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Abstract

Background: Given the high prevalence and risk for outcomes associated with pediatric

obstructive sleep apnea (OSA), there is a need for simplified diagnostic approaches. A

prospective study in 140 children undergoing in‐laboratory polysomnography (PSG)

evaluates the accuracy of a recently developed system (Sunrise) to estimate respiratory

efforts by monitoring sleep mandibular movements (MM) for the diagnosis of OSA

(Sunrise).

Methods: Diagnosis and severity were defined by an obstructive apnea/hypopnea

index (OAHI) ≥ 1 (mild), ≥ 5 (moderate), and ≥ 10 events/h (severe). Agreement

between PSG and Sunrise was assessed by Bland–Altman method comparing re-

spiratory disturbances hourly index (RDI) (obstructive apneas, hypopneas, and re-

spiratory effort‐related arousals) during PSG (PSG_RDI), and Sunrise RDI (Sr_RDI).

Performance of Sr_RDI was determined via ROC curves evaluating the device

sensitivity and specificity at PSG_OAHI ≥ 1, 5, and 15 events/h.

Results: A median difference of 1.57 events/h, 95% confidence interval: −2.49 to 8.11

was found between Sr_RDI and PSG_RDI. Areas under the ROC curves of Sr_RDI were

0.75 (interquartile range [IQR]: 0.72–0.78), 0.90 (IQR: 0.86–0.92) and 0.95 (IQR:

0.90–0.99) for detecting children with PSG_OAHI≥1, PSG_OAHI≥5, or PSG_ OAHI≥

10, respectively.

Conclusion: MM automated analysis shows significant promise to diagnose

moderate‐to‐severe pediatric OSA.

K E YWORD S
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1 | INTRODUCTION

Obstructive sleep apnea (OSA) is a highly prevalent condition in

children (1%–5%) and is associated with severity‐dependent in-

creases in the risk for adverse outcomes, namely neurocognitive and

behavioral deficits, and cardiovascular and metabolic morbidities.1–5

In this context, the American Academy of Pediatrics has re-

commended in‐lab polysomnography (PSG) assessment for children

who snore and have at least one other symptom evoking OSA.6

Unfortunately, PSG is expensive, labor‐intensive and cumbersome
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for both parents and children. Owing to a limited number of board‐
certified pediatricians specialized in sleep medicine such a diagnostic

pathway is unrealistic and does not allow for addressing the actual

needs thereby leading to significant limitations and delays in access

to care.7 Very few Artificial Intelligence‐based approaches have been

explored and validated in children at a time that access is also

hampered by coronavirus disease 2019 (COVID‐19) exposure.
Accordingly, there is a need to adopt alternative methods that

will increase accessibility while providing reliable OSA diagnosis in

symptomatic children. Prior attempts to achieve such goals have

included questionnaires or nocturnal pulse oximetry approaches,

which have been fraught with limited success.8–12 However, Amer-

ican Academy of Sleep Medicine (AASM) does not currently endorse

the use of home sleep testing (HST) for diagnosis of OSA in children

based on the insufficient scientific evidence regarding HST feasibility

and validity. Major concerns about abbreviated diagnostic tests such

as HST referred to the inability to detect hypercapnia and of iden-

tifying arousals.13–17 Furthermore, obstructive events, and increases

in respiratory efforts with or without arousals may not necessarily be

reflected by gas exchange alterations or even by visually recogniz-

able EEG arousals. This is restricting the recognition of respiratory‐
related sleep fragmentation that has been identified as an important

contributor to OSA morbidity.18–21 Thus, it is highly desirable when

adopting innovative techniques for diagnosis of pediatric OSA to

include a reliable assessment of respiratory effort (RE). Application

of such advanced diagnostic approaches has recently greatly bene-

fited from the advent of machine learning applications in the field of

sleep medicine, as those techniques can facilitate complex signal

processing and improve reproducibility of sleep staging and re-

spiratory pattern evaluation.22–25

It has been previously shown that specific patterns of man-

dibular movements (MM) can readily identify sleep RE and arousals

in an adult population, and that a machine learning framework based

on MM automated analysis showed robust diagnostic performance in

adults with symptoms suggestive of OSA.26 In the present study, we

aimed to assess the diagnostic capabilities of this novel technology

that incorporates MM analysis (Sunrise, Belgium) in a population of

consecutive pediatric patients clinically referred for suspicion of OSA

and compare it to overnight polysomnographic findings. We there-

fore hypothesized that the Sunrise‐derived “obstructive respiratory

disturbance index” (Sr_RDI) would provide satisfactory clinical ac-

curacy to rule‐in a diagnosis of pediatric OSA while using AASM

severity thresholds.

2 | METHODS

2.1 | Design

This prospective diagnostic study was conducted at CHU UCL –

Namur (Belgium). All participants were recruited and scheduled for

overnight in‐lab PSG according to indications set forth in the

pediatric clinical practice guidelines.6 Written informed consent

was obtained from all caregivers. The protocol for this study was

approved by the Medical Ethics Committee of the Clinique et Ma-

ternite Sainte Elisabeth Namur Belgium (B166201215073). This

study followed the Standards for Reporting of Diagnostic Accuracy

(STARD) reporting guideline.

2.2 | Participants

Pediatric patients aged 3–17 years referred to the sleep laboratory

for clinically suspected OSA (documented history of difficult noc-

turnal breathing, snoring, witnessed apnea, choking and/or gasping

during sleep, night sweat, irritability, restlessness, etc.) were included

from September 2017 to November 2019. OSA was suspected on

the basis of symptomatology reported by parents. Friedman tongue

position classification was reported for all patients as a grading

system used to evaluate the relationship of the palate to the ton-

gue.27 The presence of symptoms led to PSG evaluation after con-

sultation with a sleep specialist. Children with significant, chronic

medical conditions, such as genetic syndromes, diabetes mellitus,

craniofacial anomalies, or neurologic disease were excluded. Children

receiving medications that could affect sleep (sedatives, or systemic

corticosteroids) were also excluded. Recordings having incomplete or

corrupted data and/or a sleep duration of less than 4 h were

excluded.

2.3 | Polysomnography

Routine laboratory based PSGs were recorded with XDream Medatec

device (Medatec, Belgium). The parameters monitored included EEG

(Fz‐A+, Cz‐A+, and Pz‐A+), right and left electro‐oculogram, submental

EMG, tibial EMG, chest and abdominal wall motion by respiratory

inductance plethysmography (SleepSense S.L.P., USA), nasal and oral

flows respectively with a pressure transducer and a thermistor, and

O2 saturation (SpO2) by digital oximeter displaying pulse waveform

(Nonin Medical, USA) enabling the calculation of pulse transit time.

PSG scoring was performed by experienced technician who was

blind to the study hypothesis and aims. The PSG data were manu-

ally scored in accordance with the recommended criteria in the

scoring manual published by the AASM Manual for the Scoring of

Sleep and Associated Events and using Domino version 3.0.0.1

software.28

The PSG criterion for OSA diagnosis required the presence of one or

more obstructive events (obstructive or mixed apnea or obstructive

hypopnea) per hour of sleep, coupled with snoring, paradoxical or

asynchronous thoracoabdominal movements, or flattening of the in-

spiratory nasal pressure waveform. End tidal PCO2 monitoring was not

used to support the detection of RE. Increased RE was identified by the

presence of a prolonged sequence of breaths characterized by a plateau

on the inspiratory portion of the nasal pressure signal and at least one of
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the following associated findings: an out of phase in thoracoabdominal

excursions, an inspiratory pulse transit time increase up 15ms between

adjacent cardiac beats, or video and microphone confirmed snoring.

2.4 | MM recordings

MM were recorded with the Sunrise system (Namur, Belgium), a

coin‐sized hardware positioned by the sleep technician on the

mentolabial sulcus. The device includes an embedded inertial mea-

surement unit that enables MM sensing and communicates with a

smartphone application for external control. The collected MM data

were automatically transferred to a cloud‐based infrastructure at the

end of the night, and data analysis was conducted with a dedicated

machine‐learning algorithm, trained, and validated in an adult po-

pulation.26 Basically, MM result from the muscular activities of the

jaw antagonists innervated by the motor branch of the trigeminal

nerve.29 MM are driven by the respiratory centers at the breathing

frequency while awake the movement frequency is more variable. In

the presence of an upper airway obstruction, MM increase in am-

plitude in relation with RE mimicking the esophageal pressure swings

until arousal closes the mouth and restores the airflow by stiffening

and re‐opening upper airway (Figure 1). MM analysis allowed for the

automatic calculation of an obstructive respiratory disturbance index

(Sr_RDI), consisting in the hourly rate of respiratory events marked

by RE (obstructive and mixed apneas/hypopneas and respiratory

effort‐related arousals (RERA). The identification of respiratory dis-

turbances by the Sunrise algorithm relied on the identification of

periods of RE characterized by oscillating MM at the breathing fre-

quency and ended by brisk MM of large amplitude indicating the

abrupt closure of the mouth, characteristic of arousals or awakenings

(Figure 1). Sr_RDI consists of the total number of respiratory

disturbances accompanied by RE divided by the total sleep time

estimated from the Sunrise analytics.26

2.5 | Data analysis

Data analysis was conducted using R statistical programming language.30

The analysis initially focused on evaluating the agreement between

Sr_RDI and PSG_RDI, consisting in the hourly rate of respiratory events

marked by RE (obstructive and mixed apneas/hypopneas and RERA).

Agreement between Sunrise and PSG was determined using the ICC(3,1)

and correlation between the two testing methods was determined using

Pearson correlation coefficient (r). Linear regression analysis was per-

formed to characterize the relationship between Sr_RDI and PSG_RDI.

Bland and Altman analysis was conducted to estimate the limits of

agreement and systematic biases between Sr_RDI and PSG_RDI.31

Since clinical diagnosis of pediatric OSA according to the Interna-

tional Classification of Sleep Disorders, Third Edition (ICSD‐3) implies

the computation of PSG_OAHI (comprising obstructive and mixed ap-

neas/hypopneas and excluding RERA, we optimized the diagnostic

performances of Sr_RDI in ruling‐in a diagnosis of pediatric OSA at

three cut‐off thresholds of PSG_OAHI ≥ 1 events/h, PSG_OAHI≥ 5

events/h, or PSG_ OAHI ≥ 10 events/h. Receiver operating character-

istic (ROC) curve analysis was used to evaluate the overall clinical ef-

ficacy of the new diagnostic tool via area under the receiver‐operating
characteristic curve (AUC) and a post hoc analysis to optimize the

cutoff points of Sr_RDI for diagnostic decisions compared to the gold‐
standard cutoff values of obstructive PSG_OAHI recommended in

ICSD‐3 (1 events/h, 5 events/h, and 10 events/h) was performed. The

optimal MM cutoffs were determined at the highest value of the

Youden index. The metrics of clinical utility and accuracy were calcu-

lated for the defined optimal MM detection cutoff.

F IGURE 1 Schematic representation of the data concomitantly recorded by in‐lab polysomnography (PSG) (A) and Sunrise device (B) but
analyzed independently. The data were automatically uploaded into a cloud‐based platform (C) and handled by a machine learning algorithm
(D). The figure shows the behavior of the Sunrise MM signal after incorporation into PSG fragments marked with episodes of obstructive
hypopneas (in red)
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3 | RESULTS

3.1 | Characteristics of study population

About 155 patients aged 3–17 years old with clinically suspected

OSA completed the sleep study from September 2017 to November

2019. Fifteen patients were excluded for the following reasons: in-

complete data (7 patients), total sleep time inferior to 4 h (3 pa-

tients), and technical failures (5 patients). The remaining 140 patients

were included in the final analysis (mean age: 7.8 ± 4.2 years; mean

body mass index: 17.7 ± 5.0 kg/m²; 55.0% were females). In ac-

cordance with the WHO criteria for obesity, 22 children (15.7%)

suffered from obesity, and 16 were overweight (11.4%). They were

equally distributed across the three PSG identified groups.

The characteristics of the clinical convenience sample are de-

picted in Table 1.

3.2 | Association between PSG and MM‐
derived RDI

Using ICSD‐3 criteria, OSA was ruled out in 73 patients (PSG_OA-

HI < 1 events/h; 52.1%), 47 children (33.6%) were diagnosed with mild

OSA, 11 (7.8%) with moderate OSA, and nine (6.4%) with severe OSA.

Figure 2 shows a linear relationship between Sr_RDI and PSG_OAHI

in the three clinical groups (r= .76, p< .001) and the relationship between

Sr_RDI and PSG_RDI, including OAHI and RERAs in the three clinical

groups. There was a significant correlation between the Sr_RDI and

PSG_RDI (r= .84; 95% confidence interval [CI]: 0.79–0.89; p< .001).

PSG_RDI values could be estimated from Sr_RDI by a simple linear re-

gression equation: PSG_RDI =1.13 * Sr_RDI−2.67 (R2 = .71; p< .001).

3.3 | Intermethods agreement analysis

There was an acceptable agreement between the two methods (PSG

vs. Sunrise) in estimating RDI, as suggested by an intraclass corre-

lation coefficient (ICC) of 0.79 (95%CI: 0.72–0.85; p < .001).

A Bland–Altman analysis (Figure 3) between Sr_RDI and

PSG_RDI showed that the median difference between the two

methods was 1.57 events/h with a confidence interval including

the zero value and no systematic bias between the two measures.

The distribution of the measurement bias within 95% limits of

agreements ranged from −2.49 to 8.11. Group‐wise analysis

highlighted that in the non‐OSA group (n = 73), the disagreements

were normally distributed with a median difference of 2.21

events/h (95%CI: −1.12 to + 8.36). Disagreements were also nor-

mally distributed among patients with mild OSA (n = 47), with a

median difference of 1.18 (95%CI: −1.66 to 7.61). The distribution

of disagreement within the groups of patients diagnosed with

moderate‐to‐severe OSA (n = 20) was skewed due to outliers at

values above 20 events/h on the PSG_RDI scale), with a median

difference of −0.06 (95%CI: −16.24 to 5.44).

On the Kernel density plot, the distributions of PSG_RDI and

Sr_RDI values represent a high uniformity within each clinical sub-

group determined by the conventional cut‐off thresholds. The den-

sity plots comparison also indicated a large overlap between non‐
OSA and mild OSA subgroups. These graphs allow expecting the

impact of switching technology on the clinical performance of Sr_RDI

in OSAS diagnosis, with regard to the reference method (PSG_RDI) in

moderate‐to‐severe OSA children (Figure 4).

3.4 | Diagnostic ability of the MM‐derived RDI

ROC curve analysis was performed to evaluate the diagnostic perfor-

mance of Sr_RDI to identify OSA at the three pre‐specified cutoff values

TABLE 1 Numerical variables are described as median, 5th,
95th centiles and interquartile range

Demographic Characteristics of the Pediatric Cohort n = 140 Sex

ratio F/M: 77/63

Median

5th

centile

95th

centile IQR

Age, years 6.90 3.159 15.841 5.6

Height, cm 121.5 94.9 171.0 36.75

Weight, kg 22.50 13.0 77.4 20

BMI, kg/m² 16.46 13.89 29.02 3.57

BMI Z_score 0.235 −1.883 2.921 1.84

Neck circumference, cm 17.00 13.29 32.33 5.57

Sleep parameters, PSG

Total sleep time, h 7.60 4.63 9.00 1.59

OAHI, events/h 0.85 0.01 13.32 2.16

RDI, events/h 5.62 0.94 22.95 5.54

Arousal index,

events/h

11.07 5.73 23.65 5.31

Symptoms, complaints and Friedman classification

Presence of loud

snoring

76 (54%)

Reported breathing

effort

56 (40%)

Witnessed apneas 54 (39%)

Observed mouth

breathing

44 (31%)

Night sweating 30 (21%)

Nonrestorative sleep 48 (34%)

Daytime sleepiness 47 (34%)

Easily distracted 44 (31%)

Restlessness 46 (33%)

Friedman

classification

2.28 (0.91)

Note: Categorical variables were described as frequency (%).

Abbreviations: BMI, body mass index; PSG, polysomnography; OAHI,

obstructive apnea/hypopnea index; RDI, obstructive respiratory

disturbance index.
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of PSG_OAHI≥1 events/h, ≥5 events/h, and ≥10 events/h (Figure 5).

The area under the ROC curves (AUC) targeting PSG_OAHI≥1, PSG_

OAHI≥5, or PSG_ OAHI≥10 reached 0.75 (95%CI: 0.72–0.78), 0.90

(0.86–0.92), and 0.95 (0.90–0.99), respectively.

After cutoff point optimization, we found that at the best thresholds

of 5.75 events/h, 9.60events/h, and 13.07 events/h, Sr_RDI allowed for

detection of patients with PSG_OAHI≥1, PSG_ OAHI≥5, or PSG_

OAHI≥10 with accuracy levels of 66%, 85%, and 94%, respectively.

F IGURE 2 Scatter plots describing the relationship between Sr_RDI and PSG_RDI (upper pannel), and Sr_RDI and PSG_OAHI (lower pannel)
for non OSA (green), mild OSA (yellow) and moderate‐to‐severe OSA (red). OSA, obstructive sleep apnea; PSG_OAHI, obstructive apnea/
hypopnea index during polysomnography; PSG_RDI, respiratory disturbances hourly index during polysomnography; Sr_RDI, Sunrise‐derived
obstructive respiratory disturbance index [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Bland–Altman plot between
PSG_RDI and Sr_RDI as a function of
PSG_RDI, with patients divided into three
groups: (1) non‐OSA (green), (2) mild OSA
(PSG_OAHI ≥ 1; yellow), and (3) moderate‐to‐
severe OSA (PSG_OAHI ≥ 5; red). The
horizontal and the dashed lines indicate the
median, the 5th and the 95th centiles of the
disagreement in the whole sample,
respectively. OSA, obstructive sleep apnea;
PSG_OAHI, obstructive apnea/hypopnea
index during polysomnography; PSG_RDI,
respiratory disturbances hourly index during
polysomnography; Sr_RDI, Sunrise‐derived
obstructive respiratory disturbance index
[Color figure can be viewed at
wileyonlinelibrary.com]
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Sr_RDI diagnostic rules allowed us to detect mild OSA with a good

sensitivity (83%) but a specificity of 53%, to detect moderate OSA with a

balanced sensitivity (90%) and specificity (80%), and to detect severe

OSAwith an excellent performance (sensitivity of 100% and specificity of

88%; Table 2).

4 | DISCUSSION

In a large prospective pediatric cohort clinically referred for suspected

OSA, we evaluated the agreement between MM‐derived Sr_RDI and

PSG_RDI. The MM simplified diagnosis framework was highly reliable for

moderate to severe OSA patients, that is, those clearly requiring treat-

ment interventions. Thus, the current findings reinforce the potential

applicability of machine learning derived algorithms coupled with auto-

mated analyses for diagnosis of moderate to severe pediatric OSA and

should spur renewed efforts for studies in this direction, ultimately

leading to wider implementation of such approaches. Our results also

demonstrated the capability of this automated analysis to identify RERAs,

an element that has clinical significance in children but is too often either

ignored or underdiagnosed.32–34

PSG_OAHI ≥ 5 in children is a commonly agreed upon criterion

for adenotonsillectomy and is associated with an increase in the risk

of OSA‐associated adverse outcomes.4,5,17,35 At the best‐optimized

F IGURE 4 Uni‐dimensional Kernel
density estimations (KDE) plots were to show
the true distribution of Sr‐RDI and PSG‐RDI
within the three groups: (1) non‐OSA (green),
(2) mild OSA (PSG_OAHI ≥ 1; yellow), and (3)
moderate‐to‐severe OSA (PSG_OAHI ≥ 5;
red). The KDE plots shared the same scale of
RDI. OSA, obstructive sleep apnea;
PSG_OAHI, obstructive apnea/hypopnea
index during polysomnography; PSG_RDI,
respiratory disturbances hourly index during
polysomnography; Sr_RDI, Sunrise‐derived
obstructive respiratory disturbance index
[Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 ROC curves of the classification rules to detect OSA pediatric patients with PSG_OAHI≥1 (orange curve), PSG_OAHI≥5 (red curve),
and PSG_OAHI≥10 (purple curve), from Sr_RDI scores. The smoothing effects on the curves were obtained by bootstrapping. OSA, obstructive sleep
apnea; PSG_OAHI, obstructive apnea/hypopnea index during polysomnography; PSG_RDI, respiratory disturbances hourly index during
polysomnography; ROC, receiver operating characteristic; Sr_RDI, Sunrise‐derived obstructive respiratory disturbance index [Color figure can be viewed

at wileyonlinelibrary.com]
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cut‐off, Sunrise MM driven RDI allowed for the correct identification

of patients with PSG_OAHI ≥ 5 events/h with a balanced accuracy of

85% and an area under the receiver operating characteristic curve

(ROC AUC) of 0.9. At such level of severity, Sunrise favorably com-

petes with other type four devices incorporating SpO2 automated

analysis for the diagnosis of pediatric OSAS.11,12,36 Our results show

good diagnostic performances to efficiently “rule in” a diagnosis of

moderate‐to‐severe OSAS, the group representing the most critical

population to be diagnosed when using simplified approaches.

Moreover in the group with PSG_OAHI ≥ 5, the rate of false positive

with Sr_RDI was minimal (10%) keeping very low the risk of incorrect

diagnosis of OSA potentially treated unnecessarily.

However, the performance of the diagnostic algorithm for de-

tecting OSA from non OSA patients using the clinical threshold of

PSG_OAHI ≥ 1 events/h was less optimal. About 73 habitually snor-

ing symptomatic children referred by their primary care physicians

for clinical suspicion of OSAS showed OAHI < 1 event/h in the PSG.

The Sr_RDI cut‐off of 5.75 as selected would misclassify 18% of

patients as false positives and 47% as false negatives. We should em-

phasize that this cutoff of 1 event/h will pose difficulties irrespective of

the diagnostic approach due to the very low signal‐to‐noise ratio imposed

by this cutoff. One could therefore argue that the conventional rules to

reach a diagnosis of pediatric OSA should be modified to incorporate

RERAs such as to improve the concordance between PSG‐derived in-

dices, complaints/symptoms, and outcomes.31,37 It has been suggested

that RERAs and snoring may better predict both cognitive and behavioral

problems in young children than the commonly used PSG_OAHI.37–39

The high incidence of RERAs in children is further highlighted by the

PSG_RDI, which added an average of 4.25 events/h (SD: 2.61 events/h) to

the PSG‐OAHI. MM‐based technology is designed to identify the pre-

sence of these additional RERAs. The current recommended cut‐off is
probably not the best predictor of deleterious outcomes, since it was

chosen on the basis of the statistical distribution of normative PSG data

rather than drawn from considerations of pathophysiological inputs.40,41

In addition, the “gold standard” PSG is known to vary from one night to

the other depending on sleep architecture and body position, especially

at the lower end of the severity spectrum. This could also lead to im-

precisions in the diagnosis after a single night in the laboratory, parti-

cularly when applying the 1 event/h cutoff. In light of the readily available

accessibility and scalability, along with the associated low cost and au-

tomatic scoring supported by machine learning, MM analysis could offer

a valid option for implementation of OSA diagnosis at home over several

nights, thereby improving the reliability of the test and better reflecting

the actual disease burden in any given symptomatic child.

As mentioned, there have been multiple alternatives to PSG that

have been examined over the last three decades in an effort to improve

the accessibility of symptomatic children to a timely diagnosis and

treatment. These options have ranged from questionnaires with limited

diagnostic accuracy precluding their use as a routine diagnostic tool for

OSA to more promising approaches relying on automated machine

learning‐based analysis of single‐channel SpO2.
8,9,11,12 The technique

described here positively contributes to this effort by presenting for the

first time the diagnostic accuracy of a mandibular movements‐based
system in confirming or discarding the presence of OSA in symptomatic

TABLE 2 Diagnostic performance of
Sr_RDI to detect PSG_OAHI at the
diagnostic cutoff values for detecting
pediatric OSA

Performance metrics (median

and CI) PSG_AHI≥1 PSG_AHI≥5 PSG_AHI≥10

Best cut‐off 5.75 9.61 13.07

Sensitivity 0.82 0.78–0.86 0.90 0.87–0.93 1.00 1.00–1.00

Specificity 0.53 0.48–0.59 0.80 0.76–0.84 0.88 0.84–0.91

FPR (false positive rate) 0.18 0.22–0.14 0.10 0.13–0.07 0.00 0.00–0.00

FNR (false negative rate) 0.47 0.52–0.41 0.20 0.24–0.16 0.12 0.09–0.16

PPV (positive predictive value) 0.64 0.59–0.68 0.82 0.78–0.86 0.89 0.86–0.92

NPV (negative predictive value) 0.75 0.70–0.80 0.89 0.85–0.92 1.00 1.00–1.00

F1 0.72 0.68–0.75 0.86 0.83–0.88 0.94 0.93–0.96

BAC 0.68 0.65–0.71 0.85 0.82–0.88 0.94 0.92–0.96

LR + (positive likelihood ratio) 1.76 1.57–2.01 4.52 3.70–5.71 8.28 6.39–11.33

LR‐(negative likelihood ratio) 0.33 0.26–0.42 0.12 0.09–0.17 0.00 0.00–0.00

ROC–AUC (area under the ROC

curve)

0.751 0.68–0.82 0.90 0.82–0.96 0.98 0.95–1.00

Note: Optimal cutoff points were determined at the highest value of Youden's J index

(sensitivity + specificity – 1). The 95% CIs were determined by bootstrapping.

Abbreviations: OSA, obstructive sleep apnea; PSG_AHI, apnea/hypopnea index during

polysomnography; PSG_OAHI, obstructive apnea/hypopnea index during polysomnography; PSG_RDI,

respiratory disturbances hourly index during polysomnography; ROC, receiver operating

characteristic; Sr_RDI, Sunrise‐derived obstructive respiratory disturbance index.
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children. The combination of MM monitoring with machine learning

analysis has been recently proven as efficient for OSA diagnosis in

adults.26 Similarly, investigation ofMMpatterns after adenotonsillectomy

in children provided compelling evidence as to the value of monitoring

RE in a pediatric population, since MM patterns during sleep inform

about the changes in respiratory drive in the presence of an increase in

upper airway resistance.42,43 Thus, the proposed novel technique is of

considerable interest, as it has the potential to simplify the process of

pediatric OSAS diagnosis, to unclog sleep centers and orient pediatric

OSA diagnosis to home‐based settings, and to prevent from COVID‐19
exposure risk. This brings obvious advantages for both children and their

caregivers.44 Other technologies that use multiple channels in the home

remain very labor intensive and require expert scoring and are fraught

with high rates of technical failures. The mandibular jaw movement‐
sensing hardware could be in the future complemented by a pulsed

oximetry system informing about the risk of respiratory effort related

oxygen desaturation. Indeed, synchronization with oximetry would po-

tentially increase the specificity of the technique. The Sunrise solution is

currently available in the market, and is in the process of receiving ap-

proval by several national health agencies.

4.1 | Study limitations

The implementation of such a solution in ambulatory settings will

need additional validation to thoroughly evaluate its diagnostic ac-

curacy in unattended home settings. Ideally, future studies will be

multicentric, and therefore allow for generalization of the present

results. A larger sample size is also required in further studies for

more robust representation of the OSAS spectrum of disease. An-

other limitation was that 10% of patients were excluded due to

problems related to missing data in the questionnaires or in the

polysomnography (signal loss). Technical failures related to the

connected Sunrise system were due to the loss of the wireless

connection, and were observed in three children from the group

discarded from the final analysis. Finally, further studies might ex-

amine the potential improvement of the Sunrise system performance

by incorporating pulse oximetry in the diagnosis of OSAS.

5 | CONCLUSIONS

A machine‐learning approach based on mandibular movement ana-

lysis displays acceptable accuracy as a tool for the diagnosis of

moderate‐to‐severe OSA in symptomatic children. This approach

may provide a suitable and convenient home‐based alternative for

the assessment of pediatric OSA in the near future.
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