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5 ABSTRACT: We report on the use of atomic force microscopy
6 (AFM) to identify and characterize an intermediate state in
7 macrocycle shuttling in a hydrogen bonded amide-based molecular
8 shuttle. The [2]rotaxane consists of a benzylic amide macrocycle
9 mechanically locked onto a thread that bears both fumaramide and
10 succinic amide-ester sites, each of which can bind to the
11 macrocycle through up to four intercomponent hydrogen bonds.
12 Using AFM-based single-molecule force spectroscopy, we mechan-
13 ically triggered the translocation of the ring between the two
14 principal binding sites (“stations”) on the axle. Equilibrium
15 fluctuations reveal another interacting site involving the two
16 oxygen atoms in the middle of the thread. We characterized the
17 ring occupancy distribution over time, which confirms the
18 intermediate in both shuttling directions. The study provides
19 evidence of weak hydrogen bonds that are difficult to detect using other methods and shows how the composition of the thread can
20 significantly influence the shuttling dynamics by slowing down the ring motion between the principal binding sites. More generally,
21 the study illustrates the utility that single-molecule experiments, such as force spectroscopy, can offer for elucidating the structure
22 and dynamics of synthetic molecular machines.

23 ■ INTRODUCTION

24 Rotaxanes are prototypical synthetic molecular machines
25 consisting of a macrocycle threaded onto an axle.1 They
26 enable controlled large-amplitude movement and positioning
27 of one mechanically interlocked component with respect to
28 another.2−7 Translocation of the ring can be triggered by a
29 stimulus, resulting in its directional displacement along the
30 thread. This movement is dependent on the relative interaction
31 strengths between the ring and specific binding sites
32 (“stations”) in the thread. One well-developed class of
33 molecular shuttles features benzylic amide macrocycles
34 threaded onto axles with two or more well-defined hydrogen
35 bonding stations.6,8 In these systems, the translational
36 coconformers undergo exchange by the ring moving over
37 relatively large distances between the two stations, often with
38 excellent positional integrity.
39 Here, using single-molecule force spectroscopy (SMFS) by
40 means of atomic force microscopy (AFM),9,10 we investigate
41 the shuttling motion of the ring in such a hydrogen bonded

f1 42 [2]rotaxane (Figure 1A). Several SMFS experiments have been
43 recently reported11−15 that illustrate the efficacy of this
44 technique in deciphering precise molecular behaviors and
45 dynamic processes in rotaxanes and catenanes. In this
46 particular [2]rotaxane (Figure 1B), the benzylic amide

47macrocycle is mechanically locked onto the thread by bulky
48diphenylethyl groups situated at either end of the axle.8 The
49thread bears both fumaramide and succinic amide-ester sites,
50each of which can bind to the macrocycle through up to four
51intercomponent hydrogen bonds (Figure 1B). The benzylic
52amide macrocycle has a significantly higher affinity for the
53fumaramide ( fum) station than the succinic amide-ester (succ)
54station.8d The occupancy of the ring on each station ( fum/succ
55= 95:5 in 1,1,2,2-tetrachloroethane) corresponds to the ΔΔG
56values between the coconformers.8d SMFS has previously been
57used to pull the ring along the axle, away from the
58thermodynamically favored binding site, through which it
59was demonstrated that the ring was able to travel back to the
60original site against an external mechanical load.11 Here, we
61investigate in greater detail the mechanically induced shuttling
62motion of the ring. We performed pulling and relaxing cycles
63to monitor the ring motion and observed the existence of an
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64 intermediate step that we attribute to the formation of weak
65 hydrogen bonds with the axle along the shuttling path.

66 ■ RESULTS AND DISCUSSION

67 The rotaxane was chemically modified for its interfacing
68 between a surface and an AFM tip following the previously
69 described strategy.11 A poly(ethylene oxide) (PEO) chain
70 attached to the molecular ring serves as a tether for the tip
71 attachment during force experiments. The tip was brought into
72 contact with the substrate in 1,1,2,2-tetrachloroethane and
73 then withdrawn from the surface in a controlled manner so
74 that the molecular ring is mechanically pulled away from its
75 preferred f um station to reach the succ station. The
76 mechanically induced shuttling motion is identified by a
77 characteristic force peak (Figure 1C) presenting a revealed
78 length of ∼4 nm, easily distinguishable from the usual
79 stretching and desorption of the tether. The intensity of the
80 peak, about 40 pN (Figure 1D), reflects the force required to
81 break the H-bonds between the ring and the fum station,
82 matching the force values already observed for these
83 interactions under similar conditions.11,16 The revealed
84 lengthobtained from the contour length variation ΔLc of
85 the worm-like chain (WLC) model17corresponds well to the
86 distance between the fum and the succ stations (details in the
87 SI). The relaxing part of the experiment is performed by
88 releasing the force applied on the ring by moving the tip
89 toward the surface. We observed a similar deviation in the
90 relaxing curve evidencing the shuttling of the ring back to its
91 preferred fum station (Figure S2). During both pulling and
92 relaxing curves, i.e., respectively withdrawal and approach of
93 the tip, we observed many fluctuations between the two states

f2 94 (Figures 2B and S2). This behavior, also known as a hopping
95 phenomenon,13,14,18,19 is indicative of a rapid movement of the
96 ring between the two stations.
97 In addition to the macrocycle binding to the fum and succ
98 stations, we were able to identify an intermediate state during
99 the shuttling of the ring along the molecular thread. The
100 distribution of revealed lengths during pulling−relaxing

101experiments shows a further population at 1.8 ± 0.2 nm
102(Figure 2A). This corresponds to the ring being trapped in the
103middle of the thread instead of shuttling to the second station.
104It is worth noting that, unlike the force-clamp experiment
105performed previously on a related rotaxane,13 here the relative
106proportion of the populations in Figure 2A does not reflect the
107ring occupancy on the different stations, given that the
108pulling−relaxing experiments were performed under a force
109ramp with a variable threshold force.
110The intermediate state is also apparent from the occupancy
111analysis shown in Figure 2B. During the pulling (Figure 2B,
112top) the ring shuttles from the fum station (in green) to the
113succ station (in orange). The transition from one station to the

Figure 1. Single-molecule force spectroscopy experiment on a hydrogen bonded [2]rotaxane. (A) Scheme of the experimental setup representing
the rotaxane chemically attached to a gold-coated silicon surface and the AFM mechanical pulling using a tether attached to the ring. (B) Chemical
structure of the [2]rotaxane. The benzylic amide macrocycle (in blue) can shuttle from the fumaramide station (in green) to the succinic amide-
ester station (in orange). (C) Typical force−distance curve showing a rupture peak with ΔLc = 4 nm, followed by the final PEO detachment peak.
Worm-like chain (WLC) fits are added in red. (D) Distribution of the peak force, i.e., rupture of intramolecular hydrogen bonds between the ring
and the fumaramide station. Gaussian analysis returns Fpeak = 36 ± 5 pN.

Figure 2. Evidence of an intermediate state during the ring shuttling.
(A) Distribution of ΔLc values measured on pulling and relaxing
curves. The first population centered at 1.8 ± 0.2 nm corresponds to
the intermediate state, i.e., the interaction between the ring and the
oxygens in the middle of the thread. The second population centered
at 3.9 ± 0.3 nm corresponds to the complete shuttling from the fum
station to the succ station (or reversibly on relaxing curves). (B) Two
force−displacement curves corresponding to subsequent pulling and
relaxing movements of the tip, both showing the presence of an
intermediate state. The ring shuttles from the fum station (green),
through the intermediate state (red), to the succ station (orange). The
distributions based on the force deviation from the force ramp, ΔF,
are shown on the right with three populations reflecting the existence
of three different occupied states.
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114 other is not straightforward but rather is interrupted by
115 another state right in the middle of the thread, represented by
116 the red region. This intermediate state manifests itself as a
117 third population in the ΔF distribution (Figure 2B, right). This
118 ΔF distribution is obtained from the deviation from the
119 experimental force ramp (see details in the SI). The ΔF value
120 does not represent the binding force of the ring with the thread
121 but simply reflects the presence of interacting states during the
122 pulling and relaxing movements. Similar extension variation
123 (Δd) graphs are routinely constructed for force-clamp
124 experiments on folding proteins as evidence for intermediate
125 conformations.18−21 Identical behavior is observed during the
126 relaxing part (Figure 2B, bottom), highlighting the presence of
127 this intermediate step during the shuttling of the ring in both
128 directions.
129 We inspected the evolution of the ring occupancy with time

f3 130 under increasing and decreasing force regimes. Figure 3 shows
131 that the ring has a high probability of occupying a central
132 position on the thread during its shuttling movements, i.e.,
133 again providing evidence for the intermediate step.

134 As the occupancy over time was measured under a force
135 ramp, the movement kinetics are not constant under the
136 experimental conditions. The implementation of force-clamp
137 experiments by AFM on such small molecules (<5 nm) is not
138 straightforward and requires technical developments that are
139 currently in progress in our lab. Nevertheless, both occupancy
140 graphs over time show the appearance of the intermediate state
141 and are almost symmetrical, assuring again the reversibility of
142 the shuttling process.
143 The chemical structure of the thread between the two main
144 stations comprises three short alkyl regions joined by two ether
145 oxygen atoms (Figures 1B and S1). Given the central position
146 of the ring in this intermediate state, as evidenced by the
147 revealed length population at 1.8 nm (Figure 2A), we suggest
148 that the benzylic amide ring forms hydrogen bonds between
149 the amide N−H groups of the ring and the two oxygens of the
150 thread. Amides are excellent H-bond donors,22 and although
151 ethers are modest H-bond acceptors,22 they should be able to
152 form weak noncovalent interactions that stabilize the ring in
153 this central region rather than desolvate the amide groups
154 completely in the 1,1,2,2-tetrachloroethane solvent.
155 The squared average end-to-end distance of a linear
156 molecular chain in solution (corresponding here to the
157 distance between the two oxygens) can be approximated by
158 the formula

⟨ ⟩ =r nl22 2

159where n is the number of C−C bonds and l is the length of the
160bond. The result gives an end-to-end distance of 7.5 Å,
161consistent with the distance between the opposite amide
162groups in the macrocycle. As a comparison, the distance
163between the hydrogen atoms of opposite amide groups in the
164macrocycle bound to a fumaramide station is about 6.6 Å.23

165We can exclude the formation of two degenerate H-bonds with
166only one oxygen atom. Indeed, the existence of two
167intermediate steps would appear as two additional (red)
168populations and would show rapid shuttling fluctuations. The
169intermediate step takes place at the central position of the
170thread where H-bonds on both sides can be created, the
171formation of only one H-bond being presumably too weak to
172temporarily capture the ring.
173Ibarra et al.13 previously studied the dynamics of a related
174rotaxane modified to contain a very long thread so that the
175molecule could be investigated using optical tweezers. Force-
176clamp experiments under low external forces were made
177possible due to the high stability of the trapping and allowed
178them to measure the dynamics of the rotaxane in aqueous
179medium. They observed a much lower rupture force of 8.5 pN
180for the breaking of H-bonds between the macrocycle and the
181fumaramide station, in agreement with the relative strengths of
182hydrogen bonding in water and organic solvents,11 inter-
183component hydrogen bonds being stronger in less polar
184solvents.22 Hopping events were also evidenced between the
185fumaramide and succinic amide-ester stations, but no
186intermediate states were observed. Since these experiments
187were performed in aqueous conditions, we suggest that the
188formation of weak H-bonds between the macrocycle and the
189polyether thread would be much less favorable, and so under
190those experimental conditions, the intermediate states may not
191be significant. Furthermore, the detection of such close
192intermediate states is difficult given the spatial resolution of
193optical tweezers.
194Finally, we performed an occupancy analysis on successive
195pulling−relaxing cycles, i.e., when one molecule is trapped and
196the ring is successively moved from one station to the other.
197 f4Figure 4 reveals the presence of the intermediate state during
198almost all of the shuttling motions. Each population of the ΔF
199distributions was attributed to the corresponding state given its
200ΔLc value. We note that each occupancy graph is different,
201reflecting the stochastic behavior of individual molecules
202during the shuttling cycles.

203■ CONCLUSION

204The detailed SMFS investigation of the mechanically triggered
205motion of a macrocycle between two stations on a molecular
206thread reveals an intermediate state during the shuttling in
2071,1,2,2-tetrachloroethane. The intermediate probably arises
208from the formation of weak hydrogen bonds between the ring
209and two oxygen atoms in the central region of the thread. The
210revealing of the intermediate state was made possible by the
211spatial and force resolutions of the AFM along with
212experimental conditions specifically chosen to allow the
213detection of fluctuations during pulling−relaxing experiments.
214The experiments demonstrate that the two oxygen atoms in
215the thread impact the shuttling kinetics, slowing down the ring
216motion between the two main stations. The results illustrate
217the efficacy of single-molecule force spectroscopy in identifying

Figure 3. Relative occupancy of the molecular ring on the fumaramide
(green), succinic amide-ester (orange), and intermediate (red)
stations over time during a pulling−relaxing cycle. The intermediate
step is clearly evidenced in the pulling (left) with the increase of the
red curve once the green occupancy drops. An inverse behavior is
observed in the relaxing part (right), evidence for the intermediate
step in each direction. Exponential fits are added as a guide for the
eyes.
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218 and characterizing individual molecular motions within
219 complex nanoscale architectures.
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