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Abstract: Agricultural monitoring is essential for adequate management of food production and distribution. Crop land and crop
type classification, using remote sensing time series, form an important tool to capture the agricultural production information.
The recently launched Sentinel-2 satellites provide unprecedented monitoring capacities in terms of spatial resolution, swath
width, and revisit frequency. The Sentinel-2 for Agriculture ( Sen2-Agri) system has been developed to fully exploit those
capacities, by providing four relevant earth observation products for agricultural monitoring. Under the Dragon 4 Program, the
crop mapping with various satellite images and a specific focus on the Yellow River irrigated agricultural area in the Ningxia Hui
Autonomous Region in China was carried out with the Sentinel-2 for Agriculture system ( Sent2Agri). 9 types of crops were
classified and the crop type map in 2017 was produced based on 35 scenes Sentinel 2A/B images. The overall accuracy computed
from the error confusion matrix is 88%, which includes the cropped and uncropped types. After the removal of the uncropped
area, the overall accuracy for a cropped decrease to 73%. In order to further improve the crop classification accuracy, the training
dataset should be further improved and tuned.
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The world population is growing continuously and
imposing great pressure on our planet’ s ecosystems.
Food production is one of the major components of
this pressure. Agricultural monitoring is essential for
adequate management of food production and distri-

bution''?’

. Being able to estimate cropped areas and
predict yields is crucial for decision makers around
the globe. Satellites are a valuable resource for obtai-
ning information at a large scale and with a high re-
visit frequency, which meets two important require-
ments for agricultural monitoring. Moreover, the
timeliness of the information is another crucial con-
cern. The earliest accurate information can be deliv-
ered, the most useful it is for decision makers and

agriculture producers. In this context agricultural

. . . 3.4]
monitoring has become more and more essential **'.
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Nowadays, several international initiatives have set up
to provide local and global agricultural monitoring, of
which one of the most important efforts is GEO’ s
Global Agricultural Monitoring ( GEOGLAM) Initia-
tive.

Crop land and crop type classification, using
remote sensing time series, form an important tool,
among others, to deliver such information. A large
variety of crop mapping methods at different scales
and showing various levels of accuracy can be found

351 From the first use of satellites

in the literature
for agricultural monitoring in the 1970s'” to the
latest study, crop mapping strategies have evolved
tremendously. Methods have been adapted continu-
ously, to the increasing performances of embarked

sensors and to increasing computational capacities.
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The first main challenge of crop mapping is to differ-
entiate annual cropland from other land uses and es-
pecially from other green land covers. Working with
time series instead of single date image allows tem-
poral features, which are a great asset for classifying
cropland and identifying different crop types *'"’
Another great issue is the spatial resolution. Often,
sensors with a high revisit frequency and a large
swath width offer a coarser spatial resolution. Using
such sensors to map agricultural areas is problematic
when the field areas are inferior to the sensor’ s pixel
size, causing mixed pixels.

The recently launched Sentinel-2 satellites pro-
vide unprecedented monitoring capacities in terms of
spatial resolution, swath width, and revisit frequen-
ey P! With its swath width of 290 km and 10 m
spatial resolution, combined with its 5 days revisit
frequency, the constellation of two satellites presents
a great potential for large scale crop mapping with
high precision and accuracy. The Sentinel-2 for Ag-

4161 4 project funded

riculture ( Sent2Agri) system
by the European space agency and led by Université
Catholique de Louvain (UCL), has been developed
to fully exploit those capacities, by providing four
relevant earth observation products for agricultural
monitoring. The system can provide a monthly cloud
free image composite, a binary cropland mask differ-
entiating cropland from other land covers, a crop
type map, classifying the main crops of a region and
a vegetation status map with LAI or NDVI values.
Under the Dragon 4 Program,the crop mapping
with various satellite images and a specific focus on
the Yellow River irrigated agricultural area in the
Ningxia Hui Autonomous Region in China was
carried out with the Sentinel-2 for Agriculture system
(Sent2Agri) . This paper presents the results and the

performance evaluation of Sent2Agri in this area.

1 Study Area and Data

1.1 Study area

The northern part of the Ningxia Yellow River irriga-
tion area selected as the study area in this paper. The
Ningxia Hui Autonomous Region is a 66.400 km* area

in Northwest China. Amongst 6 million people living

in the region, 66.4% is rural population. In 2016,
the farmland represented 1. 292 1 million ha,
including 501 364 ha of irrigated crops and 781 721 ha
of rain-fed crops. Since 1985, the Ningxia Hui
Region has been self-sufficient in terms of food
supply and even developed from an import province
to an export province. The main crops in Ningxia are
grains, oil plants, vegetables, and pasture grass.
Grains account for the largest farmland surface,
namely 59% of the total farmland. Those grains are
mainly wheat, rice, com, and minor (peas, horse
beans, haricot beans, grass peas, buckwheat,
glutinous millet, and millet, etc.). The latter are
mostly produced in the southern mountainous and
central arid areas.

The Ningxia region is divided into 3 geomorphic
and economic zones. The mountainous and loess hilly
district (MLHD) in the south, the centrally located
dry and desertified district ( DDD) and the Yellow
River irrigated district ( YERID ) in the northern
plains. Geology and climate vary tremendously, from
the south to the north. The topography declines, the
temperature rises, and the precipitation decreases.
These gradients cause 3 different agricultural land-
scapes. In the MLHD 70% of the cultivated land
consists of slope farmland. Although this region has
the highest precipitation, the hilly landscape and the
uneven temporal distribution of rainfall hinder most
agricultural activities. The DDD, as its name indi-
cates, is a very arid area, mostly covered by grass-
land (77% of Ningxia’ s grasslands). It is however
suited for the Yellow River irrigation, given its prox-
imity to the water body and its flat topography. The
YERID is the most important rural part of Ningxia. It
represents only one-third of the total farmland in the
region, but accounts for two-thirds of Ningxia’s
grain production and agricultural production value.
YERID’ s Gross Domestic Product represents almost
90% of the region’s total. Annual rainfall is
extremely low in this area, but the Yellow River al-
lows efficient irrigation of the fields. In YERID,
wheat, rice, and corn are by far the major crops at
present. This study was focused on the YERID, as it

is the most important agricultural area of the whole
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region. The study area corresponds to six Sentinel-2

tiles (Fig.1).
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global revisit frequency, a 13 bands imager, and a
290 km swath width. Tab.1 lists the spectral and
spatial specifications of the Sentinel 2A/B.

Through the Sent2Agri system, Sentinel-2 L1C
(top of atmosphere) images wereautomatically down-
loaded for the six tiles covering the study area and
over the whole 2017 growing season from the Coper-
nicus Open Access Hub ( see in https: // scihub. co-
pernicus.eu/ ). Using Sent2Agri’ s L2A processor, a
Multi-sensor  Atmospheric  Correction and  Cloud
Screening ( MACCS algorithm) was performed on the
top of atmosphere images, resulting in a L2A time se-
ries of 27 Sentinel-2 A (S2A) and 8 Sentinel-2 B
(S2B) images between December 8, 2016 and No-
vember 1, 2017 (Fig.2). Fig.3 shows the availability

of cloud free images over the study area.

Tab.1 Spatial resolution bands and associated signal to
noise ratio (SNR)

Lref ( reference

Central .
Band erll ra h Bandwidth ~radiance) SNR@  Resolution
number waveleng /nm (Wm™2sr™' Lref /m
» /nm »
pm™)
105°12'00"E 105°36'00"E 106°00'00"E 106°24'00"E 106°48'00"E 107°12'00"E
1 443 20 129 129 60
Fig.1 The main study area 2 490 65 128 154 10
3 560 35 128 168 10
. 4 665 30 108 142 10
1.2 Sentinel-2 data
5 705 15 74.5 117 20
The Sentinel satellites are part of European Space 6 740 15 68 89 20
Agency’s Copernicus program. Sentinel-2A  was 7 783 20 67 105 20
. 8 842 115 103 172 10
launched in June 2015 and complemented by
8a 865 20 52.5 72 20
Sentinel-2B in March 2017. This second Sentinel mis- 9 945 20 9 114 60
sion is equipped with high resolution multispectral 10 1375 30 6 50 60
C 1. . . 11 1610 90 4 100 20
(MS) sensors, providing information on land surface
. . . . 12 219 180 15 100 20
and vegetation for instance. Sentinel-2 provides an
unprecedented 10 m spatial resolution with a 5 day
S2A S2A S2A
P> 1282016 > 2012017 > 02712017
S2A $2A 2B 2B
> 121112016 P o017 (P 712007 > 91202017
S2A S2A S2A S2A $2A $2A S2A S2B
> 21812016 >1/20/2017|>z/19/2017 >4/20/201"5/17/2017 P> 612612017 8/18/2017 > 1011222017
S2A S2A S2A S2A S2A S2A S2A S2A S2B
12/31/|2016 |>2/9/2017 |’3/11/2017 > 4272017 >5/30/2|017 >7/9/2(n7>8/5/2017 9/7/2<|)17 |>10/19/2017
S2A $2A S2A S2A S2A $2 2B $2B s2B|| s24 2B
12128201 1272017 P> 21262017 [P 33172017 511012017 6102017 771172017 8/l3/20[7>9/9/201 1042017 11/1/2017
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Fig.2  Sentinel 2 satellite images acquired for this study
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Fig.3 Cloud free images count over the study area

1.3 Field data

The reference data needed for training and validation
of the classification was collected through field ob-
servations. Reference points were gathered using
GPS cameras and a Quick Photo Data Processor.
The method implies two major steps. First the georef-
erenced pictures were taken with a GPS camera along
the study area’s roads following a predefined itinerary.
In a second phase, land cover and crop type classes
retrieved by screening the pictures with the processor.
The final product of this process is a table file gather-
ing all GPS points with corresponding classes,
author, roadside (left or right) , collecting dates and
times and the corresponding image file names.

A field campaign was carried out in June 2017,
providing about 1500 ground truth points with spatial
reference and associated crop or other land cover
classes. Those sample points are distributed over the
irrigated area as shown in Fig.4. Based on those
points and using Google Earth as a visual reference,
polygons were created, covering the plot extents, to
increase the number of reference pixels per class. In
addition, the in-situ dataset was complemented by
delineating additional non-cropland samples to cover
the whole range of landscape diversity. The dataset

was randomly divided into training and validation

subsets, each containing 50% of the initial dataset.
As a result, samples of most classes are more or less
equally distributed between the two subsets. Tab.2
shows the number of polygons and the estimated
number of pixels per class in the training and valida-

tion datasets.

.
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Fig.4 In-situ sample points distribution in the study area

Tab.2 Training and validation data-sets for 2017 growing

season
Samples Pixels( 10 m)
Land Cover Training  Validation  Training Validation
fodder 19 39 433 1054
Wheat 40 41 1241 1274
Rice 121 111 3983 3697
Corn 101 92 3925 3698
Crops  Grapes 25 38 1397 2028
Cabbage 8 12 208 336
Tomatoes 3 4 53 70
Watermelons 3 4 86 136
Medlar 3 5 106 242
Plantations 67 60 2964 2273
Grassland 6 5 7068 4700
No Forests 11 4054 1883
crops Bare Soils 33 42 1576 5081
Build-up 90 74 5167 5081
Water bodies 43 35 3367 1904
Total 573 571 35628 34 424
2 Methods

2.1 Approach of the S2A system

The unprecedented capacities of Sentinel-2 satellites
are an important asset in many fields, and
particularly in agricultural monitoring. The 10 m spa-
tial resolution facilitates the generation of crop maps

on field level. Sent2Agri system, an open source



114 Journal of Geodesy and Geoinformation Science 2020 Vol.3 No.4

htttp: /jggs.sinomaps.com

time series processing chains for large-scale produc-
tion, aims to fully exploit those new Sentinel-2 ca-
pacities. The final approach of the Sent2Agri System
was tested through the following studies. Literature
[8] concluded Sentinel-2 will certainly bring im-
provements in the results thanks to the enhanced
spatial resolution and the increased number of
spectral bands, mainly in the red-edge spectrum.
other scholar, proposes and demonstrates an automa-
ted methodology for annual cropland mapping per-
forming along the season in various agricultural sys-
tems using high spatial and temporal resolution
remote sensing time series. And another scholar de-
veloped a method to create a dynamic binary cropland
mask that will be used as input data for the crop type
map and crop status map.

The workflow ( Fig.5) of the Sent2Agri’ s for
the cropland map and the crop type map production
is described in the Seninel-2 Agriculture Software
User Manual. The processing chain of the crop type
map is also based on a random forest classifier. The
values of the parameters for the random forest classi-
fier were kept default ( 100 trees, maximum depth
25 and 25 features at each node). The main inputs
are the bottom of atmosphere Sentinel-2 images and
in situ data representing all the expected crops of the
study area. Moreover, the cropland mask generated
for the same period is also needed as input. The L2A
images are linearly interpolated to obtain smooth
time series and a temporal resampling ensures a
homogeneous distribution of the data over time. The
features extracted for the random forest classifier are
surface (TOC), NDVI, NDWI and brightness. The
classification model is then used to classify the crop-

land area, as defined by the cropland mask. The

I Processing by tiles
E Processing by bands

Temporal Features
Resampling Extraction

f Crop mask ,_'

cropland mask production is based on a random
forest classifier. The input reference data can be in
situ data, collected and provided by the user, or a
reference raster land cover map, which is the CCI
Land Cover 2015 product by default, but can be
provided by the user as well. A first crop type map
was generated using the imagery of the whole
growing season and the 2017 in situ training dataset,
representing 9 different crops. Crop mask was used
as input for this crop type map. The crop type map
production workflow is schematized in Fig.5.

2.2 Validation methods

In this study the validation of the generated maps was
carried out independently, outside the Sent2Agri sys-
tem, using the validation subset of the reference data.
To evaluate and compare the performances of the
Sent2Agri system, a conventional validation method
was used, computing performance metrics such as
the Fl-scores and the overall accuracy. Those
metrics are based on an error confusion matrix be-
tween the classified pixels and reference validation
pixels. The reference pixels were obtained from the
validation set of in situ polygons selected earlier.
Two validation datasets were generated, one binary
raster differentiating “cropland” and “no cropland”
for the cropland masks validation and another featu-
ring the different crops for the crop type map valida-
tion. The error confusion matrices were computed as
presented in Tab.3 and the performance metrics were
calculated with Eqgs. (1)—(4). Tab.3 shows the
typical format of a confusion matrix, where n; is the
number of observations categorized as ¢ in the refer-
ence dataset and as j in the predicted crop map and

J is the number of different classes.

covered by

RF model
Estimation RF_model
Yes

Tile is

samples?

Fig.5 Workflow of the Sent2Agri for the crop type classification
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Tab.3 Typical error confusion matrix

Classified

j=1 j=2 j=J
i=1 nyy 2 nyy
i=2 Ny ny Ny
Reference
i=J n np nyy

From the error confusion matrix, several per-
formance metrics can be derived. The most common
and simple ones are the F1-scores and the overall ac-
curacy. The Fl-score (Eq. (3)) is derived from the
precision and the recall for each class, which are
computed through Eq. (1) and Eq. (2) respectively.
It gives an indication of the classification performance
per class.

n;

Z”zj

j=1

(1)

Precision =

T
i=1

Recall =

n
J

Floscore = 2 X Precision X Recall (3)

Precision + Recall

The overall accuracy gives the proportion of ob-

servations classified correctly. It can be computed

through Eq. (4).

Overall Accuracy =

3 Results

3.1 Crop type map and the error evaluation

The crop type map generated with the Sent2Agri sys-
tem, based on the previously obtained cropland
mask, using images of the whole 2017 growing
season and thein-situ training dataset, is shown in
Fig.6. From a visual analysis of the full extent, the
main crops, namely maize and rice clearly stand out
followed by wheat. Those three main crops are
indeed the major crop types grown in this region.
Based on a closer look at the plots, rice and maize
seem to be well distinguished from one another,

while maize and wheat appear to be mixed inside

some plots. Generally, there is an undeniable salt
and pepper effect, due to the pixel-based approach.

To assess the quality of the classification, an
error confusion matrix was generated between the
crop type map and the in-situ validation dataset con-
taining each crop type, and error metrics were com-
puted (Tab.4). Several observations can be made,
based on the confusion matrix and the performance
metrics. First, the overall accuracy computed from
the confusion matrix is 88%, which seems high.
However, as the “no crop” pixels are numerous,
they weigh a lot in the overall accuracy. It is
therefore interesting to calculate the overall accuracy
of the crop type classification only, excluding the
“no crop” pixels. The result (73%) is significantly
lower, meaning the cropland mask contributes
largely to the overall accuracy of the crop type map.
The real accuracy of the crop type classification is
however 73%. Secondly, when analyzing the indi-
vidual performances for each class, certain crops
clearly stand out in terms of classification accuracy.
Rice was classified with high accuracy (89% F1-
score). It was barely confused with other crops,
meaning its spectral signature and its temporal
features are very specific and different from other
crops Fodder. was also classified quite accurately
(85% Fl-score). Other crops, like maize, wheat,
grapes, or cabbage have lower Fl-scores, ranging
from 61% ( wheat and grapes) to 77% ( maize).
Those crops seem to be less distinguishable. Wheat
and grapes were confused with maize quite often.
Other landcovers ( “no crop”) were misclassified as
maize as well. Another notable error is the confusion
between grapes and other land covers, probably bare
soil. Finally, it is clear the classes have been com-
pletely misclassified or overlooked by the
classification model. They have not once been classi-
fied correctly. While the main and minor crops show
very high Fl-scores, the three crop types score O in
both precision and recall. This is majorly due to their
poor representation in the training dataset, compared
to other classes. In a random forest classifier, each
tree uses a subset of the total set of features to define

decision rules for each node. As a result, classes
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that are poorly represented in the complete training
dataset have a smaller chance to be represented in the
feature subset for each tree. At the end, when per-
forming the majority voting, those classes tend to be

overlooked. A potential solution to tackle the issue of

the classes was to gather the three classes in one
“other” class for the main classification, to perform
a separate classification with only those three
classes, and then substitute the “other” class with

the separate classification.

Tab.4 The error confusion matrix

Classified
Fodder Wheat Maize Rice Grape  Cabbage  Tomato Watermelon Medlar ~ No Crop Precision

Fodder 815 3 17 22 0 2 0 1 0 60 0.89
Wheat 16 678 22 114 29 6 0 0 6 298 0.58
Maize 45 264 3170 184 294 84 56 10 29 259 0.72
Rice 89 12 196 3334 0 13 4 0 0 44 0.90
Ground  Grape 2 17 21 0 942 0 0 1 3 755 0.54
Truth ~ Cabbage 2 2 1 0 0 214 0 48 0 17 0.75
Tomato 25 0 0 0 0 0 0 10 0.00
Watermelon 0 0 9 0 0 0 0 0 0 76 0.00
Medlar 0 0 0 0 0 0 204 0.00
No crop 6 84 387 114 58 35 0 0 4 21201 0.00

Recall 0.82 0.64 0.83 0.88 0.71 0.60 0.00 0.00 0.00 0.92

F1-score 0.85 0.61 0.77 0.89 0.61 0.67 0.00 0.00 0.00 0.95

S22017

37°12'00"N 37°36'00"N 38°00'00"N 38°24'00"N 38°48'00"N 39°12'00"N 39°36'00"N

U, Y 3¢ -
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Medlar Rice TomatoWatermelon Wheat

Cabbage Clover Comn  Grape

Fig.6  Crop type map for the irrigation area in 2017

3.2 Crop land and the error evaluation
The cropland mask was generated using Sentinel-2
imagery from the start till the end of the season, im-

plying 24 dates and with the in-situ training dataset.

The resulting cropped land mask is shown in Fig.6.
Visually, this cropland mask seems very satisfying,
as the whole irrigated agricultural area seems to be
classified correctly as “crop”. The main built up
areas and the Yellow River clearly distinguishable as
“no crop”. When comparing the zoomed-in section
to the equivalent Sentinel-2 composite image, the
the

narrow roads, and even boundaries between different

smaller and more scattered built-up areas,
plots seem to be classified quite accurately as “no
crop” . Due to the pixel-based approach, however, a
slight salt and pepper effect is almost unavoidable.
Statistically, and according to the in-situ vali-
dation dataset, the high accuracy of this cropland
mask is confirmed. The F1-scores of “crop” and “no
crop” are 92% and 94% respectively and the overall

accuracy is 93%.
4 Conclusion

Under the Dragon Program, a joint collaborative
study for crop mapping with the Sent2Agri system
was carried out successfully in the Yellow River irri-
tation area in the Northwest Ningxia Hui Autonomous
Region. The satellite data collecting and processing
were fully benefited from the Sent2Agri system. The

classifier and the parameters setting were used the
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default values of the Sent2 Agri system. As the key of
the remote sensing classification, the scheme of field
data collection and the training dataset development
and tuning were performed by both teams. The re-
sultdemonstrated the good performance of Sent2Agri
system firstly in the fully irrigated area in the world.
9 types of crop were classified and the crop type map
in 2017 was produced based on 35 scenes Sentinel
2A/B images. The overall accuracy computed from
the confusion matrix is 88%, which includes the
cropped and uncropped types. After the removal of
the uncropped area, the overall accuracy for cropped
only decreases to 73%. The major crop types, like
rice, were classified with high accuracy with 89%
F1-score. Fodder was also classified quite accurately
(85% Fl-score). Other crops, like maize, wheat,
grapes, or cabbage have lower Fl-scores, ranging
from 61% ( wheat and grapes) to 77% ( maize ).
Those crops seem to be less distinguishable. It is
clear the minor classes have been completely mis-
classified or overlooked by the classification model.
In order to further improve the crop classification ac-
curacy, more field visits should be arranged and the
training dataset of each type of crop should be bal-
anced statistically and spatially.

In addition to enhance the agricultural production
management, the classified image is helpful for the
other agriculture related sectors. The irrigation man-
agement is of importance in this region. The water
needs and water use efficiency of the region will be
calculated with crop type map in order to improve
the water managements. The precision agricultural-
meteorological service requires the crop type maps in
the region as well and then the agro-meteorological
forecast for the crop growth stage may be improved.
The early warning of agricultural meteorological dis-
aster for the concrete crop type may be provided pre-
cisely. With the implementation of this dragon
project, the crop type mapping practice is expected
to be further improved and the users may be easily

benefited from the Sent2Agri system.
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