
IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 1

Multiflow QUIC:
A Generic Multipath Transport Protocol

Quentin De Coninck and Olivier Bonaventure

Abstract—Transport protocols and their multipath vari-
ants used to assume that network paths are symmetric and
bidirectional. Actually, it is frequent to observe network
asymmetries (ADSL, satellite,...) and some network paths
can flow packets in only one direction (e.g., due to a
firewall,...). This paper proposes to consider the more
generic notion of unidirectional flows. Based on them,
we design and implement Multiflow QUIC, a variant of
QUIC that is aware of network asymmetries to spread
data over multiple network paths. Our evaluation shows
that this more generic approach is beneficial in asymmetric
cases while being equivalent to multipath approaches in
symmetric ones.

I. INTRODUCTION

THE Transmission Control Protocol (TCP) is the
dominant Internet transport protocol. It provides

a reliable data stream between two hosts across the
network. A TCP connection uses a fixed given network
path denoted by a 4-tuple (IPsrc, portsrc, IPdst, portdst).
Thanks to its acknowledgments, TCP includes flow
control, congestion control and reliable delivery. All
these mechanisms assume that packets can flow in both
directions between the communicating hosts.

Nowadays, there is an increasing fraction of heavily
connected, mobile devices having two or more network
interfaces. When, e.g., a smartphone loses its Wi-Fi
connectivity, all the established TCP connections using
it are broken, even if the cellular network is available.
Therefore, the multipath ability is key for transport
protocols to cope with current [1] and future use cases.
The first widely deployed multipath transport protocol is
Multipath TCP [2]. It enables hosts to combine several
TCP subflows for a single data stream. For instance, a
smartphone can couple the Wi-Fi network path with the
cellular one to either aggregate their bandwidth or to be
resilient to network handovers.

Meanwhile, the QUIC protocol [3] emerged as an
alternative to the HTTP2/TLS/TCP stack. Previous

All authors were with the UCLouvain, Belgium. Quentin De
Coninck is a F.R.S.-FNRS Postdoctoral researcher. This work was
partially supported by the Wallinnov MQUIC project.

Manuscript received October 2, 2020, revised December 10, 2020,
accepted January 20, 2021.

work [4] showed that QUIC already represented more
than 30% of the egress Google traffic. One of its key
features is that a QUIC connection is no more bound to
a given 4-tuple. This connection migration ability was
primarily designed to cope with network events such as
NAT rebindings, but QUIC can also handle network path
changes. Yet, QUIC does not support the simultaneous
usage of multiple network paths. We previously proposed
Multipath QUIC [5] to address this gap. Its design was
influenced by the Multipath TCP one, e.g., it assumes
bidirectional network paths and sends acknowledgements
back over the same path.

This assumption of symmetrical, bidirectional net-
work paths can be limiting, or even sub-optimal, in
some networks. There are network links that provide
different bandwidths in upload and download directions.
Asymmetric Digital Subscriber Line (ADSL) and satel-
lite Internet providers are typical examples. A recent
survey confirms that US network providers often propose
asymmetric broadband services [6]. Previous studies [7]
showed that the upload and the download flows of
a single connection can actually use separate network
paths, resulting in different one-way delays. Even if the
flow sender → receiver uses a high-bandwidth low-delay
network path, a connection can be impacted by a receiver
→ sender flow using a low-bandwidth high-delay net-
work path. Indeed, the slow transmission of acknowledg-
ments impacts the throughput of TCP connections [8].
Similarly, keeping acknowledgments on the same sub-
connections limits the performance of Multipath TCP in
asymmetrical networks [9].

Transport protocols should not limit themselves to
bidirectional, assumed symmetrical, network paths. To
make them aware of link asymmetries, we propose to
consider unidirectional flows. Such approach is more
generic, as a bidirectional path is formed by a couple
of unidirectional flows in opposite directions. With this
in mind, we design and implement Multiflow QUIC, a
multipath transport protocol that is aware of unidirec-
tional flows. Compared to Multipath QUIC, Multiflow
QUIC gets rid of the bidirectional constraint to fully
take advantage of asymmetric, or even unidirectional,
network paths. This paper is organized as follows. We



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 2

first introduce the QUIC protocol and describe its con-
nection migration mechanism (Sec. II). We then explain
the design of Multiflow QUIC (Sec. III) and compare
its performance with Multipath QUIC in asymmetric
network cases (Sec. IV). Finally, we conclude with the
key lessons learned with Multiflow QUIC (Sec. V).

II. QUIC

QUIC is a transport protocol which provides the ser-
vices of the HTTP/TLS/TCP stack atop UDP. It provides
built-in secured exchanges with both authenticated and
encrypted header and payload. A QUIC connection starts
with a TLS 1.3 handshake that generates encryption
keys. This built-in encryption enables QUIC to address
both privacy and ossification issues that middleboxes
cause on TCP [10].

From the network viewpoint, a QUIC packet is split
into two parts. The first part is a small cleartext header
containing a few flags and the Destination Connection
ID, mapping the packet to a given QUIC connection.
This identifier makes the QUIC connection independent
of the packet’s 4-tuple. The second part is encrypted
and contains several elements. The first element is a
monotonically increasing packet sequence number. Each
host maintains distinct sequence number spaces for
sending and receiving packets. Within one unidirectional
flow, all packets carry different packets numbers. In
case a packet is lost, its content can be retransmitted
in another packet with a higher packet number than the
previous one. This simplifies several transport functions,
such as latency estimation, by removing the ambiguity
of having multiple retransmitted packets with the same
packet number.

The remaining of the encrypted payload consists in a
sequence of frames. These are the core QUIC messages
carrying data and control information. QUIC packets act
as their containers. In particular, when a packet is lost,
frames are the messages that are retransmitted, if needed.
Frames use a simple Type-Value encoding making it easy
to define new ones. The base QUIC version [3] defines
about twenty different frames. The STREAM frame
carries application data. It contains an ID (identifying the
data stream), a byte offset and the associated payload.
The ACK frame acknowledges received packets. Com-
pared to TCP, it can easily indicate that specific blocks of
packets were received and also includes information for
precise latency estimation. Hosts perform flow control by
using MAX DATA and MAX STREAM DATA frames.
These are the equivalent of the TCP receive window as
they advertise the maximum data offset that can be sent
over the connection and the stream, respectively. Notice
that all the QUIC frames are idempotent, i.e., receiving

them more than once does not introduce any ambiguity
at the receiver’s side.

As previously described, QUIC uses Connection IDs
to identify packets belonging to a given connection.
Each unidirectional flow has its own set of Connection
IDs, i.e., the packets received by a host use a different
Connection ID than the ones it sends. The receiver
selects the Connection ID that the sender must use to
reach it. In other words, the client (resp. the server) sends
packets to its peer by using the Connection ID chosen
by the server (resp. the client). The Connection IDs used
over a given QUIC connection might change over time.
Hosts determine the initial Connection IDs during the
handshake. Then, each host can provide alternative Con-
nection IDs to its peer by sending NEW CONNECTION
ID frames. This enables hosts to mitigate possible traffic
correlation by external network observers.

Because it runs above UDP, packets from a QUIC
connection may use different 4-tuples during its life-
time. Since QUIC relies on Connection IDs to identify
connections, it handles such events by design. However,
this connection migration feature raises the concern of
the identity of the new remote IP address and port. A
malicious host might forge a QUIC packet by spoofing
the source IP address of a victim, hoping that the server
will flood it. To tackle this issue, QUIC includes a
path validation process. The host starts sending a PATH
CHALLENGE frame containing some random data to
the remote address and port to validate. The process
succeeds if the host then receives a PATH RESPONSE
frame echoing the random data contained in the PATH
CHALLENGE. Since frames are encrypted, this process
ensures that the host still communicates with the same
peer, even if it observes a different 4-tuple.

III. DESIGNING MULTIFLOW QUIC
Multipath TCP [2] and Multipath QUIC [5] consider

bidirectional paths. Multiflow QUIC (MFQUIC) takes a
more generic approach by handling unidirectional flows
(or uniflows). This enables MFQUIC to handle network
asymmetries by design and opens new use cases for
specific unidirectional network paths. We first describe
how MFQUIC hosts identify uniflows. We then explain
how the Multiflow extension can be negotiated and
how it enables hosts to control the number of uniflows.
Finally, we describe the mechanisms used by MFQUIC
to ensure a reliable data delivery. More details can be
found in its IETF draft [11].

A. Identifying Uniflows with Connection IDs

Unlike Multipath TCP [2] and Multipath QUIC [5],
Multiflow QUIC breaks the symmetry assumption be-



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 3

Fig. 1. State of a Multiflow QUIC connection from the client’s
perspective. The client has IP I when using the upper network path,
and IP J when using the lower one.

hind the notion of path and leverages asymmetric Con-
nection IDs to integrate unidirectional flows called uni-
flows. Multiflow QUIC associates packets over these uni-
flows thanks to specific Connection IDs, called Uniflow
Connection IDs. We distinguish two kinds of uniflows,
as illustrated in Figure 1. On the one hand, the sending
uniflows can transmit packets to the remote host. A host
can deliver a packet over a given sending uniflow by
including the corresponding Uniflow Connection ID in
the Destination Connection ID field of the header. On
the other hand, the receiving uniflows collect incoming
packets that reach the host using the related Uniflow
Connection ID. Hosts internally identify these uniflows
using Uniflow IDs.

Notice that this notion of uniflow is seamlessly in-
cluded in QUIC [3]. Each packets’ flow uses a different
Connection ID. Each host sees a given 4-tuple (IPsrc,
IPdst, portsrc, portdst) which is not necessarily the mirror
of the peer’s one since middleboxes like NAT may
modify packets’ ports and IP addresses. The uniflows on
which the connection starts are called the initial uniflows.
Hosts identify these initial uniflows using Uniflow ID 0.

B. Proposing Sending Uniflows to the Peer

There is a one-to-one mapping between the receiving
uniflows of a host and the sending uniflows of its peer.
For instance, consider the client’s receiving uniflow with
ID 1 shown in Figure 1 and mapped to the Uniflow
Connection ID δ. For the server, this corresponds to its
sending uniflow with ID 1 and carrying packets with
the Destination Connection ID δ. Each host controls its
number of receiving uniflows — and so the number of
sending uniflows of the peer — it wants to maintain.
Once a uniflow is initialized, the host can advertise it
to its peer using a uniflow-aware version of the NEW
CONNECTION ID frame. This frame indicates to the

receiver that this Sending Uniflow ID is now usable
and that packets can be sent over it by including the
communicated Connection ID in their headers. Typically,
new uniflows use different network paths and hence other
IP addresses. A host can communicate to its peer its
current IP addresses using the ADD ADDR frame and
associate it with an Address ID. Figure 2 illustrates
how a client can propose a new uniflow to the server.
Once both the NEW CONNECTION ID and the ADD
ADDR frames have been received, the server decides that
packets of its sending uniflow 1 are sent to IP address
J. However, the server must first ensure that this new
IP address actually reaches the client before starting
transmitting data. Hence, the server initiates a path
validation over this new sending uniflow by delivering
the PATH CHALLENGE frame. Since the client has
only one sending uniflow — its initial one — it sends
the corresponding PATH RESPONSE frame to the initial
sending uniflow. Once the path validation completes, the
server can start using the provided sending uniflow to
send data to the client using both network paths. Finally,
the client acknowledges the received packets by sending
an ACK frame for each of its receiving uniflows.

The server must validate the provided remote address
to prevent flooding a victim pointed by a malicious
client and handle the case of clients advertising addresses
blocked by a firewall. This process delays the usage of
the new uniflow by one round-trip-time. Yet, the validity
of the provided address might be cached to save the
latency introduced by the path validation.

During the QUIC connection lifetime, it is possible
that hosts observe changes in their IP addresses. For
instance, a mobile device can obtain a new IP address
by powering up its cellular interface and lose its Wi-Fi
one because it goes away of access point reachability. To
handle these addresses’ dynamic, in addition to the ADD
ADDR frame, MFQUIC includes the REMOVE ADDR
frame to advertise the loss of a previously communicated
address. This frame contains the Address ID of the
corresponding address along with a sequence number
ordering the events related to that particular Address ID.

A host might also discover new peer’s addresses by
observing the 4-tuple of incoming packets. A client
behind a NAT could send its private addresses in ADD
ADDR frames, but those are typically not reachable by
the server. Instead, the client can initiate the uplink flow
on its desired addresses — for instance by performing
path validation — such as the server discovers the
corresponding public addresses. The server can then
validate the observed addresses.



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 4

Client
IP I Server Client

IP J
DCID α, PN 5 [NEW CONNECTION ID(UID 1, CID δ)]1©

DCID α, PN 6 [ADD ADDRESS(AID 1, IP J)]

DCID γ, PN 4 [ACK(UID 0, 6)]
DCID δ, PN 0 [PATH CHALLENGE(β)]

2©

DCID α, PN 7 [PATH RESPONSE(β), ACK(UID 1, 0)]

3©DCID γ, PN 5 [STREAM(”data”)] DCID δ, PN 1 [STREAM(”some”), ACK(UID 0, 7)]
DCID α, PN 8 [ACK(UID 0, 5), ACK(UID 1, 1)]

Fig. 2. An example of time sequence diagram for a server starting using a new sending uniflow over an established connection in the
network scenario shown in Figure 1. The client starts the connection on its IP I and the server always uses the same IP. Only the Destination
Connection ID (DCID), the packet number (PN) and the relevant frames are illustrated. Colors show to which uniflow the element relates.
AID: Address ID. UID: Uniflow ID. 1© Client’s Receiving Uniflow 1 ready. 2© Server maps Sending Uniflow 1 to destination IP J. 3©
Server’s Sending Uniflow 1 ready.

C. Negotiating the Multiflow Extensions

During the TLS handshake process, QUIC hosts
can advertise Transport Parameters carrying internal
protocol values. This enables hosts to activate spe-
cific features and negotiate the support of an exten-
sion. MFQUIC leverages these QUIC transport pa-
rameters to negotiate the usage of multiple uni-
flows. During the handshake, hosts advertise the
max_sending_uniflow_id QUIC transport param-
eter to indicate the maximum value of Sending Uniflow
ID that they want to support. If both hosts advertise
it, the multiflow extensions are enabled on the con-
nection. These values are independent, i.e., hosts may
advertise different max_sending_uniflow_id val-
ues. Because of the mirroring between uniflows, the
sending host sets the upper bound of the number of
peer’s receiving uniflows to the advertised value. Yet, this
transport parameter does not impose the peer to provide
the desired number of sending uniflows. The receiver
keeps the final decision on the number of receiving
uniflows it wants to support since it sends the NEW
CONNECTION ID frames proposing them.

D. Ensuring Reliable Data Exchange

Like Multipath QUIC [5], Multiflow QUIC relies on
STREAM frames to carry application data. Because of
the separation between packets and frames, hosts can
seamlessly spread data over multiple uniflows. The only
adaptation to perform is to acknowledge packets on
a per-uniflow basis where each uniflow has its own
packet sequence number space. MFQUIC adapts the
ACK frame to include the host’s Receiving Uniflow ID

— which is equivalent to the peer’s Sending Uniflow ID
— it acknowledges. The ACK frame uses the (internal)
Uniflow ID instead of the related Connection ID for
three reasons. First, the Uniflow ID is shorter than the
Uniflow Connection ID. Second, the Connection ID used
by packets associated to a uniflow can change over time
with the use of NEW CONNECTION ID frames. Third,
the Uniflow ID is included in the cryptographic nonce
computation to avoid reusing a same nonce over distinct
uniflows.

E. Multiflow-specific Algorithms

Besides maintaining a congestion window for each
sending uniflow, Multiflow QUIC implementations in-
clude new algorithms to manage the different sending
and receiving uniflows, namely the uniflow manager and
the packet scheduler.

a) Uniflow Manager: This algorithm has two re-
sponsibilities. First, it decides how many receiving uni-
flows can be attached to the connection. It therefore
determines how many sending uniflows the peer can
have. Second, it associates sending uniflows proposed
by the peer to a given 4-tuple based on its local view
and the received ADD ADDRESS frames. The mapping
algorithm can follow similar strategies as proposed in
Multipath TCP, such as the full-mesh one establish-
ing a sending uniflow between each pair of (local IP,
remote IP). This uniflow management is performed by
both hosts. Yet, to limit network interferences (NAT,
firewalls,...), the server can first wait for the reception
of a packet with a given address before using it for its
sending uniflows. Notice that the uniflow manager is a
generalization of the path manager algorithms used by



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 5

{d1
up, d1

down, bw1
up, bw1

down}

{d2
up , d2

down , bw2
up , bw2

down}

R1

R2

R3

bw ∈ [5, 50] Mbps
d ∈ [5, 25] ms

Fig. 3. Network topology used for asymmetric experiments.

MPTCP and MPQUIC implementations. While any path
manager configuration is doable using specific uniflow
managers, the reverse is not true.

b) Packet Scheduler: This algorithm has two di-
mensions as it selects, for each packet, which frames
will be sent on which sending uniflow. The packet
scheduler notably decides how the application data and
ACK frames will be spread over the different sending
uniflows. Our MFQUIC prototype uses a lowest-latency-
first strategy. To do so, the scheduler takes into account
all the available RTT measurements between each pair of
(sending uniflow, receiving uniflow). Then, it aggregates
these for each sending uniflow by weighting the esti-
mated latency with the number of samples. Each time
the packet scheduler needs to send data, it prefers the
available sending uniflow with the lowest aggregated
latency. However, recall that frames can also carry QUIC
control information. Therefore, it is the packet scheduler
responsibility to perform the QUIC path validation (using
a PATH CHALLENGE frame) for the 4-tuple used by a
given sending uniflow. Our scheduler duplicates some
control frames on several sending uniflows, such as
the MAX DATA and MAX STREAM DATA, to limit
possible head-of-line blocking if these important frames
are sent on slow or lossy network paths.

IV. EVALUATION

We implement Multiflow QUIC as a PQUIC plugin
[12] (2800 lines of C code, implements draft-ietf-quic-
transport-29) and compare it with our previous Multipath
QUIC implementation mp-quic [5] (about 5000 lines
of Go code change compared to quic-go, implements
Google QUIC version 39) and the state-of-the-art Mul-
tipath TCP (Linux implementation v0.95 [13]). All of
these use the lowest latency first packet scheduler and a
full-mesh flow/path management. Our experimental
setup is a lab equipped with Intel Xeon X3440 proces-
sors, 16 GB of RAM and 1 Gbps NIC, running Linux
kernel 4.19 and configured as shown in Figure 3. The
links R1-R3 and R2-R3 are configured using NETEM to
add transmission delays and using HTB to limit their
bandwidth.

One Path Two Paths
0

2000

4000

6000

8000

10000

12000

D
ow

nl
oa

d
C

om
pl

et
io

n
Ti

m
e

(m
s) MPTCP

MPQUIC
MFQUIC

Fig. 4. When the secondary path has a very high asymmetry,
MFQUIC benefits from it while both MPTCP and MPQUIC cannot.
Error bars show standard deviation over 15 runs.

In this section, we consider the case of a download of a
10 MB file over a single QUIC stream / TCP connection.
The client computes the Download Completion Time
(DCT) between the GET request and the reception of
the last byte of the server response. For each implemen-
tation, we perform both one-path experiments over the
R1-R3 link and two-paths ones using both links. While
the two-paths runs use the aforementioned protocols,
the one-path ones rely on the corresponding single-path
variant of each implementation, i.e., we disable multi-
path/multiflow features for these one-path experiments.
We first focus on a specific network scenario and then
explore a large set of parameters.

A. Case Study of A Highly Asymmetric Network Path

To highlight the benefits of Multiflow QUIC, consider
the following scenario. The primary network path ex-
hibits symmetric characteristics with 10 Mbps and 20 ms
RTT. The secondary one has good downlink performance
(50 Mbps, 10 ms one-way delay) but very poor uplink
one (0.01 Mbps, 1 s one-way delay). Such setup is close
to a satellite network path. Figure 4 shows that when
using only the primary network path, both single-path
QUIC implementations and TCP complete the download
in about 8.5 s. Since all protocols share the same (sym-
metric) network path, this result is expected. However,
the usage of the highly asymmetric network path makes
the MFQUIC transfer about 5.5 times quicker, while
neither Multipath TCP nor MPQUIC can take advantage
of it. This difference resides in the ACK frame schedul-
ing strategy. While MFQUIC can send ACK frames
on any sending uniflow (typically the one using the
primary network path), MPQUIC carries ACK frames
on the same path and Multipath TCP needs to keep
acknowledgments at subflow-level. Due to the poor path



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 6

10−1 100 101

DCT Two Paths / DCT One Path

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

MPTCP
MPQUIC
MFQUIC

Fig. 5. In our parameter space, MFQUIC slightly benefits more from
the addition of a second asymmetric network path than both MPTCP
and MPQUIC.

uplink performance, both Multipath TCP and MPQUIC
senders receive acknowledgments with a delay of about
1 second. The congestion window of the secondary path
increases slowly and only a few data bytes (about 90
KB out of 10 MB for MPQUIC) are sent on it. In
comparison, MFQUIC carries most of the data bytes
over the secondary path (about 8.4 MB out of 10 MB).
Notice that both MFQUIC and MPQUIC prevent head-
of-line blocking by duplicating MAX DATA and MAX
STREAM DATA frames on both network paths [5].

B. Exploring Asymmetric Network Use Cases

While beneficial in the previous case, one could ques-
tion the usefulness of uniflows in asymmetric networks
in general, including their performance impact. To ad-
dress this, we now cover a large range of link character-
istics by applying an experimental design approach [14]
and defining the parameters’ ranges as shown in Figure 3.
We use the WSP algorithm [15] to broadly sample this
parameter space into 139 points. Notice that the uplink
one-way-delay dup and the downlink one ddown are two
different parameters. The same applies for the uplink
bandwidth bwup and the downlink one bwdown. Since our
topology features two network paths, we explore an 8-
dimension parameter space. For each parameter config-
uration, we vary the initial network path used, resulting
in 278 different network scenarios. Each scenario is run
9 times and the median run is reported.

Figure 5 shows the speedup achieved by Multipath
TCP and both QUIC flavors when using a second
network link. Each point of the cumulative distribution
function represents one of the 278 network scenarios.
Multipath TCP and both QUIC implementations achieve
lower DCT when using the two links. In our considered
experiments, Multiflow QUIC (resp. Multipath QUIC,

0.5 1 2

DCT MFQUIC
DCT MPTCP

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

One Path Two Paths

0.5 1 2

DCT MFQUIC
DCT MPQUIC

Fig. 6. Comparing the performance of the Multiflow QUIC’s
implementation to the Multipath TCP’s one (left sub-figure) and the
Multipath QUIC’s one (right sub-figure) on each network scenario.

Multipath TCP) achieves a median speedup of 83.5%
(resp. 73%, 75%). By computing the DCT ratios between
the implementation themselves, Figure 6 shows that all
implementations in single-path mode (i.e., plain TCP
and both single-path QUIC implementations) achieve
similar performance. This means that comparing them
directly, Multiflow QUIC is in general slightly faster than
Multipath QUIC and Multipath TCP.

Again, the scheduling strategy of ACK frames ex-
plains these results. Multipath TCP and Multipath QUIC
always acknowledge packets on the same path. Multiflow
QUIC gets rid of this constraint and sends ACK frames
on the preferred sending uniflow, taking advantage of
the best performing one. This enables Multiflow QUIC
senders to increase their sending uniflows’ congestion
window quicker than with Multipath TCP and Multipath
QUIC, especially in the cases where there is a strong
asymmetry between uplink and downlink.

V. CONCLUSION

With TCP, reliable transport protocols used to consider
bidirectional paths and stuck with them. Multipath TCP
and Multipath QUIC keep this constraint that limits their
performance and their applicability in some scenarios.
This paper broke this assumption and proposed to be
more generic by considering unidirectional flows instead.
We then designed Multiflow QUIC to address scenarios
where multiple (possibly asymmetric) network paths are
available. Our evaluation revealed that MFQUIC can take
advantage of unidirectional network paths while MPTCP
and MPQUIC cannot. We also showed that scheduling



IEEE COMMUNICATIONS MAGAZINE, OPEN CALL 7

packets on a uniflow basis slightly increases transfer
performance in asymmetric network scenarios. Com-
pared to existing multipath transport protocols, MFQUIC
opens new use cases and perspectives of better taking
advantage of network paths. For instance, with MFQUIC
it becomes possible to create a hybrid satellite service
where clients combine a high capacity downlink satel-
lite link with a lower speed by bidirectional terrestrial
network.

ARTIFACTS

Our studied implementations are freely
available: Multipath QUIC at https://github.
com/qdeconinck/mp-quic and Multiflow
QUIC at https://github.com/p-quic/pquic. Our
measurement scripts and data are available at
https://multipath-quic.org/commag21.

REFERENCES

[1] O. Bonaventure and S. Seo, “Multipath TCP Deployments,” in
IETF Journal, Nov. 2016, vol. 12, no. 2, pp. 24–27.

[2] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch, “TCP Extensions for Multipath Operation with
Multiple Addresses,” RFC 8684, Mar. 2020, accessed on 2020-
09-30. [Online]. Available: https://rfc-editor.org/rfc/rfc8684.txt

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” Internet Engineering Task Force,
Internet-Draft draft-ietf-quic-transport-34, Jan. 2021, work
in Progress, Accessed on 2021-01-21. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34

[4] A. Langley et al., “The QUIC Transport Protocol: Design and
Internet-Scale Deployment,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication -
SIGCOMM ’17. Los Angeles, CA, USA: ACM Press.

[5] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design
and Evaluation,” in Proceedings of the 13th International Con-
ference on emerging Networking EXperiments and Technologies
- CoNEXT ’17. Incheon, Republic of Korea: ACM Press,
December 2017, pp. 160–166.

[6] F. C. Commission, “Measuring fixed broadband -
ninth report,” Aug. 2020, accessed on 2020-
11-30. [Online]. Available: https://www.fcc.gov/
reports-research/reports/measuring-broadband-america/
measuring-fixed-broadband-ninth-report

[7] B. Augustin, T. Friedman, and R. Teixeira, “Measuring mul-
tipath routing in the internet,” IEEE/ACM Transactions on
Networking, vol. 19, no. 3, pp. 830–840, 2010.

[8] H. Balakrishnan and V. N. Padmanabhan, “How network asym-
metry affects TCP,” IEEE Communications Magazine, vol. 39,
no. 4, pp. 60–67, 2001.

[9] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella,
and M. Zorzi, “A survey on recent advances in transport layer
protocols,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 4, pp. 3584–3608, 2019.

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda, “Is It Still Possible to Extend TCP?” in Pro-
ceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference - IMC ’11. Berlin, Germany: ACM
Press, 2011, pp. 181–194.

[11] Q. De Coninck and O. Bonaventure, “Multipath
Extensions for QUIC (MP-QUIC),” Internet Engineering
Task Force, Internet-Draft draft-deconinck-quic-multipath-06,
Nov. 2020, work in Progress, accessed on 2021-01-
25. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-deconinck-quic-multipath-06

[12] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-
Wilson, A. Legay, O. Pereira, and O. Bonaventure, “Pluginizing
QUIC,” in Proceedings of the ACM Special Interest Group on
Data Communication - SIGCOMM ’19. Beijing, China: ACM
Press, 2019, pp. 59–74.

[13] C. Paasch, S. Barre et al., “Multipath TCP in the linux kernel,”
2019, http://www.multipath-tcp.org, accessed on 2020-11-23.

[14] R. A. Fisher, “The design of experiments.” 1935.
[15] J. Santiago, M. Claeys-Bruno, and M. Sergent, “Construction of

space-filling designs using WSP algorithm for high dimensional
spaces,” Chemometrics and Intelligent Laboratory Systems, vol.
113, pp. 26–31, 2012.

Quentin De Coninck (quentin.deconinck@uclouvain.be,
https://qdeconinck.github.io) received his Ph.D. from UCLouvain,
Belgium in 2020 under the supervision of Prof. Olivier Bonaventure.
He is now a post-doctoral researcher in the same institution. His
research interests include Internet protocol design and low-level
system architecture.

Olivier Bonaventure is Professor at UCLouvain where he leads
the IP Networking Lab. He has actively contributed to the design,
implementation and deployment of several Internet protocols includ-
ing LISP, Multipath TCP, IPv6 Segment Routing, ... He served as
Editor for SIGCOMM’s Computer Communication Review. He wrote
the Computer Networking: Principles, Protocols and Practice open-
source ebook that is used by various universities. He co-founded
the Tessares spinoff that deploys Hybrid Access Networks using
Multipath TCP.


