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Abstract

This paper exploits the representation of the conditional mean risk sharing allocations in
terms of size-biased transforms to derive effective approximations within insurance pools
of limited size. Precisely, the probability density functions involved in this representation
are expanded with respect to the Gamma density and its associated Laguerre orthonormal
polynomials, or with respect to the Normal density and its associated Hermite polynomials
when the size of the pool gets larger. Depending on the thickness of the tails of the loss dis-
tributions, the latter may be replaced with their Esscher transform (or exponential tilting)
of negative order. The numerical method then consists in truncating the series expansions
to a limited number of terms. This results in an approximation in terms of the first mo-
ments of the individual loss distributions. Compound Panjer-Katz sums are considered as
an application. The proposed method is compared with the well-established Panjer recursive
algorithm. It appears to provide the analyst with reliable approximations that can be used
to tune system parameters, before performing exact calculations.

Keywords: conditional expectation, size-biased transform, Esscher transform, exponential
tilting, Laguerre polynomials, Hermite polynomials.



1 Introduction

In this paper, we consider the conditional mean risk allocation of independent losses, as de-
fined by Denuit and Dhaene (2012). According to this rule, each participant to an insurance
pool contributes the conditional expectation of the loss brought to the pool, given the total
loss experienced by the entire pool. The properties of this risk allocation rule have been
studied by Denuit (2019, 2020b) and Denuit and Robert (2020a,b,2021a,b,c), including ap-
plications to peer-to-peer insurance schemes. These papers demonstrate the strong potential
of the conditional mean risk sharing rule in these emerging insurance markets. It is thus
important that individual contributions can be effectively computed. Large-pool approxi-
mations have been obtained by Denuit and Robert (2021a). The present paper proposes a
fast approximation method based on orthonormal polynomials that can be used as a first
evaluation within small to moderately large pools in order to tune the parameters of the
system (individual deductibles, upper layer limit, etc.) before performing exact calculation
once their optimal values have been selected.

Orthonormal polynomials expansion for probability density functions consist in express-
ing an intricate probability density function of interest as a series involving special polyno-
mials that are orthonormal with respect to some reference measure. If the tails of the density
under considerations are too heavy, its Esscher transform (or exponential tilting) with neg-
ative order can be used instead. Using the Gamma distribution as reference measure, the
target probability density function is expressed as a series involving Laguerre polynomials.
Alternatively, the Normal distribution can be used with its associated Hermite polynomi-
als. This approach has been successfully applied in actuarial applications e.g. by Jin et al.
(2014), Goffard et al. (2016), Nadarajah et al. (2016), Asmussen et al. (2018) and Goffard
and Laub (2020).

This paper applies orthonormal expansions to evaluate individual allocations of inde-
pendent losses within an insurance pool. The representation formula for the conditional
expectation of an individual risk given the aggregate loss established by Denuit (2019) is ex-
ploited here to derive approximations for the individual contributions to the pool. Precisely,
the probability density functions appearing in this formula are expanded in terms of Laguerre
polynomials and Gamma density. When the number of participants increases, the Normal
approximation and its associated Hermite polynomials can be used instead. The series can
then be truncated for numerical evaluation. The reference density no more appears in the
approximation that only involves a limited number of moments and is therefore computa-
tionally effective. As an application, we consider losses modeled by compound Panjer-Katz
sums, to which Panjer recursion applies. The numerical illustrations demonstrate that the
proposed method is both reasonably accurate and fast, making it a good candidate for ap-
proximating individual contributions within insurance pools at an early stage of the analysis.
These approximations can be used to set the values of different parameters involved in the
design of the collaborative insurance scheme (selection of individual deductibles, upper layer
limit, etc.). Exact calculations of individual allocations can then be carried out in the final
stage, once optimal parameter values have been selected.

The remainder of this paper is organized as follows. Section 2 recalls the definition of the
conditional mean risk sharing rule for individual losses. After having presented the expan-
sion of a probability density function in terms of a reference distribution and its associated
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orthonormal polynomials, Section 3 applies this tool to evaluate the conditional mean risk
allocations in the light-tailed case. Section 4 then replaces the loss distribution with its
Esscher transform (or exponential tilting) of negative order to deal with the heavier-tailed
case. As an application, compound Panjer-Katz sums are considered in Section 5, where nu-
merical illustrations demonstrate the accuracy of the proposed approach. The final Section
6 discusses the results.

2 Conditional mean risk sharing rule

Consider n participants to an insurance pool, numbered i = 1, 2, . . . , n. Each of them faces
a risk Xi. By risk, we mean a non-negative random variable representing monetary losses
caused by some insurable peril over one period (a calendar year, say). Throughout the paper,
we assume that X1, X2, X3, . . . are mutually independent, valued in [0,∞) and obey zero-
augmented absolutely continuous distributions. Unless stated otherwise, we assume that the
probability mass at zero is strictly positive, that is, P[Xi = 0] > 0 and we denote as fXi|Xi>0

the probability density function of Xi over (0,∞). This representation corresponds to the
individual risk model and is widely applicable in property and casualty insurance studies.

Let S =
∑n

i=1Xi be the total loss of the pool, to be distributed ex-post among the n
participants. According to the conditional mean risk sharing (or allocation) h?i proposed by
Denuit and Dhaene (2012), participant i must contribute an amount

h?i (S) = E[Xi|S], i = 1, 2, . . . , n,

to the total loss S. In words, participant i must contribute the expected value of the loss Xi

brought to the pool, given the total loss S experienced by the pool.
The conditional mean risk sharing rule decomposes Xi into an aleatory part Xi−E[Xi|S]

shared among participants by virtue of the mutuality (or random solidarity) principle and a
structural part E[Xi|S] to be supported by participant i, individually. Formally, the risk Xi

brought by participant i is decomposed into

Xi = E[Xi|S]︸ ︷︷ ︸
=structural part

+ Xi − E[Xi|S]︸ ︷︷ ︸
=random departure Ei

.

Both terms entering this split are uncorrelated and random departures Ei have zero means
and always sum to 0. With collaborative insurance, each participant must contribute ex-post
the amount E[Xi|S] to the pool whereas E1, E2, . . . , En are re-allocated among them according
to the mutuality principle.

In order to design an attractive collaborative insurance scheme, the distribution of the
individual contribution h?i (S) is needed. This allows the actuary to evaluate the impact of
introducing individual deductibles or to determine the optimal reinsurance program protect-
ing the community from large losses that cannot be retained within the pool, for instance.
A direct calculation of h?i (s) requires the distributions of S, which can be time consum-
ing. Denuit and Robert (2021a) derived accurate approximations within larger pools. In
the next sections, we derive effective approximations based on the first few moments of the
individual losses within small to moderately large insurance pools. The light-tailed case is
first discussed. Then, an extension to the heavier-tailed case is proposed using the Esscher
transform (or exponential tilting) of negative order.
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3 Polynomial expansion to conditional mean risk allo-

cations in the light-tailed case

3.1 Orthonormal polynomial expansion to probability density func-
tions

Let Z be a random variable with density function fZ (Radon-Nikodym derivative) with
respect to some dominating measure ζ (typically Lebesgue measure on an interval or counting
measure on a subset of integers). Assume that no explicit expression is available for the
density fZ , for instance because Z is the sum of independent random variables and direct
convolution is computationally expensive. If the distribution of Z is expected to be close
to some probability measure ν absolutely continuous with respect to ζ with density fν then
fZ could be approximated by fν corrected in an appropriate way. This can be achieved
using an expansion with the help of polynomials that are orhononormal with respect to ν,
as explained next.

Assume that all moments of ν are finite and denote as L2
ν the space of all square-integrable

functions with respect to ν. The usual inner product is 〈g, h〉ν =
∫
ghdν and the correspond-

ing norm is ‖g‖2
ν = 〈g, g〉ν . Let {pk, k = 0, 1, 2, . . .} be a sequence of orthonormal polynomials

with respect to ν, that is, such that

〈pk, pl〉ν =

{
1 if k = l
0 otherwise,

for any positive integers k and l.
If there exists η > 0 such that ∫

eη|x|dν (x) <∞,

then the sequence of polynomials {pk, k = 0, 1, 2, . . .} forms an orthonormal basis of L2
ν .

Therefore, if fZ/fν ∈ L2
ν , that is, if∫

f 2
Z

f 2
ν

dν =

∫
f 2
Z

fν
dζ <∞

then the polynomial representation of the density of Z with respect to ν follows from or-
thogonal projection so that we have

fZ (x) /fν (x) =
∞∑
k=0

〈fZ/fν , pk〉ν pk (x)

which gives the series expansion

fZ (x) =
∞∑
k=0

ckpk (x) fν (x) (3.1)
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where the coefficients ck are given by

ck = 〈fZ/fν , pk〉ν =

∫
fZpkdζ = E[pk (Z)].

If pk (x) =
∑k

l=0 alkx
l then ck =

∑k
l=0 alkE[Z l]. This shows that expansion (3.1) only requires

the knowledge of moments of Z.
Expansion (3.1) is useful for the numerical evaluation of fZ if the coefficients ck tend to

0 fast enough (so that the series can be truncated to its first terms with sufficient accuracy).
The Parseval relationship

∞∑
k=0

c2
k = ‖fZ/fν‖2

ν

ensures that the coefficients ck tend to 0 as k tends to infinity. Expansion (3.1) thus lends
itself to numerical approximation by truncating the series to its first terms. The accuracy of
the approximation for a given order of truncation depends on how rapidly these coefficients
decay.

Typical choices of reference distributions are ones that belong to the Natural Exponential
Family with Quadratic Variance Function (NEF-QVF) which includes Normal (for absolutely
continuous random variables Z), Gamma (for positive absolutely continuous random vari-
ables Z), Hyperbolic, Poisson, Binomial, and Negative Binomial (for counting random vari-
ables Z). See Morris (1982). The associated orthonormal polynomials are known explicitly,
avoiding a time-consuming Gram-Schmidt orthogonalization procedure.

3.2 Application to conditional mean risk allocation

The functions h?i defining the conditional mean risk sharing rule can be expressed in terms
of the size-biased transform. Recall that the size-biased transform of Xi obeying a zero-
augmented absolutely continuous distribution is a strictly positive random variable X̃i with
probability density function given by

fX̃i
(x) =

xfXi|Xi>0(x)

E[Xi|Xi > 0]
, x > 0. (3.2)

We then have the following proposition.

Proposition 3.1. Define Ti = S −Xi + X̃i =
∑

j 6=iXj + X̃i, i = 1, 2, . . . , n. If fTi/fν ∈ L2
ν

for every i ∈ {1, . . . , n} then

h?i (s) =
E[Xi]

∑∞
k=0 E[pk(Ti)]pk (s)∑n

j=1 E[Xj]
∑∞

k=0 E[pk(Tj)]pk (s)
s for any s > 0.

Proof. It is proved in Denuit (2019, Proposition 2.3) that if X1, X2, . . . , Xn obey zero-
augmented absolutely continuous distributions then

h?i (s) =
E[Xi]fTi (s)∑n
j=1 E[Xj]fTj (s)

s for any s > 0. (3.3)

The announced result then follows by applying expansion (3.1) to the densities fT1 , fT2 , . . . , fTn
appearing in the numerator and denominator of (3.3).
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The densities fTj appearing in (3.3) may be difficult to compute. This calculation is
avoided with the approximation in terms of orthonormal polynomials with respect to ν that
only requires the knowledge of the moments of Tj. Also, notice that fν disappears from the
expression of h?i as a ratio of two integer series in Proposition 3.1.

Truncating the series to a limited number of terms, Proposition 3.1 can be used to obtain
a first approximation of the functions h?i at an early stage of the analysis, to figure out the
performances of the conditional mean risk allocation of the losses Xi for given parameter
values (individual deductibles, retention levels, . . .). The analyst can then decide whether
deductibles should be included or whether an upper layer should be transferred to a reinsurer,
for instance. Once optimal parameter values have been selected, the exact calculation of h?i
can be performed in the final implementation stage.

4 Polynomial expansion to conditional mean risk allo-

cations in the heavier-tailed case

4.1 Esscher transform

If fZ/fν 6∈ L2
ν , because Z has a too heavy-tailed distribution, the idea is to replace Z with

its Esscher transform of negative order whose definition is recalled next.
Let mZ(h) = E[ehZ ] be the moment generating function of Z and define H = {h ∈

R|mZ(h) < ∞}. For h ∈ H, the Esscher transformed version Z(h) of order h of Z has

probability density function f
(h)
Z defined as

fZ(h) (x) =
ehx

mZ(h)
fZ(x).

The operator mapping the distribution of Z to the distribution of Z(h) is called the Esscher
transform. The Esscher transform is a powerful tool in actuarial science where it has been
used to approximate the distribution of the aggregate claims of an insurance portfolio, for
premium calculation as well as option pricing. Outside actuarial circles, it is also known as
the exponential tilting of a distribution. We refer the reader to Denuit et al. (2005) for an
introduction to Esscher transform.

Compared to Z, the Esscher transformed Z(h) with h < 0 has the same support but the
probabilities assigned to large values are reduced in favor of the probabilities assigned to
small values. This makes Z(h) “smaller” compared to Z when h < 0. Hence, the condition
fZ(h)/fν ∈ L2

ν might be fulfilled for an appropriate value of h.
If fZ/fν 6∈ L2

ν then the idea is to replace Z with Z(h) for some h < 0 such that fZ(h)/fν ∈
L2
ν and to apply expansion (3.1) to fZ(h) . Precisely, starting from the expansion

fZ(h)(x) =
ehx

mZ (h)
fZ (x) =

∞∑
k=0

E[pk
(
Z(h)

)
]pk (x) fν (x)

where h < 0 is chosen such that fZ(h)/fν ∈ L2
ν , we obtain the following expansion

fZ (x) = e−hxmZ (h)
∞∑
k=0

E[pk
(
Z(h)

)
]pk (x) fν (x) (4.1)
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for the density of the random variable Z under consideration.
The following property of the Esscher transform will be useful in the next section. Given

two positive, independent random variables Z and Y , with respective probability density
functions fZ and fY , we have

(Y + Z)(h) d
= Y (h) + Z(h) (4.2)

where the Esscher transformed version Y (h) and Z(h) of Y and Z are mutually independent.
This simply follows from

f(Y+Z)(h)(x) =
ehx

mY+Z(h)
fY+Z(x) =

∫ x

0

ehy

mY (h)
fY (y)

eh(x−y)

mZ(h)
fZ(x− y)dy

which corresponds to the convolution product of fY (h) and fZ(h) .

4.2 Application to conditional mean risk allocation

We are now in a position to state the following result, which extends Proposition 3.1 (that
is recovered for h = 0) to the heavier-tailed case.

Proposition 4.1. Define T
(h)
i =

∑
j 6=iX

(h)
j + X̃

(h)
i , i = 1, 2, . . . , n, where the random vari-

ables entering the sum are mutually independent. Let h ≤ 0 be such that f
T

(h)
i
/fν ∈ L2

ν for

every i ∈ {1, . . . , n}. Then,

h?i (s) =
E[Xi]mTi(h)

∑∞
k=0 E[pk(T

(h)
i )]pk (s)∑n

j=1 E[Xj]mTj(h)
∑∞

k=0 E[pk(T
(h)
j )]pk (s)

s for any s > 0.

Proof. The announced result follows by applying expansion (4.1) to the densities fTj appear-
ing in the numerator and denominator of (3.3) and by (4.2).

Remark 4.2. The Esscher transform is useful in connection with the conditional mean risk
sharing rule. Denuit and Robert (2021a) established that the following identity holds true
for any s > 0:

E[Xi|S = s] = E[X
(h)
i |S(h) = s] where h is such that mXi

(h) <∞ for all i,

where S(h) = X
(h)
1 + . . . + X

(h)
n . This provides an alternative proof for Proposition 4.1.

Indeed, it suffices to apply Proposition 3.1 to X
(h)
1 , . . ., X

(h)
n to get

h?i (s) = E[X
(h)
i |S(h) = s]

=
E[X

(h)
i ]
∑∞

k=0 E[pk(T
(h)
i )]pk (s)∑n

j=1 E[X
(h)
j ]
∑∞

k=0 E[pk(T
(h)
j )]pk (s)

s for any s > 0.

This shows that h?i again appears to be the ratio of two integer series when the expected
value of the Esscher transformed versions of the individual losses Xi are available in closed
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form (as it will be the case when individual losses are modeled by compound Panjer-Katz
sums). Now, since

E[X
(h)
i ] =

m′Xi
(h)

mXi
(h)

and mX̃i
(h) =

m′Xi
(h)

E[Xi]
,

we get

E[X
(h)
i ] =

mX̃i
(h)E[Xi]

mXi
(h)

= E[Xi]
mX̃i

(h)
∏

j 6=i mXj
(h)

mS(h)

= E[Xi]
mTi(h)

mS(h)

so that we end up with the representation stated in Proposition 4.1.

5 Applications to compound Panjer-Katz sums

5.1 Compound Panjer-Katz losses

Denuit (2019, 2020a) and Denuit and Robert (2020a) studied size-biasing and conditional
mean risk allocation when individual losses are modeled as compound Panjer-Katz sums
consisting of compound Binomial, compound Poisson, and compound Negative Binomial
sums. This class of distributions is central to actuarial mathematics so that the results
derived in this section are of wide applicability in insurance studies. We assume that

Xi =

Ni∑
k=1

Cik for i = 1, 2, . . . , n, (5.1)

where

- the integer-valued random variables Ni belongs to the Panjer-Katz class, also known
as the (a, b, 0) class of distributions which fulfill the following recurrence relation:

P[Ni = k] =

(
ai +

bi
k

)
P[Ni = k − 1], k = 1, 2, . . . ,

for some ai and bi such that ai + bi ≥ 0.

- the claim severities Cik are positive, absolutely continuous, independent and identically
distributed. Henceforth, we denote as Ci a generic random variable distributed as Ci1.

5.2 Esscher transformation of compound Panjer-Katz sums

In the heavier-tailed case, there is a need to work with Esscher transformed distributions.
The following result gives the Esscher transform of compound Panjer-Katz sums, which
remains in the same family of distributions.
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Proposition 5.1. The Esscher transformed version X
(h)
i of the compound sum Xi in (5.1)

is a compound sum X
(h)
i =

∑N ′
i

k=1 C
(h)
ik where the random variables C

(h)
ik are mutually inde-

pendent, distributed as C
(h)
i and independent of the counting random variable N ′i defined as

follows:

(i) if Ni ∼ Binomial (mi, qi) then N ′i ∼ Binomial(mi, q
(h)
i ) with

q
(h)
i = qi

mCi
(h)

1− qi + qimCi
(h)

.

(ii) if Ni ∼ Poisson (λi) then N ′i ∼ Poisson(λ
(h)
i ) with λ

(h)
i = λimCi

(h).

(iii) if Ni ∼ Negative Binomial(αi, qi) then N ′i ∼ Negative Binomial(αi, q
(h)
i ), with q

(h)
i =

qimCi
(h) where h is such that qimCi

(h) < 1.

Proof. (i) If Ni ∼ Binomial(mi, qi) then

mXi
(t) = (1− qi + qimCi

(t))mi

and

m
X

(h)
i

(t) =
(1− qi + qimCi

(t+ h))mi

(1− qi + qimCi
(h))mi

=

(
1− q(h)

i + q
(h)
i

mCi
(t+ h)

mCi
(h)

)mi

so that we find the announced result since m
C

(h)
i

(t) =
mCi

(t+h)

mCi
(h)

.

(ii) If Ni ∼ Poisson(λi) then

mXi
(t) = exp (λi (mCi

(t)− 1))

and

m
X

(h)
i

(t) =
exp (λi (mCi

(t+ h)− 1))

exp (λi (mCi
(h)− 1))

= exp

(
λimCi

(h)

(
mCi

(t+ h)

mCi
(h)

− 1

))
which gives the announced result.

(iii) If Ni ∼Negative Binomial(αi, qi) then

mXi
(t) =

(
1− qi

1− qimCi
(t)

)αi

and

m
X

(h)
i

(t) =

(
1− qimCi

(h)

1− qimCi
(t+ h)

)αi

=

(
1− q(h)

i

1− q(h)
i mCi

(t+ h) /mCi
(h)

)αi

with q
(h)
i = qimCi

(h). This ends the proof.
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5.3 Moments

The formulas derived in Propositions 3.1 and 4.1 only require the moments of Ti and T
(h)
i to

be implemented. Let us now provide effective ways to obtain these moments for compound
Panjer-Katz sums. To this end, let us introduce the following notation:

µi,j = E[Xj
i ], µ̃i,j = E[X̃j

i ] and µ
(h)
i,j = E[(X

(h)
i )j].

We know from Sundt (2003) that the moments of compound Panjer-Katz sums Xi can
be obtained recursively from

µi,j =
1

1− ai

j∑
k=1

(
j − 1

k − 1

)(
ai
j

k
+ bi

)
E[Ck

i ]µi,j−k for j = 2, 3, . . .,

starting from the well-known formula

µi,1 = E[Ci]E[Ni] = E[Ci]
ai + bi
1− ai

.

We can therefore compute iteratively the moments µi,j of Xi. The moments µ
(h)
i,j of X

(h)
i are

obtained in a similar way thanks to the representations obtained in Proposition 5.1. Also,
it is easy to see that

µ̃i,j =
µi,j+1

µi,1
.

In order to get the moments of the sums Ti and T
(h)
i =

∑
j 6=iX

(h)
j + X̃

(h)
i for any i ∈

{1, . . . , n}, we use the formula

E[(T
(h)
i )j] =

∑
k1+...+kn=j

(
j

k1, ..., kn

)
µ

(h)
i,ki+1

µ
(h)
i,1

∏
l 6=i

µ
(h)
l,kl
.

Hence, we are able to compute all the moments involved in the expression of h?i .

5.4 Comparison with Panjer algorithm for discretized severities

We assume in this section that the claim severity Ci has integer values (the formulas are
easily adapted to the case where Ci is expressed in multiples of a suitable discretization
step). As a consequence Xi only takes integer values as well. The size-biased transform of

Xi is denoted by X̃i and is defined by

P[X̃i = k] =
kP[Xi = k]

E[Xi]
, k = 1, 2, . . . .

It is proved in Denuit (2019, Proposition 2.3) that if X1, X2, . . . , Xn are valued in {0, 1, 2, . . .}
then

h?i (s) =
E[Xi]P[S −Xi + X̃i = s]∑n
j=1 E[Xj]P[S −Xj + X̃j = s]

s for any s ∈ {0, 1, 2, . . .}.

We have the following results from Denuit and Robert (2020a):
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- the size-biased version of the compound sum Xi in (5.1) with Ni ∼Binomial(mi, qi) is

given by X̃i
d
=
∑N ′

i
k=1 Cik + C̃i where N ′i ∼Binomial(mi − 1, qi), Ci1, . . ., Ci,mi−1 and C̃i

are mutually independent.

- the size-biased version of the compound sum Xi in (5.1) with Ni ∼ Poisson (λi) is given

by X̃i
d
= Xi + C̃i where Xi and C̃i are mutually independent.

- the size-biased version of the compound sumXi in (5.1) withNi ∼Negative Binomial(αi, qi)

is given by X̃i
d
= Xi+C̃i+Zi where Zi is a compound Negative Binomial sum

∑Mi

k=1C
′
ik

with Mi ∼Negative Binomial(1, qi) and C ′ik distributed as Cik, all these random vari-

ables being independent and where Xi and C̃i are mutually independent.

As a consequence, for any i ∈ {1, . . . , n}, Panjer algorithm can be used to compute the

probability mass functions of Xi and X̃i, and therefore to compute through convolutions
h?i (s) for any s ∈ {0, 1, 2, . . .}.

5.5 Numerical illustrations

In this section, we first show that approximations derived from Propositions 3.1 and 4.1
deliver the exact values for h?i in the semi-homogeneous compound Poisson risk model.
Then, we consider a situation where the approximation should work properly: compound
Poisson losses with Gamma-distributed severities. We continue with the compound Binomial
case where Panjer algorithm is known to suffer from numerical instability. In both cases,
we keep the number of participants voluntarily low. Increasing the number of participants,
Central-Limit theorem suggests to replace the Gamma reference density with the Normal
one and its associated Hermite polynomials. We show that individual contributions are
accurately recovered from a limited number of moments, even within moderately large pools.
Since every compound Negative Binomial sum can be rewritten as a compound Poisson one
(see e.g. Example 3.3.2 in Kaas et al. (2008) for more details), we restrict our numerical
illustrations to the compound Poisson and compound Binomial cases.

5.5.1 Semi-homogeneous compound Poisson risk model

This model corresponds to individual losses Xi of the form (5.1) with Ni ∼Poisson(λi) and

C1, C2, . . . , Cn identically distributed, as C, say. Then, E[Xi] = λiE[C] and Ti
d
= S + C̃ so

that T1, T2, . . . , Tn are identically distributed and E[pk(Ti)] = E[pk(Tj)] for all i and j. The
formula of Proposition 3.1 then gives h?i (s) = sλi/(λ1 + . . .+ λn) that is obtained from (3.3)
as well. Truncating the series appearing in the numerator and in the denominator to any
number of terms still gives the exact value in that particular case.

5.5.2 Gamma reference distribution with Laguerre polynomials in the light-
tailed case

The natural candidate for the reference density fν when random variables are positive is
the Gamma density with its associated Laguerre orthonormal polynomials. It has been
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shown by Provost (2005) that the recovery of unknown densities supported on (0,∞) from
the knowledge of their moments naturally leads to approximation in terms of the Gamma
density and Laguerre polynomials. See also Jin et al. (2014) and Goffard and Laub (2020)
for further evidence supporting the choice of Gamma as reference distribution.

The Gamma(r,m) distribution with the shape parameter r and scale parameter m has
probability density function

fν (x) =
xr−1

Γ (r)mr
e−x/m, x ≥ 0,

where Γ (·) denotes the Gamma function. The associated orthonormal polynomials are given
by

pk (x) = (−1)k
(
k + r − 1

k

)−1/2

`r−1
k

( x
m

)
where {`r−1

k , k = 0, 1, 2, . . .} are the generalized Laguerre polynomials defined as

`r−1
k (x) =

k∑
l=0

(
k + r − 1

k − l

)
(−x)l

l!
.

These polynomials satisfy recurrence relations but the use of this recursion to compute
Laguerre polynomials of high degrees is not a good strategy. More effective methods are
available, including the use of asymptotic expansions, as documented by Gil et al. (2017,
2020).

A sufficient condition for fZ/fν ∈ L2
ν is

fZ(x) =


O(e−δx) as x→∞ with m > δ/2

O(xβ) as x→ 0 with r < 2β + 1.

When Z possesses a moment generating function, one can select the Gamma parameters r
and m so that these conditions are fulfilled, as shown by Proposition 1 in Goffard and Laub
(2020). These authors also establish that expansion (3.1) consists in a linear combination
of Gamma densities. The coefficients are not necessarily positive so that this cannot be
interpreted as a probabilistic mixture but it nevertheless eases numerical evaluations of
excess probabilities or stop-loss transforms for instance.

The function dapx gca of the R package PDQutils implements Gram-Charlier expansion
for probability density functions and distribution functions. It supports several reference
distributions, including the Gamma and its associated Laguerre polynomials. The shape
and scale parameters are inferred from the first two moments of the distribution under
consideration.

We choose n = 3 and we first consider compound Poisson losses Xi with Gamma-
distributed severities. Precisely, we perform calculations in the following setting:

Participant 1: N1 ∼Poisson(0.5), C1 ∼Gamma(1, 1);

Participant 2: N2 ∼Poisson(1), C3 ∼Gamma(1.5, 1);
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Figure 1: Left panel: Respective contributions s 7→ E[Xi|S = s] for participant 1 (solid line
appearing at the bottom), participant 2 (broken line appearing in the middle), and partici-
pant 3 (dotted line appearing at the top). Black curves correspond to values obtained with
Panjer algorithm. Red curves correspond to values obtained with the proposed approxima-
tion based on the first 3 moments (mean, variance and skewness). Right panel: Respective
relative contributions.

Participant 3: N3 ∼Poisson(1.5), C3 ∼Gamma(2, 1).

Panjer recursive algorithm is performed with the help of the aggregateDist function of the
R package actuar on discretized severities obtained with discretization step equal to 0.01
and local moment matching (method unbiased in the discretize function).

The functions s 7→ E[Xi|S = s] are displayed in the left panel of Figure 1 for i ∈ {1, 2, 3}
and s ∈ (0, 10). The relative contributions s 7→ E[Xi|S = s]/s for each individual to the total
realized loss S = s are displayed in the right panel of Figure 1. Black curves correspond to
values obtained with Panjer algorithm, which almost exactly match exact values in that case.
Red curves correspond to the proposed approximation using only 3 moments. We can see that
including just the mean, variance and skewness in the approximation produces reliable values
for h?i in this example. Moderate departures are visible in the relative contributions displayed
in the right panel but the proposed moment approximation turns out to be accurate enough
for practical purposes, that is, to design the collaborative insurance scheme in a preliminary
stage of the analysis.

Let us now turn to compound Binomial losses with homogeneous claim severities. The
expression for the conditional mean risk allocations can easily be obtained in that case (func-
tions h?1, h?2, and h?3 are equal to ratios of polynomials). Hence, we can compare approxi-
mations based on Panjer algorithm and polynomial expansions to exact values to compare
their respective merits. Calculations are performed under the following assumptions:

Participant 1: N1 ∼Binomial(2, 0.5), C1 ∼Gamma(1, 1);
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Figure 2: Left panel: Respective contributions s 7→ E[Xi|S = s] for participant 1 (solid
line appearing at the bottom), participant 2 (broken line appearing in the middle), and
participant 3 (dotted line appearing at the top). Black curves correspond to exact values.
Red curves correspond to values obtained with the proposed approximation based on the
first 3 moments. Green curves correspond to approximations obtained with Panjer algorithm.
Right panel: Respective relative contributions.

Participant 2: N2 ∼Binomial(2, 0.6), C2 ∼Gamma(1, 1);

Participant 3: N3 ∼Binomial(2, 0.7), C3 ∼Gamma(1, 1).

Again, we only use 3 moments in the approximations.
The functions s 7→ E[Xi|S = s] are displayed in the left panel of Figure 2 for i ∈ {1, 2, 3}

and s ∈ (0, 10). The relative contributions s 7→ E[Xi|S = s]/s for each individual to the
total realized loss S = s are displayed in the right panel of Figure 2. We can see there that
Panjer recursion departs from exact values whereas the proposed approximation delivers
accurate values for the conditional mean risk allocations for each of the three individuals.
Recall that Panjer recursion is known to suffer from numerical instability in the compound
Binomial case, making the proposed approximation attractive. The latter is able to capture
the behavior of the conditional mean risk sharing rule with only the mean, variance and
skewness of the loss distribution.

5.5.3 Gamma reference distribution with Laguerre polynomials in the heavier-
tailed case

Let us now consider severities with heavier tails, making Esscher transform needed. Precisely,
we consider compound Binomial losses with either Gamma (light tail) or Lomax (heavier
tail) severities. Recall that the Lomax distribution is a heavy-tail probability distribution of
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Figure 3: Left panel: Respective contributions s 7→ E[Xi|S = s] for participant 1 (solid
line appearing at the bottom), participant 2 (broken line appearing in the middle), and
participant 3 (dotted line appearing at the top). Black curves correspond to exact values.
Red curves correspond to values obtained with the proposed approximation based on the
first 3 moments, with h = −0.15. Right panel: Respective relative contributions.

Pareto-type, with support equal to (0,∞). The corresponding probability density function
is αθα/(x+ θ)α+1. Consider

Participant 1: N1 ∼Binomial(2, 0.5), C1 ∼Gamma(1, 1);

Participant 2: N2 ∼Binomial(2, 0.6), C2 ∼Gamma(1, 1);

Participant 3: N3 ∼Binomial(2, 0.7), C3 ∼Lomax(1, 2).

We use 3 moments for the polynomial expansions and select h = −0.15.
The functions s 7→ E[Xi|S = s] are displayed in the left panel of Figure 3 for i ∈ {1, 2, 3}

and s ∈ (0, 15). The relative contributions s 7→ E[Xi|S = s]/s for each individual to the
total realized loss S = s are displayed in the right panel of Figure 3. We can see there
that participant 3 whose loss distribution is heavy-tailed absorbs the largest portion of the
losses when s gets large, in accordance with the results established by Denuit and Robert
(2020a). We can also see on the basis of Figure 3 that the proposed approximations provide
the analyst with a sufficiently accurate tool to select optimal parameter values, such as
deductibles or retention levels, for instance. In particular, the approximations reveal that
the functions s 7→ E[Xi|S = s] are not monotonically increasing for participants 1 et 2, which
invalidates the collaborative insurance system proposed in Denuit (2020b) and Denuit and
Robert (2021b) since it requires that all conditional expectations are increasing in the total
losses S.
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5.5.4 Normal reference distribution with Hermite polynomials

The approximation of sums involving sufficiently many terms with the help of Normal prob-
ability density function is expected to work well near their expected value. Therefore, using
the Normal distribution as the reference one and the associated family of Hermite polyno-
mials can be an alternative in that case.

The orthonormal polynomials associated to the Normal reference distribution (with mean
µ and variance σ2) are given by

pk(x) =
1

k!2k/2
hk

(
x− µ
σ
√

2

)
where hk, k = 1, 2, . . ., are the Hermite polynomials obtained from successive derivatives
of the function e−x

2/2 multiplied with (−1)kex
2/2. A sufficient (and close to necessary, as

explained in Asmussen et al. (2018), see formula (1.2.6) in that paper) condition for fZ/fν ∈
L2
ν is that

f(x) = O(e−ax
2

) as x→ ±∞ with a > (4σ2)−1.

The function dapx gca of the R package PDQutils also supports Normal reference distri-
butions and its associated Hermite polynomials so that we can use it for calculating the
approximation of h?i .

As an example, let us consider again the second example above, with compound Binomial
losses and Gamma severities. We keep a unique participant of type 1 but we increase the
number of participants of types 2 and 3 to 10 in each case (so that we end up with 21 partic-
ipants). We voluntarily keep a single participant of type 1 to have an unbalanced situation
where two classes are more populated than the remaining one. The exact calculation of the
conditional expectations E[Xi|S = s] defining the individual risk allocations is still possible
since the aggregate losses for types 2 and 3 remain compound Binomial sums and can easily
be obtained as finite Gamma mixtures by conditioning on the number of claims.

The functions s 7→ E[Xi|S = s] are displayed in the left panel of Figure 4 for each
type of participant and s ∈ (5, 30). The relative contributions s 7→ E[Xi|S = s]/s to the
total realized loss S = s are displayed in the right panel of Figure 4. The approximation
for E[Xi|S = s] only uses 3 moments and appears to be accurate for small to moderate
values of s for each type of individuals, but deteriorates in the tails. The Normal reference
distribution thus delivers reliable approximation in the center of the distribution, on the
interval (E[S]± 2

√
Var[S]), even with moderate pool size and unbalanced classes.

6 Discussion

This paper proposes an approximation for the conditional mean risk allocations obtained
from polynomial expansions (3.1)-(4.1) of the probability density functions entering repre-
sentation formula (3.3) in terms of size-biased transforms. This approximation only requires
the knowledge of the moments of individual losses. It applies both in the light-tailed and
heavier-tailed cases, thanks to the Esscher transform of negative order. Considering com-
pound Panjer-Katz sums, it performs favorably compared to Panjer recursion and even
appears to be preferable in the compound Binomial case. The proposed approximation is
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Figure 4: Upper panel: Respective contributions s 7→ E[Xi|S = s] for participant 1 (solid line
appearing at the bottom), for a participant of type 2 (broken line appearing in the middle),
and a participant of type 3 (dotted line appearing at the top). Black curves correspond to
exact values. Red curves correspond to values obtained with the proposed approximation
based on the first 3 moments. Lower panel: Respective relative contributions.

thus effective in the design of the collaborative insurance scheme, to determine the value of
some parameters such as individual deductibles, retention levels or upper layer limit. Once
these values have been selected to make the system attractive, individual contributions can
be calculated exactly in the final implementation stage.

The examples worked out in Section 5.5 show that sufficiently accurate approximations
can be obtained with just the mean, variance and skewness. Instead of 3 participants, the
results readily extend to 3 homogeneous risk classes with equal size n/3 (the number of
participants within each group can be increased without limit, since the risk allocation is
uniform within homogenous groups). Increasing the number of homogeneous groups slows

down the calculation of the moments of the different sums Tj and T̃j involved in the formulas.
The approximation using the Normal distribution as the reference one, and the associated
family of Hermite polynomials appears to work well when more participants are involved.
Linear approximations to the individual contributions h?i are also available when the number
of participants becomes larger, as established in Denuit and Robert (2021a).

Throughout the paper, we have assumed that individual losses X1, X2, . . . , Xn were mu-
tually independent. This is often a reasonable assumption in insurance studies, making
the results derived in the preceding sections widely applicable. Sometimes, this assump-
tion is nevertheless questionable. This is for instance the case for the cover against natural
catastrophes where geographic proximity rules out independence. It is possible to extend
the approach when the individual losses X1, X2, . . . , Xn obey a common mixture model,
that is, when they are conditionally independent given some common risk factor Λ. The
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kind of dependence induced by this construction is comprehensively studied in Denuit et
al. (2005, Chapter 7). The intuition behind this modeling approach is as follows: an exter-
nal mechanism, described by the positive random variable Λ, influences the vector of risks

X = (X1, X2, . . . , Xn) with Xi
d
= Xi(Λ). Given the environmental parameter Λ, the indi-

vidual risks are independent so that the joint distribution function of the random vector X
can be written as

FX(t1, . . . , tn) = E
[
P[X1 ≤ t1, . . . , Xn ≤ tn|Λ]

]
=

∫ ∞
0

(
n∏
i=1

P[Xi(λ) ≤ ti]

)
dFΛ(λ). (6.1)

Notice that this construction is rather general and covers for instance the case of the common
shock model, where each risk Xi is obtained as the sum of two independent random variables,
with the second one common to all risks. This common shock then plays the role of Λ in the
common mixture model (6.1).

Let Y [i] = (Y
[i]

1 , . . . , Y
[i]
n ) be a random vector with joint distribution function FY [i] given

by

FY [i](t1, . . . , tn) =

∫ ∞
0

(∏
j 6=i

P[Xj(λ) ≤ tj]

)
P[X̃i(λ) ≤ ti]dFΛ?

i
(λ)

where the distribution function of Λ?
i is given by

dFΛ?
i
(λ) =

E[Xi(λ)]

E[Xi(Λ)]
dFΛ(λ).

It is proved in Denuit and Robert (2020c) that

h?i (s) =
E [Xi] fY [i]

1 +...+Y
[i]
n

(s)∑n
j=1 E [Xj] fY [j]

1 +...+Y
[j]
n

(s)
.

Therefore, if f
Y

[i]
1 +...+Y

[i]
n
/fν ∈ L2

ν for every i ∈ {1, . . . , n} then h?i can also be expressed as

h?i (s) =
E[Xi(Λ)]

∑∞
k=0 E[pk(Y

[i]
1 + . . .+ Y

[i]
n )]pk (s)∑n

j=1 E[Xj(Λ)]
∑∞

k=0 E[pk(Y
[j]

1 + . . .+ Y
[j]
n )]pk (s)

s for any s > 0.

We deduce that an approximation of h?i would only require the knowledge of the moments

of Y
[i]

1 + . . .+ Y
[i]
n . These moments can be rewritten as

E[(Y
[i]

1 + . . .+ Y [i]
n )j] = E

(∑
h6=i

Xh(Λ
?
i ) + X̃i(Λ

?
i )

)j


=

∫ ∞
0

E

(∑
h6=i

Xh(λ) + X̃i(λ)

)j
 E[Xi(λ)]

E[Xi(Λ)]
dFΛ(λ).

The conditional moment E[(
∑

h6=iXh(λ) + X̃i(λ))j] can be computed as explained in the
preceding sections, so that only one numerical integration is needed to obtain the uncondi-
tional moment E[(Y

[i]
1 + . . .+ Y

[i]
n )j]. This makes the proposed approximation attractive for

conditionally independent losses, also.
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