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Abstract

Objectives: Trace elements (TEs) from natural and
anthropogenic sources are ubiquitous. Essential or not,
their relevance for human health and disease is constantly
expanding. Biological monitoring is a widely integrated
tool in risk assessment both in occupational and environ-
mental settings. However, the determination of appro-
priate and accurate reference values in the (specific)
population is a prerequisite for a correct interpretation of
biomonitoring data. This study aimed at determining the
reference distribution for TEs (Al, As, Sb, Be, Bi, Cd, Co, Cu,
Mn, Hg, Mo, Ni, Pb, Se, Tl, Sn, V, Zn) in the blood and/or
plasma of the adult population in Belgium.
Methods: Blood and plasma samples were analyzed for
178 males and 202 females, recruited according to an a
priori selection procedure, by inductively coupled plasma
mass spectrometry (ICP-MS).
Results: Reference values were established with high
confidence for AsT, Cd, Cu, HgT, Mn, Mo, Pb, Sn, Se, Tl and
Zn. Compared to previously published data in the Belgian
population, a decreasing time trend is observed for Zn, Cd
and Pb. Globally, the results also indicate that the current

exposure levels to TEs in the Belgian population are similar
to those from other recent national surveys.
Conclusions: These reference values and limits obtained
through validated analytical and statistical methods will
be useful for future occupational and/or environmental
surveys. They will contribute to decision-making con-
cerning both public health policies but also exposure as-
sessments on an individual scale.

Keywords: Belgium; biological monitoring; blood; plasma;
reference values; trace elements.

Introduction

Present in the Earth’s crust, trace elements (TEs) are natu-
rally and anthropogenically released into the environment.
As TEs are non-biodegradable and highly persistent in
the environment, human exposure can be a public health
concern, in developed as well as in developing countries, in
environmental as well as in occupational settings.

Some TEs are essentials to humans (Co, Cu, Mn, Mo,
Se, Zn) [1] and deficiency may result in severe malfunc-
tioning of the body. Others, often called “toxic TEs”, have
no known physiological role in humans. Overexposure to
either essential or “toxic” TEs can be detrimental to human
health, and documentation of exposure levels is a key
component of the risk assessment.

Human biological monitoring (HBM) provides in-
dications on the absorbed dose of chemicals, whatever their
sources or routes of exposure. HBM is increasingly important
in risk assessment and prevention at both individual and
group levels and several tools have been developed to inte-
grate biomonitoring data in risk assessment strategies [2, 3].

For the interpretation of HBM data and the identifica-
tion of (groups of) individuals with extreme exposure, it is
essential to document background exposure to the chem-
icals of interest in the appropriate reference population,
and to derive reliable reference values (RVs).

The concept of RV, launched by a Scandinavian group
in a session devoted to “normal values” during a Congress
of Clinical Laboratory Medicine in 1969, has evolved over
years, leading to the elaboration of worldwide-endorsed
guidelines by the International Federation of Clinical
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Chemistry and Laboratory Medicine (IFCC) and the Clinical
and Laboratory Standards Institute (CLSI) [4–7].

In the 80–90’s, the EUROTERVIHT project aimed at
producing RVs for TEs in human body fluids, and high-
lighted significant differences related to geological factors
and diet among European countries, but also considerable
uncertainty in TEs determination. The project identified a
need for harmonization of the different steps of the pro-
cedure, from the control of pre-analytical factors to the
statistical treatment [8, 9]. Under the scope of European
Union, the HBM4EU project (2017–2021) was launched to
coordinate HBM of chemicals, including TEs, in Europe, to
provide evidence for chemical policymaking.Meanwhile, it
was important to establish RVs for TEs in Belgium under
strict quality control at all steps of the procedure.

We recently established the distribution and RVs for
TEs in the urine of the adult population in Belgium [10]. The
aim of the present study was to determine the distribution
and RVs for blood and plasma levels of relevant TEs in the
adult population in Belgium.

A comprehensive overview of the toxicity profile of
these TEs, including tolerable levels, can be found else-
where [11].

Materials and methods

Study population

Subjectswere recruited on a voluntary basis by an occupational health
service during annual medical check-ups and by the Louvain centre
for Toxicology and Applied Pharmacology (LTAP). Recruitment took
place between October 2016 and October 2017, in the 10 provinces of
Belgium, covering urban, suburban, and rural areas. The a priori se-
lection included the following criteria: 18–70 years old; healthy con-
dition; living for a period of at least 1 year in Belgium; no history of
known or suspected (extra-)occupational exposure to the TEs inves-
tigated. Pregnancy was an exclusion criterion. A one-page question-
naire collected information on age, gender, health status, medication
use, smoking habits, area of residence, occupation and other factors
likely to have an influence on TEs concentrations.

All participants signed an informed consent form in accordance
with the Biomedical Ethical Commission of the Faculty of Health
Sciences (Université catholique de Louvain, Brussels) that approved
the study protocol (CEHF 2015/544-B403).

A total of 394 eligible subjects provided non-fasting blood sam-
ples. After disinfection of the skin with ethanol, two venous blood
samples were drawn by well-trained professionals to ensure proper
sample collection, handling and transport. Stainless steel needles and
either Sarstedt Lithium Heparin – Trace Metal Analysis S-Monovette®

or BectonDickinsonVacutainer® Plus plastic tubeswithK2EDTARoyal
Blue Stopper for TEs testing were used. For plasma processing,
centrifugation at 2,000g for 10 min at RT was performed with in a
maximum of 2 h after blood sampling. Specimens and questionnaires
were anonymously coded at the point of collection, and samples were

kept for a maximum of 2 days at +4 °C before being sent to the labo-
ratory and stored frozen at −20 °C until analyzed.

Analyses

All sampleswere analyzed in the Laboratory of Analytical Biochemistry
at the Cliniques Universitaires Saint-Luc (Brussels, Belgium) in a
random sequence. Eighteen TEs were measured in whole blood and
plasma by means of inductively coupled argon plasma mass spec-
trometry (ICP-MS) on an Agilent 7500cx instrument. Briefly, both
specimens (500 µL) were diluted quantitatively (1+9) with a 1-butanol
(2%w/v), EDTA (0.05%w/v), Triton X-100 (0.05%w/v), NH4OH (1%w/v)
solution containing Sc, Ge, Rh and Ir as internal standards. Amicromist
nebulizer was used for the plasma determination while a Babington
nebulizer was preferred for the whole blood determination to avoid
clotting problems. Limits of detection (LoD) and quantification (LoQ),
given in Tables 1 and 2, were calculated as three and nine times,
respectively, the standard deviation of the blank signal. Two sampling
tubes from each lot were checked for the absence of contamination by
leachable elements. BD tubeswere excluded for the determinationof Sb
and Sn distribution because, as specified by the manufacturer, BD
Vacutainer® PET-TEs should not be used for Sb determination, and no
upper limit of contamination is provided by the manufacturer for Sn.

Traceability to international reference materials was guaranteed
by the use of certified internal quality controls. For that purpose,
Seronorm™ Trace Elements Whole Blood at three different levels (L1,
ref. 210105; L2, ref. 210202; L3, ref. 210305) and Seronorm™ Trace
Elements Serum (L1, ref. 201405) materials were used for whole blood
and plasma analyses, respectively.

The laboratory has the highest level of certification (ISO15189,
granted by BELAC) for themeasurement of six (Cd, Co, Mn, Hg, Pb and
Tl) and five (Al, Bi, Cu, Se and Zn) TEs in whole blood and plasma,
respectively. Using validated ICP-MS methods, the laboratory has
obtained successful results, for more than 10 years, in external quality
assessment schemes organized by the Institute for Occupational,
Environmental and Social Medicine of the University of Erlangen,
Germany (G-EQUAS program) and act as a reference laboratory for
these TEs, as well as by the Institut National de Santé Publique,
Québec (PCI and QMEQAS programs).

Besides the ISO15189 certified TEs/matrix combinations, we also
included in the study TEs/matrix combinations for which traceability
could be guaranteed by the successful use of certified internal quality
controls analyzed at the beginning and at the end of each analytical
run (Al, As, Be, Bi, Cu, Mo, Ni, Sb, Se, Sn, V, and Zn in blood; Co, Ni,
and Mn in plasma).

Statistics

Statistical analyseswere completed using Excel 2016 (Microsoft Office,
Redmond, USA) and GraphPad Prism 8.4.2. (GraphPad Software, San
Diego, USA). Statistics were performed as recommended by the
IFCC-CLSI guidelines [7] and according to the procedure used previ-
ously for the determination of RVs of TEs in urine [10].

For each TE, we characterized the distribution and calculated the
2.5, 10, 25, 50, 75, 90, 95, 97.5th percentiles. Concentrations below the
LoD were assigned a value of LoD/2 for statistical calculations. Dis-
tribution (log)normality was checked with the D’Agostino-Pearson
test. The shape of most distributions was asymmetrical and positively
skewed. The geometric mean (GM) was calculated if the proportion of
values below the LoD was <40%. Outliers, identified by box-plots and
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using the non-parametric algorithm based on the Tukey’s box-plot
method [12], were excluded only after a case-by-case analysis.

For essential TEs, a Lower Reference Limit (LRL) and an Upper
Reference Limit (URL) were determined. The LRL was defined as the
lower limit of the 90% confidence interval (90%CI) of P2.5, and the
URL as the upper limit of the 90%CI of P97.5 using non-parametric
ascending rank order statistics. For non-essential TEs, only URL were
established. Values were rounded off within the CI.

Possible differences between genders or based on the smoking
statuswere analyzedby theMann–Whitney test. The level of statistical
significance was set at 0.05. Since a minimum sample size of 120
acceptable observations is required to derive the nonparametric 90%
CI for P2.5 and P97.5 [7], separate calculations for nonsmokers and
smokers in each gender was not possible.

Results

Of the 394 individuals who provided blood, 14 were
excluded because sampling or sample storage condi-
tions were not optimal, leaving 380 individuals. The
sample included 202 women and 178 men of similar age
(mean (SD) [P50]: 35.4 (12.1) [31] years for women; 35.4
(12.7) [30] for men) and smoking status (71.7% non-
smokers, 12.6% smokers and 15.7% ex-smokers for

women; 72.0% non-smokers, 11.9% smokers and 16.1%
ex-smokers for men).

Table 1 lists the P2.5 (90%CI), P50, P97.5 (90%CI) and
derived LRL and URL for essential TEs. For non-essential
TEs, P2.5, P50, P97.5 (90%CI) and derived URL are pro-
vided in Table 2. Distributions are displayed graphically in
Figures 1 and 2. Values by gender and smoking status are
reported when statistically significantly different. Women
showed higher values thanmen for Cu in plasma and blood
(p<0.0001), Mn in blood (p=0.0004), and Cd in blood
(p=0.0013). Men had higher Zn concentrations in blood
and plasma (p<0.0001), Se in plasma (p=0.002) and Pb
concentrations in blood (p=0.0001) than women. No sig-
nificant gender difference was observed for the other TEs.
Smokers did not have different levels as compared with
non-smokers for any TE, except for Cd in blood (p<0.0001).
As highlighted in Tables 1 and 2, proposedURLs below LoQ
should be takenwith caution. URLs could not be set for TEs
measured below the LoD.

Table 3 compares, for TEs detected in at least 60% of
the subjects, the GM (95%CI) and P5–P95 (95%CI) intervals
calculated for the Belgian adult population with the RVs
reported in other national (or large scale) surveys pub-
lished after 2000 [13–37].

Table : Distribution of essential trace elements and derived LRL and URL (µg/L).

LoD (%<LoD) LoQ (%<LoQ) P. (%CI) P P. (%CI) LRL URL

Co Plasma . (.) . (.) <LoD <LoD . (.–.) – .a

Blood . (.) . () <LoD <LoD . (.–.) – .a

Cu Plasma . () . ()  (–)  , (,–,)  ,
W  (–) , , (,–,)  ,
M  (–)  , (,–,)  ,
Blood . () . ()  (–)  , (,–,)  ,
W  (–)  , (,–,)  ,
M  (–)   (–)  

Mn Plasma . (.) . (.) <LoD <LoD . (.–.) – .a

Blood . () . () . (.–.) . . (.–.) . .
W . (.–.) . . (.–.) . .
M . (.–.) . . (.–.) . .

Mo Blood . () . () <LoD . . (.–.) – .
Se Plasma . () . () . (.–.) .  (–)  

W . (.–.) .  (–)  

M . (.–.) .  (–)  

Blood . () . () . (.–.)   (–)  

Zn Plasma . () . ()  (–)  , (,–,)  ,
W  (–)  , (–,)  ,
M  (–)  , (,–,)  ,
Blood . () . () , (,–,) , , (,–,) , ,
W , (,–,) , , (,–,) , ,
M , (,–,) , , (,–,) , ,

In black: TEs traceable with internal and external QC and ISO certification; in gray: TEs traceable with internal QC. LoD, limit of detection;
LoQ, limit of quantification; LRL, lower reference limit; URL, upper reference limit; W, women; M, men; S, smokers; NS, non-smokers.
aRL below LoQ should be taken with great caution.
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Discussion

This study provides RVs for TEs in blood and plasma in the
adult population in Belgium. Lower and upper limit levels
are established for essential TEs, and upper limit levels for
non-essential TEs. Percentiles provide additional infor-
mation on the shape of the distribution in the population.

Blood is the primary compartment through which
chemicals travel within the body before reaching tissues.
Although more invasive than urine collection, blood sam-
pling can be accomplished with lower risk of contamina-
tion. Blood may also offer the advantage of a relatively
constant gross composition, eliminating the need to adjust
the measured biomarker concentration for parameters
such as diuresis for urinary samples [38]. Yet, TEs con-
centrations in blood do not necessarily reflect concentra-
tions in the whole body or in target organs. Moreover,
toxicokinetic parameters, such as excretion route and
elimination half-life, determine the preference of
measuring TEs in urine or blood.

Whole blood is generally the specimen of choice for
TEs such as Cd and Pb, which are concentrated in the
cellular compartment, in particular in red blood cells
(RBC). In contrast, plasma/serum (P/S) samples are
preferred for elements that bind to serum proteins, such as

Cu bound to ceruloplasmin [39]. This rule is, however, not
systematic. Zn, for example, is commonly measured in
plasma or serum, although 75% of the blood content is in
RBC.

Zinc, copper, and selenium deficiencies are more
likely to occur than overload. A homeostatic control of
essential TEs concentrations restricts major variations in
circulating concentrations [39]. The assessment of these
TEs, which is widely performed on P/S samples, has some
interest to document a deficiency status at the population
level but reliable indicators of their status at the individ-
ual level are currently lacking [40, 41]. RVs for Zn-P/S and
Cu-P/S are few, but as seen in Table 3, the population in
Belgium tends to have lower mean levels than in USA and
Korea. The current Zn-P level is also lower than that
recorded in a large-scale study conducted in Belgium in
the late 80s. Over the past three decades, Zn-S (GM) fell
from 857 to 827 μg/L in men and from 824 to 724 μg/L in
women [42]. Zn-B is also lower in our population than in
the French and Canadian populations. Cu-B is lower than
in the Canadian and Brazilian populations, but higher
than in China (Table 3). We measured Zn and Cu in
plasma, whereas in the other surveys serum concentra-
tions were determined. Serum and plasma concentrations
are regarded as equivalent for Zn and Cu [40, 41].

Table : Distribution of non-essential trace elements and derived URL (µg/L).

LoD (%<LoD) LoQ (%<LoQ) P. P P. (%CI) URL

Al Plasma . (.) . (.) <LoD <LoD <LoD <b

Blood  (.)  () <LoD <LoD <LoD <b

AsT Blood . () . () . . . (.–.) 

Be Blood . () . () <LoD <LoD <LoD <.b

Bi Plasma . () . () <LoD <LoD <LoD <.b

Blood . () . () <LoD <LoD <LoD <.b

Cd Blood . (.) . (.) . . . (.–.) .
NS . (.) . (.) . . . (.–.) .
S . (.) . (.) . . . (.–.) .
W . (.) . (.) . . . (.–.) .
M . (.) . () . . . (.–.) .

HgT Blood . (.) . () <LoD . . (.–.) .
Ni Plasma . (.) . () <LoD . . (.–.) .a

Blood . (.) . () <LoD <LoD <LoD <.b

Pb Blood . () . () . . . (.–.) 

W . . . (.–.) 

M . . . (.–.) 

Sb Blood . () . () <LoD <LoD <LoD <.b

Sn Blood . (.) . (.) <LoD <LoD . (.–.) .
Tl Blood . (.) . (.) <LoD <LoD . (.–.) .
V Blood . (.) . (.) <LoD <LoD <LoD <.b

In black: TEs traceable with internal and external QC and ISO certification; in gray: TEs traceable with internal QC. LoD, limit of detection;
LoQ, limit of quantification; LRL, lower reference limit; URL, upper reference limit; W, women; M, men; S, smokers, NS, non-smokers.
aRL below LoQ should be taken with great caution;
bRL below LoD.
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However, Zn-S would be 5–15% higher than Zn-P due to
the release of Zn from blood cells during clotting and
centrifugation, and an osmotic fluid shift from cells when
anticoagulants are used. Therefore, Zn-P should probably
be preferred [43]. In agreement with other surveys,
women showed lower Zn but higher Cu blood and plasma
levels than men in our population.

Compared to data collected in Belgian adults in pre-
vious years [44], Se-P levels in the present study are
roughly similar or very slightly higher. The present values
are, however, substantially lower than in the US and the

Canadian populations (Table 3), reflecting the suboptimal
Se status throughout Europe and the Middle East [45]. As
typically reported [40, 46–48], we found a gender differ-
ence, women showing lower levels than men. Se-P/S con-
centrations required to achieve full glutathione peroxidase
activity (GPx) and selenoprotein P (SEPP1) expression are
believed to be around 70–120 μg/L [45–50]. Assuming that
Se-P below 100 μg/L indicates a suboptimal activity of
these selenoproteins, about 75% of adults in Belgium
would have a suboptimal Se status according to the present
survey.

Figure 1: Distribution of essential TEs in
blood and in plasma.
In black: TEs traceable with internal and
external QC and ISO15189 certification; in
gray: TEs traceable with internal QC. Boxes
represent median and interquartile range
and whiskers depict P2.5 and P97.5.
Extreme data points are identified by dots.
Outliers, excluded after a case-by-case
analysis, are not represented. Distribution
by gender (W, women; M, men) and
smoking status (S, smokers; NS, non-
smokers) are shown when statistically
significantly different. Cu-B, Cu-P and Mn-B
were significantly higher in women than in
men; Zn-B, Zn-P and Se-P were significantly
higher in men than in women.

Hoet et al.: Reference values for trace elements in blood 5



Most of the manganese blood content is in cellular
components, plasma containing less than 5% [43]. Mn-B
has a short elimination half-life (hours, days) and poorly
reflects the Mn concentration in the brain, the main target
organ, where its half-life is longer [46, 51]. Mn-B may have
some utility for distinguishing occupationally exposed
from unexposed subjects at the group level, but not at the
individual level [51]. Mn-B in adults in Belgium lies within
values reported in other surveys, similar to the levels re-
ported in USA and Canada, higher than in France and Italy,
lower than in Brazil (Table 3). In agreement with other
surveys, women from the present study showed higher
values than men. This difference is generally explained by
an increased gastrointestinal absorption rate related to a
lower iron status in women [14, 15, 18–20, 31, 33, 37].

Data onmolybdenum in blood are few. Compared with
the Chinese [33] and the Canadian [20] populations, the GM
ofMo-B in our population is respectively 71 and 26%higher
but it is 28% lower than the one reported for the Italian
population [15]. Rentschler et al. [52] measured a median
Mo-B of 2.0 μg/L in adult women from six European and
three non-European countries. A significant (p<0.001)
variation (2.9 times) was observed between the nine

countries. In the present study, the median concentration
is 0.77 μg/L without gender difference.

Blood cobalt is lower in our population (P50–
P95<0.10–0.26 μg/L) than in Canada (0.22–0.40) [20], USA
(0.13–0.40 μg/L) [18], Italy (0.14–0.44 μg/L) [15] andFrance
(0.29–0.54 μg/L) [14] despite the higher LoD in our study.
Being below the LoQ, our upper reference limit for cobalt
should be taken with caution.

Health-based guidance values to define deficiency or
toxicity of Zn, Se, Cu, Co, Mn and Mo are not available.

Among the numerous TEs without any (known) phys-
iological function, inorganic arsenic, cadmium, mercury
and lead are of high toxicological concern.

Themost common biomarker of exposure for inorganic
arsenic (iAs) is As in urine (As-U). The identification of the
determination of As-B is generally limited to suspicion of
recent high exposure. Data obtained from a cohort of
subjects environmentally exposed to iAs, suggest that As-B
might reflect an individual’s total As body burden [53]. The
mean total As-B (AsT-B) in the present study is similar that
recorded in France, respectively 37 and 51% higher than in
Italy and in Canada, and about two times lower than in
Brazil (Table 3). Organic forms of arsenic, including

Figure 2: Distribution of non-essential TEs in
blood.
In black: TEs traceable with internal and
external QC and ISO15189 certification; in
gray: TEs traceable with internal QC. Boxes
represent median and interquartile range
and whiskers depict P2.5 and P97.5.
Extreme data points are identified by dots.
Outliers, excluded after a case-by-case
analysis, are not represented. Distribution
by gender (W, women; M, men) and
smoking status (S, smokers; NS, non-
smokers) are shown when statistically
significantly different. Pb-B was
significantly higher in men than in women;
Cd-B was significantly higher in women
than in men, and in smokers then in non-
smokers.
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arsenobetaine and arsenocholine, make up the majority of
arsenic in seafood, while in other foods, inorganic arsenic
may represent the predominant form. A higher AsT-B level
in seafood consumers than in non-consumers was reported
in the Chinese population (2.59 vs 1.47 μg/L, p<0.05) [36].
Using CHMS data to establish the RV95 (2.0 μg/L), Sar-
avanabhavan et al. [22] excluded from the reference pop-
ulation individuals who ate seafood more than three times
per month because of a significant influence on AsT-B
(p<0.0001). In agreement with this, we observed that
subjects who ate seafood within 4 days before blood
collection showed a higher AsT-B level than those who did
not (GM 2.00 vs. 1.50 μg/L, p=0.055).

Cadmium is a highly toxic and cumulative element,
with an elimination half-life of up to 20 years. Cd-B is
mainly influenced by relatively recent exposure but may
also include a contribution from the body burden. Belgium
has had a long-standing production of Cd from the refining
of zinc ores, and some areas of the country have been
polluted by past emissions [54]. Compared to the 80s,when
mean Cd-B (GM) in the general population was 1.12 μg/L
(range 0.1–15.5) [42], a marked decrease to 0.68 μg/L (0.1–
5.7) was recorded in the present study. This GM is still
higher than inmost occidental countries, but the P95 lies in
the same range. The mean Cd-B in the present study is also
somewhat higher than in adults aged 50–65 years living in
the north of Belgium [55] (GM0.42 μg/L vs. 0.61 μg/L for the
corresponding age group in the present study). A sub-
stantial reduction in Cd-B has also been noted over time in
Japan, where Cd has been of major public health concern;
the GM in women in Japan dropped from 3.58 μg/L in the
end 70s to 1.98 μg/L in the 90s [56]. The current level in
Japan is, however, still high. A national study of pregnant
women (2011–2014) reported a GM of 0.71 μg/L (P95 1.55)
[57]. A 30% decrease has also been observed between 2005
and 2008 (GM from 1.5 to 1.02 μg/L) in South Korea [29].
Smokers have typically two to five times higher Cd-B than
nonsmokers [46], and our data confirm a similar difference
between smokers and non-smokers. Besides differences in
the environmental exposure level, varying proportions of
smokers in the reference populationsmay greatly influence
the values. The higher Cd-B observed in women, is also
documented in other surveys but to a lesser degree and not
consistently. It is generally attributed to an increased
gastro-intestinal absorption of Cdwhen iron stores are low,
a status that is more prevalent in women [14–23, 37]. Our
data shows that 4–0.5% of the adult population in Belgium
would reach the lowest Cd-B level related to a risk of
adverse effect on kidney and bone , estimated to be around
2–5 μg/L (corresponding to Cd in urine around 2–5 μg/g
creatinine) [58–60].

Lead in blood is the gold standard for the assessment
of lead exposure, both for screening and diagnostic pur-
poses. Pb-B mainly reflects “recent” exposure and con-
centration in soft tissue. It is also affected by past exposure
as a result of Pb mobilization from the skeleton that con-
stitutes about 90% of the lead body burden in adults. Pb-B
does, however, not necessarily reflect the total body
burden [46, 61]. The progressive lowering and banning of
Pb in petrol and control of industrial emissions over the last
several decades have resulted in a general decrease in Pb-B
[13, 18, 19]. In Belgium, the median Pb-B dropped from 170
to 78 μg/L between 1978 and 1989 [62] to reach 11.1 μg/L in
the present survey. The present Pb-B level is similar to that
in USA and Canada, much lower than in many other
countries (see Table 3), and lower than in Flanders in the
2002–2006 survey (GM 11.4 μg/L vs. 39.6 μg/L) [55]. The
higher Pb-B concentration that we observed inmen than in
women is reported in most studies [13, 15, 18–20, 30].
Although often assigned to a higher blood hematocrit level
in men, even corrected for hematocrit, a higher Pb-B has
been reported in men in some surveys [29, 31, 61]. Smoking
has been associated to increased Pb-B [13, 14, 37], but we
did not confirm this observation in the present database.
The epidemiological studies continue to provide evidence
of health effects at lower and lower blood lead levels. The
current evidence provides support for adverse health ef-
fects in adults at Pb-B below 100 μg/L, and even below
50 μg/L [63–65]. The Pb-B reference level (= case definition
for an elevated Pb-B) set by the CDC at 50 μg/L [65] was
never exceeded in our population. However, almost 27% of
our population exceeded the EFSA [63] critical blood lead
level of 15 μg/L.

Mercury, a pollutant of global concern, occurs in
various chemical forms with different toxicokinetics
properties. Total mercury in blood (HgT-B) reflects recent
exposure to methylmercury (MeHg) and inorganic/
elemental (Hg°) Hg, but not the level of Hg in brain or the
body burden. More than 90% of MeHg is found in RBC,
whereas, in case of exposure to Hg°, the Hg ratio
RBC:plasma is 1:1 [46, 66, 67]. In the general population,
HgT-B is mostly associated with dietary intake of MeHg-
contaminated fish [18], andwhole blood is, with scalp hair,
the best matrix for assessing MeHg exposure. HgT-B is also
useful when measured soon after a short-term, high-level
exposure to Hg°, but the blood level decreases within days
of exposure [68]. The background exposure level in our
reference population is similar to that reported in occi-
dental populations (Table 3). It is also in agreement with
a systematic search of the scientific literature mainly
based on national biomonitoring studies, which
concluded that the general population worldwide has a
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median HgT-B level generally below 5 μg/L [69].
Considering populations of concern because of the con-
sumption of fish, the pooled median was 8.6 μg/L (IQR:
2.9–21.2 μg/L) with 38.6 μg/L as upper bound median
value [69]. Fish consumption is the primary contributor
to HgT-B levels [28, 29]. Seafood intake during the last
3 days before blood sampling affected HgT-B in the Asian
studies [29], but not in our study, probably because of a
lower seafood intake and perhaps consumption of less
contaminated fish. An overview of the worldwide trends
for HgT-B during the last half-century suggests the
highest levels in South America, followed by Africa or
Asia, the populations from Europe or North America
displaying the lowest levels. HgT-B in Europe showed a
steeper decline with time [69]. The HBM commission of
the German Federal Environment Agency [70] estab-
lished the HgT-B level below which there is no risk for
adverse health effects (HBM-I) at 5 μg/L; this level was
exceeded by 4.4% of our population. The concentration
above which this Commission considers there is an
increased risk for adverse health effects (HBM-II),
i.e., 15 μg/L, was never reached in our population.

Sn-B and Tl-B appear to be much lower than in other
countries. For Tl-B, P95 (0.04 μg/L) is 2.3 and 3.3 times less
than in Italy (0.098 μg/L) [15] and France (0.14 μg/L) [14],
respectively. The difference is even greater for Sn-B when
compared to Italy (0.17 vs. 2.25 μg/L) [15]. The levels of Al,
Be, Bi, Ni, Sb and V were below the LoD and the URL could
not be determined for these TEs. A limitation of the study
relates to the sensitivity of the analytical method used.
Indeed, the use of a Babington type nebulizer for the
quantification of TEs in the whole blood matrix, while
increasing the robustness of the analytical method, clearly
also decreases its analytical sensitivity. Therefore, LOQ
values obtained do not make it possible to propose refer-
ence values for all the TEs measured.

RVs vary between studies, but comparisons are not
immediately straightforward. Indeed, establishing RVs is
challenging. Several methodological considerations may
affect the determination of RVs. Some discrepancies in RVs
are probably, to some extent, attributable to factors inde-
pendent of the actual levels of exposure, as for example
criteria used to define the reference population, time of
sampling, collection material (needles, tubes, anticoagu-
lant), sampling and handling, analytical method and LoD/
LoQ, statistical issues such as treatment of left-censored
values and outliers.

RVs reflect the distribution in a reference population, a
group consisting of reference individuals selected for
testing on well-defined criteria. In the present study,
recruitmentwas done by occupational physicians specially

trained in toxicology, using an a priori selection based on
inclusion and exclusion criteria. This procedure is likely to
confer several advantages, including the exclusion of
subjects exposed to themeasured TEs through occupation,
hobbies, drugs, etc., assessment of health status, reduction
of the number of individuals needed. Results obtained on a
larger samplemay be viewed asmore robust, but recruiting
a high number of reference individuals is not easy, espe-
cially for blood sampling, and controlling pre-analytical
variables is more challenging.

Though sophisticated statistical methods exist for
handling left-censored data, we used a most common
approach in epidemiological investigations, which is to
assign a value of LoD/2 to non-detected values [15, 20, 23,
27, 71]. US-NHANES used a value of LoD divided by the
square root of two [18]. Others assigned a value of LoQ/2 to
concentrations below the LoQ [17, 28]. More unusual
methods are to assume results < LoD to be zero [72] or to
replace concentrations < LoD with the value LoD/2 and
those between LoD and LoQ by the value (LoD + LoQ)/2
[14]. These different approaches might have some impact
on the levels of TEs having a high percentage of values <
LoD.

An implicit assumptionwhen estimatingRLs is that the
set of measured RVs represents a “homogeneous” collec-
tion of observations [7]. Handling of outliers is tricky and
often clouded, especially when data are not normally
distributed. Several statistical methodologies exist to
identify them, but, once detected, a most difficult decision
is how to deal with it. Outliers can be a result of pre-, post-,
or analytical error, or it can be an indication of variance in
data. Simply discarding these extreme values is generally
not recommended. A careful checking, case by case, as we
did, is possible when there are not too many of these data
points.

Presentation of RVs, data provided and their inter-
pretation also vary across the surveys. Differencesmight be
partly explained by the objective of the studies, which
complicates the comparisons, and caution is advised.
Some studies only provide a distribution with selected
percentiles; others specify reference intervals, or deter-
mine RLs, which can be set at different percentiles, taking
or not the CI into account, and rounding values or not. We
chose to follow the IFCC-CLSI guidelines that define
reference intervals for a biomarker based on P2.5 and P97.5
estimates, using the 90%CI for the endpoints. Actually, P95
appearsmore often used than P97.5. An argument is that in
terms of human exposure to environmental chemicals, an
exposure as low as possible would probably be the best
option for “toxic” TEs [22]. The German Human Bio-
monitoring Commission defined RV95 as “the P95 of the
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measured pollutant concentration levels in the relevant
matrix of the reference population. To derive it, it is
rounded off within the 95%CI” [70]. This “limit” has often
been adopted to identify subjects with “elevated expo-
sure”. However, the terminology used is sometimes
confusing; “RVs” regularly appear to be considered as
URLs and used without specifying the corresponding
percentile [13, 37, 71]. To derive “RVs” in Slovenia, P95
(95%CI) was used for “toxic elements”, P2.5 and P97.5 for
essential TEs [71]. For people of Bejing, the “RV” for Pb and
Cd were set at P95, whereas for “nontoxic elements” (Mn,
Cu, Zn), P2.5 and P97.5 were used [37].

In summary, our study reports updated blood and
plasma reference levels for selected TEs in the adult pop-
ulation in Belgium. These new data obtained through
validated analytical and statistical methods will contribute
to decision-making concerning both public health policies
but also exposure assessments on an individual scale. The
proposed reference values have no intrinsic physiological
or toxicological meaning and do not constitute a red flag
indicating a health risk.
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