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Abstract

Traditional use of slider-crank mechanisms result in high loads transmitted
through the mechanical structure, inhibiting the design of a compact ma-
chine. Therefore, this paper proposes to step away from the conventional,
i.e. rotative, actuation and to investigate local linear actuation of the slider-
component directly, while maintaining the kinematic link. In this work the
equation of motion and corresponding non-isochronous movement are derived
for the proposed system, loaded with a linear spring-damper element. This
knowledge is afterwards incorporated in an act-and-wait control strategy,
implemented in a multibody model in Simscape, to evaluate the local linear
actuating principle. The obtained configuration results both in a continuous
movement of the slider mechanism where Top Dead Centre & Bottom Dead
Centre are reached and in a minimisation of the loads transmitted through
the mechanical structure. Further investigation of one of the most determin-
ing parameters, i.e. the operating frequency, proves that operating at the
resonance frequency of the system, yields optimal results. This configuration
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allows for the reduction of the loads transmitted through the system by 90%
of the nominal spring-damper load.

Keywords: Slider-Crank Mechanism, Lagrange Equations, Resonance,
Act-And-Wait, Non-isochronous

Nomenclature

BDC Bottom dead centre

C Damping coefficient [Ns/m]

F Force [N ]

g Gravitational acceleration
constant [N/kg]

I Moment of inertia [kg m2]

k Spring stiffness [N/m]

l Length connecting rod [m]

m Mass [kg]

r Length crank rod [m]

ref Reference

TDC Top dead centre

x Position [m]

∆ Finite difference

θ Crank angle [◦]

φ Connecting rod angle [◦]

Subscripts

0 Initial

act Actuation

crit Critical

eq Equivalent

l Connecting rod

max Maximum

os Oscillation

p Piston

r Crank

s Static

1. Introduction

In industrial applications such as diesel and gasoline engines or piston
compressors and pumps, a slider-crank mechanism is used to convert a ro-
tary motion into a linear motion or vice-versa. The resulting technology
and associated mechanical structure have been investigated extensively in
the past decades [1]. However, in such applications, the kinematic structure
is dimensioned to transmit the full power from piston to motor side and
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vice versa. As a result, journal bearings are often used to cope with the
high loads transmitted through the system, complicating the possibility of a
compact and hermetic solution [2, 3]. Recent research focuses furthermore
on the dynamic analysis of such a system, taking into account the relative
motion in and loads acting on these joints. Daniali et al. performed such a
dynamic investigation including the clearances in the joints and proposed an
optimisation of the mass distribution of the links of a mechanism to reduce
or eliminate the impact forces in the clearance joint [4]. Yaqubi et al. investi-
gated the possibility of improving performance by using clearance control in
joints accompanied with a second actuator on the connecting rod to reduce
the vibrations and load on the first actuator [5]. Hong-Sen Ya proposes the
use of a stepper motor to step away from the traditional trajectories associ-
ated to a constant speed input. By properly designing the input speed of the
mechanism, the output motion can pass through a desired trajectory [6]. A
similar strategy has been adopted in [7] and [8] for a 4-bar mechanism. As
a result, further research focuses on adequate actuation and (torque) control
strategies to obtain a desired output profile [9, 10, 11]. Other possibilities
have been investigated extensively such as the use of adjustable slider-crank
mechanisms to obtain atypical trajectories [12, 13, 14]. An alternative con-
figuration has been demonstrated by Sarigecili where a constant output force
on the slider is obtained, independent of the crank angle, by adding a second
(controlled) input force on the crank–connecting rod joint [15]. Soong goes
a step further and details the design of flexible linkage mechanisms with a
rotational input and a linear input combined [16] and similarly in [17] where
such an innovative configuration is presented in a hybrid-driven mechanical
press. As a result, we propose to investigate in depth the possibilities (and
associated dynamics) of local (linear) actuation on the linear component of
a slider-crank mechanism, i.e. slider, without rotational input. This means
that the full power is provided to the linear component directly to counteract
the loads, rather than provided rotationally and fully transmitted through
the mechanical system. Such configuration would allow to minimise the loads
in the joints and reduce the power transmitted through the system signifi-
cantly, compared to previous research [6, 16, 17]. This allows to downsize
the mechanical structure and the entire machine in general. Furthermore,
it would still provide the opportunity to impose any desired trajectory (and
associated control strategies), be it with mechanical limits. Maintaining this
mechanical link, provides a fail safe if an excessive force is imposed on the
slider-component, which would allow to simplify control strategies compared
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to e.g. free piston compressors [18]. Therefore, to evaluate the proposed
local actuation, a simple act-and-wait control strategy (denoted as bang-
bang-control) on a slider-crank system with generic load, i.e. mechanical
spring, is investigated. The focus of this control strategy lies on minimis-
ing the forces or loads transmitted through the mechanical structure while
guaranteeing that top & bottom dead centre (TDC & BDC) are reached.

To fully investigate the possibilities and to clarify the optimal working
conditions, this paper starts by detailing the dynamics and natural motion
of an unforced slider-crank system loaded with a spring-damper element in
Section 2.1. Afterwards, the developed multibody simulation environment
in Simscape and the proposed bang-bang control strategy are detailed in
Section 2.2. To conclude, the obtained simulation results are discussed in
Section 3 and the optimal steady state working conditions (minimal load in
the mechanical structure) are presented as a result of such a system con-
figuration, i.e. at its resonance frequency. A quick comparison with the
analytical results is provided to justify the obtained numerical results.

2. Simulation model

In a first step, a dynamic analysis of a slider-crank mechanism loaded
with a spring-damper element is detailed to investigate the non-isochronous
movement of the system. The geometry illustrated in Fig. 1a, where Fact
represents the local actuation force on the slider. Afterwards, a numerical
approach has been adopted using Simscape Multibody to evaluate the per-
formance of the local actuation on the piston. The system displayed in Fig.
1a has been implemented in the multibody environment and the resulting
lay-out is presented in Fig. 1b.
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(a) Schematic drawing of a slider-crank mecha-
nism attached to a translational spring-damper
element.

x
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z

(b) Simscape lay-out of a slider-crank mecha-
nism loaded with a mechanical spring-damper
element.

Figure 1: Slider-crank mechanism.
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The model consists of a shaft (indicated in red in Fig. 1b) connected
to the ground with a revolute joint, a crank rod (indicated in blue) rigidly
connected to the shaft, a connecting rod (indicated in yellow) connected to
the crank rod and piston with 2 revolute joints and a piston (indicated in
transparent green) whose motion is limited using a translational joint w.r.t.
the ground. The spring-damper element has been implemented as a linear
force acting between the piston and ground, visualised by the ”dummy”
grey ball. The system has its resting position at half of the stroke. The
numerical configuration considered throughout this paper is listed in Table
1. The spring stiffness and damping coefficient have been chosen based on the
specifications of an available test set-up to be within its nominal operating
conditions. This allows for a straightforward comparison of the obtained
simulation results in this paper with future experiments.

Table 1: Specifications of the slider-crank mechanism analysis.

Length crank rod r (mm) 22.1
Length connecting rod l (mm) 127

Mechanical stiffness spring k (N/m) 760
Mechanical damping coefficient damper C (Ns/m) 1
Natural length spring at half the stroke l0 (mm) 50

Maximum static spring force Fs,max (N) 16.8
Mass crank rod mr (kg) 0.017

Mass connecting rod ml (kg) 0.099
Mass piston mp (kg) 0.72

Polar inertia crank rod Ir(kg mm2) 2.94
Polar inertia connecting rod Il (kg mm2) 533

2.1. Dynamic analysis of a slider-crank mechanism

To obtain an initial understanding of the dynamic behaviour of a slider-
crank mechanism loaded with a spring, the equations of motion can be estab-
lished using Fig. 1a. The following kinetic energy (T ) and potential energy
(V ) formulations can be derived. Assuming a uniform material distribution
and reflecting the inertias to the revolute joints using the parallel axis theo-
rem, the kinetic energy of the system can be written as the combination of
the linear movement of piston and connecting rod, together with the rotation
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of the crank rod and tilting of the connecting rod.
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Writing down the Lagrangian and performing the required derivations,
yield the following equation of motion Eq. 2 describing the unforced move-
ment of a slider-crank mechanism loaded with a spring-damper mechanism.
For the interested reader, the full derivation is detailed in Appendix A.
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With:

a =
√
l2 − r2 sin2 θ

da

dθ
= −r

2 sin θ cos θ

a

(3)

Having established this equation, provides the opportunity to study the
unforced natural motion of the slider-crank mechanism highlighted in Fig.
1a. Fig. 2 displays the evolution of the crank angle of the system, defined in
Table 1, for different initial angles (denoted as θ0), obtained by solving Eq.
2 numerically in Matlab. No actuation forces are considered on the slider in
this experiment. Fig. 2 proves that the larger the oscillation is (the closer
θ0 to 0◦ or 180◦), the larger the oscillation period and thus the lower the
frequency. A non-isochronous movement similar to an oscillating pendulum
can be noticed, where the oscillating frequency depends on the release angle
[19]. The oscillation dampens out to θ ≈ 85◦, corresponding to the middle
of the stroke and the resting position of the spring.
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Figure 2: Evolution of the crank angle θ for different starting angles θ0 without external
forces acting on the system.

To conclude the analytical part of this paper, a theoretical derivation of
the oscillating frequency as a function of the oscillation amplitude is provided.
Assuming that the system is at rest at angle θ0 upon starting, the following
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equation Eq. 4 can be obtained, starting from the energy equations in Eq. 1

and using the conservation of energy theorem, with a0 =
√
l2 − r2 sin2 θ0:
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Isolating θ̇ and integrating over 1 cycle θcycle yields the oscillation period
Tos as function of the starting angle θ0:

Tos =
∫
θos
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+mp
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(5)
Having obtained the oscillation period as a function of the oscillation

amplitude, provides the opportunity to quantify the unforced oscillating fre-
quency for the system defined in Fig. 1a and Table 1. The resulting fre-
quency, as a function of the starting angle θ0 is illustrated in Fig. 3. The
closer the initial angle θ0 is to 0◦ or 180◦, the larger the oscillation amplitude
will be and the lower the frequency, in agreement with Fig. 2. Furthermore,
the curve is not symmetrical since the resting position of the spring is at
half the stroke, i.e. 85◦. As a result, a similar behaviour is expected for
angles between 180◦ and 360◦ crank angle, with a resting position of 275◦.
In other words, the mass and inertia of the oscillating crank-rod contribute
to the natural (linear) motion of the slider and connecting rod. The larger
the oscillation, the bigger the contribution of the crank-rod (and connecting
rod) to this motion and the lower the frequency will be. The peaks close
to 0 ◦ and 180◦ are a consequence of the gravity acting on the crank and
connecting rods. Evaluating Eq. 5 with g = 0 m/s² yields the orange curve
in Fig. 3.
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Figure 3: Oscillating frequency as a function of the release angle θ0.

2.2. Act-and-wait controller

Having explored the non-isochronous movement analytically, the focus
shifts towards the investigation of the behaviour of a slider-crank mechanism
where the linear motion is imposed to the slider. The idea is to utilise the
dynamics of the system by launching the piston, by pushing and pulling it
with a linear actuator, instead of controlling it rotationally, similarly to what
occurs in combustion engines. In order to do this, the numerical model has
been developed in Simscape Multibody (Fig. 1b). Using a simple bang-bang
controller, rather than complex position controllers [18], over a period of
time, the actuation force on the slider will have the shape illustrated in Fig.
4. The goal is hereby to guarantee rotation, by adapting the height of the
pulse, such that top & bottom dead centre (TDC & BDC) are reached while
minimising the loads in the mechanical structure. These loads are measured
in the revolute joint connecting the piston with the connecting rod and are
denoted rod loads. The maximum rod loads are to be found at the turning
points where the mechanical structure absorbs the reaction forces as a result
of the large accelerations associated with the speed-reversal of the piston at
TDC & BDC. These maxima are used in a traditional feedback loop, where
they are compared to a reference rod load that is as low as possible, to
adapt the height of the pulse as indicated in Fig. 5. Unfortunately a zero
rod load is not achievable as a certain acceleration is required at TDC &
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BDC to avoid getting stuck in a singular configuration. Therefore a minimal
(non-zero) rod load while rotating is desired. The width of the actuation
pulses is fixed throughout this paper, i.e. during 25 % of the oscillation
period a positive force is imposed and during 25 % of the oscillation period a
negative force is imposed (Fig. 4). During the remaining 50% no actuation
force is acting on the system. This means that the frequency of actuation
follows the oscillating (and eventually rotating) frequency. More specifically,
within 1 cycle, a constant positive force is imposed from BDC to 90◦ crank
angle and a constant negative force from TDC to -90◦ crank angle. This
allows to guarantee that the launch parts and inertial motion parts of the
cycle (Fig. 4) are always at the same axial positions. This simplifies future
experiments upon optimally placing a linear actuator to provide the (fixed)
range of motion. As a result, the height of the pulse is the only control
parameter considered throughout this paper.
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Figure 4: Concept of the bang-bang actuation force profile over 1 time period.

Since a certain minimal acceleration is required at the turning points, the
imposed control strategy consists of 2 separate controllers counteracting one
another. The position (or transient) controller (loop 1 in Fig. 5) will try to
increase the pulse height to guarantee rotation, while the rod load controller
(loop 2 in Fig. 5) will try to decrease it to minimise the rod load. The
global strategy is illustrated in Fig. 5 and the 2 controllers are detailed in
the following sections.
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Figure 5: Bang-Bang control strategy consisting of a transient position controller to guar-
antee rotation and a rod load controller to minimise the loads in the mechanical structure.

The position controller, which allows to start up the system when the
mechanical structure is not in a singular configuration, increases systemati-
cally the pulse height based on the position error at the oscillating points. In
other words, at the end positions of the oscillation, indicated with the yellow
and red arrows in Fig 6a, the position of the piston is compared w.r.t. the
desired BDC & TDC positions. This allows to determine the respective BDC
& TDC-error, in this case xp (Fig. 1a) with respect to -22.1 mm and +22.1
mm respectively, which determines the pulse height in the next cycle. At
this point the crank-rod is oscillating and not yet rotating and as a result the
amplitude of the oscillation will increase (the respective TDC & BDC-errors
will thus decrease) until at a certain point the shaft starts rotating. The
transient result is illustrated in Fig. 6b.
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Figure 6: Position controller results.

The rod load controller however will measure the loads transmitted through
the system at the oscillating (during transient) and afterwards the turning
points (during steady state) of the cycle and will act accordingly. During
the transient, due to the increasing oscillating motion, the rod load increases
until rotation is guaranteed (Fig. 7). Therefore, the position controller is set
to act as the dominant one (higher control gains) until the crank-rod starts
rotating. Afterwards, the rod load controller can and will systematically de-
crease the rod load, without interference, since the BDC & TDC position
errors are zero beyond this point as illustrated in Fig. 8.
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Figure 7: Rod load curve measured in the revolute joint connecting the piston to the
connecting rod.

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

-1.5

-1

-0.5

0

0.5

1

1.5

 F
o
rc

e
 (

N
)

Actuation force
Transient controller force
Rod load controller Force

137 137.5 138 138.5

-1.5

-1

0

0.5

1

1.5

-0.5

Figure 8: Corresponding actuation force to Fig. 7, where the rod load controller reduces
the height of the pulse once rotation is guaranteed.

13



3. Discussion

When evaluating Fig. 7 and Fig. 8, the actuation force (or height of the
force pulse) is increasing at each step during the transient as a result of the
position controller. Consequently, the increasing spring forces and inertia
forces of the oscillating parts, crank rod, connecting rod and piston, result
in an increase of the rod load. At approximately 25 seconds the maximum
oscillation amplitude is reached and the crank mechanism starts rotating.
After this point, a decrease in the rod load can be observed up to less than
10% of the load acting on the system, i.e. 1.5 N rod load compared to
approximately 17 N spring force at the end positions as indicated in Table 1
and in Fig. 7. By systematically decreasing the amplitude of the actuation
force, while maintaining a continuous rotation, a minimisation of the rod
load is thus feasible. As mentioned before, a zero rod load is not achievable
as a certain acceleration, and thus reaction force, is required to avoid getting
stuck in the singular configurations at TDC and BDC.

The simulation detailed above proves the feasibility of local actuation to
obtain a minimal loading of the mechanical structure once the crank rod
is rotating at steady state. A deeper investigation of both the oscillating
transient part and the rotating steady state part is provided in the following
section and the focus will be on:

• the evolution of the operating frequency during a start-up;

• the relation between the rod load at steady state and the operating
frequency.

Let us start by focusing on the latter by performing a series of open loop
simulations to evaluate the dependency between the operating frequency and
resulting rod load. This allows to quantify the optimal working conditions
in terms of minimal load transmitted through the system. Each simulation
consists in imposing a fixed actuation pulse height and waiting until rotation
is achieved. Afterwards, the frequency and corresponding rod load are de-
termined. A minimal (constant) impulse force of 1.02 N positive and -1.1 N
negative is required to guarantee rotation at steady state (cfr. controlled ac-
tuation force indicated in Fig. 8 at moment of rotation, i.e. ≈ 27 s), yielding
the lowest achievable operating frequency. By systematically increasing this
pulse height, the operating/rotating frequency will increase and the following
set of results is obtained (Fig. 9).
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Figure 9: Rod load versus operating frequency upon rotation.

A first (logical) conclusion is that a minimal frequency (here ≈ 4Hz) is
required to guarantee rotation since, as mentioned before, a minimal acceler-
ation is required to obtain a smooth rotation of the crankshaft. Afterwards,
the rod load drops the closer the frequency goes to the resonance frequency
of the system, approximately equal to:

fcrit,approximated =
1

2π

√
kspring
mp +ml

= 5.1 Hz (6)

Once the resonance frequency is crossed, the rod load increases significantly
with the frequency as the reaction forces, due to the large accelerations at
TDC & BDC, are to be absorbed by the mechanical structure.

The second investigation focuses on the evolution of the operating frequency
during transient. Since during the transient, at 1 point the nominal load
of 17 N is to be absorbed by the mechanical structure, the question arises
if this load can be reduced by carefully tracking the resonance frequency of
the system. Evaluating the frequency evolution over time of the simulation
results detailed in Fig. 7 and Fig. 8, the following results are obtained:
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Figure 10: Operating frequency versus time for the simulations detailed in Fig. 7 and Fig.
8.

During start-up, the crank-rod is oscillating and not rotating. As a result
the inertia of the oscillating crank-rod contributes to the natural (linear)
motion of the slider and connecting rod. The larger the oscillation, the
bigger the contribution of the crank-rod (and connecting rod) to this motion
and the lower the resonance frequency will be. At around 27 seconds, just
before rotation is guaranteed, the maximum oscillation and thus contribution
is obtained and as a result, the minimal frequency. Afterwards, when the
crankshaft is rotating continuously, the crank-rod will no longer contribute
towards the natural motion (as it is no longer oscillating). The resulting
resonance frequency will therefore increase again immediately up to ≈ 5 Hz.
The further increase in frequency is due to the imperfection of the controller,
increasing the velocity to guarantee rotation, while allowing a certain minimal
(but not zero) rod load. This frequency evolution can also be quantified by
evaluating the increasing equivalent mass of the crank rod. The polar inertia
of the crank rod can be reflected to the piston side with an equivalent mass
mr,eq using the kinetic energy, with vp the linear piston velocity:

1

2
mr,eqv

2
p =

1

2
Irθ̇

2 (7)

Plotting the evolution of this equivalent mass in Fig. 11, proves the reason-
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ing behind the decreasing resonance frequency until at around 27 seconds
rotation occurs and the equivalent mass is at its maximum. Afterwards,
when the crank rod is rotating, the translational velocity vp is zero at TDC
& BDC, while the rotational velocity θ̇ is not, resulting in the fact that eq.
7 goes to infinity.
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Figure 11: Evolution of the equivalent crank mass upon reflecting the polar inertia of the
crank rod to the piston side during transient operation.

Hence, a similar conclusion can be made compared to the analytical anal-
ysis section 2.1. The larger the oscillation amplitude, the smaller the operat-
ing frequency will be until the crank-rod starts rotating. The discontinuity
of the contribution of the crank rod at the point of rotation results in this
sudden change of frequency. After this point, we can no longer talk about
an non-isochronous oscillating movement of the system, detailed in Fig. 3,
and operating/rotating at the resonance frequency, yields the lowest loads
transmitted through the mechanical structure.

4. Conclusion

This paper proposed to step away from the traditional use of a slider-
crank mechanism by investigating the influence of a local linear actuation

17



on the slider loaded with a linear spring-damper system. In a first step, a
dynamic analysis of this system is provided by establishing the equation of
motion and characterising the oscillation-amplitude dependency of the un-
forced system. On top of that, the derivation of the analytical equation
defining the oscillation period as a function of the starting angle is provided,
proving the results obtained throughout this paper. Afterwards, the pro-
posed act-and-wait control strategy, i.e. bang bang, has been implemented
in a multibody simulation environment with as goal to minimise the forces
transmitted through the mechanical structure during steady state operation.
A combination of a position and (rod) load controller is introduced, where
the subtle counteraction of the 2 controllers results both in a continuous ro-
tation of the crank rod and a minimal rod load in the structure. These loads
can be reduced below 10% of the external spring-damper forces acting on
the system during steady state conditions. To conclude, the optimal steady
state working conditions are presented, i.e. at resonance frequency, as well
as an initial investigation of the non-linear evolution of the natural frequency
of the system during transient.
The resulting simple actuation and control strategy allows thus for a signif-
icant reduction of the loads transmitted through the mechanical structure
during steady state operation. However, obtained simulation results show
that deviating from the natural frequency of the system, translate into an
increase in rod load. Furthermore, during start-up, the nominal load is still
transmitted at 1 point of the run-up. Therefore, the next step consists in
utilising the knowledge obtained from the transient behaviour to evaluate
the possibility to minimise the reaction forces during start-up as-well.
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Appendix A. Derivation equation of motion

Starting from the kinetic and potential energy of the slider-crank system
displayed in Fig. 1a, the following equations can be derived, where the kinetic
energy can be written as a superposition of the linear movement of the piston
and connecting rod as well as the rotation of the crank rod and tilting of the
connecting rod.
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Substituting the equalities above in the potential and kinetic energy for-
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Deriving the Lagrangian L, with Q the non-conservative torques acting
on the system:

L = T − V
d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= Q

(A.4)
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Starting with the derivation of the second term in the second equation of
Eq. A.4:
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Applying the chain rule on the first term of the second equation of Eq
A.4:
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The final step consists in determining the non-conservative torques Q on
the right hand side of Eq. A.4. The only non-conservative force considered in
this investigation is the dissipating damping force proportional to the velocity
of the piston (Fig. 1a and Table 1). To convert this damping force FC into
a counteracting torque TC , the power balance is used:

FCvp = Tcθ̇

−Cvpvp = Tcθ̇
(A.8)

As a result:
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(A.9)
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The resulting equation becomes:
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