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Abstract

We develop in this manuscript a method for performing estimation and inference for
the reproduction number of an epidemiological outbreak. The estimator is time-dependent
and uses spline modeling to adapt to changes in the outbreak. This is accomplished by
directly modeling the series of new infections as a function of time and subsequently using
the derivative of the function to define a time-varying reproduction number.
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Significance statement: This research helps epidemiologists, stakeholders and policy-makers
alike to asses the spread of a virus in a susceptible population by keeping track of the repro-
duction number of the virus. Based on the daily number of new infections it can easily and
in real-time be assessed how fast the virus spreads. The procedure is flexible enough to allow
accounting for interventional measures that attempt to keep the epidemic under control.

1 Introduction

As more and more governments try to balance the relaxation of lock-down measures for the
population while keeping the COVID-19 pandemic and its effects under control, it has become
ever more clear that trustworthy metrics which quickly and accurately inform policy-makers of
the state of evolution of the outbreak are of crucial importance. Different countries have used
different interventional strategies to keep the spread of the SARS-CoV-2 virus under control and
it is natural to assess the efficacy of such measures being enforced. Multiple key indicators are
being focused upon, but one metric that is fundamental to the assessment of the spread of the
virus in a susceptible population is the basic reproduction number (R0) of the virus which is a
measure of its transmission capacity. It represents an average number of secondary infections
that an infected person can produce in the population, where it is assumed that every person is
susceptible (Dietz, 1993).

It is a useful metric to follow during outbreaks as its magnitude serves to determine to
which degree interventional strategies are necessary to prevent an epidemic or to maintain it at
acceptable levels. Epidemic theory associates outbreaks of a certain disease when the reproduc-
tion numbers are estimated to be greater than one, and consequently the spread of the virus
is judged to be under control when the reproduction numbers are estimated to be lower than
one. In the context of the COVID-19 pandemic, many recent studies give different estimates for
this number, very much dependent on the assumptions the model makes, the country where the
outbreak is observed and the period when the analysis was performed. See Liu et al. (2020),
Tsang et al. (2020) or Salje et al. (2020) among a rapidly growing line of research.

Different approaches exist to estimate the reproduction number, however the large major-
ity estimate one single number for the entire period in which the virus is active, which is an

1



unrealistic, constant throughout time summary measure of the virus potential in the popula-
tion. Notable exceptions include Wallinga and Teunis (2004), Wallinga and Lipsitch (2007),
Hens et al. (2011) and Cori et al. (2013). More recently, sparked by the developments regarding
the spread of SARS-CoV-2, Hong and Li (2020) and Koyama et al. (2021) also proposed time-
varying reproduction numbers either based on a time-dependent susceptible-infectious-removed
(SIR) model or a state space model.

2 Proposed model

Following the work of Wallinga and Lipsitch (2007) and Obadia et al. (2012) we have that the
basic reproduction number R0 can be obtained as:

R0 = 1/M(−r) (1)

where r is an exponential growth rate of the disease, defined as the per capita change in the
number of new cases per unit of time and M(·) is the moment generating function of the
generation time (defined as the mean duration between the time of infection of a primary infectee
and that of a secondary infectee) distribution. It is assumed here M(−r) exists and that M(·)
is known.

To propose a time-varying reproduction number R(t), we consider first I(t) as being the
number of members in the population that get infected at time t. We assume next, that I(t)
follows a model from the exponential family (EF) as:

I(t) ∼ EF(µ(t), φ)

g{µ(t)} = f(t) (2)

where µ(t) = E{I(t)} is the expected number of new infections at time t, g(·) is a known link
function and φ is a dispersion parameter. Moreover, we consider f(t) to be a smooth, unknown
function of time.

As eq. (1) requires a change in the number of new cases per unit of time, it seems natural
to augment R0 to the metric R(t) defined as:

R(t) = 1/M{−r(t)}

with r(t) = d
dtf(t). The rationale behind the proposed instantaneous or effective R(t) is first,

the fact that r plays in eq. (1) the role of a growth rate across time which is substituted by
the derivative of a flexible function that can adapt better to fluctuations across time. Secondly,
the Poisson assumption that is used often in practice to model infectious counts, might not
be an appropriate one due to the overdispersion phenomenon that is quite prominent for such
count data. By allowing for a larger class of models from the exponential family, we provide
more flexibility. The idea of introducing a time-varying reproduction number R(t) based on the
derivative of a spline model is a novel approach that has not been explored so far.

Remark 1. Note that model (2) offers a relatively large palette of possible models with the usual
Poisson distributional assumption that is most often used in practice as a special case. If desired,
one could simply replace the Poisson distributional assumption in favor of any other, more
appropriate distribution such as the negative binomial or a quasi-Poisson model, that directly
account for overdispersion. Also, if other time-dependent covariates Xt are available (such as
vaccination information, weekend effects or mobility information), one could simply consider an
extended additive model of the form g{µ(t)} = f1(t) + f2(Xt) without much difficulty.
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As f(t) is a considered a smooth function of time we propose to model it in this manuscript
with splines and we consider for this application truncated polynomials and radial bases splines:

f(t) = β0 + β1t+ β2t
2 + . . .+ βmt

m +
K∑
k=1

uk(t− κk)m+

f(t) = β0 + β1t+ β2t
2 + . . .+ βmt

m +

K∑
k=1

uk|t− κk|m

where (κ1, . . . , κK)T are a set of specified knots 1 < κ1 < . . . < κK < T , (a)+ = max(a, 0), while
(β0, β1, . . . , βm)T and (u1, . . . , uK)T are unknown coefficients.

The reason for these bases choices is two-fold. First, with such simple polynomial models it
is straightforward to obtain d

dtf(t) and secondly, this choice leads to computationally efficient
estimation algorithms that exploit connections with a mixed model reformulation as will be
detailed next. We note however, that B-splines (de Boor, 2001) and P -splines as in the formu-
lation of Eilers and Marx (1996) could be interesting alternatives, with slightly more involved
derivative expressions due to recursive formulas.

In matrix notation we have that f(t) can be rewritten as f(t) = [Xβ + Zu]t where β =

(β0, β1, . . . , βm)T, u = (u1, . . . , uK)T, X =


1 1 . . . 1
1 2 . . . 2m

...
...

...
. . .

1 T . . . Tm

 and in the case of truncated

polynomials Z =


(1− κ1)m+ (1− κ2)m+ . . . (1− κK)m+
(2− κ1)m+ (2− κ2)m+ . . . (2− κK)m+

...
...

...
. . .

(T − κ1)m+ (T − κ2)m+ . . . (T − κK)m+

 . A very similar expression for

Z holds for radial bases splines where one uses the terms |t − κk|m. We assume next that
β represents a fixed set of parameters and u represents a set of Gaussian random variables.
Conditionally on u, eq. (2) becomes

I(t)|u ∼ EF(µ(t), φ)

u ∼ N(0,G)

g{µ(t)} = f(t). (3)

For simplicity we assume that u ∼ N(0,G = σ2uI), where σu is an unknown parameter and I is
the identity matrix of dimension K ×K.

Model (3) is relatively standard in the treatment of splines reparametrized as random effects
models and the monograph of Ruppert et al. (2003) provides an excellent exposition on the
subject.

3 Estimation aspects

In this section we tackle the estimation of R(t) by presenting a step by step procedure that
estimates all necessary quantities.

In the exponential family model with normal random effects presented in (3), the likelihood
contribution at time t has the form:

p(It|u) = exp

{
Itθt − b(θt)

φ
+ c(It, φ)

}
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for some functions b(·) and c(·) and where θt is the natural parameter of the exponential family,
while the density of the random effects is p(u) ∝ exp{−1

2u
TG−1u}. This implies that the

likelihood function becomes:

L(β) =

∫
RK

p(It|u)p(u)du

∝
∫
RK

exp

{ T∑
t=1

Itθt − b(θt)
φ

− 1

2
uTG−1u

}
du (4)

where It = (I1, I2, . . . , IT )T. Due to the presence of a K-dimensional integral, direct maxi-
mization of (4) is regarded as a highly expensive computational problem. Breslow and Clayton
(1993) approximate this integral based on Laplace’s approximation and based on their result,
in practice β is estimated by maximizing the penalized (conditional) log-likelihood defined as:

`(β,u) = log(p(It|u))− 1

2
uTG−1u.

Assume next for ease of exposition that one works under the canonical link function (g(·) =
b−1(·)) implying that

θt = ηt = [Xβ +Zu]t = f(t)

b′(ηt) = µt = E{I(t)|X,Z,u}
b′′(ηt) = Var{I(t)|X,Z,u}.

As for the iteratively reweighted least squares (IRLS) algorithm, we define next the ‘working’
vector

Iwt = Xβ +Zu+ (It − µt)W−1

= Xβ +Zu+ εw

where µt = (µ1, µ2, . . . , µT )T and W = diag{b′′(Xβ + Zu)}. Since Iwt is expressed as a linear
mixed model, the penalized quasi-likelihood (PQL) method can be used to obtain estimates as
it proceeds by minimizing first the expression

(Iwt −Xβ −Zu)TW−1(Iwt −Xβ −Zu) + uTG−1u,

for which the solution is obtained in closed form as[
β̂
û

]
= (CTWC +B)−1CTW−1Iwt

with C = [X|Z] and B =

[
0 0
0 G−1

]
. Using the estimated coefficients one updates next the

working vector Iwt and this two-step process continues until a convergence metric is sufficiently
small.

Once estimates for (β̂, û)T are obtained, we can obtain as well the best linear unbiased
predictor of r̂(t) = d

dtf(t)
∣∣
(β̂,û)T

and thenR(t) is estimated by direct plug-in R̂(t) = 1/M{−r̂(t)}.

Remark 2. Note that in this section it is assumed G is fully specified implying that σ2u is known
but if this is not the case, then one can obtain as well a consistent estimator for it, by using
restricted maximum likelihood estimation. More details are available in Searle et al. (2006) or
Stroup (2013) among many others.
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We have also assumed that φ, the dispersion parameter is known, but if this is not the case
then a (conservative) estimator for it could be obtained as:

φ̂ =
1

T − (m+K + 1)

T∑
t=1

It − µ̂t
b′′(η̂t)

.

This would be particularly useful if one assumes a quasi-Poisson model that allows for over-
dispersion relative to a standard Poisson model for which φ is known to be φ = 1. Note that
for such a quasi-Poisson model the estimates for the coefficients are identical to those from the
standard Poisson model, but the elements of the variance-covariance matrix are multiplied by φ̂,
generally larger than 1, hence the term ‘over’-dispersion. More details are available in Agresti
(2015).

4 Inferential aspects

It is of interest to provide standard errors to quantify the uncertainty in the estimation of R(t)
and as such we proceed in several steps. The first building block is realizing that determining
pointwise error bars for the fitted function f̂(t) = [Xβ̂ + Zû]t requires the standard error
SE(f̂(t)) defined as:

SE(f̂(t)|u) =

(
CT
t Cov((β̂, û)T|u)Ct

)1/2

with

Cov((β̂, û)T|u) ≈ (CTWC +B)−1CTWC(CTWC +B)−1

and where Ct represents the vector of data corresponding to the t-th row of C.
Moreover, due to the nature of the spline functions we chose to use in this manuscript, one

can always rewrite the predicted value for the first derivative at time t as f̂ ′(t) = [X̃β̂ + Z̃û]t
where the columns of the design matrices X̃ and Z̃ are directly obtainable from the columns of
X and Z. As such with C̃ = [X̃|Z̃] one has direct access to estimated standard errors for the
first derivative at each time point t:

SE(f̂ ′(t)|u) =

(
C̃

T
t Cov((β̂, û)T|u)C̃t

)1/2

.

Using further a large sample argument justifying the distributional approximation:

f̂ ′(t)− E(f ′(t)|u)

SE(f̂ ′(t)|u)
≈ N(0, 1)

and letting h(a) = 1/M(−a) we have using the Delta method:

h
(
f̂ ′(t)

)
− h
(
E(f ′(t)|u)

)
SE(f̂ ′(t)|u)|h′(a)|

≈ N
(
0, 1
)
.

Another possibility would be to first construct directly lower and upper bounds for E(f ′(t)|u)
as f̂ ′(t)± z1−α

2
SE(f̂(t)|u) and then construct the approximate confidence interval for R(t) as:[

1

M
(
f̂ ′(t)− z1−α

2
SE(f̂(t)|u)

) ;
1

M
(
f̂ ′(t) + z1−α

2
SE(f̂(t)|u)

)],
where z1−α

2
is the quantile of the standard normal distribution at a fixed significance level α.
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5 Simulation study

To test the performance of the proposed spline-based method we have conducted a simulation
study where we have first created epidemics of length T = 150 days for which we used four
different smooth R(t) trajectories depicted in Figure 1 top panels. For each scenario, we simu-
lated 1000 epidemics, starting with 100 index cases. For visualization purposes we have plotted
the evolution of an epidemic from each scenario in the bottom panels of Figure 1. Scenario I
corresponds to a two-wave epidemic where the second wave is more severe, Scenario II depicts a
slowly increasing exponential outbreak, while Scenario III mimics an interventional mechanism
that reduces the infections in the second part of the time horizon. The last scenario depicts an
epidemic that is fully under control throughout the entire period.

Scenario I Scenario II Scenario III Scenario IV
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Figure 1: Simulated data from four different scenarios. Top panels correspond to different R(t)
functions while the bottom panels represent counts of infections I(t) simulated from models
corresponding to each R(t).

We have simulated next data similar to what is proposed in Cori et al. (2013) where we
have used a SARS-like serial interval distribution, with mean 8.4 days and standard deviation
3.8 days. For each day the number of new incident cases I(t) was drawn from a negative
binomial distribution with mean µ(t) = R(t)

∑t
s=1 I(t − s)w(s) and variance σ2(t) = µ(t) +

µ(t)2/θ, where w(s) is the discrete serial interval distribution, I(t − s) are the infections s
lags in time and θ is a parameter that allows for overdispersion. Three values for θ were
considered as θ ∈ {2, 10, 100}. The considered competitors are (i) the cubic spline-based R(t)
with truncated polynomial and radial bases for which the Poisson, negative binomial and quasi-
Poisson distributional assumptions are made, (ii) the estimator proposed in Cori et al. (2013)
and (iii) the estimator proposed in Wallinga and Teunis (2004). For these last two competitors
we have used the publicly available implementation offered in the EpiEstim package from R.

All competitors are evaluated with respect to the accuracy of estimating R(t) which is
measured by the total sum of squared errors defined as:

SSE =
T∑
t=1

(
R̂(t)−R(t)

)2
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where R(t) is the true value of the reproduction number and R̂(t) is the estimated value of the
reproduction number.

Table 1 shows the obtained results as median values over the 1000 different simulated epi-
demics and upon inspection we conclude that: (i) when there is a high degree of overdispersion
(ie. θ is small) the spline-based R(t) produced better SSE performance than the classical com-
petitors, across all scenarios and regardless of the spline basis function, pointing to the conclusion
that for such a setting smoothing helps identifying the underlying trend more accurately; (ii) for
low to medium overdispersion the results are closer, but also in this case splines are slightly bet-
ter, especially for Scenario IV. For visualization purposes, in Figure 2 the estimated R(t) values
for the first 100 epidemics using truncated polynomial and radial bases are plotted. The figure
suggests also that as expected the obtained trajectories are much smoother for the spline-based
method than for the competitors and also the fact that the competitors are much more variable
relative to the spline-based estimator.

Overall, estimating R(t) using flexible, spline-based models can provide substantial gains in
the accuracy of estimating the transmission capability of virus.

Scenario I Scenario II
θ = 2 θ = 10 θ = 100 θ = 2 θ = 10 θ = 100

Truncated polynomial (Poisson) 33.6 10.6 8.3 17.8 6.9 2.5
Truncated polynomial (quasi-Poisson) 33.6 10.6 8.3 17.8 6.9 2.5
Truncated polynomial (Negative binomial) 17.5 10.7 8.6 11.6 5.7 3.3
Radial basis (Poisson) 25.8 13.7 8.4 19.1 14.3 5.5
Radial basis (quasi-Poisson) 25.8 13.7 8.4 19.1 14.3 5.5
Radial basis (Negative binomial) 18.1 10.5 8.2 10.9 5.3 3.0
Cori et al. 31.7 10.5 5.8 28.1 7.5 2.8
Wallinga & Teunis 36.2 23.3 20.5 20.5 8.0 5.2

Scenario III Scenario IV
θ = 2 θ = 10 θ = 100 θ = 2 θ = 10 θ = 100

Truncated polynomial (Poisson) 13.3 5.1 3.6 3.2 1.7 1.5
Truncated polynomial (quasi-Poisson) 13.3 5.1 3.6 3.2 1.7 1.5
Truncated polynomial (Negative binomial) 9.9 5.8 4.4 2.6 1.3 1.3
Radial basis (Poisson) 9.1 4.3 3.4 1.7 0.7 0.4
Radial basis (quasi-Poisson) 9.1 4.3 3.4 1.7 0.7 0.4
Radial basis (Negative binomial) 10.6 6.0 4.4 1.6 0.6 0.4
Cori et al. 24.5 7.4 3.5 11.4 3.7 1.9
Wallinga & Teunis 17.8 10.4 8.8 12.9 2.6 1.2

Table 1: Median SSE over 1000 different simulated epidemics from four different scenarios
using three different values for θ. R(t) is estimated based on truncated polynomial or radial
bases with Poisson, negative binomial and quasi-Poisson assumptions. The performance of the
estimators of Cori et al. (2013) and Wallinga and Teunis (2004) is also presented.
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Figure 2: Spline-based estimated R(t) using truncated polynomial or radial bases and a negative binomial (NB) distributional assumption.
The estimates for 100 different simulated epidemics are shown in each panel. The solid black line depicts the true R(t) function, the solid
colored lines depict the 100 different estimates, while the dotted lines depict the empirical averages over the 100 estimates at each time point.
The estimates based on the methods of Cori et al. (2013) and Wallinga and Teunis (2004) are also presented.
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6 Real examples

We have estimated next the time dependent reproduction number R(t) for six countries (US,
Brazil, Italy, UK, Belgium and France) using the proposed spline-based method (with truncated
polynomial bases and a negative binomial distributional assumption) and the estimator of Cori
et al. (2013). We have used the data on daily infections that are available on the official public
health platforms for each respective country, and to eliminate weekend effects and delays in
reporting we have taken 7-day moving averages for each time series as the final input data. For
stability purposes, the reproduction numbers are estimated from the moment in time when at
least 10 new infected cases are confirmed in the population. Not all series start at the same
moment in time, due to country reporting issues, however this does not pose any major problems.

Figure 3 presents the obtained results. In general, the two estimators agree quite well with
respect to the estimated trends (albeit a slight lag between the two) starting from around
beginning of April, 2020 for all six countries. In the first part of 2020, there is a larger degree
of differences between the two estimators either with respect to the magnitude of the initial
estimates or with respect to the estimated initial evolution, as is the case for France. In general,
the estimator of Cori et al. (2013) suggests much higher initial estimates than what the spline-
based model proposes and due to the fact that it needs a window of time (set to 7 days for this
application) it is unable to capture the trend from the start, whereas our estimator is equipped
to estimate reproduction numbers in the beginning part of the epidemic (although with larger
uncertainty). As such the spline model suggests that for example, the US, the UK and Belgium
are in the beginning part in March, 2020 on an upwards path for about 2 weeks, after which the
reproduction number starts decreasing. Given that explicit measures were taken in that period
(on March, 13th national emergency is declared in the US together with travel bans 1, on March,
18th Belgium goes into lock-down 2, and on March, 23rd the UK issues ‘stay at home’ orders 3)
such a trajectory seems plausible.

France presents a very interesting phenomenon, as the official, consolidated series starts
around mid May, 2020. The proposed spline-based estimator suggests that the epidemiological
situation was relatively under control at that moment, whereas the competitor suggests the
reproduction number is higher than 3. Given that on May, 11th the Security council in France
started with relaxing lock-down measures 4 and as it was reported that all epidemiological
indicators were since two weeks before on a downward slope 5, we are more inclined to trust the
spline estimator as a more accurate description of the reality in France at that moment in time.

6.1 Accounting for interventions

One advantage of the spline-based R(t) measure is the fact that, as discussed briefly in Section
2, one can easily consider models of the form g{µ(t)} = f1(t)+f2(Xt). As such, we propose next
a semi-parametric extension, where the R(t) estimates are adjusted for interventional effects. As
in Fokianos and Fried (2010) and Liboschik et al. (2016) we consider interventional covariates
of the form:

Xt = δ(t−τ)1{t≥τ}

1https://www.nytimes.com/2020/03/13/us/politics/trump-coronavirus-news-conference.html
2https://www.belgium.be/en/news/2020/coronavirus reinforced measures
3https://www.gov.uk/government/speeches/pm-statement-at-coronavirus-press-conference-23-march-2021
4https://www.gouvernement.fr/info-coronavirus/les-actions-du-gouvernement
5https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-

respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-14-mai-
2020
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Figure 3: Spline-based estimated R(t) (and 95% pointwise confidence interval) using truncated
polynomial bases and a negative binomial assumption for six countries. The estimates based on
the method of Cori et al. (2013) are also presented.

where τ represents the intervention time point, 1{t≥τ} is the indicator function taking the value 1
if t ≥ τ and 0 otherwise. Moreover, δ ∈ [0, 1] specifies the intervention type with δ = 0 denoting
an intervention that has an effect only at the time of its occurrence, δ = 1 denoting a persistent
effect of the intervention after its occurrence, while δ ∈ (0, 1) denotes an exponentially decaying
effect.

To illustrate the effect of accounting for interventions, we chose the case of Belgium (due
to familiarity with the epidemiological situation) where we have introduced six exponentially
decaying interventional effects corresponding to two national lock-downs, one regional restrictive
measure for Antwerp and the reopening of the academic year for secondary and higher educa-
tional level. Figure 4 shows the estimated reproduction numbers across time and it suggests
that (i) accounting for the first lock-down in March, 2020 had the largest impact in modifying
the estimates in the beginning of the epidemic. As well, the reopening of schools on September,
1st (coinciding with the end of the vacation period and returning to work for a large proportion
of the active population), showed also an effect on impacting the estimates, suggesting a slight
shift of reproduction numbers for the month of September, 2020 than what the model without
interventional effects would suggest. As expected, these interventional effects dissipate some
time after their introduction as the estimated trends in the later part of the epidemic (ie. after
November, 2020) are very close together.
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Figure 4: Spline-based estimated R(t) with 95% pointwise confidence interval for Belgium. The
estimator accounting for the interventions (dashed line) is presented alongside the estimator that
does not account for interventions (full line).

7 Discussion

We proposed in this manuscript a time-dependent version of the reproduction number R(t)
that is based on a spline approach. The model starts from the representation of the basic
reproduction number of Wallinga and Lipsitch (2007) and proposes to obtain a growth rate
parameter by inspecting the derivative of a smooth function of time. As such, the model is an
extension that allows for an estimation of an instantaneous reproduction number of a virus at
any moment in time during the evolution of the epidemic.

On simulated data the proposed plug-in estimator shows good performance relative to other
classical estimators that are used in the literature, capable of adapting to sharp fluctuations
in the evolution of the epidemic. As well, accounting for overdispersion in the data can easily
be done by using a quasi-Poisson or a negative binomial model as our basic formulation is
general enough to allow for it. On real data related to the SARS-CoV-2 pandemic, the proposed
estimator seemed also to provide more realistic evolutions for the first part of the pandemic,
while being close in estimated trends to the classical estimators, for the second part of the
pandemic.
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