic numbers for high dose target coverage than SSDS_Dys, but
those are still significantly larger than GPSS and SSSS (2.0 and 1.5 Gy larger for Dgg on average, respectively).
However, the results obtained for OARs are on average comparable to both GPSS and SSSS. Interestingly,
SSDS_OF also yields results for the low dose target comparable to SSSS. Therefore, SSDS_OF seems to better
capture the plans that will lead to the best clinical compromises.

One potential issue of the SSDS_OF method is that objective functions vary by nature from one patient to
another depending on the tuning of objective/constraint weights in order to achieve a clinically acceptable
compromise between target coverage and OAR sparing. This may lead to undesired variability in robustness
reporting. However, such feature could also be seen as an advantage. Two identical robustness evaluation results
may lead to different appreciations by a radiation oncologist depending on individual patient characteristics. For
instance, more attention can be given to a particular organ-at-risk in a given patient. Such patient-specific
characteristics are at least partially entailed implicitly in the objective function. As a consequence, selecting the
best dose distributions according to the value of the objective function will tend to be more faithful to the clinical
compromises made at the treatment optimization level, and therefore reduce variability in patient reporting
from a clinical perspective. Such approach also motivates the radiation oncologist to better formalize the clinical
goals he/she aims to achieve before the robust optimization phase starts. This is in line with an improved
standardization of the treatment planning workflow, which is essential for its automation.

Itis important to note that the computation of confidence levels in the dosimetric space has already been
illustrated by Perko et al (2016) with the polynomial chaos expansion. Perko et al have also identified the
potential of working in the dosimetric space to estimate the magnitude of the errors to be included in the
robustness evaluation to achieve given statistical criteria, e.g. coverage of the CTV in a given fraction of the
patients. The only requirement to work in the dosimetric space is to have a fast dose engine available in order to
generate enough dose distributions to compute statistical quantities. This is exactly the purpose of the
polynomial chaos expansion method that proposes a novel approach to generate a virtually infinite number of
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dose distributions after taking the time to generate a comprehensive dose calculation model (based on about 100
pre-computed scenarios). In our work, we use a fast Monte Carlo dose engine associated with statistically
defined stopping criteria to generate the required scenarios. Another difference with the study by Perko et al is
that the authors evaluate the robustness for each volume of interest separately, while we attempt to evaluate
methods to select scenarios globally. The approach of Perko et al could be trivially adapted to our methodology.
An advantage of a global approach is that it naturally takes into account correlations between the DVH metrics
since a set of dose distributions is selected.

The explicit simulation of random errors leads to results that are on average more optimistic than their
counterparts with systematic errors only. We remind here that we have always used sets of (2, o) thatleadtoa
consistent CTV-to-PTV margin of 4 mm using the simplified formula of van Herk et al (2.5 + 0.7¢). This
indicates that this formula might be overconservative for the patients investigated in this study. More aggressive
plans could therefore be achieved using a statistically sound robustness evaluation method that includes random
errors. For instance, SSDS_OF (R) yields a worst-case Dgg for low dose target that is on average 0.5 Gy higher
than SSDS_OF (S). For the right parotid, the worst-case D,eqy, is 0.9 Gy lower for SSDS_OF (R) than SSDS_OF
(S). It is interesting to compare SSDS_OF (R) with GPSS by analyzing the last line of table 4. SSDS_OF (R)
estimates a better target coverage, overall more optimistic organ-at-risk sparing, and all this for a higher
confidence level (90% versus 81%).

Itis not the purpose of this paper to suggest a procedure for robustness evaluation. First of all, such
procedures will strongly depend on the tumor site considered, the advancement of computing technology, the
number of effects we want to consider, and clinical practice. For instance, the group at PSI has suggested a
robustness evaluation procedure built up across many publications that is well suited for locations with small
systematic errors (Malyapa et al 2016). The computation of confidence levels was also included for the effect of
fractionation (Lowe et al 2015). Other groups have suggested to include variable radiobiological models in their
evaluation (Odén et al 2017). However, most robustness evaluation strategies reported in the literature select
separately setup errors and range errors according to good practice rules, without considering the computation
of confidence levels, neither in the error space nor in the dosimetric space (Liu et al 2014, Liu et al 2016, van de
Water etal 2016). As mentioned before, Perko et al do compute appropriately confidence levels in the dosimetric
space using the polynomial chaos expansion method (Perkoé et al 2016). Finally, we have reported here worst-
case DVH metrics for both target volumes and OARs. One could argue that for parallel-like OAR, like lungs,
DVH metrics averaged over the entire set of dose distributions could be more meaningful. In such case, the
problem is made trivial for our SSDS methods since we can simply average all DVH metrics over all simulated
scenarios. SSSS (IN) should also work. However, adaptations will be required for GPSS and SSSS (ON) since
those sample only extreme scenarios, whilst the accurate computation of average DVH metrics would require
also intermediate values.

The choice of a robustness evaluation procedure entails also pragmatic considerations such as the time
needed to execute the procedure. The SSDS methods are time consuming because enough scenarios need to be
simulated in order to minimize the impact of the statistical noise on the reported values. In Souris et al (2019),
about 300 scenarios seemed adequate to ensure convergence of the results. An intrinsic advantage of Monte
Carlo simulations is that the computation time does not scale necessarily with complexity. For instance, random
errors can be simulated comprehensively with minimal impact on computation time. Yet, we report here 153 s
computation time per scenario, which leads to a total computation time of 13 h for 300 scenarios, which is the
maximum limit one may consider in clinical practice (this would correspond to calculations performed
overnight). However, such computation time would only be acceptable for a final check, but not for an iterative
approach where treatment plans are re-optimized several times according to the results of the robustness
evaluation. Therefore, significant improvements are needed to warrant dosimetric selection of scenarios in the
clinical practice. This may be achieved by improving the speed of the Monte Carlo dose engine, or the
introduction of variance reduction techniques for enabling more efficient sampling of the scenarios, as
suggested in Souris et al (2019). The polynomial chaos expansion method can also be used to reduce somewhat
the number of dose computations needed, and hence speed-up the overall process (Perké et al 2016).

The distinction between the error space and the dosimetric space has been made in the current study for
protons only. In general, such distinction is not made in photon therapy because of the usual hypothesis of shift
invariance of the dose distributions. If the hypothesis is true, the issue of robustness for target coverage can be
formulated as a geometric problem, which leads to safety margin recipes. However, such hypothesis is not
necessarily true (for instance, misplaced shoulders in head-and-neck tumors that cause undesired attenuation).
Therefore, photon-based treatment plans could also benefit from comprehensive robustness evaluation
strategies, which would also help for defining common dose metrics to evaluate proton and photon plans. One
can also note that photon-based plans may still benefit from a comprehensive robustness evaluation in the
dosimetric space under the hypothesis of shift-invariance of the dose distributions, for instance to reveal
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robustness improvements due to non-perfect conformity to the target, or to generate DVH-bands using
advanced metrics like the value of the OF.

Finally, it is important to mention that the results presented here were achieved using PTV-based treatment
plans, that is, non-robustly optimized. Many papers have shown that robust optimization is more suitable to
ensure adequate plan robustness (Unkelbach et al 2018). Qualitatively, our conclusions should remain valid if we
apply our robustness evaluation methods to robust optimized plans, although this must be confirmed in further
studies. Quantitatively, robust optimization is expected to mitigate the differences observed during the present
study between the various robustness strategies.

However, complex treatment plans with adjacent target volumes and OARs might lead to challenging
clinical trade-offs, even in the context of robust optimization. In such case, having at one’s disposal a statistically
fair and comprehensive evaluation strategy will help to provide the patients with the best treatment plans, with
improved safety. Another limitation of our study resides in the computation of the objective function in the
evaluation phase. We have tried to reproduce the best we could the objective function used in the RayStation.
However, hidden terms or unforeseen mathematical expressions could be used in the RayStation’s objective
function and would not be captured by our computation. It would be interesting to compare our results for
SSDS_OF to those that would be obtained using the objective function used within the RayStation. Another
option would be to design objective functions exclusively for evaluation.

5. Conclusions

Robustness evaluation is a critical step in proton therapy treatment planning. Typically, we aim at evaluating
worst-case scenarios within a reasonable set of possible treatment errors. Depending on the outcome of the
robustness evaluation, treatment plan optimization may be resumed for enhancing the quality of the plan in
terms of target coverage and/or organs-at-risk dose. Therefore, the information delivered by the chosen
robustness evaluation strategy must be as accurate and as comprehensive as possible.

We have provided several ways to evaluate statistically the robustness of the plan. An approach based on
good practice rules, typically used in current clinical practice, is overall pessimistic for target coverage and
optimistic for organs-at-risk sparing, with a relatively low confidence level (81%). Exploring the possible
scenarios in the error space in a statistically consistent fashion enables a larger and more familiar confidence level
(90%), but at the cost of conservative evaluations of worst-case DVH metrics.

Another approach would be to select scenarios in the dosimetric space, i.e. to select the best dose
distributions according to a priori defined clinical criteria. Focusing on target coverage provides considerably
more optimistic target coverage metrics (and mildly pessimistic OAR sparing). This would probably be a good
approach when OAR sparing is easily achievable, and one wants to deliver the most conformal dose possible to
achieve target coverage for a given confidence level. A more balanced approach would be to classify the best dose
distributions according to the value of the objective function accepted by the radiation oncologist. In such case, a
good balance is obtained between the reported worst-case target coverage and OAR sparing. Such approach
could be easily implemented in existing commercial solutions.

Acknowledgments

This work is partially inspired from discussions within the European Particle Therapy Network working group

5. Kevin Souris is funded by the Walloon region (MECATECH/BIOWIN, grant number 8090). Sara T Rivas is
supported by the Walloon region (‘Convention hors poles ProTherWal’, grant number 7289).J. A. Leeisa
Senior Research Associate with the Belgian fund of scientific research (F.R.S.-FNRS). Ben George is supported by
a Cancer Research UK Centres Network Accelerator Award Grant (A21993) to the ART-NET consortium.
Edmond Sterpin’s research is partially supported by ‘Fonds Baillet-Latour’.

References

Albertini F, Hug E Band Lomax A J 2011 Is it necessary to plan with safety margins for actively scanned proton therapy? Phys. Med. Biol. 56
4399413

Bokrantz R and Fredriksson A 2013 Controlling Robustness and Conservativeness in Multicriteria Intensity-Modulated Proton Therapy
Optimization Under Uncertainty Trita-MAT. OS

Casiraghi M, Albertini F and Lomax A ] 2013 Advantages and limitations of the ‘worst case scenario’ approach in IMPT treatment planning
Phys. Med. Biol. 58 132339

Chang]J Y etal2014 Clinical implementation of intensity modulated proton therapy for thoracic malignancies Int. J. Radiat. Oncol. Biol.
Phys. 90 809-18

De Ruysscher D, Sterpin E, Haustermans K and Depuydt T 2015 Tumour movement in proton therapy: solutions and remaining questions:
areview Cancers (Basel) 7 1143-53

15


https://doi.org/10.1088/0031-9155/56/14/011
https://doi.org/10.1088/0031-9155/56/14/011
https://doi.org/10.1088/0031-9155/56/14/011
https://doi.org/10.1088/0031-9155/56/14/011
https://doi.org/10.1088/0031-9155/58/5/1323
https://doi.org/10.1088/0031-9155/58/5/1323
https://doi.org/10.1088/0031-9155/58/5/1323
https://doi.org/10.1016/j.ijrobp.2014.07.045
https://doi.org/10.1016/j.ijrobp.2014.07.045
https://doi.org/10.1016/j.ijrobp.2014.07.045
https://doi.org/10.3390/cancers7030829
https://doi.org/10.3390/cancers7030829
https://doi.org/10.3390/cancers7030829

10P Publishing

Phys. Med. Biol. 66 (2021) 045002 E Sterpin et al

Fredriksson A 2012a A characterization of robust radiation therapy treatment planning methods—from expected value to worst case
optimization Med. Phys. 39 5169-81

Fredriksson A 2012b Automated improvement of radiation therapy treatment plans by optimization under reference dose constraints Phys.
Med. Biol. 57 7799-811

Ge S etal 2019 Potential for improvements in robustness and optimality of intensity-modulated proton therapy for lung cancer with
4-dimensional robust optimization Cancers 11 35

Korevaar EW et al 2019 Practical robustness evaluation in radiotherapy —a photon and proton-proof alternative to PTV-based plan
evaluation Radiother. Oncol. 141 26774

Liu W et al 2013 Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers Med. Phys.
40051711

Liu W e al 2014 Robust optimization of intensity modulated proton therapy Med. Phys. 39 1079-91

Liu W et al 2016 Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer Int. J. Radiat.
Oncol. Biol. Phys. 95 523-33

Lowe M, Albertini F, Aitkenhead A, Lomax A J and Mackay R12015 Incorporating the effect of fractionation in the evaluation of proton plan
robustness to setup errors Phys. Med. Biol. 61 413-29

Malyapa R, Lowe M, Bolsi A, Lomax A J, Weber D C and Albertini F 2016 Evaluation of robustness to setup and range uncertainties for head
and neck patients treated with pencil beam scanning proton therapy Int. J. Radiat. Oncol. Biol. Phys. 95 154—62

Odén]J, Eriksson K and Toma-Dasu 12017 Incorporation of relative biological effectiveness uncertainties into proton plan robustness
evaluation Acta Oncol. (Madr) 56 769-78

Oelfke U and Bortfeld T 2001 Inverse planning for photon and proton beams Med. Dosim. 26 113-24

Perké Z, Van Der Voort S R, Van De Water S, Hartman CM H, Hoogeman M and Lathouwers D 2016 Fast and accurate sensitivity analysis
of IMPT treatment plans using Polynomial Chaos Expansion Phys. Med. Biol. 61 4646—64

Souris K, Barragan Montero A, Janssens G, Di Perri D, Sterpin E and Lee ] A 2019 Technical note: Monte Carlo methods to comprehensively
evaluate the robustness of 4D treatments in proton therapy Med. Phys. 46 4676—84

Souris K, Lee J A and Sterpin E 2016 Fast multi-purpose Monte Carlo simulation for proton therapy using multi- and many-core CPU
architectures Med. Phys. 1700 1-23

Stuschke M, Kaiser A, Pottgen C, Liibcke W and Farr ] 2012 Potentials of robust intensity modulated scanning proton plans for locally
advanced lung cancer in comparison to intensity modulated photon plans Radiother. Oncol. 104 45-51

Unkelbach J efal 2018 Robust radiotherapy planning Phys. Med. Biol. 63 22TR02

Van Der Voort S, Van De Water S, Perk?? Z, Heijmen B, Lathouwers D and Hoogeman M 2016 Robustness recipes for minimax robust
optimization in intensity modulated proton therapy for oropharyngeal cancer patients Int. J. Radiat. Oncol. Biol. Phys. 95 163—70

van de Water S, van Dam I, Schaart D R, Al-Mamgani A, Heijmen B ] M and Hoogeman M S 2016 The price of robustness; impact of worst-
case optimization on organ-at-risk dose and complication probability in intensity-modulated proton therapy for oropharyngeal
cancer patients Radiother. Oncol. 120 5662

van Herk M, Remeijer P, Rasch C and Lebesque ] V 2000 The probability of correct target dosage: dose-population histograms for deriving
treatment margins in radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 47 1121-35

Witte M G, Sonke J J, Siebers J, Deasy ] O and Van Herk M 2017 Beyond the margin recipe: the probability of correct target dosage and tumor
control in the presence of a dose limiting structure Phys. Med. Biol. 62 7874-88

16


https://doi.org/10.1118/1.4737113
https://doi.org/10.1118/1.4737113
https://doi.org/10.1118/1.4737113
https://doi.org/10.1088/0031-9155/57/23/7799
https://doi.org/10.1088/0031-9155/57/23/7799
https://doi.org/10.1088/0031-9155/57/23/7799
https://doi.org/10.3390/cancers11010035
https://doi.org/10.1016/j.radonc.2019.08.005
https://doi.org/10.1016/j.radonc.2019.08.005
https://doi.org/10.1016/j.radonc.2019.08.005
https://doi.org/10.1118/1.4801899
https://doi.org/10.1118/1.3679340
https://doi.org/10.1118/1.3679340
https://doi.org/10.1118/1.3679340
https://doi.org/10.1016/j.ijrobp.2015.11.002
https://doi.org/10.1016/j.ijrobp.2015.11.002
https://doi.org/10.1016/j.ijrobp.2015.11.002
https://doi.org/10.1088/0031-9155/61/1/413
https://doi.org/10.1088/0031-9155/61/1/413
https://doi.org/10.1088/0031-9155/61/1/413
https://doi.org/10.1016/j.ijrobp.2016.02.016
https://doi.org/10.1016/j.ijrobp.2016.02.016
https://doi.org/10.1016/j.ijrobp.2016.02.016
https://doi.org/10.1080/0284186X.2017.1290825
https://doi.org/10.1080/0284186X.2017.1290825
https://doi.org/10.1080/0284186X.2017.1290825
https://doi.org/10.1016/S0958-3947(01)00057-7
https://doi.org/10.1016/S0958-3947(01)00057-7
https://doi.org/10.1016/S0958-3947(01)00057-7
https://doi.org/10.1088/0031-9155/61/12/4646
https://doi.org/10.1088/0031-9155/61/12/4646
https://doi.org/10.1088/0031-9155/61/12/4646
https://doi.org/10.1002/mp.13749
https://doi.org/10.1002/mp.13749
https://doi.org/10.1002/mp.13749
https://doi.org/10.1118/1.4943377
https://doi.org/10.1118/1.4943377
https://doi.org/10.1118/1.4943377
https://doi.org/10.1016/j.radonc.2012.03.017
https://doi.org/10.1016/j.radonc.2012.03.017
https://doi.org/10.1016/j.radonc.2012.03.017
https://doi.org/10.1088/1361-6560/aae659
https://doi.org/10.1016/j.ijrobp.2016.02.035
https://doi.org/10.1016/j.ijrobp.2016.02.035
https://doi.org/10.1016/j.ijrobp.2016.02.035
https://doi.org/10.1016/j.radonc.2016.04.038
https://doi.org/10.1016/j.radonc.2016.04.038
https://doi.org/10.1016/j.radonc.2016.04.038
https://doi.org/10.1016/S0360-3016(00)00518-6
https://doi.org/10.1016/S0360-3016(00)00518-6
https://doi.org/10.1016/S0360-3016(00)00518-6
https://doi.org/10.1088/1361-6560/aa87fe
https://doi.org/10.1088/1361-6560/aa87fe
https://doi.org/10.1088/1361-6560/aa87fe

	1. Introduction
	2. Materials and methods
	2.1. Definitions and notations
	2.2. Computation of confidence levels
	2.2.1. Confidence levels in the dosimetric space
	2.2.2. Confidence levels in the error space

	2.3. Patient test cases
	2.4. Robustness evaluation strategies investigated
	2.4.1. Strategy 1: good practice scenario selection (GPSS) of flat systematic setup and range errors
	2.4.2. Strategy 2: statistically sound scenario selection (SSSS)
	2.4.3. Strategy 3: statistically sound dosimetric selection (SSDS)


	3. Results
	3.1. Results for the nominal plans
	3.2. Comparison of the robustness evaluation methods
	3.2.1. Considering systematic errors only
	3.2.2. Considering systematic and random errors


	4. Discussion
	5. Conclusions
	Acknowledgments
	References



